Blob Blame History Raw
From 66bf22e129f0b8621903a8b0489b2684e70fad65 Mon Sep 17 00:00:00 2001
From: Siddhesh Poyarekar <siddhesh@redhat.com>
Date: Fri, 8 Mar 2013 11:38:41 +0530
Subject: [PATCH 17/42] Consolidate copies of mp code in powerpc

Retain a single copy of the mp code in power4 instead of the two
identical copies in powerpc32 and powerpc64.
(backported from commit 6d9145d817e570cd986bb088cf2af0bf51ac7dde)
---
 sysdeps/powerpc/power4/fpu/Makefile           |   5 +
 sysdeps/powerpc/power4/fpu/mpa.c              | 548 ++++++++++++++++++++++++++
 sysdeps/powerpc/powerpc32/power4/Implies      |   2 +
 sysdeps/powerpc/powerpc32/power4/fpu/Makefile |   5 -
 sysdeps/powerpc/powerpc32/power4/fpu/mpa.c    | 548 --------------------------
 sysdeps/powerpc/powerpc64/power4/Implies      |   2 +
 sysdeps/powerpc/powerpc64/power4/fpu/Makefile |   5 -
 sysdeps/powerpc/powerpc64/power4/fpu/mpa.c    | 548 --------------------------
 9 files changed, 568 insertions(+), 1106 deletions(-)
 create mode 100644 sysdeps/powerpc/power4/fpu/Makefile
 create mode 100644 sysdeps/powerpc/power4/fpu/mpa.c
 create mode 100644 sysdeps/powerpc/powerpc32/power4/Implies
 delete mode 100644 sysdeps/powerpc/powerpc32/power4/fpu/Makefile
 delete mode 100644 sysdeps/powerpc/powerpc32/power4/fpu/mpa.c
 create mode 100644 sysdeps/powerpc/powerpc64/power4/Implies
 delete mode 100644 sysdeps/powerpc/powerpc64/power4/fpu/Makefile
 delete mode 100644 sysdeps/powerpc/powerpc64/power4/fpu/mpa.c

diff --git a/sysdeps/powerpc/power4/fpu/Makefile b/sysdeps/powerpc/power4/fpu/Makefile
new file mode 100644
index 0000000..f487ed6
--- /dev/null
+++ b/sysdeps/powerpc/power4/fpu/Makefile
@@ -0,0 +1,5 @@
+# Makefile fragment for POWER4/5/5+ with FPU.
+
+ifeq ($(subdir),math)
+CFLAGS-mpa.c += --param max-unroll-times=4 -funroll-loops -fpeel-loops
+endif
diff --git a/sysdeps/powerpc/power4/fpu/mpa.c b/sysdeps/powerpc/power4/fpu/mpa.c
new file mode 100644
index 0000000..d15680e
--- /dev/null
+++ b/sysdeps/powerpc/power4/fpu/mpa.c
@@ -0,0 +1,548 @@
+
+/*
+ * IBM Accurate Mathematical Library
+ * written by International Business Machines Corp.
+ * Copyright (C) 2001, 2006 Free Software Foundation
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published by
+ * the Free Software Foundation; either version 2.1 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+/************************************************************************/
+/*  MODULE_NAME: mpa.c                                                  */
+/*                                                                      */
+/*  FUNCTIONS:                                                          */
+/*               mcr                                                    */
+/*               acr                                                    */
+/*               cr                                                     */
+/*               cpy                                                    */
+/*               cpymn                                                  */
+/*               norm                                                   */
+/*               denorm                                                 */
+/*               mp_dbl                                                 */
+/*               dbl_mp                                                 */
+/*               add_magnitudes                                         */
+/*               sub_magnitudes                                         */
+/*               add                                                    */
+/*               sub                                                    */
+/*               mul                                                    */
+/*               inv                                                    */
+/*               dvd                                                    */
+/*                                                                      */
+/* Arithmetic functions for multiple precision numbers.                 */
+/* Relative errors are bounded                                          */
+/************************************************************************/
+
+
+#include "endian.h"
+#include "mpa.h"
+#include "mpa2.h"
+#include <sys/param.h>	/* For MIN() */
+/* mcr() compares the sizes of the mantissas of two multiple precision  */
+/* numbers. Mantissas are compared regardless of the signs of the       */
+/* numbers, even if x->d[0] or y->d[0] are zero. Exponents are also     */
+/* disregarded.                                                         */
+static int mcr(const mp_no *x, const mp_no *y, int p) {
+  long i;
+  long p2 = p;
+  for (i=1; i<=p2; i++) {
+    if      (X[i] == Y[i])  continue;
+    else if (X[i] >  Y[i])  return  1;
+    else                    return -1; }
+  return 0;
+}
+
+
+
+/* acr() compares the absolute values of two multiple precision numbers */
+int __acr(const mp_no *x, const mp_no *y, int p) {
+  long i;
+
+  if      (X[0] == ZERO) {
+    if    (Y[0] == ZERO) i= 0;
+    else                 i=-1;
+  }
+  else if (Y[0] == ZERO) i= 1;
+  else {
+    if      (EX >  EY)   i= 1;
+    else if (EX <  EY)   i=-1;
+    else                 i= mcr(x,y,p);
+  }
+
+  return i;
+}
+
+
+/* cr90 compares the values of two multiple precision numbers           */
+int  __cr(const mp_no *x, const mp_no *y, int p) {
+  int i;
+
+  if      (X[0] > Y[0])  i= 1;
+  else if (X[0] < Y[0])  i=-1;
+  else if (X[0] < ZERO ) i= __acr(y,x,p);
+  else                   i= __acr(x,y,p);
+
+  return i;
+}
+
+
+/* Copy a multiple precision number. Set *y=*x. x=y is permissible.      */
+void __cpy(const mp_no *x, mp_no *y, int p) {
+  long i;
+
+  EY = EX;
+  for (i=0; i <= p; i++)    Y[i] = X[i];
+
+  return;
+}
+
+
+/* Copy a multiple precision number x of precision m into a */
+/* multiple precision number y of precision n. In case n>m, */
+/* the digits of y beyond the m'th are set to zero. In case */
+/* n<m, the digits of x beyond the n'th are ignored.        */
+/* x=y is permissible.                                      */
+
+void __cpymn(const mp_no *x, int m, mp_no *y, int n) {
+
+  long i,k;
+  long n2 = n;
+  long m2 = m;
+
+  EY = EX;     k=MIN(m2,n2);
+  for (i=0; i <= k; i++)    Y[i] = X[i];
+  for (   ; i <= n2; i++)    Y[i] = ZERO;
+
+  return;
+}
+
+/* Convert a multiple precision number *x into a double precision */
+/* number *y, normalized case  (|x| >= 2**(-1022))) */
+static void norm(const mp_no *x, double *y, int p)
+{
+  #define R  radixi.d
+  long i;
+#if 0
+  int k;
+#endif
+  double a,c,u,v,z[5];
+  if (p<5) {
+    if      (p==1) c = X[1];
+    else if (p==2) c = X[1] + R* X[2];
+    else if (p==3) c = X[1] + R*(X[2]  +   R* X[3]);
+    else if (p==4) c =(X[1] + R* X[2]) + R*R*(X[3] + R*X[4]);
+  }
+  else {
+    for (a=ONE, z[1]=X[1]; z[1] < TWO23; )
+        {a *= TWO;   z[1] *= TWO; }
+
+    for (i=2; i<5; i++) {
+      z[i] = X[i]*a;
+      u = (z[i] + CUTTER)-CUTTER;
+      if  (u > z[i])  u -= RADIX;
+      z[i] -= u;
+      z[i-1] += u*RADIXI;
+    }
+
+    u = (z[3] + TWO71) - TWO71;
+    if (u > z[3])   u -= TWO19;
+    v = z[3]-u;
+
+    if (v == TWO18) {
+      if (z[4] == ZERO) {
+        for (i=5; i <= p; i++) {
+          if (X[i] == ZERO)   continue;
+          else                {z[3] += ONE;   break; }
+        }
+      }
+      else              z[3] += ONE;
+    }
+
+    c = (z[1] + R *(z[2] + R * z[3]))/a;
+  }
+
+  c *= X[0];
+
+  for (i=1; i<EX; i++)   c *= RADIX;
+  for (i=1; i>EX; i--)   c *= RADIXI;
+
+  *y = c;
+  return;
+#undef R
+}
+
+/* Convert a multiple precision number *x into a double precision */
+/* number *y, denormalized case  (|x| < 2**(-1022))) */
+static void denorm(const mp_no *x, double *y, int p)
+{
+  long i,k;
+  long p2 = p;
+  double c,u,z[5];
+#if 0
+  double a,v;
+#endif
+
+#define R  radixi.d
+  if (EX<-44 || (EX==-44 && X[1]<TWO5))
+     { *y=ZERO; return; }
+
+  if      (p2==1) {
+    if      (EX==-42) {z[1]=X[1]+TWO10;  z[2]=ZERO;  z[3]=ZERO;  k=3;}
+    else if (EX==-43) {z[1]=     TWO10;  z[2]=X[1];  z[3]=ZERO;  k=2;}
+    else              {z[1]=     TWO10;  z[2]=ZERO;  z[3]=X[1];  k=1;}
+  }
+  else if (p2==2) {
+    if      (EX==-42) {z[1]=X[1]+TWO10;  z[2]=X[2];  z[3]=ZERO;  k=3;}
+    else if (EX==-43) {z[1]=     TWO10;  z[2]=X[1];  z[3]=X[2];  k=2;}
+    else              {z[1]=     TWO10;  z[2]=ZERO;  z[3]=X[1];  k=1;}
+  }
+  else {
+    if      (EX==-42) {z[1]=X[1]+TWO10;  z[2]=X[2];  k=3;}
+    else if (EX==-43) {z[1]=     TWO10;  z[2]=X[1];  k=2;}
+    else              {z[1]=     TWO10;  z[2]=ZERO;  k=1;}
+    z[3] = X[k];
+  }
+
+  u = (z[3] + TWO57) - TWO57;
+  if  (u > z[3])   u -= TWO5;
+
+  if (u==z[3]) {
+    for (i=k+1; i <= p2; i++) {
+      if (X[i] == ZERO)   continue;
+      else {z[3] += ONE;   break; }
+    }
+  }
+
+  c = X[0]*((z[1] + R*(z[2] + R*z[3])) - TWO10);
+
+  *y = c*TWOM1032;
+  return;
+
+#undef R
+}
+
+/* Convert a multiple precision number *x into a double precision number *y. */
+/* The result is correctly rounded to the nearest/even. *x is left unchanged */
+
+void __mp_dbl(const mp_no *x, double *y, int p) {
+#if 0
+  int i,k;
+  double a,c,u,v,z[5];
+#endif
+
+  if (X[0] == ZERO)  {*y = ZERO;  return; }
+
+  if      (EX> -42)                 norm(x,y,p);
+  else if (EX==-42 && X[1]>=TWO10)  norm(x,y,p);
+  else                              denorm(x,y,p);
+}
+
+
+/* dbl_mp() converts a double precision number x into a multiple precision  */
+/* number *y. If the precision p is too small the result is truncated. x is */
+/* left unchanged.                                                          */
+
+void __dbl_mp(double x, mp_no *y, int p) {
+
+  long i,n;
+  long p2 = p;
+  double u;
+
+  /* Sign */
+  if      (x == ZERO)  {Y[0] = ZERO;  return; }
+  else if (x >  ZERO)   Y[0] = ONE;
+  else                 {Y[0] = MONE;  x=-x;   }
+
+  /* Exponent */
+  for (EY=ONE; x >= RADIX; EY += ONE)   x *= RADIXI;
+  for (      ; x <  ONE;   EY -= ONE)   x *= RADIX;
+
+  /* Digits */
+  n=MIN(p2,4);
+  for (i=1; i<=n; i++) {
+    u = (x + TWO52) - TWO52;
+    if (u>x)   u -= ONE;
+    Y[i] = u;     x -= u;    x *= RADIX; }
+  for (   ; i<=p2; i++)     Y[i] = ZERO;
+  return;
+}
+
+
+/*  add_magnitudes() adds the magnitudes of *x & *y assuming that           */
+/*  abs(*x) >= abs(*y) > 0.                                                 */
+/* The sign of the sum *z is undefined. x&y may overlap but not x&z or y&z. */
+/* No guard digit is used. The result equals the exact sum, truncated.      */
+/* *x & *y are left unchanged.                                              */
+
+static void add_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {
+
+  long i,j,k;
+  long p2 = p;
+
+  EZ = EX;
+
+  i=p2;    j=p2+ EY - EX;    k=p2+1;
+
+  if (j<1)
+     {__cpy(x,z,p);  return; }
+  else   Z[k] = ZERO;
+
+  for (; j>0; i--,j--) {
+    Z[k] += X[i] + Y[j];
+    if (Z[k] >= RADIX) {
+      Z[k]  -= RADIX;
+      Z[--k] = ONE; }
+    else
+      Z[--k] = ZERO;
+  }
+
+  for (; i>0; i--) {
+    Z[k] += X[i];
+    if (Z[k] >= RADIX) {
+      Z[k]  -= RADIX;
+      Z[--k] = ONE; }
+    else
+      Z[--k] = ZERO;
+  }
+
+  if (Z[1] == ZERO) {
+    for (i=1; i<=p2; i++)    Z[i] = Z[i+1]; }
+  else   EZ += ONE;
+}
+
+
+/*  sub_magnitudes() subtracts the magnitudes of *x & *y assuming that      */
+/*  abs(*x) > abs(*y) > 0.                                                  */
+/* The sign of the difference *z is undefined. x&y may overlap but not x&z  */
+/* or y&z. One guard digit is used. The error is less than one ulp.         */
+/* *x & *y are left unchanged.                                              */
+
+static void sub_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {
+
+  long i,j,k;
+  long p2 = p;
+
+  EZ = EX;
+
+  if (EX == EY) {
+    i=j=k=p2;
+    Z[k] = Z[k+1] = ZERO; }
+  else {
+    j= EX - EY;
+    if (j > p2)  {__cpy(x,z,p);  return; }
+    else {
+      i=p2;   j=p2+1-j;   k=p2;
+      if (Y[j] > ZERO) {
+        Z[k+1] = RADIX - Y[j--];
+        Z[k]   = MONE; }
+      else {
+        Z[k+1] = ZERO;
+        Z[k]   = ZERO;   j--;}
+    }
+  }
+
+  for (; j>0; i--,j--) {
+    Z[k] += (X[i] - Y[j]);
+    if (Z[k] < ZERO) {
+      Z[k]  += RADIX;
+      Z[--k] = MONE; }
+    else
+      Z[--k] = ZERO;
+  }
+
+  for (; i>0; i--) {
+    Z[k] += X[i];
+    if (Z[k] < ZERO) {
+      Z[k]  += RADIX;
+      Z[--k] = MONE; }
+    else
+      Z[--k] = ZERO;
+  }
+
+  for (i=1; Z[i] == ZERO; i++) ;
+  EZ = EZ - i + 1;
+  for (k=1; i <= p2+1; )
+    Z[k++] = Z[i++];
+  for (; k <= p2; )
+    Z[k++] = ZERO;
+
+  return;
+}
+
+
+/* Add two multiple precision numbers. Set *z = *x + *y. x&y may overlap  */
+/* but not x&z or y&z. One guard digit is used. The error is less than    */
+/* one ulp. *x & *y are left unchanged.                                   */
+
+void __add(const mp_no *x, const mp_no *y, mp_no *z, int p) {
+
+  int n;
+
+  if      (X[0] == ZERO)     {__cpy(y,z,p);  return; }
+  else if (Y[0] == ZERO)     {__cpy(x,z,p);  return; }
+
+  if (X[0] == Y[0])   {
+    if (__acr(x,y,p) > 0)      {add_magnitudes(x,y,z,p);  Z[0] = X[0]; }
+    else                     {add_magnitudes(y,x,z,p);  Z[0] = Y[0]; }
+  }
+  else                       {
+    if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p);  Z[0] = X[0]; }
+    else if (n == -1)        {sub_magnitudes(y,x,z,p);  Z[0] = Y[0]; }
+    else                      Z[0] = ZERO;
+  }
+  return;
+}
+
+
+/* Subtract two multiple precision numbers. *z is set to *x - *y. x&y may */
+/* overlap but not x&z or y&z. One guard digit is used. The error is      */
+/* less than one ulp. *x & *y are left unchanged.                         */
+
+void __sub(const mp_no *x, const mp_no *y, mp_no *z, int p) {
+
+  int n;
+
+  if      (X[0] == ZERO)     {__cpy(y,z,p);  Z[0] = -Z[0];  return; }
+  else if (Y[0] == ZERO)     {__cpy(x,z,p);                 return; }
+
+  if (X[0] != Y[0])    {
+    if (__acr(x,y,p) > 0)      {add_magnitudes(x,y,z,p);  Z[0] =  X[0]; }
+    else                     {add_magnitudes(y,x,z,p);  Z[0] = -Y[0]; }
+  }
+  else                       {
+    if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p);  Z[0] =  X[0]; }
+    else if (n == -1)        {sub_magnitudes(y,x,z,p);  Z[0] = -Y[0]; }
+    else                      Z[0] = ZERO;
+  }
+  return;
+}
+
+
+/* Multiply two multiple precision numbers. *z is set to *x * *y. x&y      */
+/* may overlap but not x&z or y&z. In case p=1,2,3 the exact result is     */
+/* truncated to p digits. In case p>3 the error is bounded by 1.001 ulp.   */
+/* *x & *y are left unchanged.                                             */
+
+void __mul(const mp_no *x, const mp_no *y, mp_no *z, int p) {
+
+  long i, i1, i2, j, k, k2;
+  long p2 = p;
+  double u, zk, zk2;
+
+                      /* Is z=0? */
+  if (X[0]*Y[0]==ZERO)
+     { Z[0]=ZERO;  return; }
+
+                       /* Multiply, add and carry */
+  k2 = (p2<3) ? p2+p2 : p2+3;
+  zk = Z[k2]=ZERO;
+  for (k=k2; k>1; ) {
+    if (k > p2)  {i1=k-p2; i2=p2+1; }
+    else        {i1=1;   i2=k;   }
+#if 1
+    /* rearange this inner loop to allow the fmadd instructions to be
+       independent and execute in parallel on processors that have
+       dual symetrical FP pipelines.  */
+    if (i1 < (i2-1))
+    {
+	/* make sure we have at least 2 iterations */
+	if (((i2 - i1) & 1L) == 1L)
+	{
+                /* Handle the odd iterations case.  */
+		zk2 = x->d[i2-1]*y->d[i1];
+	}
+	else
+		zk2 = zero.d;
+	/* Do two multiply/adds per loop iteration, using independent
+           accumulators; zk and zk2.  */
+	for (i=i1,j=i2-1; i<i2-1; i+=2,j-=2) 
+	{
+		zk += x->d[i]*y->d[j];
+		zk2 += x->d[i+1]*y->d[j-1];
+	}
+	zk += zk2; /* final sum.  */
+    }
+    else
+    {
+        /* Special case when iterations is 1.  */
+	zk += x->d[i1]*y->d[i1];
+    }
+#else
+    /* The orginal code.  */
+    for (i=i1,j=i2-1; i<i2; i++,j--)  zk += X[i]*Y[j];
+#endif
+
+    u = (zk + CUTTER)-CUTTER;
+    if  (u > zk)  u -= RADIX;
+    Z[k]  = zk - u;
+    zk = u*RADIXI;
+    --k;
+  }
+  Z[k] = zk;
+
+                 /* Is there a carry beyond the most significant digit? */
+  if (Z[1] == ZERO) {
+    for (i=1; i<=p2; i++)  Z[i]=Z[i+1];
+    EZ = EX + EY - 1; }
+  else
+    EZ = EX + EY;
+
+  Z[0] = X[0] * Y[0];
+  return;
+}
+
+
+/* Invert a multiple precision number. Set *y = 1 / *x.                     */
+/* Relative error bound = 1.001*r**(1-p) for p=2, 1.063*r**(1-p) for p=3,   */
+/* 2.001*r**(1-p) for p>3.                                                  */
+/* *x=0 is not permissible. *x is left unchanged.                           */
+
+void __inv(const mp_no *x, mp_no *y, int p) {
+  long i;
+#if 0
+  int l;
+#endif
+  double t;
+  mp_no z,w;
+  static const int np1[] = {0,0,0,0,1,2,2,2,2,3,3,3,3,3,3,3,3,3,
+                            4,4,4,4,4,4,4,4,4,4,4,4,4,4,4};
+  const mp_no mptwo = {1,{1.0,2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
+                         0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
+                         0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
+                         0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};
+
+  __cpy(x,&z,p);  z.e=0;  __mp_dbl(&z,&t,p);
+  t=ONE/t;   __dbl_mp(t,y,p);    EY -= EX;
+
+  for (i=0; i<np1[p]; i++) {
+    __cpy(y,&w,p);
+    __mul(x,&w,y,p);
+    __sub(&mptwo,y,&z,p);
+    __mul(&w,&z,y,p);
+  }
+  return;
+}
+
+
+/* Divide one multiple precision number by another.Set *z = *x / *y. *x & *y */
+/* are left unchanged. x&y may overlap but not x&z or y&z.                   */
+/* Relative error bound = 2.001*r**(1-p) for p=2, 2.063*r**(1-p) for p=3     */
+/* and 3.001*r**(1-p) for p>3. *y=0 is not permissible.                      */
+
+void __dvd(const mp_no *x, const mp_no *y, mp_no *z, int p) {
+
+  mp_no w;
+
+  if (X[0] == ZERO)    Z[0] = ZERO;
+  else                {__inv(y,&w,p);   __mul(x,&w,z,p);}
+  return;
+}
diff --git a/sysdeps/powerpc/powerpc32/power4/Implies b/sysdeps/powerpc/powerpc32/power4/Implies
new file mode 100644
index 0000000..a372141
--- /dev/null
+++ b/sysdeps/powerpc/powerpc32/power4/Implies
@@ -0,0 +1,2 @@
+powerpc/power4/fpu
+powerpc/power4
diff --git a/sysdeps/powerpc/powerpc32/power4/fpu/Makefile b/sysdeps/powerpc/powerpc32/power4/fpu/Makefile
deleted file mode 100644
index f487ed6..0000000
--- a/sysdeps/powerpc/powerpc32/power4/fpu/Makefile
+++ /dev/null
@@ -1,5 +0,0 @@
-# Makefile fragment for POWER4/5/5+ with FPU.
-
-ifeq ($(subdir),math)
-CFLAGS-mpa.c += --param max-unroll-times=4 -funroll-loops -fpeel-loops
-endif
diff --git a/sysdeps/powerpc/powerpc32/power4/fpu/mpa.c b/sysdeps/powerpc/powerpc32/power4/fpu/mpa.c
deleted file mode 100644
index d15680e..0000000
--- a/sysdeps/powerpc/powerpc32/power4/fpu/mpa.c
+++ /dev/null
@@ -1,548 +0,0 @@
-
-/*
- * IBM Accurate Mathematical Library
- * written by International Business Machines Corp.
- * Copyright (C) 2001, 2006 Free Software Foundation
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public License
- * along with this program; if not, see <http://www.gnu.org/licenses/>.
- */
-/************************************************************************/
-/*  MODULE_NAME: mpa.c                                                  */
-/*                                                                      */
-/*  FUNCTIONS:                                                          */
-/*               mcr                                                    */
-/*               acr                                                    */
-/*               cr                                                     */
-/*               cpy                                                    */
-/*               cpymn                                                  */
-/*               norm                                                   */
-/*               denorm                                                 */
-/*               mp_dbl                                                 */
-/*               dbl_mp                                                 */
-/*               add_magnitudes                                         */
-/*               sub_magnitudes                                         */
-/*               add                                                    */
-/*               sub                                                    */
-/*               mul                                                    */
-/*               inv                                                    */
-/*               dvd                                                    */
-/*                                                                      */
-/* Arithmetic functions for multiple precision numbers.                 */
-/* Relative errors are bounded                                          */
-/************************************************************************/
-
-
-#include "endian.h"
-#include "mpa.h"
-#include "mpa2.h"
-#include <sys/param.h>	/* For MIN() */
-/* mcr() compares the sizes of the mantissas of two multiple precision  */
-/* numbers. Mantissas are compared regardless of the signs of the       */
-/* numbers, even if x->d[0] or y->d[0] are zero. Exponents are also     */
-/* disregarded.                                                         */
-static int mcr(const mp_no *x, const mp_no *y, int p) {
-  long i;
-  long p2 = p;
-  for (i=1; i<=p2; i++) {
-    if      (X[i] == Y[i])  continue;
-    else if (X[i] >  Y[i])  return  1;
-    else                    return -1; }
-  return 0;
-}
-
-
-
-/* acr() compares the absolute values of two multiple precision numbers */
-int __acr(const mp_no *x, const mp_no *y, int p) {
-  long i;
-
-  if      (X[0] == ZERO) {
-    if    (Y[0] == ZERO) i= 0;
-    else                 i=-1;
-  }
-  else if (Y[0] == ZERO) i= 1;
-  else {
-    if      (EX >  EY)   i= 1;
-    else if (EX <  EY)   i=-1;
-    else                 i= mcr(x,y,p);
-  }
-
-  return i;
-}
-
-
-/* cr90 compares the values of two multiple precision numbers           */
-int  __cr(const mp_no *x, const mp_no *y, int p) {
-  int i;
-
-  if      (X[0] > Y[0])  i= 1;
-  else if (X[0] < Y[0])  i=-1;
-  else if (X[0] < ZERO ) i= __acr(y,x,p);
-  else                   i= __acr(x,y,p);
-
-  return i;
-}
-
-
-/* Copy a multiple precision number. Set *y=*x. x=y is permissible.      */
-void __cpy(const mp_no *x, mp_no *y, int p) {
-  long i;
-
-  EY = EX;
-  for (i=0; i <= p; i++)    Y[i] = X[i];
-
-  return;
-}
-
-
-/* Copy a multiple precision number x of precision m into a */
-/* multiple precision number y of precision n. In case n>m, */
-/* the digits of y beyond the m'th are set to zero. In case */
-/* n<m, the digits of x beyond the n'th are ignored.        */
-/* x=y is permissible.                                      */
-
-void __cpymn(const mp_no *x, int m, mp_no *y, int n) {
-
-  long i,k;
-  long n2 = n;
-  long m2 = m;
-
-  EY = EX;     k=MIN(m2,n2);
-  for (i=0; i <= k; i++)    Y[i] = X[i];
-  for (   ; i <= n2; i++)    Y[i] = ZERO;
-
-  return;
-}
-
-/* Convert a multiple precision number *x into a double precision */
-/* number *y, normalized case  (|x| >= 2**(-1022))) */
-static void norm(const mp_no *x, double *y, int p)
-{
-  #define R  radixi.d
-  long i;
-#if 0
-  int k;
-#endif
-  double a,c,u,v,z[5];
-  if (p<5) {
-    if      (p==1) c = X[1];
-    else if (p==2) c = X[1] + R* X[2];
-    else if (p==3) c = X[1] + R*(X[2]  +   R* X[3]);
-    else if (p==4) c =(X[1] + R* X[2]) + R*R*(X[3] + R*X[4]);
-  }
-  else {
-    for (a=ONE, z[1]=X[1]; z[1] < TWO23; )
-        {a *= TWO;   z[1] *= TWO; }
-
-    for (i=2; i<5; i++) {
-      z[i] = X[i]*a;
-      u = (z[i] + CUTTER)-CUTTER;
-      if  (u > z[i])  u -= RADIX;
-      z[i] -= u;
-      z[i-1] += u*RADIXI;
-    }
-
-    u = (z[3] + TWO71) - TWO71;
-    if (u > z[3])   u -= TWO19;
-    v = z[3]-u;
-
-    if (v == TWO18) {
-      if (z[4] == ZERO) {
-        for (i=5; i <= p; i++) {
-          if (X[i] == ZERO)   continue;
-          else                {z[3] += ONE;   break; }
-        }
-      }
-      else              z[3] += ONE;
-    }
-
-    c = (z[1] + R *(z[2] + R * z[3]))/a;
-  }
-
-  c *= X[0];
-
-  for (i=1; i<EX; i++)   c *= RADIX;
-  for (i=1; i>EX; i--)   c *= RADIXI;
-
-  *y = c;
-  return;
-#undef R
-}
-
-/* Convert a multiple precision number *x into a double precision */
-/* number *y, denormalized case  (|x| < 2**(-1022))) */
-static void denorm(const mp_no *x, double *y, int p)
-{
-  long i,k;
-  long p2 = p;
-  double c,u,z[5];
-#if 0
-  double a,v;
-#endif
-
-#define R  radixi.d
-  if (EX<-44 || (EX==-44 && X[1]<TWO5))
-     { *y=ZERO; return; }
-
-  if      (p2==1) {
-    if      (EX==-42) {z[1]=X[1]+TWO10;  z[2]=ZERO;  z[3]=ZERO;  k=3;}
-    else if (EX==-43) {z[1]=     TWO10;  z[2]=X[1];  z[3]=ZERO;  k=2;}
-    else              {z[1]=     TWO10;  z[2]=ZERO;  z[3]=X[1];  k=1;}
-  }
-  else if (p2==2) {
-    if      (EX==-42) {z[1]=X[1]+TWO10;  z[2]=X[2];  z[3]=ZERO;  k=3;}
-    else if (EX==-43) {z[1]=     TWO10;  z[2]=X[1];  z[3]=X[2];  k=2;}
-    else              {z[1]=     TWO10;  z[2]=ZERO;  z[3]=X[1];  k=1;}
-  }
-  else {
-    if      (EX==-42) {z[1]=X[1]+TWO10;  z[2]=X[2];  k=3;}
-    else if (EX==-43) {z[1]=     TWO10;  z[2]=X[1];  k=2;}
-    else              {z[1]=     TWO10;  z[2]=ZERO;  k=1;}
-    z[3] = X[k];
-  }
-
-  u = (z[3] + TWO57) - TWO57;
-  if  (u > z[3])   u -= TWO5;
-
-  if (u==z[3]) {
-    for (i=k+1; i <= p2; i++) {
-      if (X[i] == ZERO)   continue;
-      else {z[3] += ONE;   break; }
-    }
-  }
-
-  c = X[0]*((z[1] + R*(z[2] + R*z[3])) - TWO10);
-
-  *y = c*TWOM1032;
-  return;
-
-#undef R
-}
-
-/* Convert a multiple precision number *x into a double precision number *y. */
-/* The result is correctly rounded to the nearest/even. *x is left unchanged */
-
-void __mp_dbl(const mp_no *x, double *y, int p) {
-#if 0
-  int i,k;
-  double a,c,u,v,z[5];
-#endif
-
-  if (X[0] == ZERO)  {*y = ZERO;  return; }
-
-  if      (EX> -42)                 norm(x,y,p);
-  else if (EX==-42 && X[1]>=TWO10)  norm(x,y,p);
-  else                              denorm(x,y,p);
-}
-
-
-/* dbl_mp() converts a double precision number x into a multiple precision  */
-/* number *y. If the precision p is too small the result is truncated. x is */
-/* left unchanged.                                                          */
-
-void __dbl_mp(double x, mp_no *y, int p) {
-
-  long i,n;
-  long p2 = p;
-  double u;
-
-  /* Sign */
-  if      (x == ZERO)  {Y[0] = ZERO;  return; }
-  else if (x >  ZERO)   Y[0] = ONE;
-  else                 {Y[0] = MONE;  x=-x;   }
-
-  /* Exponent */
-  for (EY=ONE; x >= RADIX; EY += ONE)   x *= RADIXI;
-  for (      ; x <  ONE;   EY -= ONE)   x *= RADIX;
-
-  /* Digits */
-  n=MIN(p2,4);
-  for (i=1; i<=n; i++) {
-    u = (x + TWO52) - TWO52;
-    if (u>x)   u -= ONE;
-    Y[i] = u;     x -= u;    x *= RADIX; }
-  for (   ; i<=p2; i++)     Y[i] = ZERO;
-  return;
-}
-
-
-/*  add_magnitudes() adds the magnitudes of *x & *y assuming that           */
-/*  abs(*x) >= abs(*y) > 0.                                                 */
-/* The sign of the sum *z is undefined. x&y may overlap but not x&z or y&z. */
-/* No guard digit is used. The result equals the exact sum, truncated.      */
-/* *x & *y are left unchanged.                                              */
-
-static void add_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {
-
-  long i,j,k;
-  long p2 = p;
-
-  EZ = EX;
-
-  i=p2;    j=p2+ EY - EX;    k=p2+1;
-
-  if (j<1)
-     {__cpy(x,z,p);  return; }
-  else   Z[k] = ZERO;
-
-  for (; j>0; i--,j--) {
-    Z[k] += X[i] + Y[j];
-    if (Z[k] >= RADIX) {
-      Z[k]  -= RADIX;
-      Z[--k] = ONE; }
-    else
-      Z[--k] = ZERO;
-  }
-
-  for (; i>0; i--) {
-    Z[k] += X[i];
-    if (Z[k] >= RADIX) {
-      Z[k]  -= RADIX;
-      Z[--k] = ONE; }
-    else
-      Z[--k] = ZERO;
-  }
-
-  if (Z[1] == ZERO) {
-    for (i=1; i<=p2; i++)    Z[i] = Z[i+1]; }
-  else   EZ += ONE;
-}
-
-
-/*  sub_magnitudes() subtracts the magnitudes of *x & *y assuming that      */
-/*  abs(*x) > abs(*y) > 0.                                                  */
-/* The sign of the difference *z is undefined. x&y may overlap but not x&z  */
-/* or y&z. One guard digit is used. The error is less than one ulp.         */
-/* *x & *y are left unchanged.                                              */
-
-static void sub_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {
-
-  long i,j,k;
-  long p2 = p;
-
-  EZ = EX;
-
-  if (EX == EY) {
-    i=j=k=p2;
-    Z[k] = Z[k+1] = ZERO; }
-  else {
-    j= EX - EY;
-    if (j > p2)  {__cpy(x,z,p);  return; }
-    else {
-      i=p2;   j=p2+1-j;   k=p2;
-      if (Y[j] > ZERO) {
-        Z[k+1] = RADIX - Y[j--];
-        Z[k]   = MONE; }
-      else {
-        Z[k+1] = ZERO;
-        Z[k]   = ZERO;   j--;}
-    }
-  }
-
-  for (; j>0; i--,j--) {
-    Z[k] += (X[i] - Y[j]);
-    if (Z[k] < ZERO) {
-      Z[k]  += RADIX;
-      Z[--k] = MONE; }
-    else
-      Z[--k] = ZERO;
-  }
-
-  for (; i>0; i--) {
-    Z[k] += X[i];
-    if (Z[k] < ZERO) {
-      Z[k]  += RADIX;
-      Z[--k] = MONE; }
-    else
-      Z[--k] = ZERO;
-  }
-
-  for (i=1; Z[i] == ZERO; i++) ;
-  EZ = EZ - i + 1;
-  for (k=1; i <= p2+1; )
-    Z[k++] = Z[i++];
-  for (; k <= p2; )
-    Z[k++] = ZERO;
-
-  return;
-}
-
-
-/* Add two multiple precision numbers. Set *z = *x + *y. x&y may overlap  */
-/* but not x&z or y&z. One guard digit is used. The error is less than    */
-/* one ulp. *x & *y are left unchanged.                                   */
-
-void __add(const mp_no *x, const mp_no *y, mp_no *z, int p) {
-
-  int n;
-
-  if      (X[0] == ZERO)     {__cpy(y,z,p);  return; }
-  else if (Y[0] == ZERO)     {__cpy(x,z,p);  return; }
-
-  if (X[0] == Y[0])   {
-    if (__acr(x,y,p) > 0)      {add_magnitudes(x,y,z,p);  Z[0] = X[0]; }
-    else                     {add_magnitudes(y,x,z,p);  Z[0] = Y[0]; }
-  }
-  else                       {
-    if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p);  Z[0] = X[0]; }
-    else if (n == -1)        {sub_magnitudes(y,x,z,p);  Z[0] = Y[0]; }
-    else                      Z[0] = ZERO;
-  }
-  return;
-}
-
-
-/* Subtract two multiple precision numbers. *z is set to *x - *y. x&y may */
-/* overlap but not x&z or y&z. One guard digit is used. The error is      */
-/* less than one ulp. *x & *y are left unchanged.                         */
-
-void __sub(const mp_no *x, const mp_no *y, mp_no *z, int p) {
-
-  int n;
-
-  if      (X[0] == ZERO)     {__cpy(y,z,p);  Z[0] = -Z[0];  return; }
-  else if (Y[0] == ZERO)     {__cpy(x,z,p);                 return; }
-
-  if (X[0] != Y[0])    {
-    if (__acr(x,y,p) > 0)      {add_magnitudes(x,y,z,p);  Z[0] =  X[0]; }
-    else                     {add_magnitudes(y,x,z,p);  Z[0] = -Y[0]; }
-  }
-  else                       {
-    if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p);  Z[0] =  X[0]; }
-    else if (n == -1)        {sub_magnitudes(y,x,z,p);  Z[0] = -Y[0]; }
-    else                      Z[0] = ZERO;
-  }
-  return;
-}
-
-
-/* Multiply two multiple precision numbers. *z is set to *x * *y. x&y      */
-/* may overlap but not x&z or y&z. In case p=1,2,3 the exact result is     */
-/* truncated to p digits. In case p>3 the error is bounded by 1.001 ulp.   */
-/* *x & *y are left unchanged.                                             */
-
-void __mul(const mp_no *x, const mp_no *y, mp_no *z, int p) {
-
-  long i, i1, i2, j, k, k2;
-  long p2 = p;
-  double u, zk, zk2;
-
-                      /* Is z=0? */
-  if (X[0]*Y[0]==ZERO)
-     { Z[0]=ZERO;  return; }
-
-                       /* Multiply, add and carry */
-  k2 = (p2<3) ? p2+p2 : p2+3;
-  zk = Z[k2]=ZERO;
-  for (k=k2; k>1; ) {
-    if (k > p2)  {i1=k-p2; i2=p2+1; }
-    else        {i1=1;   i2=k;   }
-#if 1
-    /* rearange this inner loop to allow the fmadd instructions to be
-       independent and execute in parallel on processors that have
-       dual symetrical FP pipelines.  */
-    if (i1 < (i2-1))
-    {
-	/* make sure we have at least 2 iterations */
-	if (((i2 - i1) & 1L) == 1L)
-	{
-                /* Handle the odd iterations case.  */
-		zk2 = x->d[i2-1]*y->d[i1];
-	}
-	else
-		zk2 = zero.d;
-	/* Do two multiply/adds per loop iteration, using independent
-           accumulators; zk and zk2.  */
-	for (i=i1,j=i2-1; i<i2-1; i+=2,j-=2) 
-	{
-		zk += x->d[i]*y->d[j];
-		zk2 += x->d[i+1]*y->d[j-1];
-	}
-	zk += zk2; /* final sum.  */
-    }
-    else
-    {
-        /* Special case when iterations is 1.  */
-	zk += x->d[i1]*y->d[i1];
-    }
-#else
-    /* The orginal code.  */
-    for (i=i1,j=i2-1; i<i2; i++,j--)  zk += X[i]*Y[j];
-#endif
-
-    u = (zk + CUTTER)-CUTTER;
-    if  (u > zk)  u -= RADIX;
-    Z[k]  = zk - u;
-    zk = u*RADIXI;
-    --k;
-  }
-  Z[k] = zk;
-
-                 /* Is there a carry beyond the most significant digit? */
-  if (Z[1] == ZERO) {
-    for (i=1; i<=p2; i++)  Z[i]=Z[i+1];
-    EZ = EX + EY - 1; }
-  else
-    EZ = EX + EY;
-
-  Z[0] = X[0] * Y[0];
-  return;
-}
-
-
-/* Invert a multiple precision number. Set *y = 1 / *x.                     */
-/* Relative error bound = 1.001*r**(1-p) for p=2, 1.063*r**(1-p) for p=3,   */
-/* 2.001*r**(1-p) for p>3.                                                  */
-/* *x=0 is not permissible. *x is left unchanged.                           */
-
-void __inv(const mp_no *x, mp_no *y, int p) {
-  long i;
-#if 0
-  int l;
-#endif
-  double t;
-  mp_no z,w;
-  static const int np1[] = {0,0,0,0,1,2,2,2,2,3,3,3,3,3,3,3,3,3,
-                            4,4,4,4,4,4,4,4,4,4,4,4,4,4,4};
-  const mp_no mptwo = {1,{1.0,2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
-                         0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
-                         0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
-                         0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};
-
-  __cpy(x,&z,p);  z.e=0;  __mp_dbl(&z,&t,p);
-  t=ONE/t;   __dbl_mp(t,y,p);    EY -= EX;
-
-  for (i=0; i<np1[p]; i++) {
-    __cpy(y,&w,p);
-    __mul(x,&w,y,p);
-    __sub(&mptwo,y,&z,p);
-    __mul(&w,&z,y,p);
-  }
-  return;
-}
-
-
-/* Divide one multiple precision number by another.Set *z = *x / *y. *x & *y */
-/* are left unchanged. x&y may overlap but not x&z or y&z.                   */
-/* Relative error bound = 2.001*r**(1-p) for p=2, 2.063*r**(1-p) for p=3     */
-/* and 3.001*r**(1-p) for p>3. *y=0 is not permissible.                      */
-
-void __dvd(const mp_no *x, const mp_no *y, mp_no *z, int p) {
-
-  mp_no w;
-
-  if (X[0] == ZERO)    Z[0] = ZERO;
-  else                {__inv(y,&w,p);   __mul(x,&w,z,p);}
-  return;
-}
diff --git a/sysdeps/powerpc/powerpc64/power4/Implies b/sysdeps/powerpc/powerpc64/power4/Implies
new file mode 100644
index 0000000..a372141
--- /dev/null
+++ b/sysdeps/powerpc/powerpc64/power4/Implies
@@ -0,0 +1,2 @@
+powerpc/power4/fpu
+powerpc/power4
diff --git a/sysdeps/powerpc/powerpc64/power4/fpu/Makefile b/sysdeps/powerpc/powerpc64/power4/fpu/Makefile
deleted file mode 100644
index f8bb3ef..0000000
--- a/sysdeps/powerpc/powerpc64/power4/fpu/Makefile
+++ /dev/null
@@ -1,5 +0,0 @@
-# Makefile fragment for POWER4/5/5+ platforms with FPU.
-
-ifeq ($(subdir),math)
-CFLAGS-mpa.c += --param max-unroll-times=4 -funroll-loops -fpeel-loops
-endif
diff --git a/sysdeps/powerpc/powerpc64/power4/fpu/mpa.c b/sysdeps/powerpc/powerpc64/power4/fpu/mpa.c
deleted file mode 100644
index d15680e..0000000
--- a/sysdeps/powerpc/powerpc64/power4/fpu/mpa.c
+++ /dev/null
@@ -1,548 +0,0 @@
-
-/*
- * IBM Accurate Mathematical Library
- * written by International Business Machines Corp.
- * Copyright (C) 2001, 2006 Free Software Foundation
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public License
- * along with this program; if not, see <http://www.gnu.org/licenses/>.
- */
-/************************************************************************/
-/*  MODULE_NAME: mpa.c                                                  */
-/*                                                                      */
-/*  FUNCTIONS:                                                          */
-/*               mcr                                                    */
-/*               acr                                                    */
-/*               cr                                                     */
-/*               cpy                                                    */
-/*               cpymn                                                  */
-/*               norm                                                   */
-/*               denorm                                                 */
-/*               mp_dbl                                                 */
-/*               dbl_mp                                                 */
-/*               add_magnitudes                                         */
-/*               sub_magnitudes                                         */
-/*               add                                                    */
-/*               sub                                                    */
-/*               mul                                                    */
-/*               inv                                                    */
-/*               dvd                                                    */
-/*                                                                      */
-/* Arithmetic functions for multiple precision numbers.                 */
-/* Relative errors are bounded                                          */
-/************************************************************************/
-
-
-#include "endian.h"
-#include "mpa.h"
-#include "mpa2.h"
-#include <sys/param.h>	/* For MIN() */
-/* mcr() compares the sizes of the mantissas of two multiple precision  */
-/* numbers. Mantissas are compared regardless of the signs of the       */
-/* numbers, even if x->d[0] or y->d[0] are zero. Exponents are also     */
-/* disregarded.                                                         */
-static int mcr(const mp_no *x, const mp_no *y, int p) {
-  long i;
-  long p2 = p;
-  for (i=1; i<=p2; i++) {
-    if      (X[i] == Y[i])  continue;
-    else if (X[i] >  Y[i])  return  1;
-    else                    return -1; }
-  return 0;
-}
-
-
-
-/* acr() compares the absolute values of two multiple precision numbers */
-int __acr(const mp_no *x, const mp_no *y, int p) {
-  long i;
-
-  if      (X[0] == ZERO) {
-    if    (Y[0] == ZERO) i= 0;
-    else                 i=-1;
-  }
-  else if (Y[0] == ZERO) i= 1;
-  else {
-    if      (EX >  EY)   i= 1;
-    else if (EX <  EY)   i=-1;
-    else                 i= mcr(x,y,p);
-  }
-
-  return i;
-}
-
-
-/* cr90 compares the values of two multiple precision numbers           */
-int  __cr(const mp_no *x, const mp_no *y, int p) {
-  int i;
-
-  if      (X[0] > Y[0])  i= 1;
-  else if (X[0] < Y[0])  i=-1;
-  else if (X[0] < ZERO ) i= __acr(y,x,p);
-  else                   i= __acr(x,y,p);
-
-  return i;
-}
-
-
-/* Copy a multiple precision number. Set *y=*x. x=y is permissible.      */
-void __cpy(const mp_no *x, mp_no *y, int p) {
-  long i;
-
-  EY = EX;
-  for (i=0; i <= p; i++)    Y[i] = X[i];
-
-  return;
-}
-
-
-/* Copy a multiple precision number x of precision m into a */
-/* multiple precision number y of precision n. In case n>m, */
-/* the digits of y beyond the m'th are set to zero. In case */
-/* n<m, the digits of x beyond the n'th are ignored.        */
-/* x=y is permissible.                                      */
-
-void __cpymn(const mp_no *x, int m, mp_no *y, int n) {
-
-  long i,k;
-  long n2 = n;
-  long m2 = m;
-
-  EY = EX;     k=MIN(m2,n2);
-  for (i=0; i <= k; i++)    Y[i] = X[i];
-  for (   ; i <= n2; i++)    Y[i] = ZERO;
-
-  return;
-}
-
-/* Convert a multiple precision number *x into a double precision */
-/* number *y, normalized case  (|x| >= 2**(-1022))) */
-static void norm(const mp_no *x, double *y, int p)
-{
-  #define R  radixi.d
-  long i;
-#if 0
-  int k;
-#endif
-  double a,c,u,v,z[5];
-  if (p<5) {
-    if      (p==1) c = X[1];
-    else if (p==2) c = X[1] + R* X[2];
-    else if (p==3) c = X[1] + R*(X[2]  +   R* X[3]);
-    else if (p==4) c =(X[1] + R* X[2]) + R*R*(X[3] + R*X[4]);
-  }
-  else {
-    for (a=ONE, z[1]=X[1]; z[1] < TWO23; )
-        {a *= TWO;   z[1] *= TWO; }
-
-    for (i=2; i<5; i++) {
-      z[i] = X[i]*a;
-      u = (z[i] + CUTTER)-CUTTER;
-      if  (u > z[i])  u -= RADIX;
-      z[i] -= u;
-      z[i-1] += u*RADIXI;
-    }
-
-    u = (z[3] + TWO71) - TWO71;
-    if (u > z[3])   u -= TWO19;
-    v = z[3]-u;
-
-    if (v == TWO18) {
-      if (z[4] == ZERO) {
-        for (i=5; i <= p; i++) {
-          if (X[i] == ZERO)   continue;
-          else                {z[3] += ONE;   break; }
-        }
-      }
-      else              z[3] += ONE;
-    }
-
-    c = (z[1] + R *(z[2] + R * z[3]))/a;
-  }
-
-  c *= X[0];
-
-  for (i=1; i<EX; i++)   c *= RADIX;
-  for (i=1; i>EX; i--)   c *= RADIXI;
-
-  *y = c;
-  return;
-#undef R
-}
-
-/* Convert a multiple precision number *x into a double precision */
-/* number *y, denormalized case  (|x| < 2**(-1022))) */
-static void denorm(const mp_no *x, double *y, int p)
-{
-  long i,k;
-  long p2 = p;
-  double c,u,z[5];
-#if 0
-  double a,v;
-#endif
-
-#define R  radixi.d
-  if (EX<-44 || (EX==-44 && X[1]<TWO5))
-     { *y=ZERO; return; }
-
-  if      (p2==1) {
-    if      (EX==-42) {z[1]=X[1]+TWO10;  z[2]=ZERO;  z[3]=ZERO;  k=3;}
-    else if (EX==-43) {z[1]=     TWO10;  z[2]=X[1];  z[3]=ZERO;  k=2;}
-    else              {z[1]=     TWO10;  z[2]=ZERO;  z[3]=X[1];  k=1;}
-  }
-  else if (p2==2) {
-    if      (EX==-42) {z[1]=X[1]+TWO10;  z[2]=X[2];  z[3]=ZERO;  k=3;}
-    else if (EX==-43) {z[1]=     TWO10;  z[2]=X[1];  z[3]=X[2];  k=2;}
-    else              {z[1]=     TWO10;  z[2]=ZERO;  z[3]=X[1];  k=1;}
-  }
-  else {
-    if      (EX==-42) {z[1]=X[1]+TWO10;  z[2]=X[2];  k=3;}
-    else if (EX==-43) {z[1]=     TWO10;  z[2]=X[1];  k=2;}
-    else              {z[1]=     TWO10;  z[2]=ZERO;  k=1;}
-    z[3] = X[k];
-  }
-
-  u = (z[3] + TWO57) - TWO57;
-  if  (u > z[3])   u -= TWO5;
-
-  if (u==z[3]) {
-    for (i=k+1; i <= p2; i++) {
-      if (X[i] == ZERO)   continue;
-      else {z[3] += ONE;   break; }
-    }
-  }
-
-  c = X[0]*((z[1] + R*(z[2] + R*z[3])) - TWO10);
-
-  *y = c*TWOM1032;
-  return;
-
-#undef R
-}
-
-/* Convert a multiple precision number *x into a double precision number *y. */
-/* The result is correctly rounded to the nearest/even. *x is left unchanged */
-
-void __mp_dbl(const mp_no *x, double *y, int p) {
-#if 0
-  int i,k;
-  double a,c,u,v,z[5];
-#endif
-
-  if (X[0] == ZERO)  {*y = ZERO;  return; }
-
-  if      (EX> -42)                 norm(x,y,p);
-  else if (EX==-42 && X[1]>=TWO10)  norm(x,y,p);
-  else                              denorm(x,y,p);
-}
-
-
-/* dbl_mp() converts a double precision number x into a multiple precision  */
-/* number *y. If the precision p is too small the result is truncated. x is */
-/* left unchanged.                                                          */
-
-void __dbl_mp(double x, mp_no *y, int p) {
-
-  long i,n;
-  long p2 = p;
-  double u;
-
-  /* Sign */
-  if      (x == ZERO)  {Y[0] = ZERO;  return; }
-  else if (x >  ZERO)   Y[0] = ONE;
-  else                 {Y[0] = MONE;  x=-x;   }
-
-  /* Exponent */
-  for (EY=ONE; x >= RADIX; EY += ONE)   x *= RADIXI;
-  for (      ; x <  ONE;   EY -= ONE)   x *= RADIX;
-
-  /* Digits */
-  n=MIN(p2,4);
-  for (i=1; i<=n; i++) {
-    u = (x + TWO52) - TWO52;
-    if (u>x)   u -= ONE;
-    Y[i] = u;     x -= u;    x *= RADIX; }
-  for (   ; i<=p2; i++)     Y[i] = ZERO;
-  return;
-}
-
-
-/*  add_magnitudes() adds the magnitudes of *x & *y assuming that           */
-/*  abs(*x) >= abs(*y) > 0.                                                 */
-/* The sign of the sum *z is undefined. x&y may overlap but not x&z or y&z. */
-/* No guard digit is used. The result equals the exact sum, truncated.      */
-/* *x & *y are left unchanged.                                              */
-
-static void add_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {
-
-  long i,j,k;
-  long p2 = p;
-
-  EZ = EX;
-
-  i=p2;    j=p2+ EY - EX;    k=p2+1;
-
-  if (j<1)
-     {__cpy(x,z,p);  return; }
-  else   Z[k] = ZERO;
-
-  for (; j>0; i--,j--) {
-    Z[k] += X[i] + Y[j];
-    if (Z[k] >= RADIX) {
-      Z[k]  -= RADIX;
-      Z[--k] = ONE; }
-    else
-      Z[--k] = ZERO;
-  }
-
-  for (; i>0; i--) {
-    Z[k] += X[i];
-    if (Z[k] >= RADIX) {
-      Z[k]  -= RADIX;
-      Z[--k] = ONE; }
-    else
-      Z[--k] = ZERO;
-  }
-
-  if (Z[1] == ZERO) {
-    for (i=1; i<=p2; i++)    Z[i] = Z[i+1]; }
-  else   EZ += ONE;
-}
-
-
-/*  sub_magnitudes() subtracts the magnitudes of *x & *y assuming that      */
-/*  abs(*x) > abs(*y) > 0.                                                  */
-/* The sign of the difference *z is undefined. x&y may overlap but not x&z  */
-/* or y&z. One guard digit is used. The error is less than one ulp.         */
-/* *x & *y are left unchanged.                                              */
-
-static void sub_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {
-
-  long i,j,k;
-  long p2 = p;
-
-  EZ = EX;
-
-  if (EX == EY) {
-    i=j=k=p2;
-    Z[k] = Z[k+1] = ZERO; }
-  else {
-    j= EX - EY;
-    if (j > p2)  {__cpy(x,z,p);  return; }
-    else {
-      i=p2;   j=p2+1-j;   k=p2;
-      if (Y[j] > ZERO) {
-        Z[k+1] = RADIX - Y[j--];
-        Z[k]   = MONE; }
-      else {
-        Z[k+1] = ZERO;
-        Z[k]   = ZERO;   j--;}
-    }
-  }
-
-  for (; j>0; i--,j--) {
-    Z[k] += (X[i] - Y[j]);
-    if (Z[k] < ZERO) {
-      Z[k]  += RADIX;
-      Z[--k] = MONE; }
-    else
-      Z[--k] = ZERO;
-  }
-
-  for (; i>0; i--) {
-    Z[k] += X[i];
-    if (Z[k] < ZERO) {
-      Z[k]  += RADIX;
-      Z[--k] = MONE; }
-    else
-      Z[--k] = ZERO;
-  }
-
-  for (i=1; Z[i] == ZERO; i++) ;
-  EZ = EZ - i + 1;
-  for (k=1; i <= p2+1; )
-    Z[k++] = Z[i++];
-  for (; k <= p2; )
-    Z[k++] = ZERO;
-
-  return;
-}
-
-
-/* Add two multiple precision numbers. Set *z = *x + *y. x&y may overlap  */
-/* but not x&z or y&z. One guard digit is used. The error is less than    */
-/* one ulp. *x & *y are left unchanged.                                   */
-
-void __add(const mp_no *x, const mp_no *y, mp_no *z, int p) {
-
-  int n;
-
-  if      (X[0] == ZERO)     {__cpy(y,z,p);  return; }
-  else if (Y[0] == ZERO)     {__cpy(x,z,p);  return; }
-
-  if (X[0] == Y[0])   {
-    if (__acr(x,y,p) > 0)      {add_magnitudes(x,y,z,p);  Z[0] = X[0]; }
-    else                     {add_magnitudes(y,x,z,p);  Z[0] = Y[0]; }
-  }
-  else                       {
-    if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p);  Z[0] = X[0]; }
-    else if (n == -1)        {sub_magnitudes(y,x,z,p);  Z[0] = Y[0]; }
-    else                      Z[0] = ZERO;
-  }
-  return;
-}
-
-
-/* Subtract two multiple precision numbers. *z is set to *x - *y. x&y may */
-/* overlap but not x&z or y&z. One guard digit is used. The error is      */
-/* less than one ulp. *x & *y are left unchanged.                         */
-
-void __sub(const mp_no *x, const mp_no *y, mp_no *z, int p) {
-
-  int n;
-
-  if      (X[0] == ZERO)     {__cpy(y,z,p);  Z[0] = -Z[0];  return; }
-  else if (Y[0] == ZERO)     {__cpy(x,z,p);                 return; }
-
-  if (X[0] != Y[0])    {
-    if (__acr(x,y,p) > 0)      {add_magnitudes(x,y,z,p);  Z[0] =  X[0]; }
-    else                     {add_magnitudes(y,x,z,p);  Z[0] = -Y[0]; }
-  }
-  else                       {
-    if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p);  Z[0] =  X[0]; }
-    else if (n == -1)        {sub_magnitudes(y,x,z,p);  Z[0] = -Y[0]; }
-    else                      Z[0] = ZERO;
-  }
-  return;
-}
-
-
-/* Multiply two multiple precision numbers. *z is set to *x * *y. x&y      */
-/* may overlap but not x&z or y&z. In case p=1,2,3 the exact result is     */
-/* truncated to p digits. In case p>3 the error is bounded by 1.001 ulp.   */
-/* *x & *y are left unchanged.                                             */
-
-void __mul(const mp_no *x, const mp_no *y, mp_no *z, int p) {
-
-  long i, i1, i2, j, k, k2;
-  long p2 = p;
-  double u, zk, zk2;
-
-                      /* Is z=0? */
-  if (X[0]*Y[0]==ZERO)
-     { Z[0]=ZERO;  return; }
-
-                       /* Multiply, add and carry */
-  k2 = (p2<3) ? p2+p2 : p2+3;
-  zk = Z[k2]=ZERO;
-  for (k=k2; k>1; ) {
-    if (k > p2)  {i1=k-p2; i2=p2+1; }
-    else        {i1=1;   i2=k;   }
-#if 1
-    /* rearange this inner loop to allow the fmadd instructions to be
-       independent and execute in parallel on processors that have
-       dual symetrical FP pipelines.  */
-    if (i1 < (i2-1))
-    {
-	/* make sure we have at least 2 iterations */
-	if (((i2 - i1) & 1L) == 1L)
-	{
-                /* Handle the odd iterations case.  */
-		zk2 = x->d[i2-1]*y->d[i1];
-	}
-	else
-		zk2 = zero.d;
-	/* Do two multiply/adds per loop iteration, using independent
-           accumulators; zk and zk2.  */
-	for (i=i1,j=i2-1; i<i2-1; i+=2,j-=2) 
-	{
-		zk += x->d[i]*y->d[j];
-		zk2 += x->d[i+1]*y->d[j-1];
-	}
-	zk += zk2; /* final sum.  */
-    }
-    else
-    {
-        /* Special case when iterations is 1.  */
-	zk += x->d[i1]*y->d[i1];
-    }
-#else
-    /* The orginal code.  */
-    for (i=i1,j=i2-1; i<i2; i++,j--)  zk += X[i]*Y[j];
-#endif
-
-    u = (zk + CUTTER)-CUTTER;
-    if  (u > zk)  u -= RADIX;
-    Z[k]  = zk - u;
-    zk = u*RADIXI;
-    --k;
-  }
-  Z[k] = zk;
-
-                 /* Is there a carry beyond the most significant digit? */
-  if (Z[1] == ZERO) {
-    for (i=1; i<=p2; i++)  Z[i]=Z[i+1];
-    EZ = EX + EY - 1; }
-  else
-    EZ = EX + EY;
-
-  Z[0] = X[0] * Y[0];
-  return;
-}
-
-
-/* Invert a multiple precision number. Set *y = 1 / *x.                     */
-/* Relative error bound = 1.001*r**(1-p) for p=2, 1.063*r**(1-p) for p=3,   */
-/* 2.001*r**(1-p) for p>3.                                                  */
-/* *x=0 is not permissible. *x is left unchanged.                           */
-
-void __inv(const mp_no *x, mp_no *y, int p) {
-  long i;
-#if 0
-  int l;
-#endif
-  double t;
-  mp_no z,w;
-  static const int np1[] = {0,0,0,0,1,2,2,2,2,3,3,3,3,3,3,3,3,3,
-                            4,4,4,4,4,4,4,4,4,4,4,4,4,4,4};
-  const mp_no mptwo = {1,{1.0,2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
-                         0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
-                         0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
-                         0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};
-
-  __cpy(x,&z,p);  z.e=0;  __mp_dbl(&z,&t,p);
-  t=ONE/t;   __dbl_mp(t,y,p);    EY -= EX;
-
-  for (i=0; i<np1[p]; i++) {
-    __cpy(y,&w,p);
-    __mul(x,&w,y,p);
-    __sub(&mptwo,y,&z,p);
-    __mul(&w,&z,y,p);
-  }
-  return;
-}
-
-
-/* Divide one multiple precision number by another.Set *z = *x / *y. *x & *y */
-/* are left unchanged. x&y may overlap but not x&z or y&z.                   */
-/* Relative error bound = 2.001*r**(1-p) for p=2, 2.063*r**(1-p) for p=3     */
-/* and 3.001*r**(1-p) for p>3. *y=0 is not permissible.                      */
-
-void __dvd(const mp_no *x, const mp_no *y, mp_no *z, int p) {
-
-  mp_no w;
-
-  if (X[0] == ZERO)    Z[0] = ZERO;
-  else                {__inv(y,&w,p);   __mul(x,&w,z,p);}
-  return;
-}
-- 
1.7.11.7