
Hierarchical datasets in Python

PyTables User Guide
Release 3.3.0

PyTables maintainers

Sep 14, 2016

CONTENTS

I The PyTables Core Library 7

II Complementary modules 197

III Appendixes 205

i

ii

LIST OF FIGURES

1

PyTables User Guide, Release 3.3.0

2 List of Figures

LIST OF TABLES

3

PyTables User Guide, Release 3.3.0

Authors Francesc Alted, Ivan Vilata, Scott Prater, Vicent Mas, Tom Hedley, Antonio Valentino, Jeffrey
Whitaker, Anthony Scopatz, Josh Moore

Copyright © 2002, 2003, 2004 - Francesc Alted

© 2005, 2006, 2007 - Cárabos Coop. V.

© 2008, 2009, 2010 - Francesc Alted

© 2011-2015 - PyTables maintainers

Date Sep 14, 2016

Version 3.3.0

Home Page http://www.pytables.org

4 List of Tables

http://www.pytables.org

PyTables User Guide, Release 3.3.0

Copyright Notice and Statement for PyTables User’s Guide

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

a. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

b. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

c. Neither the name of Francesc Alted nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

List of Tables 5

PyTables User Guide, Release 3.3.0

6 List of Tables

Part I

The PyTables Core Library

7

CHAPTER

ONE

INTRODUCTION

La sabiduría no vale la pena si no es posible servirse de ella para inventar una nueva manera de preparar
los garbanzos.

[Wisdom isn’t worth anything if you can’t use it to come up with a new way to cook garbanzos.]

—Gabriel García Márquez, A wise Catalan in “Cien años de soledad”

The goal of PyTables is to enable the end user to manipulate easily data tables and array objects in a hierarchical struc-
ture. The foundation of the underlying hierarchical data organization is the excellent HDF5 library (see [HDGF1]).

It should be noted that this package is not intended to serve as a complete wrapper for the entire HDF5 API, but only
to provide a flexible, very pythonic tool to deal with (arbitrarily) large amounts of data (typically bigger than available
memory) in tables and arrays organized in a hierarchical and persistent disk storage structure.

A table is defined as a collection of records whose values are stored in fixed-length fields. All records have the same
structure and all values in each field have the same data type. The terms fixed-length and strict data types may seem
to be a strange requirement for an interpreted language like Python, but they serve a useful function if the goal is to
save very large quantities of data (such as is generated by many data acquisition systems, Internet services or scientific
applications, for example) in an efficient manner that reduces demand on CPU time and I/O.

In order to emulate in Python records mapped to HDF5 C structs PyTables implements a special class so as to easily
define all its fields and other properties. PyTables also provides a powerful interface to mine data in tables. Records in
tables are also known in the HDF5 naming scheme as compound data types.

For example, you can define arbitrary tables in Python simply by declaring a class with named fields and type infor-
mation, such as in the following example:

class Particle(IsDescription):
name = StringCol(16) # 16-character String
idnumber = Int64Col() # signed 64-bit integer
ADCcount = UInt16Col() # unsigned short integer
TDCcount = UInt8Col() # unsigned byte
grid_i = Int32Col() # integer
grid_j = Int32Col() # integer

A sub-structure (nested data-type)
class Properties(IsDescription):

pressure = Float32Col(shape=(2,3)) # 2-D float array (single-precision)
energy = Float64Col(shape=(2,3,4)) # 3-D float array (double-precision)

You then pass this class to the table constructor, fill its rows with your values, and save (arbitrarily large) collections of
them to a file for persistent storage. After that, the data can be retrieved and post-processed quite easily with PyTables
or even with another HDF5 application (in C, Fortran, Java or whatever language that provides a library to interface
with HDF5).

Other important entities in PyTables are array objects, which are analogous to tables with the difference that all of
their components are homogeneous. They come in different flavors, like generic (they provide a quick and fast way

9

PyTables User Guide, Release 3.3.0

to deal with for numerical arrays), enlargeable (arrays can be extended along a single dimension) and variable length
(each row in the array can have a different number of elements).

The next section describes the most interesting capabilities of PyTables.

Main Features

PyTables takes advantage of the object orientation and introspection capabilities offered by Python, the powerful data
management features of HDF5, and NumPy’s flexibility and Numexpr’s high-performance manipulation of large sets
of objects organized in a grid-like fashion to provide these features:

• Support for table entities: You can tailor your data adding or deleting records in your tables. Large numbers of
rows (up to 2**63, much more than will fit into memory) are supported as well.

• Multidimensional and nested table cells: You can declare a column to consist of values having any number of
dimensions besides scalars, which is the only dimensionality allowed by the majority of relational databases.
You can even declare columns that are made of other columns (of different types).

• Indexing support for columns of tables: Very useful if you have large tables and you want to quickly look up for
values in columns satisfying some criteria.

• Support for numerical arrays: NumPy (see [NUMPY]) arrays can be used as a useful complement of tables to
store homogeneous data.

• Enlargeable arrays: You can add new elements to existing arrays on disk in any dimension you want (but
only one). Besides, you are able to access just a slice of your datasets by using the powerful extended slicing
mechanism, without need to load all your complete dataset in memory.

• Variable length arrays: The number of elements in these arrays can vary from row to row. This provides a lot
of flexibility when dealing with complex data.

• Supports a hierarchical data model: Allows the user to clearly structure all data. PyTables builds up an object
tree in memory that replicates the underlying file data structure. Access to objects in the file is achieved by
walking through and manipulating this object tree. Besides, this object tree is built in a lazy way, for efficiency
purposes.

• User defined metadata: Besides supporting system metadata (like the number of rows of a table, shape, flavor,
etc.) the user may specify arbitrary metadata (as for example, room temperature, or protocol for IP traffic that
was collected) that complement the meaning of actual data.

• Ability to read/modify generic HDF5 files: PyTables can access a wide range of objects in generic HDF5 files,
like compound type datasets (that can be mapped to Table objects), homogeneous datasets (that can be mapped
to Array objects) or variable length record datasets (that can be mapped to VLArray objects). Besides, if a
dataset is not supported, it will be mapped to a special UnImplemented class (see The UnImplemented class),
that will let the user see that the data is there, although it will be unreachable (still, you will be able to access
the attributes and some metadata in the dataset). With that, PyTables probably can access and modify most of
the HDF5 files out there.

• Data compression: Supports data compression (using the Zlib, LZO, bzip2 and Blosc compression libraries) out
of the box. This is important when you have repetitive data patterns and don’t want to spend time searching for
an optimized way to store them (saving you time spent analyzing your data organization).

• High performance I/O: On modern systems storing large amounts of data, tables and array objects can be read
and written at a speed only limited by the performance of the underlying I/O subsystem. Moreover, if your data
is compressible, even that limit is surmountable!

• Support of files bigger than 2 GB: PyTables automatically inherits this capability from the underlying HDF5
library (assuming your platform supports the C long long integer, or, on Windows, __int64).

10 Chapter 1. Introduction

PyTables User Guide, Release 3.3.0

• Architecture-independent: PyTables has been carefully coded (as HDF5 itself) with little-endian/big-endian byte
ordering issues in mind. So, you can write a file on a big-endian machine (like a Sparc or MIPS) and read it on
other little-endian machine (like an Intel or Alpha) without problems. In addition, it has been tested successfully
with 64 bit platforms (Intel-64, AMD-64, PowerPC-G5, MIPS, UltraSparc) using code generated with 64 bit
aware compilers.

The Object Tree

The hierarchical model of the underlying HDF5 library allows PyTables to manage tables and arrays in a tree-like
structure. In order to achieve this, an object tree entity is dynamically created imitating the HDF5 structure on disk.
The HDF5 objects are read by walking through this object tree. You can get a good picture of what kind of data is kept
in the object by examining the metadata nodes.

The different nodes in the object tree are instances of PyTables classes. There are several types of classes, but the most
important ones are the Node, Group and Leaf classes. All nodes in a PyTables tree are instances of the Node class. The
Group and Leaf classes are descendants of Node. Group instances (referred to as groups from now on) are a grouping
structure containing instances of zero or more groups or leaves, together with supplementary metadata. Leaf instances
(referred to as leaves) are containers for actual data and can not contain further groups or leaves. The Table, Array,
CArray, EArray, VLArray and UnImplemented classes are descendants of Leaf, and inherit all its properties.

Working with groups and leaves is similar in many ways to working with directories and files on a Unix filesystem,
i.e. a node (file or directory) is always a child of one and only one group (directory), its parent group 1. Inside of
that group, the node is accessed by its name. As is the case with Unix directories and files, objects in the object tree
are often referenced by giving their full (absolute) path names. In PyTables this full path can be specified either as
string (such as ‘/subgroup2/table3’, using / as a parent/child separator) or as a complete object path written in a format
known as the natural name schema (such as file.root.subgroup2.table3).

Support for natural naming is a key aspect of PyTables. It means that the names of instance variables of the node
objects are the same as the names of its children 2. This is very Pythonic and intuitive in many cases. Check the
tutorial Reading (and selecting) data in a table for usage examples.

You should also be aware that not all the data present in a file is loaded into the object tree. The metadata (i.e.
special data that describes the structure of the actual data) is loaded only when the user want to access to it (see later).
Moreover, the actual data is not read until she request it (by calling a method on a particular node). Using the object
tree (the metadata) you can retrieve information about the objects on disk such as table names, titles, column names,
data types in columns, numbers of rows, or, in the case of arrays, their shapes, typecodes, etc. You can also search
through the tree for specific kinds of data then read it and process it. In a certain sense, you can think of PyTables as a
tool that applies the same introspection capabilities of Python objects to large amounts of data in persistent storage.

It is worth noting that PyTables sports a metadata cache system that loads nodes lazily (i.e. on-demand), and unloads
nodes that have not been used for some time (following a Least Recently Used schema). It is important to stress out
that the nodes enter the cache after they have been unreferenced (in the sense of Python reference counting), and
that they can be revived (by referencing them again) directly from the cache without performing the de-serialization
process from disk. This feature allows dealing with files with large hierarchies very quickly and with low memory
consumption, while retaining all the powerful browsing capabilities of the previous implementation of the object tree.
See [OPTIM] for more facts about the advantages introduced by this new metadata cache system.

To better understand the dynamic nature of this object tree entity, let’s start with a sample PyTables script (which you
can find in examples/objecttree.py) to create an HDF5 file:

from tables import *

class Particle(IsDescription):

1 PyTables does not support hard links - for the moment.
2 I got this simple but powerful idea from the excellent Objectify module by David Mertz (see [MERTZ]).

1.2. The Object Tree 11

PyTables User Guide, Release 3.3.0

identity = StringCol(itemsize=22, dflt=" ", pos=0) # character String
idnumber = Int16Col(dflt=1, pos = 1) # short integer
speed = Float32Col(dflt=1, pos = 2) # single-precision

Open a file in "w"rite mode
fileh = open_file("objecttree.h5", mode = "w")

Get the HDF5 root group
root = fileh.root

Create the groups
group1 = fileh.create_group(root, "group1")
group2 = fileh.create_group(root, "group2")

Now, create an array in root group
array1 = fileh.create_array(root, "array1", ["string", "array"], "String array")

Create 2 new tables in group1
table1 = fileh.create_table(group1, "table1", Particle)
table2 = fileh.create_table("/group2", "table2", Particle)

Create the last table in group2
array2 = fileh.create_array("/group1", "array2", [1,2,3,4])

Now, fill the tables
for table in (table1, table2):

Get the record object associated with the table:
row = table.row

Fill the table with 10 records
for i in xrange(10):

First, assign the values to the Particle record
row['identity'] = 'This is particle: %2d' % (i)
row['idnumber'] = i
row['speed'] = i * 2.

This injects the Record values
row.append()

Flush the table buffers
table.flush()

Finally, close the file (this also will flush all the remaining buffers!)
fileh.close()

This small program creates a simple HDF5 file called objecttree.h5 with the structure that appears in Figure 1 3. When
the file is created, the metadata in the object tree is updated in memory while the actual data is saved to disk. When
you close the file the object tree is no longer available. However, when you reopen this file the object tree will be
reconstructed in memory from the metadata on disk (this is done in a lazy way, in order to load only the objects that
are required by the user), allowing you to work with it in exactly the same way as when you originally created it.

In Figure2, you can see an example of the object tree created when the above objecttree.h5 file is read (in fact, such
an object tree is always created when reading any supported generic HDF5 file). It is worthwhile to take your time to
understand it 4. It will help you understand the relationships of in-memory PyTables objects.

3 We have used ViTables (see [VITABLES]) in order to create this snapshot.
4 Bear in mind, however, that this diagram is not a standard UML class diagram; it is rather meant to show the connections between the PyTables

objects and some of its most important attributes and methods.

12 Chapter 1. Introduction

PyTables User Guide, Release 3.3.0

Fig. 1.1: Figure 1: An HDF5 example with 2 subgroups, 2 tables and 1 array.

1.2. The Object Tree 13

PyTables User Guide, Release 3.3.0

+name: string = "objecttree.h5"
+root: Group = rootGroupObject

+create_group(where:Group,name:string): Group
+create_table(where:Group,name:string,description:IsDescription): Table
+create_array(where:Group,name:string,object:array): Array
+close()

+_v_name: string = "/"
+group1: Group = groupObject1
+group2: Group = groupObject2
+array1: Array = arrayObject1

+_v_name: string = "group1"
+table1: Table = tableObject1
+array2: Array = arrayObject2

+_v_name: string = "group2"
+table2: Table = tableObject2

+['identity']: string
+['idnumber']: int16
+['speed']: int32
+nrow: int64

+append()

+name: string = "table2"
+row: Row = rowObject2

+read(): table

+name: string = "array1"

+read(): array

+name: string = "table1"
+row: Row = rowObject1

+read(): table

+['identity']: string
+['idnumber']: int16
+['speed']: float32
+nrow: int64

+append()

+name: string = "array2"

+read(): array

fileObject(File)

rootGroupObject(Group)

arrayObject1(Array)

groupObject2(Group)groupObject1(Group)

tableObject1(Table)

rowObject1(Row)

arrayObject2(Array)

tableObject2(Table)

rowObject2(Row)

Fig. 1.2: Figure 2: A PyTables object tree example.

14 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

Make things as simple as possible, but not any simpler.

—Albert Einstein

The Python Distutils are used to build and install PyTables, so it is fairly simple to get the application up and running.
If you want to install the package from sources you can go on reading to the next section.

However, if you want to go straight to binaries that ‘just work’ for the main platforms (Linux, Mac OSX and Windows),
you might want to use the excellent Anaconda or Canopy distributions. PyTables usually distributes its own Windows
binaries too; go Binary installation (Windows) for instructions. Finally Christoph Gohlke also maintains an excellent
suite of a variety of binary packages for Windows at his site.

Installation from source

These instructions are for both Unix/MacOS X and Windows systems. If you are using Windows, it is assumed that
you have a recent version of MS Visual C++ compiler installed. A GCC compiler is assumed for Unix, but other
compilers should work as well.

Extensions in PyTables have been developed in Cython (see [CYTHON]) and the C language. You can rebuild every-
thing from scratch if you have Cython installed, but this is not necessary, as the Cython compiled source is included
in the source distribution.

To compile PyTables you will need a recent version of Python, the HDF5 (C flavor) library from http://www.hdfgroup.
org, and the NumPy (see [NUMPY]) and Numexpr (see [NUMEXPR]) packages.

Prerequisites

First, make sure that you have

• Python >= 2.7 including Python 3.x

• HDF5 >= 1.8.4 (>=1.8.15 is strongly recommended, HDF5 v1.10 not supported)

• NumPy >= 1.8.1

• Numexpr >= 2.5.2

• Cython >= 0.21

• c-blosc >= 1.4.1 (sources are bundled with PyTables sources but the user can use an external version of sources
using the BLOSC_DIR environment variable or the --blosc flag of the setup.py)

installed (for testing purposes, we are using HDF5 1.8.15, NumPy 1.10.2 and Numexpr 2.5.2 currently). If you don’t,
fetch and install them before proceeding.

15

https://store.continuum.io/cshop/anaconda/
https://www.enthought.com/products/canopy/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.hdfgroup.org
http://www.hdfgroup.org
http://www.python.org
http://www.hdfgroup.org/HDF5
http://www.numpy.org
http://code.google.com/p/numexpr
http://www.cython.org
http://blosc.org
http://www.hdfgroup.org/HDF5
http://www.numpy.org
http://code.google.com/p/numexpr

PyTables User Guide, Release 3.3.0

Compile and install these packages (but see Windows prerequisites for instructions on how to install pre-compiled
binaries if you are not willing to compile the prerequisites on Windows systems).

For compression (and possibly improved performance), you will need to install the Zlib (see [ZLIB]), which is also
required by HDF5 as well. You may also optionally install the excellent LZO compression library (see [LZO] and
Compression issues). The high-performance bzip2 compression library can also be used with PyTables (see [BZIP2]).

The Blosc (see [BLOSC]) compression library is embedded in PyTables, so this will be used in case it is not found in
the system. So, in case the installer warns about not finding it, do not worry too much ;)

Unix

setup.py will detect HDF5, Blosc, LZO, or bzip2 libraries and include files under /usr or /usr/local;
this will cover most manual installations as well as installations from packages. If setup.py can not find
libhdf5, libhdf5 (or liblzo, or libbz2 that you may wish to use) or if you have several versions of a library
installed and want to use a particular one, then you can set the path to the resource in the environment, by
setting the values of the HDF5_DIR, LZO_DIR, BZIP2_DIR or BLOSC_DIR environment variables to
the path to the particular resource. You may also specify the locations of the resource root directories on
the setup.py command line. For example:

--hdf5=/stuff/hdf5-1.8.12
--blosc=/stuff/blosc-1.8.1
--lzo=/stuff/lzo-2.02
--bzip2=/stuff/bzip2-1.0.5

If your HDF5 library was built as a shared library not in the runtime load path, then you can specify the
additional linker flags needed to find the shared library on the command line as well. For example:

--lflags="-Xlinker -rpath -Xlinker /stuff/hdf5-1.8.12/lib"

You may also want to try setting the LD_LIBRARY_PATH environment variable to point to the directory
where the shared libraries can be found. Check your compiler and linker documentation as well as the
Python Distutils documentation for the correct syntax or environment variable names. It is also possible
to link with specific libraries by setting the LIBS environment variable:

LIBS="hdf5-1.8.12 nsl"

Starting from PyTables 3.2 can also query the pkg-config database to find the required packages. If
available, pkg-config is used by default unless explicitly disabled.

To suppress the use of pkg-config:

$ python setup.py build --use-pkgconfig=FALSE

or use the USE-PKGCONFIG environment variable:

$ env USE_PKGCONFIG=FALSE python setup.py build

Windows

You can get ready-to-use Windows binaries and other development files for most of the following li-
braries from the GnuWin32 project (see [GNUWIN32]). In case you cannot find the LZO binaries
in the GnuWin32 repository, you can find them at http://sourceforge.net/projects/pytables/files/lzo-win.
Once you have installed the prerequisites, setup.py needs to know where the necessary library stub (.lib)
and header (.h) files are installed. You can set the path to the include and dll directories for the HDF5
(mandatory) and LZO, BZIP2, BLOSC (optional) libraries in the environment, by setting the values of the
HDF5_DIR, LZO_DIR, BZIP2_DIR or BLOSC_DIR environment variables to the path to the particular
resource. For example:

16 Chapter 2. Installation

http://sourceforge.net/projects/pytables/files/lzo-win

PyTables User Guide, Release 3.3.0

set HDF5_DIR=c:\\stuff\\hdf5-1.8.5-32bit-VS2008-IVF101\\release
set BLOSC_DIR=c:\\Program Files (x86)\\Blosc
set LZO_DIR=c:\\Program Files (x86)\\GnuWin32
set BZIP2_DIR=c:\\Program Files (x86)\\GnuWin32

You may also specify the locations of the resource root directories on the setup.py command line. For
example:

--hdf5=c:\\stuff\\hdf5-1.8.5-32bit-VS2008-IVF101\\release
--blosc=c:\\Program Files (x86)\\Blosc
--lzo=c:\\Program Files (x86)\\GnuWin32
--bzip2=c:\\Program Files (x86)\\GnuWin32

Development version (Unix)

Installation of the development version is very similar to installation from a source package (described
above). There are two main differences:

1. sources have to be downloaded from the PyTables source repository hosted on GitHub. Git (see
[GIT]) is used as VCS. The following command create a local copy of latest development version
sources:

$ git clone https://github.com/PyTables/PyTables.git

2. sources in the git repository do not include pre-built documentation and pre-generated C code of
Cython extension modules. To be able to generate them, both Cython (see [CYTHON]) and sphinx
>= 1.0.7 (see [SPHINX]) are mandatory prerequisites.

PyTables package installation

Once you have installed the HDF5 library and the NumPy and Numexpr packages, you can proceed with the PyTables
package itself.

1. Run this command from the main PyTables distribution directory, including any extra command line arguments
as discussed above:

$ python setup.py build

If the HDF5 installation is in a custom path, e.g. $HOME/hdf5-1.8.15pre7, one of the following commands can
be used:

$ python setup.py build --hdf5=$HOME/hdf5-1.8.15pre7

2. To run the test suite, execute any of these commands.

Unix In the sh shell and its variants:

$ cd build/lib.linux-x86_64-3.3
$ env PYTHONPATH=. python tables/tests/test_all.py

or, if you prefer:

$ cd build/lib.linux-x86_64-3.3
$ env PYTHONPATH=. python -c "import tables; tables.test()"

Note: the syntax used above overrides original contents of the PYTHONPATH environment variable. If
this is not the desired behaviour and the user just wants to add some path before existing ones, then the
safest syntax to use is the following:

2.1. Installation from source 17

https://github.com/PyTables/PyTables
https://github.com

PyTables User Guide, Release 3.3.0

$ env PYTHONPATH=.${PYTHONPATH:+:$PYTHONPATH} python tables/tests/test_all.py

Please refer to your sh documentation for details.

Windows

Open the command prompt (cmd.exe or command.com) and type:

> cd build\\lib.linux-x86_64-2.7
> set PYTHONPATH=.;%PYTHONPATH%
> python tables\\tests\\test_all.py

or:

> cd build\\lib.linux-x86_64-2.7
> set PYTHONPATH=.;%PYTHONPATH%
> python -c "import tables; tables.test()"

Both commands do the same thing, but the latter still works on an already installed PyTables (so, there is no
need to set the PYTHONPATH variable for this case). However, before installation, the former is recommended
because it is more flexible, as you can see below. If you would like to see verbose output from the tests simply
add the -v flag and/or the word verbose to the first of the command lines above. You can also run only the tests
in a particular test module. For example, to execute just the test_types test suite, you only have to specify it:

change to backslashes for win
$ python tables/tests/test_types.py -v

You have other options to pass to the test_all.py driver:

change to backslashes for win
$ python tables/tests/test_all.py --heavy

The command above runs every test in the test unit. Beware, it can take a lot of time, CPU and memory resources
to complete:

change to backslashes for win
$ python tables/tests/test_all.py --print-versions

The command above shows the versions for all the packages that PyTables relies on. Please be sure to include
this when reporting bugs:

only under Linux 2.6.x
$ python tables/tests/test_all.py --show-memory

The command above prints out the evolution of the memory consumption after each test module completion.
It’s useful for locating memory leaks in PyTables (or packages behind it). Only valid for Linux 2.6.x kernels.
And last, but not least, in case a test fails, please run the failing test module again and enable the verbose output:

$ python tables/tests/test_<module>.py -v verbose

and, very important, obtain your PyTables version information by using the --print-versions flag (see
above) and send back both outputs to developers so that we may continue improving PyTables. If you run into
problems because Python can not load the HDF5 library or other shared libraries.

Unix

Try setting the LD_LIBRARY_PATH or equivalent environment variable to point to the directory
where the missing libraries can be found.

Windows

18 Chapter 2. Installation

PyTables User Guide, Release 3.3.0

Put the DLL libraries (hdf5dll.dll and, optionally, lzo1.dll, bzip2.dll or blosc.dll) in a directory listed
in your PATH environment variable. The setup.py installation program will print out a warning to
that effect if the libraries can not be found.

3. To install the entire PyTables Python package, change back to the root distribution directory and run the fol-
lowing command (make sure you have sufficient permissions to write to the directories where the PyTables files
will be installed):

$ python setup.py install

Again if one needs to point to libraries installed in custom paths, then specific setup.py options can be used:

$ python setup.py install --hdf5=/hdf5/custom/path

or:

$ env HDF5_DIR=/hdf5/custom/path python setup.py install

Of course, you will need super-user privileges if you want to install PyTables on a system-protected area. You
can select, though, a different place to install the package using the --prefix flag:

$ python setup.py install --prefix="/home/myuser/mystuff"

Have in mind, however, that if you use the --prefix flag to install in a non-standard place, you should
properly setup your PYTHONPATH environment variable, so that the Python interpreter would be able to find
your new PyTables installation. You have more installation options available in the Distutils package. Issue a:

$ python setup.py install --help

for more information on that subject.

That’s it! Now you can skip to the next chapter to learn how to use PyTables.

Installation with pip

Many users find it useful to use the pip program (or similar ones) to install python packages.

As explained in previous sections the user should in any case ensure that all dependencies listed in the Prerequisites
section are correctly installed.

The simplest way to install PyTables using pip is the following:

$ pip install tables

The following example shows how to install the latest stable version of PyTables in the user folder when a older version
of the package is already installed at system level:

$ pip install --user --upgrade tables

The –user option tells to the pip tool to install the package in the user folder ($HOME/.local on GNU/Linux and
Unix systems), while the –upgrade option forces the installation of the latest version even if an older version of the
package is already installed.

Additional options for the setup.py script can be specified using them –install-option:

$ pip install --install-option='--hdf5=/custom/path/to/hdf5' tables

or:

2.2. Installation with pip 19

PyTables User Guide, Release 3.3.0

$ env HDF5_DIR=/custom/path/to/hdf5 pip install tables

The pip tool can also be used to install packages from a source tar-ball:

$ pip install tables-3.0.0.tar.gz

To install the development version of PyTables from the develop branch of the main git [GIT] repository the com-
mand is the following:

$ pip install git+https://github.com/PyTables/PyTables.git@develop#egg=tables

A similar command can be used to install a specific tagged fersion:

$ pip install git+https://github.com/PyTables/PyTables.git@v.2.4.0#egg=tables

Finally, PyTables developers provide a requirements.txt file that can be used by pip to install the PyTables
dependencies:

$ wget https://raw.github.com/PyTables/PyTables/develop/requirements.txt
$ pip install -r requirements.txt

Of course the requirements.txt file can be used to install only python packages. Other dependencies like the
HDF5 library of compression libraries have to be installed by the user.

Note: Recent versions of Debian and Ubuntu the HDF5 library is installed in with a very peculiar layout that allows
to have both the serial and MPI versions installed at the same time.

PyTables >= 3.2 natively supports the new layout via pkg-config (that is expected to be installed on the system at build
time).

If pkg-config is not available or PyTables is older that verison 3.2, then the following command can be used:

$ env CPPFLAGS=-I/usr/include/hdf5/serial \
LDFLAGS=-L/usr/lib/x86_64-linux-gnu/hdf5/serial python3 setup.py install

or:

$ env CPPFLAGS=-I/usr/include/hdf5/serial \
LDFLAGS=-L/usr/lib/x86_64-linux-gnu/hdf5/serial pip install tables

Binary installation (Windows)

This section is intended for installing precompiled binaries on Windows platforms. Binaries are distribution in wheel
format, which can be downloaded and installed using pip as described above. You may also find it useful for instruc-
tions on how to install binary prerequisites even if you want to compile PyTables itself on Windows.

Windows prerequisites

First, make sure that you have Python 2.7, NumPy 1.8.0 and Numexpr 2.5.2 or higher installed.

To enable compression with the optional LZO library (see the Compression issues for hints about how it may be
used to improve performance), fetch and install the LZO from http://sourceforge.net/projects/pytables/files/lzo-win
(choose v1.x for Windows 32-bit and v2.x for Windows 64-bit). Normally, you will only need to fetch that
package and copy the included lzo1.dll/lzo2.dll file in a directory in the PATH environment variable (for example

20 Chapter 2. Installation

https://www.debian.org
http://www.ubuntu.com
http://sourceforge.net/projects/pytables/files/lzo-win

PyTables User Guide, Release 3.3.0

C:\WINDOWS\SYSTEM) or python_installation_path\Lib\site-packages\tables (the last directory may not exist yet,
so if you want to install the DLL there, you should do so after installing the PyTables package), so that it can be found
by the PyTables extensions.

Please note that PyTables has internal machinery for dealing with uninstalled optional compression libraries, so, you
don’t need to install the LZO or bzip2 dynamic libraries if you don’t want to.

PyTables package installation

On PyPI wheels for 32 and 64-bit versions of Windows and are usually provided. They are automatically found and
installed using pip:

$ pip install tables

If a matching wheel cannot be found for your installation, third party built wheels can be found e.g. at the Unofficial
Windows Binaries for Python Extension Packages page. Download the wheel matching the version of python and
either the 32 or 64-bit version and install using pip:

python 3.5 64-bit:
$ pip install tables-3.3-cp35-cp35m-win_amd64.whl

You can (and you should) test your installation by running the next commands:

>>> import tables
>>> tables.test()

on your favorite python shell. If all the tests pass (possibly with a few warnings, related to the potential unavailability
of LZO lib) you already have a working, well-tested copy of PyTables installed! If any test fails, please copy the
output of the error messages as well as the output of:

>>> tables.print_versions()

and mail them to the developers so that the problem can be fixed in future releases.

You can proceed now to the next chapter to see how to use PyTables.

2.3. Binary installation (Windows) 21

http://www.lfd.uci.edu/~gohlke/pythonlibs/#pytables
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pytables

PyTables User Guide, Release 3.3.0

22 Chapter 2. Installation

CHAPTER

THREE

TUTORIALS

Seràs la clau que obre tots els panys, seràs la llum, la llum il.limitada, seràs confí on l’aurora comença,
seràs forment, escala il.luminada!

—Lyrics: Vicent Andrés i Estellés. Music: Ovidi Montllor, Toti Soler, M’aclame a tu

This chapter consists of a series of simple yet comprehensive tutorials that will enable you to understand PyTables’
main features. If you would like more information about some particular instance variable, global function, or method,
look at the doc strings or go to the library reference in Library Reference. If you are reading this in PDF or HTML
formats, follow the corresponding hyperlink near each newly introduced entity.

Please note that throughout this document the terms column and field will be used interchangeably, as will the terms
row and record.

Getting started

In this section, we will see how to define our own records in Python and save collections of them (i.e. a table) into a
file. Then we will select some of the data in the table using Python cuts and create NumPy arrays to store this selection
as separate objects in a tree.

In examples/tutorial1-1.py you will find the working version of all the code in this section. Nonetheless, this tutorial
series has been written to allow you reproduce it in a Python interactive console. I encourage you to do parallel testing
and inspect the created objects (variables, docs, children objects, etc.) during the course of the tutorial!

Importing tables objects

Before starting you need to import the public objects in the tables package. You normally do that by executing:

>>> import tables

This is the recommended way to import tables if you don’t want to pollute your namespace. However, PyTables has a
contained set of first-level primitives, so you may consider using the alternative:

>>> from tables import *

If you are going to work with NumPy arrays (and normally, you will) you will also need to import functions from the
numpy package. So most PyTables programs begin with:

>>> import tables # but in this tutorial we use "from tables import *"
>>> import numpy

23

PyTables User Guide, Release 3.3.0

Declaring a Column Descriptor

Now, imagine that we have a particle detector and we want to create a table object in order to save data retrieved from
it. You need first to define the table, the number of columns it has, what kind of object is contained in each column,
and so on.

Our particle detector has a TDC (Time to Digital Converter) counter with a dynamic range of 8 bits and an ADC
(Analogical to Digital Converter) with a range of 16 bits. For these values, we will define 2 fields in our record object
called TDCcount and ADCcount. We also want to save the grid position in which the particle has been detected, so
we will add two new fields called grid_i and grid_j. Our instrumentation also can obtain the pressure and energy of
the particle. The resolution of the pressure-gauge allows us to use a single-precision float to store pressure readings,
while the energy value will need a double-precision float. Finally, to track the particle we want to assign it a name to
identify the kind of the particle it is and a unique numeric identifier. So we will add two more fields: name will be
a string of up to 16 characters, and idnumber will be an integer of 64 bits (to allow us to store records for extremely
large numbers of particles).

Having determined our columns and their types, we can now declare a new Particle class that will contain all this
information:

>>> from tables import *
>>> class Particle(IsDescription):
... name = StringCol(16) # 16-character String
... idnumber = Int64Col() # Signed 64-bit integer
... ADCcount = UInt16Col() # Unsigned short integer
... TDCcount = UInt8Col() # unsigned byte
... grid_i = Int32Col() # 32-bit integer
... grid_j = Int32Col() # 32-bit integer
... pressure = Float32Col() # float (single-precision)
... energy = Float64Col() # double (double-precision)
>>>

This definition class is self-explanatory. Basically, you declare a class variable for each field you need. As its value
you assign an instance of the appropriate Col subclass, according to the kind of column defined (the data type, the
length, the shape, etc). See the The Col class and its descendants for a complete description of these subclasses. See
also Supported data types in PyTables for a list of data types supported by the Col constructor.

From now on, we can use Particle instances as a descriptor for our detector data table. We will see later on how to pass
this object to construct the table. But first, we must create a file where all the actual data pushed into our table will be
saved.

Creating a PyTables file from scratch

Use the top-level open_file() function to create a PyTables file:

>>> h5file = open_file("tutorial1.h5", mode = "w", title = "Test file")

open_file() is one of the objects imported by the ‘from tables import *‘ statement. Here, we are saying
that we want to create a new file in the current working directory called “tutorial1.h5” in “w”rite mode and with an
descriptive title string (“Test file”). This function attempts to open the file, and if successful, returns the File (see The
File Class) object instance h5file. The root of the object tree is specified in the instance’s root attribute.

Creating a new group

Now, to better organize our data, we will create a group called detector that branches from the root node. We will save
our particle data table in this group:

24 Chapter 3. Tutorials

PyTables User Guide, Release 3.3.0

>>> group = h5file.create_group("/", 'detector', 'Detector information')

Here, we have taken the File instance h5file and invoked its File.create_group() method to create a new group
called detector branching from “/” (another way to refer to the h5file.root object we mentioned above). This will
create a new Group (see The Group class) object instance that will be assigned to the variable group.

Creating a new table

Let’s now create a Table (see The Table class) object as a branch off the newly-created group. We do that by calling
the File.create_table() method of the h5file object:

>>> table = h5file.create_table(group, 'readout', Particle, "Readout example")

We create the Table instance under group. We assign this table the node name “readout”. The Particle class declared
before is the description parameter (to define the columns of the table) and finally we set “Readout example” as the
Table title. With all this information, a new Table instance is created and assigned to the variable table.

If you are curious about how the object tree looks right now, simply print the File instance variable h5file, and examine
the output:

>>> print(h5file)
tutorial1.h5 (File) 'Test file'
Last modif.: 'Wed Mar 7 11:06:12 2007'
Object Tree:
/ (RootGroup) 'Test file'
/detector (Group) 'Detector information'
/detector/readout (Table(0,)) 'Readout example'

As you can see, a dump of the object tree is displayed. It’s easy to see the Group and Table objects we have just
created. If you want more information, just type the variable containing the File instance:

>>> h5file
File(filename='tutorial1.h5', title='Test file', mode='w', root_uep='/', filters=Filters(complevel=0, shuffle=False, bitshuffle=False, fletcher32=False))
/ (RootGroup) 'Test file'
/detector (Group) 'Detector information'
/detector/readout (Table(0,)) 'Readout example'
description := {

"ADCcount": UInt16Col(shape=(), dflt=0, pos=0),
"TDCcount": UInt8Col(shape=(), dflt=0, pos=1),
"energy": Float64Col(shape=(), dflt=0.0, pos=2),
"grid_i": Int32Col(shape=(), dflt=0, pos=3),
"grid_j": Int32Col(shape=(), dflt=0, pos=4),
"idnumber": Int64Col(shape=(), dflt=0, pos=5),
"name": StringCol(itemsize=16, shape=(), dflt='', pos=6),
"pressure": Float32Col(shape=(), dflt=0.0, pos=7)}
byteorder := 'little'
chunkshape := (87,)

More detailed information is displayed about each object in the tree. Note how Particle, our table descriptor class, is
printed as part of the readout table description information. In general, you can obtain much more information about
the objects and their children by just printing them. That introspection capability is very useful, and I recommend that
you use it extensively.

The time has come to fill this table with some values. First we will get a pointer to the Row (see The Row class)
instance of this table instance:

>>> particle = table.row

3.1. Getting started 25

PyTables User Guide, Release 3.3.0

The row attribute of table points to the Row instance that will be used to write data rows into the table. We write
data simply by assigning the Row instance the values for each row as if it were a dictionary (although it is actually an
extension class), using the column names as keys.

Below is an example of how to write rows:

>>> for i in xrange(10):
... particle['name'] = 'Particle: %6d' % (i)
... particle['TDCcount'] = i % 256
... particle['ADCcount'] = (i * 256) % (1 << 16)
... particle['grid_i'] = i
... particle['grid_j'] = 10 - i
... particle['pressure'] = float(i*i)
... particle['energy'] = float(particle['pressure'] ** 4)
... particle['idnumber'] = i * (2 ** 34)
... # Insert a new particle record
... particle.append()
>>>

This code should be easy to understand. The lines inside the loop just assign values to the different columns in the
Row instance particle (see The Row class). A call to its append() method writes this information to the table I/O buffer.

After we have processed all our data, we should flush the table’s I/O buffer if we want to write all this data to disk. We
achieve that by calling the table.flush() method:

>>> table.flush()

Remember, flushing a table is a very important step as it will not only help to maintain the integrity of your file, but
also will free valuable memory resources (i.e. internal buffers) that your program may need for other things.

Reading (and selecting) data in a table

Ok. We have our data on disk, and now we need to access it and select from specific columns the values we are
interested in. See the example below:

>>> table = h5file.root.detector.readout
>>> pressure = [x['pressure'] for x in table.iterrows() if x['TDCcount'] > 3 and 20 <= x['pressure'] < 50]
>>> pressure
[25.0, 36.0, 49.0]

The first line creates a “shortcut” to the readout table deeper on the object tree. As you can see, we use the natural
naming schema to access it. We also could have used the h5file.get_node() method, as we will do later on.

You will recognize the last two lines as a Python list comprehension. It loops over the rows in table as they are
provided by the Table.iterrows() iterator. The iterator returns values until all the data in table is exhausted.
These rows are filtered using the expression:

x['TDCcount'] > 3 and 20 <= x['pressure'] < 50

So, we are selecting the values of the pressure column from filtered records to create the final list and assign it to
pressure variable.

We could have used a normal for loop to accomplish the same purpose, but I find comprehension syntax to be more
compact and elegant.

PyTables do offer other, more powerful ways of performing selections which may be more suitable if you have very
large tables or if you need very high query speeds. They are called in-kernel and indexed queries, and you can use
them through Table.where() and other related methods.

Let’s use an in-kernel selection to query the name column for the same set of cuts:

26 Chapter 3. Tutorials

PyTables User Guide, Release 3.3.0

>>> names = [x['name'] for x in table.where("""(TDCcount > 3) & (20 <= pressure) & (pressure < 50)""")]
>>> names
['Particle: 5', 'Particle: 6', 'Particle: 7']

In-kernel and indexed queries are not only much faster, but as you can see, they also look more compact, and are
among the greatests features for PyTables, so be sure that you use them a lot. See Condition Syntax and Accelerating
your searches for more information on in-kernel and indexed selections.

Note: A special care should be taken when the query condition includes string literals. Indeed Python 2 string literals
are string of bytes while Python 3 strings are unicode objects.

With reference to the above definition of Particle it has to be noted that the type of the “name” column do not
change depending on the Python version used (of course). It always corresponds to strings of bytes.

Any condition involving the “name” column should be written using the appropriate type for string literals in order to
avoid TypeErrors.

Suppose one wants to get rows corresponding to specific particle names.

The code below will work fine in Python 2 but will fail with a TypeError in Python 3:

>>> condition = '(name == "Particle: 5") | (name == "Particle: 7")'
>>> for record in table.where(condition): # TypeError in Python3
... # do something with "record"

The reason is that in Python 3 “condition” implies a comparison between a string of bytes (“name” column contents)
and an unicode literals.

The correct way to write the condition is:

>>> condition = '(name == b"Particle: 5") | (name == b"Particle: 7")'

That’s enough about selections for now. The next section will show you how to save these selected results to a file.

Creating new array objects

In order to separate the selected data from the mass of detector data, we will create a new group columns branching
off the root group. Afterwards, under this group, we will create two arrays that will contain the selected data. First,
we create the group:

>>> gcolumns = h5file.create_group(h5file.root, "columns", "Pressure and Name")

Note that this time we have specified the first parameter using natural naming (h5file.root) instead of with an absolute
path string (“/”).

Now, create the first of the two Array objects we’ve just mentioned:

>>> h5file.create_array(gcolumns, 'pressure', array(pressure), "Pressure column selection")
/columns/pressure (Array(3,)) 'Pressure column selection'

atom := Float64Atom(shape=(), dflt=0.0)
maindim := 0
flavor := 'numpy'
byteorder := 'little'
chunkshape := None

We already know the first two parameters of the File.create_array() methods (these are the same as the first
two in create_table): they are the parent group where Array will be created and the Array instance name. The third

3.1. Getting started 27

PyTables User Guide, Release 3.3.0

parameter is the object we want to save to disk. In this case, it is a NumPy array that is built from the selection list we
created before. The fourth parameter is the title.

Now, we will save the second array. It contains the list of strings we selected before: we save this object as-is, with no
further conversion:

>>> h5file.create_array(gcolumns, 'name', names, "Name column selection")
/columns/name (Array(3,)) 'Name column selection'

atom := StringAtom(itemsize=16, shape=(), dflt='')
maindim := 0
flavor := 'python'
byteorder := 'irrelevant'
chunkshape := None

As you can see, File.create_array() accepts names (which is a regular Python list) as an object parameter.
Actually, it accepts a variety of different regular objects (see create_array()) as parameters. The flavor attribute
(see the output above) saves the original kind of object that was saved. Based on this flavor, PyTables will be able to
retrieve exactly the same object from disk later on.

Note that in these examples, the create_array method returns an Array instance that is not assigned to any variable.
Don’t worry, this is intentional to show the kind of object we have created by displaying its representation. The Array
objects have been attached to the object tree and saved to disk, as you can see if you print the complete object tree:

>>> print(h5file)
tutorial1.h5 (File) 'Test file'
Last modif.: 'Wed Mar 7 19:40:44 2007'
Object Tree:
/ (RootGroup) 'Test file'
/columns (Group) 'Pressure and Name'
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'
/detector (Group) 'Detector information'
/detector/readout (Table(10,)) 'Readout example'

Closing the file and looking at its content

To finish this first tutorial, we use the close method of the h5file File object to close the file before exiting Python:

>>> h5file.close()
>>> ^D
$

You have now created your first PyTables file with a table and two arrays. You can examine it with any generic HDF5
tool, such as h5dump or h5ls. Here is what the tutorial1.h5 looks like when read with the h5ls program.

$ h5ls -rd tutorial1.h5
/columns Group
/columns/name Dataset {3}

Data:
(0) "Particle: 5", "Particle: 6", "Particle: 7"

/columns/pressure Dataset {3}
Data:

(0) 25, 36, 49
/detector Group
/detector/readout Dataset {10/Inf}

Data:
(0) {0, 0, 0, 0, 10, 0, "Particle: 0", 0},
(1) {256, 1, 1, 1, 9, 17179869184, "Particle: 1", 1},

28 Chapter 3. Tutorials

PyTables User Guide, Release 3.3.0

(2) {512, 2, 256, 2, 8, 34359738368, "Particle: 2", 4},
(3) {768, 3, 6561, 3, 7, 51539607552, "Particle: 3", 9},
(4) {1024, 4, 65536, 4, 6, 68719476736, "Particle: 4", 16},
(5) {1280, 5, 390625, 5, 5, 85899345920, "Particle: 5", 25},
(6) {1536, 6, 1679616, 6, 4, 103079215104, "Particle: 6", 36},
(7) {1792, 7, 5764801, 7, 3, 120259084288, "Particle: 7", 49},
(8) {2048, 8, 16777216, 8, 2, 137438953472, "Particle: 8", 64},
(9) {2304, 9, 43046721, 9, 1, 154618822656, "Particle: 9", 81}

Here’s the output as displayed by the “ptdump” PyTables utility (located in utils/ directory).

$ ptdump tutorial1.h5
/ (RootGroup) 'Test file'
/columns (Group) 'Pressure and Name'
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'
/detector (Group) 'Detector information'
/detector/readout (Table(10,)) 'Readout example'

You can pass the -v or -d options to ptdump if you want more verbosity. Try them out!

Also, in Figure 1, you can admire how the tutorial1.h5 looks like using the ViTables graphical interface.

Browsing the object tree

In this section, we will learn how to browse the tree and retrieve data and also meta-information about the actual data.

In examples/tutorial1-2.py you will find the working version of all the code in this section. As before, you are encour-
aged to use a python shell and inspect the object tree during the course of the tutorial.

Traversing the object tree

Let’s start by opening the file we created in last tutorial section:

>>> h5file = open_file("tutorial1.h5", "a")

This time, we have opened the file in “a”ppend mode. We use this mode to add more information to the file.

PyTables, following the Python tradition, offers powerful introspection capabilities, i.e. you can easily ask information
about any component of the object tree as well as search the tree.

To start with, you can get a preliminary overview of the object tree by simply printing the existing File instance:

>>> print(h5file)
tutorial1.h5 (File) 'Test file'
Last modif.: 'Wed Mar 7 19:50:57 2007'
Object Tree:
/ (RootGroup) 'Test file'
/columns (Group) 'Pressure and Name'
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'
/detector (Group) 'Detector information'
/detector/readout (Table(10,)) 'Readout example'

It looks like all of our objects are there. Now let’s make use of the File iterator to see how to list all the nodes in the
object tree:

3.2. Browsing the object tree 29

http://vitables.org

PyTables User Guide, Release 3.3.0

Fig. 3.1: Figure 1. The initial version of the data file for tutorial 1, with a view of the data objects.

30 Chapter 3. Tutorials

PyTables User Guide, Release 3.3.0

>>> for node in h5file:
... print(node)
/ (RootGroup) 'Test file'
/columns (Group) 'Pressure and Name'
/detector (Group) 'Detector information'
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'
/detector/readout (Table(10,)) 'Readout example'

We can use the File.walk_groups() method of the File class to list only the groups on tree:

>>> for group in h5file.walk_groups():
... print(group)
/ (RootGroup) 'Test file'
/columns (Group) 'Pressure and Name'
/detector (Group) 'Detector information'

Note that File.walk_groups() actually returns an iterator, not a list of objects. Using this iterator with the
list_nodes() method is a powerful combination. Let’s see an example listing of all the arrays in the tree:

>>> for group in h5file.walk_groups("/"):
... for array in h5file.list_nodes(group, classname='Array'):
... print(array)
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'

File.list_nodes() returns a list containing all the nodes hanging off a specific Group. If the classname keyword
is specified, the method will filter out all instances which are not descendants of the class. We have asked for only
Array instances. There exist also an iterator counterpart called File.iter_nodes() that might be handy is some
situations, like for example when dealing with groups with a large number of nodes behind it.

We can combine both calls by using the File.walk_nodes() special method of the File object. For example:

>>> for array in h5file.walk_nodes("/", "Array"):
... print(array)
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'

This is a nice shortcut when working interactively.

Finally, we will list all the Leaf, i.e. Table and Array instances (see The Leaf class for detailed information on Leaf
class), in the /detector group. Note that only one instance of the Table class (i.e. readout) will be selected in this group
(as should be the case):

>>> for leaf in h5file.root.detector._f_walknodes('Leaf'):
... print(leaf)
/detector/readout (Table(10,)) 'Readout example'

We have used a call to the Group._f_walknodes() method, using the natural naming path specification.

Of course you can do more sophisticated node selections using these powerful methods. But first, let’s take a look at
some important PyTables object instance variables.

Setting and getting user attributes

PyTables provides an easy and concise way to complement the meaning of your node objects on the tree by using the
AttributeSet class (see The AttributeSet class). You can access this object through the standard attribute attrs in Leaf
nodes and _v_attrs in Group nodes.

3.2. Browsing the object tree 31

PyTables User Guide, Release 3.3.0

For example, let’s imagine that we want to save the date indicating when the data in /detector/readout table has been
acquired, as well as the temperature during the gathering process:

>>> table = h5file.root.detector.readout
>>> table.attrs.gath_date = "Wed, 06/12/2003 18:33"
>>> table.attrs.temperature = 18.4
>>> table.attrs.temp_scale = "Celsius"

Now, let’s set a somewhat more complex attribute in the /detector group:

>>> detector = h5file.root.detector
>>> detector._v_attrs.stuff = [5, (2.3, 4.5), "Integer and tuple"]

Note how the AttributeSet instance is accessed with the _v_attrs attribute because detector is a Group node. In general,
you can save any standard Python data structure as an attribute node. See The AttributeSet class for a more detailed
explanation of how they are serialized for export to disk.

Retrieving the attributes is equally simple:

>>> table.attrs.gath_date
'Wed, 06/12/2003 18:33'
>>> table.attrs.temperature
18.399999999999999
>>> table.attrs.temp_scale
'Celsius'
>>> detector._v_attrs.stuff
[5, (2.2999999999999998, 4.5), 'Integer and tuple']

You can probably guess how to delete attributes:

>>> del table.attrs.gath_date

If you want to examine the current user attribute set of /detector/table, you can print its representation (try hitting the
TAB key twice if you are on a Unix Python console with the rlcompleter module active):

>>> table.attrs
/detector/readout._v_attrs (AttributeSet), 23 attributes:

[CLASS := 'TABLE',
FIELD_0_FILL := 0,
FIELD_0_NAME := 'ADCcount',
FIELD_1_FILL := 0,
FIELD_1_NAME := 'TDCcount',
FIELD_2_FILL := 0.0,
FIELD_2_NAME := 'energy',
FIELD_3_FILL := 0,
FIELD_3_NAME := 'grid_i',
FIELD_4_FILL := 0,
FIELD_4_NAME := 'grid_j',
FIELD_5_FILL := 0,
FIELD_5_NAME := 'idnumber',
FIELD_6_FILL := '',
FIELD_6_NAME := 'name',
FIELD_7_FILL := 0.0,
FIELD_7_NAME := 'pressure',
FLAVOR := 'numpy',
NROWS := 10,
TITLE := 'Readout example',
VERSION := '2.6',
temp_scale := 'Celsius',
temperature := 18.399999999999999]

32 Chapter 3. Tutorials

PyTables User Guide, Release 3.3.0

We’ve got all the attributes (including the system attributes). You can get a list of all attributes or only the user or
system attributes with the _f_list() method:

>>> print(table.attrs._f_list("all"))
['CLASS', 'FIELD_0_FILL', 'FIELD_0_NAME', 'FIELD_1_FILL', 'FIELD_1_NAME',
'FIELD_2_FILL', 'FIELD_2_NAME', 'FIELD_3_FILL', 'FIELD_3_NAME', 'FIELD_4_FILL',
'FIELD_4_NAME', 'FIELD_5_FILL', 'FIELD_5_NAME', 'FIELD_6_FILL', 'FIELD_6_NAME',
'FIELD_7_FILL', 'FIELD_7_NAME', 'FLAVOR', 'NROWS', 'TITLE', 'VERSION',
'temp_scale', 'temperature']
>>> print(table.attrs._f_list("user"))
['temp_scale', 'temperature']
>>> print(table.attrs._f_list("sys"))
['CLASS', 'FIELD_0_FILL', 'FIELD_0_NAME', 'FIELD_1_FILL', 'FIELD_1_NAME',
'FIELD_2_FILL', 'FIELD_2_NAME', 'FIELD_3_FILL', 'FIELD_3_NAME', 'FIELD_4_FILL',
'FIELD_4_NAME', 'FIELD_5_FILL', 'FIELD_5_NAME', 'FIELD_6_FILL', 'FIELD_6_NAME',
'FIELD_7_FILL', 'FIELD_7_NAME', 'FLAVOR', 'NROWS', 'TITLE', 'VERSION']

You can also rename attributes:

>>> table.attrs._f_rename("temp_scale","tempScale")
>>> print(table.attrs._f_list())
['tempScale', 'temperature']

And, from PyTables 2.0 on, you are allowed also to set, delete or rename system attributes:

>>> table.attrs._f_rename("VERSION", "version")
>>> table.attrs.VERSION
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "tables/attributeset.py", line 222, in __getattr__

(name, self._v__nodepath)
AttributeError: Attribute 'VERSION' does not exist in node: '/detector/readout'
>>> table.attrs.version
'2.6'

Caveat emptor: you must be careful when modifying system attributes because you may end fooling PyTables and
ultimately getting unwanted behaviour. Use this only if you know what are you doing.

So, given the caveat above, we will proceed to restore the original name of VERSION attribute:

>>> table.attrs._f_rename("version", "VERSION")
>>> table.attrs.VERSION
'2.6'

Ok. that’s better. If you would terminate your session now, you would be able to use the h5ls command to read the
/detector/readout attributes from the file written to disk.

$ h5ls -vr tutorial1.h5/detector/readout
Opened "tutorial1.h5" with sec2 driver.
/detector/readout Dataset {10/Inf}

Attribute: CLASS scalar
Type: 6-byte null-terminated ASCII string
Data: "TABLE"

Attribute: VERSION scalar
Type: 4-byte null-terminated ASCII string
Data: "2.6"

Attribute: TITLE scalar
Type: 16-byte null-terminated ASCII string
Data: "Readout example"

Attribute: NROWS scalar

3.2. Browsing the object tree 33

PyTables User Guide, Release 3.3.0

Type: native long long
Data: 10

Attribute: FIELD_0_NAME scalar
Type: 9-byte null-terminated ASCII string
Data: "ADCcount"

Attribute: FIELD_1_NAME scalar
Type: 9-byte null-terminated ASCII string
Data: "TDCcount"

Attribute: FIELD_2_NAME scalar
Type: 7-byte null-terminated ASCII string
Data: "energy"

Attribute: FIELD_3_NAME scalar
Type: 7-byte null-terminated ASCII string
Data: "grid_i"

Attribute: FIELD_4_NAME scalar
Type: 7-byte null-terminated ASCII string
Data: "grid_j"

Attribute: FIELD_5_NAME scalar
Type: 9-byte null-terminated ASCII string
Data: "idnumber"

Attribute: FIELD_6_NAME scalar
Type: 5-byte null-terminated ASCII string
Data: "name"

Attribute: FIELD_7_NAME scalar
Type: 9-byte null-terminated ASCII string
Data: "pressure"

Attribute: FLAVOR scalar
Type: 5-byte null-terminated ASCII string
Data: "numpy"

Attribute: tempScale scalar
Type: 7-byte null-terminated ASCII string
Data: "Celsius"

Attribute: temperature scalar
Type: native double
Data: 18.4

Location: 0:1:0:1952
Links: 1
Modified: 2006-12-11 10:35:13 CET
Chunks: {85} 3995 bytes
Storage: 470 logical bytes, 3995 allocated bytes, 11.76% utilization
Type: struct {

"ADCcount" +0 native unsigned short
"TDCcount" +2 native unsigned char
"energy" +3 native double
"grid_i" +11 native int
"grid_j" +15 native int
"idnumber" +19 native long long
"name" +27 16-byte null-terminated ASCII string
"pressure" +43 native float

} 47 bytes

Attributes are a useful mechanism to add persistent (meta) information to your data.

Getting object metadata

Each object in PyTables has metadata information about the data in the file. Normally this meta-information is
accessible through the node instance variables. Let’s take a look at some examples:

34 Chapter 3. Tutorials

PyTables User Guide, Release 3.3.0

>>> print("Object:", table)
Object: /detector/readout (Table(10,)) 'Readout example'
>>> print("Table name:", table.name)
Table name: readout
>>> print("Table title:", table.title)
Table title: Readout example
>>> print("Number of rows in table:", table.nrows)
Number of rows in table: 10
>>> print("Table variable names with their type and shape:")
Table variable names with their type and shape:
>>> for name in table.colnames:
... print(name, ':= %s, %s' % (table.coldtypes[name], table.coldtypes[name].shape))
ADCcount := uint16, ()
TDCcount := uint8, ()
energy := float64, ()
grid_i := int32, ()
grid_j := int32, ()
idnumber := int64, ()
name := |S16, ()
pressure := float32, ()

Here, the name, title, nrows, colnames and coldtypes attributes (see Table for a complete attribute list) of the Table
object gives us quite a bit of information about the table data.

You can interactively retrieve general information about the public objects in PyTables by asking for help:

>>> help(table)
Help on Table in module tables.table:
class Table(tableextension.Table, tables.leaf.Leaf)
| This class represents heterogeneous datasets in an HDF5 file.
|
| Tables are leaves (see the `Leaf` class) whose data consists of a
| unidimensional sequence of *rows*, where each row contains one or
| more *fields*. Fields have an associated unique *name* and
| *position*, with the first field having position 0. All rows have
| the same fields, which are arranged in *columns*.
[snip]
|
| Instance variables
| ------------------
|
| The following instance variables are provided in addition to those
| in `Leaf`. Please note that there are several `col` dictionaries
| to ease retrieving information about a column directly by its path
| name, avoiding the need to walk through `Table.description` or
| `Table.cols`.
|
| autoindex
| Automatically keep column indexes up to date?
|
| Setting this value states whether existing indexes should be
| automatically updated after an append operation or recomputed
| after an index-invalidating operation (i.e. removal and
| modification of rows). The default is true.
[snip]
| rowsize
| The size in bytes of each row in the table.
|
| Public methods -- reading

3.2. Browsing the object tree 35

PyTables User Guide, Release 3.3.0

| -------------------------
|
| * col(name)
| * iterrows([start][, stop][, step])
| * itersequence(sequence)

* itersorted(sortby[, checkCSI][, start][, stop][, step])
| * read([start][, stop][, step][, field][, coords])
| * read_coordinates(coords[, field])

* read_sorted(sortby[, checkCSI][, field,][, start][, stop][, step])
| * __getitem__(key)
| * __iter__()
|
| Public methods -- writing
| -------------------------
|
| * append(rows)
| * modify_column([start][, stop][, step][, column][, colname])
[snip]

Try getting help with other object docs by yourself:

>>> help(h5file)
>>> help(table.remove_rows)

To examine metadata in the /columns/pressure Array object:

>>> pressureObject = h5file.get_node("/columns", "pressure")
>>> print("Info on the object:", repr(pressureObject))
Info on the object: /columns/pressure (Array(3,)) 'Pressure column selection'

atom := Float64Atom(shape=(), dflt=0.0)
maindim := 0
flavor := 'numpy'
byteorder := 'little'
chunkshape := None

>>> print(" shape: ==>", pressureObject.shape)
shape: ==> (3,)

>>> print(" title: ==>", pressureObject.title)
title: ==> Pressure column selection

>>> print(" atom: ==>", pressureObject.atom)
atom: ==> Float64Atom(shape=(), dflt=0.0)

Observe that we have used the File.get_node() method of the File class to access a node in the tree, instead
of the natural naming method. Both are useful, and depending on the context you will prefer one or the other.
File.get_node() has the advantage that it can get a node from the pathname string (as in this example) and
can also act as a filter to show only nodes in a particular location that are instances of class classname. In general,
however, I consider natural naming to be more elegant and easier to use, especially if you are using the name com-
pletion capability present in interactive console. Try this powerful combination of natural naming and completion
capabilities present in most Python consoles, and see how pleasant it is to browse the object tree (well, as pleasant as
such an activity can be).

If you look at the type attribute of the pressureObject object, you can verify that it is a “float64” array. By looking
at its shape attribute, you can deduce that the array on disk is unidimensional and has 3 elements. See Array or the
internal doc strings for the complete Array attribute list.

Reading data from Array objects

Once you have found the desired Array, use the read() method of the Array object to retrieve its data:

36 Chapter 3. Tutorials

PyTables User Guide, Release 3.3.0

>>> pressureArray = pressureObject.read()
>>> pressureArray
array([25., 36., 49.])
>>> print("pressureArray is an object of type:", type(pressureArray))
pressureArray is an object of type: <type 'numpy.ndarray'>
>>> nameArray = h5file.root.columns.name.read()
>>> print("nameArray is an object of type:", type(nameArray))
nameArray is an object of type: <type 'list'>
>>>
>>> print("Data on arrays nameArray and pressureArray:")
Data on arrays nameArray and pressureArray:
>>> for i in range(pressureObject.shape[0]):
... print(nameArray[i], "-->", pressureArray[i])
Particle: 5 --> 25.0
Particle: 6 --> 36.0
Particle: 7 --> 49.0

You can see that the Array.read() method returns an authentic NumPy object for the pressureObject instance by
looking at the output of the type() call. A read() of the nameArray object instance returns a native Python list (of
strings). The type of the object saved is stored as an HDF5 attribute (named FLAVOR) for objects on disk. This
attribute is then read as Array meta-information (accessible through in the Array.attrs.FLAVOR variable), enabling the
read array to be converted into the original object. This provides a means to save a large variety of objects as arrays
with the guarantee that you will be able to later recover them in their original form. See File.create_array()
for a complete list of supported objects for the Array object class.

Commiting data to tables and arrays

We have seen how to create tables and arrays and how to browse both data and metadata in the object tree. Let’s
examine more closely now one of the most powerful capabilities of PyTables, namely, how to modify already created
tables and arrays 1

Appending data to an existing table

Now, let’s have a look at how we can add records to an existing table on disk. Let’s use our well-known readout Table
object and append some new values to it:

>>> table = h5file.root.detector.readout
>>> particle = table.row
>>> for i in xrange(10, 15):
... particle['name'] = 'Particle: %6d' % (i)
... particle['TDCcount'] = i % 256
... particle['ADCcount'] = (i * 256) % (1 << 16)
... particle['grid_i'] = i
... particle['grid_j'] = 10 - i
... particle['pressure'] = float(i*i)
... particle['energy'] = float(particle['pressure'] ** 4)
... particle['idnumber'] = i * (2 ** 34)
... particle.append()
>>> table.flush()

It’s the same method we used to fill a new table. PyTables knows that this table is on disk, and when you add new
records, they are appended to the end of the table 2.

1 Appending data to arrays is also supported, but you need to create special objects called EArray (see The EArray class for more info).
2 Note that you can append not only scalar values to tables, but also fully multidimensional array objects.

3.3. Commiting data to tables and arrays 37

PyTables User Guide, Release 3.3.0

If you look carefully at the code you will see that we have used the table.row attribute to create a table row and fill it
with the new values. Each time that its append() method is called, the actual row is committed to the output buffer and
the row pointer is incremented to point to the next table record. When the buffer is full, the data is saved on disk, and
the buffer is reused again for the next cycle.

Caveat emptor: Do not forget to always call the flush() method after a write operation, or else your tables will not be
updated!

Let’s have a look at some rows in the modified table and verify that our new data has been appended:

>>> for r in table.iterrows():
... print("%-16s | %11.1f | %11.4g | %6d | %6d | %8d \|" % \\
... (r['name'], r['pressure'], r['energy'], r['grid_i'], r['grid_j'],
... r['TDCcount']))
Particle: 0 | 0.0 | 0 | 0 | 10 | 0 |
Particle: 1 | 1.0 | 1 | 1 | 9 | 1 |
Particle: 2 | 4.0 | 256 | 2 | 8 | 2 |
Particle: 3 | 9.0 | 6561 | 3 | 7 | 3 |
Particle: 4 | 16.0 | 6.554e+04 | 4 | 6 | 4 |
Particle: 5 | 25.0 | 3.906e+05 | 5 | 5 | 5 |
Particle: 6 | 36.0 | 1.68e+06 | 6 | 4 | 6 |
Particle: 7 | 49.0 | 5.765e+06 | 7 | 3 | 7 |
Particle: 8 | 64.0 | 1.678e+07 | 8 | 2 | 8 |
Particle: 9 | 81.0 | 4.305e+07 | 9 | 1 | 9 |
Particle: 10 | 100.0 | 1e+08 | 10 | 0 | 10 |
Particle: 11 | 121.0 | 2.144e+08 | 11 | -1 | 11 |
Particle: 12 | 144.0 | 4.3e+08 | 12 | -2 | 12 |
Particle: 13 | 169.0 | 8.157e+08 | 13 | -3 | 13 |
Particle: 14 | 196.0 | 1.476e+09 | 14 | -4 | 14 |

Modifying data in tables

Ok, until now, we’ve been only reading and writing (appending) values to our tables. But there are times that you need
to modify your data once you have saved it on disk (this is specially true when you need to modify the real world data
to adapt your goals ;). Let’s see how we can modify the values that were saved in our existing tables. We will start
modifying single cells in the first row of the Particle table:

>>> print("Before modif-->", table[0])
Before modif--> (0, 0, 0.0, 0, 10, 0L, 'Particle: 0', 0.0)
>>> table.cols.TDCcount[0] = 1
>>> print("After modifying first row of ADCcount-->", table[0])
After modifying first row of ADCcount--> (0, 1, 0.0, 0, 10, 0L, 'Particle: 0', 0.0)
>>> table.cols.energy[0] = 2
>>> print("After modifying first row of energy-->", table[0])
After modifying first row of energy--> (0, 1, 2.0, 0, 10, 0L, 'Particle: 0', 0.0)

We can modify complete ranges of columns as well:

>>> table.cols.TDCcount[2:5] = [2,3,4]
>>> print("After modifying slice [2:5] of TDCcount-->", table[0:5])
After modifying slice [2:5] of TDCcount-->
[(0, 1, 2.0, 0, 10, 0L, 'Particle: 0', 0.0)
(256, 1, 1.0, 1, 9, 17179869184L, 'Particle: 1', 1.0)
(512, 2, 256.0, 2, 8, 34359738368L, 'Particle: 2', 4.0)
(768, 3, 6561.0, 3, 7, 51539607552L, 'Particle: 3', 9.0)
(1024, 4, 65536.0, 4, 6, 68719476736L, 'Particle: 4', 16.0)]

>>> table.cols.energy[1:9:3] = [2,3,4]
>>> print("After modifying slice [1:9:3] of energy-->", table[0:9])

38 Chapter 3. Tutorials

PyTables User Guide, Release 3.3.0

After modifying slice [1:9:3] of energy-->
[(0, 1, 2.0, 0, 10, 0L, 'Particle: 0', 0.0)
(256, 1, 2.0, 1, 9, 17179869184L, 'Particle: 1', 1.0)
(512, 2, 256.0, 2, 8, 34359738368L, 'Particle: 2', 4.0)
(768, 3, 6561.0, 3, 7, 51539607552L, 'Particle: 3', 9.0)
(1024, 4, 3.0, 4, 6, 68719476736L, 'Particle: 4', 16.0)
(1280, 5, 390625.0, 5, 5, 85899345920L, 'Particle: 5', 25.0)
(1536, 6, 1679616.0, 6, 4, 103079215104L, 'Particle: 6', 36.0)
(1792, 7, 4.0, 7, 3, 120259084288L, 'Particle: 7', 49.0)
(2048, 8, 16777216.0, 8, 2, 137438953472L, 'Particle: 8', 64.0)]

Check that the values have been correctly modified!

Hint: remember that column TDCcount is the second one, and that energy is the third. Look for more info on
modifying columns in Column.__setitem__().

PyTables also lets you modify complete sets of rows at the same time. As a demonstration of these capability, see the
next example:

>>> table.modify_rows(start=1, step=3,
... rows=[(1, 2, 3.0, 4, 5, 6L, 'Particle: None', 8.0),
... (2, 4, 6.0, 8, 10, 12L, 'Particle: None*2', 16.0)])
2
>>> print("After modifying the complete third row-->", table[0:5])
After modifying the complete third row-->
[(0, 1, 2.0, 0, 10, 0L, 'Particle: 0', 0.0)
(1, 2, 3.0, 4, 5, 6L, 'Particle: None', 8.0)
(512, 2, 256.0, 2, 8, 34359738368L, 'Particle: 2', 4.0)
(768, 3, 6561.0, 3, 7, 51539607552L, 'Particle: 3', 9.0)
(2, 4, 6.0, 8, 10, 12L, 'Particle: None*2', 16.0)]

As you can see, the modify_rows() call has modified the rows second and fifth, and it returned the number of modified
rows.

Apart of Table.modify_rows(), there exists another method, called Table.modify_column() to modify
specific columns as well.

Finally, it exists another way of modifying tables that is generally more handy than the described above. This new
way uses the method Row.update() of the Row instance that is attached to every table, so it is meant to be used in
table iterators. Look at the next example:

>>> for row in table.where('TDCcount <= 2'):
... row['energy'] = row['TDCcount']*2
... row.update()
>>> print("After modifying energy column (where TDCcount <=2)-->", table[0:4])
After modifying energy column (where TDCcount <=2)-->
[(0, 1, 2.0, 0, 10, 0L, 'Particle: 0', 0.0)
(1, 2, 4.0, 4, 5, 6L, 'Particle: None', 8.0)
(512, 2, 4.0, 2, 8, 34359738368L, 'Particle: 2', 4.0)
(768, 3, 6561.0, 3, 7, 51539607552L, 'Particle: 3', 9.0)]

Note: The authors find this way of updating tables (i.e. using Row.update()) to be both convenient and efficient.
Please make sure to use it extensively.

Caveat emptor: Currently, Row.update() will not work (the table will not be updated) if the loop is broken
with break statement. A possible workaround consists in manually flushing the row internal buffer by calling

3.3. Commiting data to tables and arrays 39

PyTables User Guide, Release 3.3.0

row._flushModRows() just before the break statement.

Modifying data in arrays

We are going now to see how to modify data in array objects. The basic way to do this is through the use of
Array.__setitem__() special method. Let’s see at how modify data on the pressureObject array:

>>> pressureObject = h5file.root.columns.pressure
>>> print("Before modif-->", pressureObject[:])
Before modif--> [25. 36. 49.]
>>> pressureObject[0] = 2
>>> print("First modif-->", pressureObject[:])
First modif--> [2. 36. 49.]
>>> pressureObject[1:3] = [2.1, 3.5]
>>> print("Second modif-->", pressureObject[:])
Second modif--> [2. 2.1 3.5]
>>> pressureObject[::2] = [1,2]
>>> print("Third modif-->", pressureObject[:])
Third modif--> [1. 2.1 2.]

So, in general, you can use any combination of (multidimensional) extended slicing.

With the sole exception that you cannot use negative values for step to refer to indexes that you want to modify. See
Array.__getitem__() for more examples on how to use extended slicing in PyTables objects.

Similarly, with an array of strings:

>>> nameObject = h5file.root.columns.name
>>> print("Before modif-->", nameObject[:])
Before modif--> ['Particle: 5', 'Particle: 6', 'Particle: 7']
>>> nameObject[0] = 'Particle: None'
>>> print("First modif-->", nameObject[:])
First modif--> ['Particle: None', 'Particle: 6', 'Particle: 7']
>>> nameObject[1:3] = ['Particle: 0', 'Particle: 1']
>>> print("Second modif-->", nameObject[:])
Second modif--> ['Particle: None', 'Particle: 0', 'Particle: 1']
>>> nameObject[::2] = ['Particle: -3', 'Particle: -5']
>>> print("Third modif-->", nameObject[:])
Third modif--> ['Particle: -3', 'Particle: 0', 'Particle: -5']

And finally... how to delete rows from a table

We’ll finish this tutorial by deleting some rows from the table we have. Suppose that we want to delete the 5th to 9th
rows (inclusive):

>>> table.remove_rows(5,10)
5

Table.remove_rows() deletes the rows in the range (start, stop). It returns the number of rows effectively
removed.

We have reached the end of this first tutorial. Don’t forget to close the file when you finish:

>>> h5file.close()
>>> ^D
$

40 Chapter 3. Tutorials

PyTables User Guide, Release 3.3.0

In Figure 2 you can see a graphical view of the PyTables file with the datasets we have just created. In Figure 3.
General properties of the /detector/readout table. are displayed the general properties of the table /detector/readout.

Fig. 3.2: Figure 2. The final version of the data file for tutorial 1.

Multidimensional table cells and automatic sanity checks

Now it’s time for a more real-life example (i.e. with errors in the code). We will create two groups that branch directly
from the root node, Particles and Events. Then, we will put three tables in each group. In Particles we will put tables
based on the Particle descriptor and in Events, the tables based the Event descriptor.

Afterwards, we will provision the tables with a number of records. Finally, we will read the newly-created table
/Events/TEvent3 and select some values from it, using a comprehension list.

Look at the next script (you can find it in examples/tutorial2.py). It appears to do all of the above, but it
contains some small bugs. Note that this Particle class is not directly related to the one defined in last tutorial; this
class is simpler (note, however, the multidimensional columns called pressure and temperature).

We also introduce a new manner to describe a Table as a structured NumPy dtype (or even as a dictionary), as you can

3.4. Multidimensional table cells and automatic sanity checks 41

PyTables User Guide, Release 3.3.0

Fig. 3.3: Figure 3. General properties of the /detector/readout table.

42 Chapter 3. Tutorials

PyTables User Guide, Release 3.3.0

see in the Event description. See File.create_table() about the different kinds of descriptor objects that can
be passed to this method:

from tables import *
from numpy import *

Describe a particle record
class Particle(IsDescription):

name = StringCol(itemsize=16) # 16-character string
lati = Int32Col() # integer
longi = Int32Col() # integer
pressure = Float32Col(shape=(2,3)) # array of floats (single-precision)
temperature = Float64Col(shape=(2,3)) # array of doubles (double-precision)

Native NumPy dtype instances are also accepted
Event = dtype([

("name" , "S16"),
("TDCcount" , uint8),
("ADCcount" , uint16),
("xcoord" , float32),
("ycoord" , float32)
])

And dictionaries too (this defines the same structure as above)
Event = {
"name" : StringCol(itemsize=16),
"TDCcount" : UInt8Col(),
"ADCcount" : UInt16Col(),
"xcoord" : Float32Col(),
"ycoord" : Float32Col(),
}

Open a file in "w"rite mode
fileh = open_file("tutorial2.h5", mode = "w")

Get the HDF5 root group
root = fileh.root

Create the groups:
for groupname in ("Particles", "Events"):

group = fileh.create_group(root, groupname)

Now, create and fill the tables in Particles group
gparticles = root.Particles

Create 3 new tables
for tablename in ("TParticle1", "TParticle2", "TParticle3"):

Create a table
table = fileh.create_table("/Particles", tablename, Particle, "Particles: "+tablename)

Get the record object associated with the table:
particle = table.row

Fill the table with 257 particles
for i in xrange(257):

First, assign the values to the Particle record
particle['name'] = 'Particle: %6d' % (i)
particle['lati'] = i
particle['longi'] = 10 - i

3.4. Multidimensional table cells and automatic sanity checks 43

PyTables User Guide, Release 3.3.0

########### Detectable errors start here. Play with them!
particle['pressure'] = array(i*arange(2*3)).reshape((2,4)) # Incorrect
#particle['pressure'] = array(i*arange(2*3)).reshape((2,3)) # Correct
########### End of errors

particle['temperature'] = (i**2) # Broadcasting

This injects the Record values
particle.append()

Flush the table buffers
table.flush()

Now, go for Events:
for tablename in ("TEvent1", "TEvent2", "TEvent3"):

Create a table in Events group
table = fileh.create_table(root.Events, tablename, Event, "Events: "+tablename)

Get the record object associated with the table:
event = table.row

Fill the table with 257 events
for i in xrange(257):

First, assign the values to the Event record
event['name'] = 'Event: %6d' % (i)
event['TDCcount'] = i % (1<<8) # Correct range

########### Detectable errors start here. Play with them!
event['xcoor'] = float(i**2) # Wrong spelling
#event['xcoord'] = float(i**2) # Correct spelling
event['ADCcount'] = "sss" # Wrong type
#event['ADCcount'] = i * 2 # Correct type
########### End of errors

event['ycoord'] = float(i)**4

This injects the Record values
event.append()

Flush the buffers
table.flush()

Read the records from table "/Events/TEvent3" and select some
table = root.Events.TEvent3
e = [p['TDCcount'] for p in table if p['ADCcount'] < 20 and 4 <= p['TDCcount'] < 15]
print("Last record ==>", p)
print("Selected values ==>", e)
print("Total selected records ==> ", len(e))

Finally, close the file (this also will flush all the remaining buffers!)
fileh.close()

Shape checking

If you look at the code carefully, you’ll see that it won’t work. You will get the following error.

44 Chapter 3. Tutorials

PyTables User Guide, Release 3.3.0

$ python tutorial2.py
Traceback (most recent call last):

File "tutorial2.py", line 60, in <module>
particle['pressure'] = array(i*arange(2*3)).reshape((2,4)) # Incorrect

ValueError: total size of new array must be unchanged
Closing remaining open files: tutorial2.h5... done

This error indicates that you are trying to assign an array with an incompatible shape to a table cell. Looking at the
source, we see that we were trying to assign an array of shape (2,4) to a pressure element, which was defined with the
shape (2,3).

In general, these kinds of operations are forbidden, with one valid exception: when you assign a scalar value to a
multidimensional column cell, all the cell elements are populated with the value of the scalar. For example:

particle['temperature'] = (i**2) # Broadcasting

The value i**2 is assigned to all the elements of the temperature table cell. This capability is provided by the NumPy
package and is known as broadcasting.

Field name checking

After fixing the previous error and rerunning the program, we encounter another error.

$ python tutorial2.py
Traceback (most recent call last):

File "tutorial2.py", line 73, in ?
event['xcoor'] = float(i**2) # Wrong spelling

File "tableextension.pyx", line 1094, in tableextension.Row.__setitem__
File "tableextension.pyx", line 127, in tableextension.get_nested_field_cache
File "utilsextension.pyx", line 331, in utilsextension.get_nested_field

KeyError: 'no such column: xcoor'

This error indicates that we are attempting to assign a value to a non-existent field in the event table object. By looking
carefully at the Event class attributes, we see that we misspelled the xcoord field (we wrote xcoor instead). This is
unusual behavior for Python, as normally when you assign a value to a non-existent instance variable, Python creates
a new variable with that name. Such a feature can be dangerous when dealing with an object that contains a fixed list
of field names. PyTables checks that the field exists and raises a KeyError if the check fails.

Data type checking

Finally, the last issue which we will find here is a TypeError exception.

$ python tutorial2.py
Traceback (most recent call last):

File "tutorial2.py", line 75, in ?
event['ADCcount'] = "sss" # Wrong type

File "tableextension.pyx", line 1111, in tableextension.Row.__setitem__
TypeError: invalid type (<type 'str'>) for column ``ADCcount``

And, if we change the affected line to read:

event.ADCcount = i * 2 # Correct type

we will see that the script ends well.

You can see the structure created with this (corrected) script in Figure 4. In particular, note the multidimensional
column cells in table /Particles/TParticle2.

3.4. Multidimensional table cells and automatic sanity checks 45

PyTables User Guide, Release 3.3.0

Fig. 3.4: Figure 4. Table hierarchy for tutorial 2.

46 Chapter 3. Tutorials

PyTables User Guide, Release 3.3.0

Using links for more convenient access to nodes

Links are special nodes that can be used to create additional paths to your existing nodes. PyTables supports three
kinds of links: hard links, soft links (aka symbolic links) and external links.

Hard links let the user create additional paths to access another node in the same file, and once created, they are
indistinguishable from the referred node object, except that they have different paths in the object tree. For example,
if the referred node is, say, a Table object, then the new hard link will become a Table object itself. From this point on,
you will be able to access the same Table object from two different paths: the original one and the new hard link path.
If you delete one path to the table, you will be able to reach it via the other path.

Soft links are similar to hard links, but they keep their own personality. When you create a soft link to another node,
you will get a new SoftLink object that refers to that node. However, in order to access the referred node, you need to
dereference it.

Finally, external links are like soft links, with the difference that these are meant to point to nodes in external files
instead of nodes in the same file. They are represented by the ExternalLink class and, like soft links, you need to
dereference them in order to get access to the pointed node.

Interactive example

Now we are going to learn how to deal with links. You can find the code used in this section in
examples/links.py.

First, let’s create a file with some group structure:

>>> import tables as tb
>>> f1 = tb.open_file('links1.h5', 'w')
>>> g1 = f1.create_group('/', 'g1')
>>> g2 = f1.create_group(g1, 'g2')

Now, we will put some datasets on the /g1 and /g1/g2 groups:

>>> a1 = f1.create_carray(g1, 'a1', tb.Int64Atom(), shape=(10000,))
>>> t1 = f1.create_table(g2, 't1', {'f1': tb.IntCol(), 'f2': tb.FloatCol()})

We can start the party now. We are going to create a new group, say /gl, where we will put our links and will start
creating one hard link too:

>>> gl = f1.create_group('/', 'gl')
>>> ht = f1.create_hard_link(gl, 'ht', '/g1/g2/t1') # ht points to t1
>>> print("``%s`` is a hard link to: ``%s``" % (ht, t1))
``/gl/ht (Table(0,)) `` is a hard link to: ``/g1/g2/t1 (Table(0,)) ``

You can see how we’ve created a hard link in /gl/ht which is pointing to the existing table in /g1/g2/t1. Have look at
how the hard link is represented; it looks like a table, and actually, it is an real table. We have two different paths to
access that table, the original /g1/g2/t1 and the new one /gl/ht. If we remove the original path we still can reach the
table by using the new path:

>>> t1.remove()
>>> print("table continues to be accessible in: ``%s``" % f1.get_node('/gl/ht'))
table continues to be accessible in: ``/gl/ht (Table(0,)) ``

So far so good. Now, let’s create a couple of soft links:

>>> la1 = f1.create_soft_link(gl, 'la1', '/g1/a1') # la1 points to a1
>>> print("``%s`` is a soft link to: ``%s``" % (la1, la1.target))
``/gl/la1 (SoftLink) -> /g1/a1`` is a soft link to: ``/g1/a1``

3.5. Using links for more convenient access to nodes 47

PyTables User Guide, Release 3.3.0

>>> lt = f1.create_soft_link(gl, 'lt', '/g1/g2/t1') # lt points to t1
>>> print("``%s`` is a soft link to: ``%s``" % (lt, lt.target))
``/gl/lt (SoftLink) -> /g1/g2/t1 (dangling)`` is a soft link to: ``/g1/g2/t1``

Okay, we see how the first link /gl/la1 points to the array /g1/a1. Notice how the link prints as a SoftLink, and how
the referred node is stored in the target instance attribute. The second link (/gt/lt) pointing to /g1/g2/t1 also has been
created successfully, but by better inspecting the string representation of it, we see that is labeled as ‘(dangling)’. Why
is this? Well, you should remember that we recently removed the /g1/g2/t1 path to access table t1. When printing it,
the object knows that it points to nowhere and reports this. This is a nice way to quickly know whether a soft link
points to an exiting node or not.

So, let’s re-create the removed path to t1 table:

>>> t1 = f1.create_hard_link('/g1/g2', 't1', '/gl/ht')
>>> print("``%s`` is not dangling anymore" % (lt,))
``/gl/lt (SoftLink) -> /g1/g2/t1`` is not dangling anymore

and the soft link is pointing to an existing node now.

Of course, for soft links to serve any actual purpose we need a way to get the pointed node. It happens that soft links
are callable, and that’s the way to get the referred nodes back:

>>> plt = lt()
>>> print("dereferred lt node: ``%s``" % plt)
dereferred lt node: ``/g1/g2/t1 (Table(0,)) ``
>>> pla1 = la1()
>>> print("dereferred la1 node: ``%s``" % pla1)
dereferred la1 node: ``/g1/a1 (CArray(10000,)) ``

Now, plt is a Python reference to the t1 table while pla1 refers to the a1 array. Easy, uh?

Let’s suppose now that a1 is an array whose access speed is critical for our application. One possible solution is to
move the entire file into a faster disk, say, a solid state disk so that access latencies can be reduced quite a lot. However,
it happens that our file is too big to fit into our shiny new (although small in capacity) SSD disk. A solution is to copy
just the a1 array into a separate file that would fit into our SSD disk. However, our application would be able to handle
two files instead of only one, adding significantly more complexity, which is not a good thing.

External links to the rescue! As we’ve already said, external links are like soft links, but they are designed to link
objects in external files. Back to our problem, let’s copy the a1 array into a different file:

>>> f2 = tb.open_file('links2.h5', 'w')
>>> new_a1 = a1.copy(f2.root, 'a1')
>>> f2.close() # close the other file

And now, we can remove the existing soft link and create the external link in its place:

>>> la1.remove()
>>> la1 = f1.create_external_link(gl, 'la1', 'links2.h5:/a1')
>>> print("``%s`` is an external link to: ``%s``" % (la1, la1.target))
``/gl/la1 (ExternalLink) -> links2.h5:/a1`` is an external link to: ``links2.h5:/a1``

Let’s try dereferring it:

>>> new_a1 = la1() # dereferrencing la1 returns a1 in links2.h5
>>> print("dereferred la1 node: ``%s``" % new_a1)
dereferred la1 node: ``/a1 (CArray(10000,)) ``

Well, it seems like we can access the external node. But just to make sure that the node is in the other file:

48 Chapter 3. Tutorials

PyTables User Guide, Release 3.3.0

>>> print("new_a1 file:", new_a1._v_file.filename)
new_a1 file: links2.h5

Okay, the node is definitely in the external file. So, you won’t have to worry about your application: it will work
exactly the same no matter the link is internal (soft) or external.

Finally, here it is a dump of the objects in the final file, just to get a better idea of what we ended with:

>>> f1.close()
>>> exit()
$ ptdump links1.h5
/ (RootGroup) ''
/g1 (Group) ''
/g1/a1 (CArray(10000,)) ''
/gl (Group) ''
/gl/ht (Table(0,)) ''
/gl/la1 (ExternalLink) -> links2.h5:/a1
/gl/lt (SoftLink) -> /g1/g2/t1
/g1/g2 (Group) ''
/g1/g2/t1 (Table(0,)) ''

This ends this tutorial. I hope it helped you to appreciate how useful links can be. I’m sure you will find other ways in
which you can use links that better fit your own needs.

Exercising the Undo/Redo feature

PyTables has integrated support for undoing and/or redoing actions. This functionality lets you put marks in specific
places of your hierarchy manipulation operations, so that you can make your HDF5 file pop back (undo) to a specific
mark (for example for inspecting how your hierarchy looked at that point). You can also go forward to a more recent
marker (redo). You can even do jumps to the marker you want using just one instruction as we will see shortly.

You can undo/redo all the operations that are related to object tree management, like creating, deleting, moving or
renaming nodes (or complete sub-hierarchies) inside a given object tree. You can also undo/redo operations (i.e.
creation, deletion or modification) of persistent node attributes. However, when actions include internal modifications
of datasets (that includes Table.append, Table.modify_rows or Table.remove_rows among others), they cannot be
undone/redone currently.

This capability can be useful in many situations, like for example when doing simulations with multiple branches.
When you have to choose a path to follow in such a situation, you can put a mark there and, if the simulation is not
going well, you can go back to that mark and start another path. Other possible application is defining coarse-grained
operations which operate in a transactional-like way, i.e. which return the database to its previous state if the operation
finds some kind of problem while running. You can probably devise many other scenarios where the Undo/Redo
feature can be useful to you 3.

A basic example

In this section, we are going to show the basic behavior of the Undo/Redo feature. You can find the code used in
this example in examples/tutorial3-1.py. A somewhat more complex example will be explained in the next
section.

First, let’s create a file:

3 You can even hide nodes temporarily. Will you be able to find out how?

3.6. Exercising the Undo/Redo feature 49

PyTables User Guide, Release 3.3.0

>>> import tables
>>> fileh = tables.open_file("tutorial3-1.h5", "w", title="Undo/Redo demo 1")

And now, activate the Undo/Redo feature with the method File.enable_undo() of File:

>>> fileh.enable_undo()

From now on, all our actions will be logged internally by PyTables. Now, we are going to create a node (in this case
an Array object):

>>> one = fileh.create_array('/', 'anarray', [3,4], "An array")

Now, mark this point:

>>> fileh.mark()
1

We have marked the current point in the sequence of actions. In addition, the mark() method has returned the identifier
assigned to this new mark, that is 1 (mark #0 is reserved for the implicit mark at the beginning of the action log). In
the next section we will see that you can also assign a name to a mark (see File.mark() for more info on mark()).
Now, we are going to create another array:

>>> another = fileh.create_array('/', 'anotherarray', [4,5], "Another array")

Right. Now, we can start doing funny things. Let’s say that we want to pop back to the previous mark (that whose
value was 1, do you remember?). Let’s introduce the undo() method (see File.undo()):

>>> fileh.undo()

Fine, what do you think it happened? Well, let’s have a look at the object tree:

>>> print(fileh)
tutorial3-1.h5 (File) 'Undo/Redo demo 1'
Last modif.: 'Tue Mar 13 11:43:55 2007'
Object Tree:
/ (RootGroup) 'Undo/Redo demo 1'
/anarray (Array(2,)) 'An array'

What happened with the /anotherarray node we’ve just created? You guess it, it has disappeared because it was created
after the mark 1. If you are curious enough you may well ask where it has gone. Well, it has not been deleted
completely; it has been just moved into a special, hidden, group of PyTables that renders it invisible and waiting for a
chance to be reborn.

Now, unwind once more, and look at the object tree:

>>> fileh.undo()
>>> print(fileh)
tutorial3-1.h5 (File) 'Undo/Redo demo 1'
Last modif.: 'Tue Mar 13 11:43:55 2007'
Object Tree:
/ (RootGroup) 'Undo/Redo demo 1'

Oops, /anarray has disappeared as well!. Don’t worry, it will revisit us very shortly. So, you might be somewhat lost
right now; in which mark are we?. Let’s ask the File.get_current_mark() method in the file handler:

>>> print(fileh.get_current_mark())
0

So we are at mark #0, remember? Mark #0 is an implicit mark that is created when you start the log of actions when
calling File.enable_undo(). Fine, but you are missing your too-young-to-die arrays. What can we do about that?
File.redo() to the rescue:

50 Chapter 3. Tutorials

PyTables User Guide, Release 3.3.0

>>> fileh.redo()
>>> print(fileh)
tutorial3-1.h5 (File) 'Undo/Redo demo 1'
Last modif.: 'Tue Mar 13 11:43:55 2007'
Object Tree:
/ (RootGroup) 'Undo/Redo demo 1'
/anarray (Array(2,)) 'An array'

Great! The /anarray array has come into life again. Just check that it is alive and well:

>>> fileh.root.anarray.read()
[3, 4]
>>> fileh.root.anarray.title
'An array'

Well, it looks pretty similar than in its previous life; what’s more, it is exactly the same object!:

>>> fileh.root.anarray is one
True

It just was moved to the the hidden group and back again, but that’s all! That’s kind of fun, so we are going to do the
same with /anotherarray:

>>> fileh.redo()
>>> print(fileh)
tutorial3-1.h5 (File) 'Undo/Redo demo 1'
Last modif.: 'Tue Mar 13 11:43:55 2007'
Object Tree:
/ (RootGroup) 'Undo/Redo demo 1'
/anarray (Array(2,)) 'An array'
/anotherarray (Array(2,)) 'Another array'

Welcome back, /anotherarray! Just a couple of sanity checks:

>>> assert fileh.root.anotherarray.read() == [4,5]
>>> assert fileh.root.anotherarray.title == "Another array"
>>> fileh.root.anotherarray is another
True

Nice, you managed to turn your data back into life. Congratulations! But wait, do not forget to close your action log
when you don’t need this feature anymore:

>>> fileh.disable_undo()

That will allow you to continue working with your data without actually requiring PyTables to keep track of all your
actions, and more importantly, allowing your objects to die completely if they have to, not requiring to keep them
anywhere, and hence saving process time and space in your database file.

A more complete example

Now, time for a somewhat more sophisticated demonstration of the Undo/Redo feature. In it, several marks will be set
in different parts of the code flow and we will see how to jump between these marks with just one method call. You
can find the code used in this example in examples/tutorial3-2.py

Let’s introduce the first part of the code:

import tables

Create an HDF5 file

3.6. Exercising the Undo/Redo feature 51

PyTables User Guide, Release 3.3.0

fileh = tables.open_file('tutorial3-2.h5', 'w', title='Undo/Redo demo 2')

#'-**-**-**-**-**-**- enable undo/redo log -**-**-**-**-**-**-**-'
fileh.enable_undo()

Start undoable operations
fileh.create_array('/', 'otherarray1', [3,4], 'Another array 1')
fileh.create_group('/', 'agroup', 'Group 1')

Create a 'first' mark
fileh.mark('first')
fileh.create_array('/agroup', 'otherarray2', [4,5], 'Another array 2')
fileh.create_group('/agroup', 'agroup2', 'Group 2')

Create a 'second' mark
fileh.mark('second')
fileh.create_array('/agroup/agroup2', 'otherarray3', [5,6], 'Another array 3')

Create a 'third' mark
fileh.mark('third')
fileh.create_array('/', 'otherarray4', [6,7], 'Another array 4')
fileh.create_array('/agroup', 'otherarray5', [7,8], 'Another array 5')

You can see how we have set several marks interspersed in the code flow, representing different states of the database.
Also, note that we have assigned names to these marks, namely ‘first’, ‘second’ and ‘third’.

Now, start doing some jumps back and forth in the states of the database:

Now go to mark 'first'
fileh.goto('first')
assert '/otherarray1' in fileh
assert '/agroup' in fileh
assert '/agroup/agroup2' not in fileh
assert '/agroup/otherarray2' not in fileh
assert '/agroup/agroup2/otherarray3' not in fileh
assert '/otherarray4' not in fileh
assert '/agroup/otherarray5' not in fileh

Go to mark 'third'
fileh.goto('third')
assert '/otherarray1' in fileh
assert '/agroup' in fileh
assert '/agroup/agroup2' in fileh
assert '/agroup/otherarray2' in fileh
assert '/agroup/agroup2/otherarray3' in fileh
assert '/otherarray4' not in fileh
assert '/agroup/otherarray5' not in fileh

Now go to mark 'second'
fileh.goto('second')
assert '/otherarray1' in fileh
assert '/agroup' in fileh
assert '/agroup/agroup2' in fileh
assert '/agroup/otherarray2' in fileh
assert '/agroup/agroup2/otherarray3' not in fileh
assert '/otherarray4' not in fileh
assert '/agroup/otherarray5' not in fileh

Well, the code above shows how easy is to jump to a certain mark in the database by using the File.goto()method.

52 Chapter 3. Tutorials

PyTables User Guide, Release 3.3.0

There are also a couple of implicit marks for going to the beginning or the end of the saved states: 0 and -1. Going to
mark #0 means go to the beginning of the saved actions, that is, when method fileh.enable_undo() was called. Going
to mark #-1 means go to the last recorded action, that is the last action in the code flow.

Let’s see what happens when going to the end of the action log:

Go to the end
fileh.goto(-1)
assert '/otherarray1' in fileh
assert '/agroup' in fileh
assert '/agroup/agroup2' in fileh
assert '/agroup/otherarray2' in fileh
assert '/agroup/agroup2/otherarray3' in fileh
assert '/otherarray4' in fileh
assert '/agroup/otherarray5' in fileh

Check that objects have come back to life in a sane state
assert fileh.root.otherarray1.read() == [3,4]
assert fileh.root.agroup.otherarray2.read() == [4,5]
assert fileh.root.agroup.agroup2.otherarray3.read() == [5,6]
assert fileh.root.otherarray4.read() == [6,7]
assert fileh.root.agroup.otherarray5.read() == [7,8]

Try yourself going to the beginning of the action log (remember, the mark #0) and check the contents of the object
tree.

We have nearly finished this demonstration. As always, do not forget to close the action log as well as the database:

#'-**-**-**-**-**-**- disable undo/redo log -**-**-**-**-**-**-**-'
fileh.disable_undo()
Close the file
fileh.close()

You might want to check other examples on Undo/Redo feature that appear in examples/undo-redo.py.

Using enumerated types

PyTables includes support for handling enumerated types. Those types are defined by providing an exhaustive set or
list of possible, named values for a variable of that type. Enumerated variables of the same type are usually compared
between them for equality and sometimes for order, but are not usually operated upon.

Enumerated values have an associated name and concrete value. Every name is unique and so are concrete values. An
enumerated variable always takes the concrete value, not its name. Usually, the concrete value is not used directly, and
frequently it is entirely irrelevant. For the same reason, an enumerated variable is not usually compared with concrete
values out of its enumerated type. For that kind of use, standard variables and constants are more adequate.

PyTables provides the Enum (see The Enum class) class to provide support for enumerated types. Each instance of
Enum is an enumerated type (or enumeration). For example, let us create an enumeration of colors

All these examples can be found in examples/enum.py:

>>> import tables
>>> colorList = ['red', 'green', 'blue', 'white', 'black']
>>> colors = tables.Enum(colorList)

Here we used a simple list giving the names of enumerated values, but we left the choice of concrete values up to the
Enum class. Let us see the enumerated pairs to check those values:

3.7. Using enumerated types 53

PyTables User Guide, Release 3.3.0

>>> print("Colors:", [v for v in colors])
Colors: [('blue', 2), ('black', 4), ('white', 3), ('green', 1), ('red', 0)]

Names have been given automatic integer concrete values. We can iterate over the values in an enumeration, but we
will usually be more interested in accessing single values. We can get the concrete value associated with a name by
accessing it as an attribute or as an item (the later can be useful for names not resembling Python identifiers):

>>> print("Value of 'red' and 'white':", (colors.red, colors.white))
Value of 'red' and 'white': (0, 3)
>>> print("Value of 'yellow':", colors.yellow)
Value of 'yellow':
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File ".../tables/misc/enum.py", line 230, in __getattr__
raise AttributeError(*ke.args)

AttributeError: no enumerated value with that name: 'yellow'
>>>
>>> print("Value of 'red' and 'white':", (colors['red'], colors['white']))
Value of 'red' and 'white': (0, 3)
>>> print("Value of 'yellow':", colors['yellow'])
Value of 'yellow':
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File ".../tables/misc/enum.py", line 189, in __getitem__
raise KeyError("no enumerated value with that name: %r" % (name,))

KeyError: "no enumerated value with that name: 'yellow'"

See how accessing a value that is not in the enumeration raises the appropriate exception. We can also do the opposite
action and get the name that matches a concrete value by using the __call__() method of Enum:

>>> print("Name of value %s:" % colors.red, colors(colors.red))
Name of value 0: red
>>> print("Name of value 1234:", colors(1234))
Name of value 1234:
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File ".../tables/misc/enum.py", line 320, in __call__
raise ValueError(

ValueError: no enumerated value with that concrete value: 1234

You can see what we made as using the enumerated type to convert a concrete value into a name in the enumeration.
Of course, values out of the enumeration can not be converted.

Enumerated columns

Columns of an enumerated type can be declared by using the EnumCol (see The Col class and its descendants)
class. To see how this works, let us open a new PyTables file and create a table to collect the simulated results of
a probabilistic experiment. In it, we have a bag full of colored balls; we take a ball out and annotate the time of
extraction and the color of the ball:

>>> h5f = tables.open_file('enum.h5', 'w')
>>> class BallExt(tables.IsDescription):
... ballTime = tables.Time32Col()
... ballColor = tables.EnumCol(colors, 'black', base='uint8')
>>> tbl = h5f.create_table('/', 'extractions', BallExt, title="Random ball extractions")
>>>

54 Chapter 3. Tutorials

PyTables User Guide, Release 3.3.0

We declared the ballColor column to be of the enumerated type colors, with a default value of black. We also stated
that we are going to store concrete values as unsigned 8-bit integer values 4.

Let us use some random values to fill the table:

>>> import time
>>> import random
>>> now = time.time()
>>> row = tbl.row
>>> for i in range(10):
... row['ballTime'] = now + i
... row['ballColor'] = colors[random.choice(colorList)] # notice this
... row.append()
>>>

Notice how we used the __getitem__() call of colors to get the concrete value to store in ballColor. You should know
that this way of appending values to a table does automatically check for the validity on enumerated values. For
instance:

>>> row['ballTime'] = now + 42
>>> row['ballColor'] = 1234
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "tableextension.pyx", line 1086, in tableextension.Row.__setitem__
File ".../tables/misc/enum.py", line 320, in __call__
"no enumerated value with that concrete value: %r" % (value,))

ValueError: no enumerated value with that concrete value: 1234

But take care that this check is only performed here and not in other methods such as tbl.append() or tbl.modify_rows().
Now, after flushing the table we can see the results of the insertions:

>>> tbl.flush()
>>> for r in tbl:
... ballTime = r['ballTime']
... ballColor = colors(r['ballColor']) # notice this
... print("Ball extracted on %d is of color %s." % (ballTime, ballColor))
Ball extracted on 1173785568 is of color green.
Ball extracted on 1173785569 is of color black.
Ball extracted on 1173785570 is of color white.
Ball extracted on 1173785571 is of color black.
Ball extracted on 1173785572 is of color black.
Ball extracted on 1173785573 is of color red.
Ball extracted on 1173785574 is of color green.
Ball extracted on 1173785575 is of color red.
Ball extracted on 1173785576 is of color white.
Ball extracted on 1173785577 is of color white.

As a last note, you may be wondering how to have access to the enumeration associated with ballColor once the file
is closed and reopened. You can call tbl.get_enum(‘ballColor’) (see Table.get_enum()) to get the enumeration
back.

Enumerated arrays

EArray and VLArray leaves can also be declared to store enumerated values by means of the EnumAtom (see The
Atom class and its descendants) class, which works very much like EnumCol for tables. Also, Array leaves can be
used to open native HDF enumerated arrays.

4 In fact, only integer values are supported right now, but this may change in the future.

3.7. Using enumerated types 55

PyTables User Guide, Release 3.3.0

Let us create a sample EArray containing ranges of working days as bidimensional values:

>>> workingDays = {'Mon': 1, 'Tue': 2, 'Wed': 3, 'Thu': 4, 'Fri': 5}
>>> dayRange = tables.EnumAtom(workingDays, 'Mon', base='uint16')
>>> earr = h5f.create_earray('/', 'days', dayRange, (0, 2), title="Working day ranges")
>>> earr.flavor = 'python'

Nothing surprising, except for a pair of details. In the first place, we use a dictionary instead of a list to explicitly
set concrete values in the enumeration. In the second place, there is no explicit Enum instance created! Instead, the
dictionary is passed as the first argument to the constructor of EnumAtom. If the constructor gets a list or a dictionary
instead of an enumeration, it automatically builds the enumeration from it.

Now let us feed some data to the array:

>>> wdays = earr.get_enum()
>>> earr.append([(wdays.Mon, wdays.Fri), (wdays.Wed, wdays.Fri)])
>>> earr.append([(wdays.Mon, 1234)])

Please note that, since we had no explicit Enum instance, we were forced to use get_enum() (see EArray methods)
to get it from the array (we could also have used dayRange.enum). Also note that we were able to append an invalid
value (1234). Array methods do not check the validity of enumerated values.

Finally, we will print the contents of the array:

>>> for (d1, d2) in earr:
... print("From %s to %s (%d days)." % (wdays(d1), wdays(d2), d2-d1+1))
From Mon to Fri (5 days).
From Wed to Fri (3 days).
Traceback (most recent call last):

File "<stdin>", line 2, in <module>
File ".../tables/misc/enum.py", line 320, in __call__
"no enumerated value with that concrete value: %r" % (value,))

ValueError: no enumerated value with that concrete value: 1234

That was an example of operating on concrete values. It also showed how the value-to-name conversion failed because
of the value not belonging to the enumeration.

Now we will close the file, and this little tutorial on enumerated types is done:

>>> h5f.close()

Dealing with nested structures in tables

PyTables supports the handling of nested structures (or nested datatypes, as you prefer) in table objects, allowing you
to define arbitrarily nested columns.

An example will clarify what this means. Let’s suppose that you want to group your data in pieces of information that
are more related than others pieces in your table, So you may want to tie them up together in order to have your table
better structured but also be able to retrieve and deal with these groups more easily.

You can create such a nested substructures by just nesting subclasses of IsDescription. Let’s see one example (okay,
it’s a bit silly, but will serve for demonstration purposes):

from tables import *

class Info(IsDescription):
"""A sub-structure of Test"""
_v_pos = 2 # The position in the whole structure

56 Chapter 3. Tutorials

PyTables User Guide, Release 3.3.0

name = StringCol(10)
value = Float64Col(pos=0)

colors = Enum(['red', 'green', 'blue'])

class NestedDescr(IsDescription):
"""A description that has several nested columns"""
color = EnumCol(colors, 'red', base='uint32')
info1 = Info()

class info2(IsDescription):
_v_pos = 1
name = StringCol(10)
value = Float64Col(pos=0)

class info3(IsDescription):
x = Float64Col(dflt=1)
y = UInt8Col(dflt=1)

The root class is NestedDescr and both info1 and info2 are substructures of it. Note how info1 is actually an instance
of the class Info that was defined prior to NestedDescr. Also, there is a third substructure, namely info3 that hangs
from the substructure info2. You can also define positions of substructures in the containing object by declaring the
special class attribute _v_pos.

Nested table creation

Now that we have defined our nested structure, let’s create a nested table, that is a table with columns that contain
other subcolumns:

>>> fileh = open_file("nested-tut.h5", "w")
>>> table = fileh.create_table(fileh.root, 'table', NestedDescr)

Done! Now, we have to feed the table with some values. The problem is how we are going to reference to the nested
fields. That’s easy, just use a ‘/’ character to separate names in different nested levels. Look at this:

>>> row = table.row
>>> for i in range(10):
... row['color'] = colors[['red', 'green', 'blue'][i%3]]
... row['info1/name'] = "name1-%s" % i
... row['info2/name'] = "name2-%s" % i
... row['info2/info3/y'] = i
... # All the rest will be filled with defaults
... row.append()
>>> table.flush()
>>> table.nrows
10

You see? In order to fill the fields located in the substructures, we just need to specify its full path in the table hierarchy.

Reading nested tables

Now, what happens if we want to read the table? What kind oft data container will we get? Well, it’s worth trying it:

>>> nra = table[::4]
>>> nra
array([(((1.0, 0), 'name2-0', 0.0), ('name1-0', 0.0), 0L),

3.8. Dealing with nested structures in tables 57

PyTables User Guide, Release 3.3.0

(((1.0, 4), 'name2-4', 0.0), ('name1-4', 0.0), 1L),
(((1.0, 8), 'name2-8', 0.0), ('name1-8', 0.0), 2L)],
dtype=[('info2', [('info3', [('x', '>f8'), ('y', '\|u1')]),

('name', '\|S10'), ('value', '>f8')]),
('info1', [('name', '\|S10'), ('value', '>f8')]),
('color', '>u4')])

What we got is a NumPy array with a compound, nested datatype (its dtype is a list of name-datatype tuples). We read
one row for each four in the table, giving a result of three rows.

You can make use of the above object in many different ways. For example, you can use it to append new data to the
existing table object:

>>> table.append(nra)
>>> table.nrows
13

Or, to create new tables:

>>> table2 = fileh.create_table(fileh.root, 'table2', nra)
>>> table2[:]
array([(((1.0, 0), 'name2-0', 0.0), ('name1-0', 0.0), 0L),

(((1.0, 4), 'name2-4', 0.0), ('name1-4', 0.0), 1L),
(((1.0, 8), 'name2-8', 0.0), ('name1-8', 0.0), 2L)],
dtype=[('info2', [('info3', [('x', '<f8'), ('y', '\|u1')]),

('name', '\|S10'), ('value', '<f8')]),
('info1', [('name', '\|S10'), ('value', '<f8')]),
('color', '<u4')])

Finally, we can select nested values that fulfill some condition:

>>> names = [x['info2/name'] for x in table if x['color'] == colors.red]
>>> names
['name2-0', 'name2-3', 'name2-6', 'name2-9', 'name2-0']

Note that the row accessor does not provide the natural naming feature, so you have to completely specify the path of
your desired columns in order to reach them.

Using Cols accessor

We can use the cols attribute object (see The Cols class) of the table so as to quickly access the info located in the
interesting substructures:

>>> table.cols.info2[1:5]
array([((1.0, 1), 'name2-1', 0.0), ((1.0, 2), 'name2-2', 0.0),

((1.0, 3), 'name2-3', 0.0), ((1.0, 4), 'name2-4', 0.0)],
dtype=[('info3', [('x', '<f8'), ('y', '\|u1')]), ('name', '\|S10'),

('value', '<f8')])

Here, we have made use of the cols accessor to access to the info2 substructure and an slice operation to get access
to the subset of data we were interested in; you probably have recognized the natural naming approach here. We can
continue and ask for data in info3 substructure:

>>> table.cols.info2.info3[1:5]
array([(1.0, 1), (1.0, 2), (1.0, 3), (1.0, 4)],

dtype=[('x', '<f8'), ('y', '\|u1')])

You can also use the _f_col method to get a handler for a column:

58 Chapter 3. Tutorials

PyTables User Guide, Release 3.3.0

>>> table.cols._f_col('info2')
/table.cols.info2 (Cols), 3 columns

info3 (Cols(), Description)
name (Column(), \|S10)
value (Column(), float64)

Here, you’ve got another Cols object handler because info2 was a nested column. If you select a non-nested column,
you will get a regular Column instance:

>>> table.cols._f_col('info2/info3/y')
/table.cols.info2.info3.y (Column(), uint8, idx=None)

To sum up, the cols accessor is a very handy and powerful way to access data in your nested tables. Don’t be afraid of
using it, specially when doing interactive work.

Accessing meta-information of nested tables

Tables have an attribute called description which points to an instance of the Description class (see The Description
class) and is useful to discover different meta-information about table data.

Let’s see how it looks like:

>>> table.description
{

"info2": {
"info3": {

"x": Float64Col(shape=(), dflt=1.0, pos=0),
"y": UInt8Col(shape=(), dflt=1, pos=1)},

"name": StringCol(itemsize=10, shape=(), dflt='', pos=1),
"value": Float64Col(shape=(), dflt=0.0, pos=2)},

"info1": {
"name": StringCol(itemsize=10, shape=(), dflt='', pos=0),
"value": Float64Col(shape=(), dflt=0.0, pos=1)},

"color": EnumCol(enum=Enum({'blue': 2, 'green': 1, 'red': 0}), dflt='red',
base=UInt32Atom(shape=(), dflt=0), shape=(), pos=2)}

As you can see, it provides very useful information on both the formats and the structure of the columns in your table.

This object also provides a natural naming approach to access to subcolumns metadata:

>>> table.description.info1
{"name": StringCol(itemsize=10, shape=(), dflt='', pos=0),
"value": Float64Col(shape=(), dflt=0.0, pos=1)}

>>> table.description.info2.info3
{"x": Float64Col(shape=(), dflt=1.0, pos=0),
"y": UInt8Col(shape=(), dflt=1, pos=1)}

There are other variables that can be interesting for you:

>>> table.description._v_nested_names
[('info2', [('info3', ['x', 'y']), 'name', 'value']),
('info1', ['name', 'value']), 'color']

>>> table.description.info1._v_nested_names
['name', 'value']

_v_nested_names provides the names of the columns as well as its structure. You can see that there are the same
attributes for the different levels of the Description object, because the levels are also Description objects themselves.

3.8. Dealing with nested structures in tables 59

PyTables User Guide, Release 3.3.0

There is a special attribute, called _v_nested_descr, that can be useful to create nested structured arrays that imitate
the structure of the table (or a subtable thereof):

>>> import numpy
>>> table.description._v_nested_descr
[('info2', [('info3', [('x', '()f8'), ('y', '()u1')]), ('name', '()S10'),
('value', '()f8')]), ('info1', [('name', '()S10'), ('value', '()f8')]),
('color', '()u4')]

>>> numpy.rec.array(None, shape=0,
dtype=table.description._v_nested_descr)

recarray([],
dtype=[('info2', [('info3', [('x', '>f8'), ('y', '|u1')]),

('name', '|S10'), ('value', '>f8')]),
('info1', [('name', '|S10'), ('value', '>f8')]),
('color', '>u4')])

>>> numpy.rec.array(None, shape=0,
dtype=table.description.info2._v_nested_descr)

recarray([],
dtype=[('info3', [('x', '>f8'), ('y', '|u1')]), ('name', '|S10'),

('value', '>f8')])

You can see a simple example on how to create an array with NumPy.

Finally, there is a special iterator of the Description class, called _f_walk that is able to return you the different columns
of the table:

>>> for coldescr in table.description._f_walk():
... print("column-->",coldescr)
column--> Description([('info2', [('info3', [('x', '()f8'), ('y', '()u1')]),

('name', '()S10'), ('value', '()f8')]),
('info1', [('name', '()S10'), ('value', '()f8')]),
('color', '()u4')])

column--> EnumCol(enum=Enum({'blue': 2, 'green': 1, 'red': 0}), dflt='red',
base=UInt32Atom(shape=(), dflt=0), shape=(), pos=2)

column--> Description([('info3', [('x', '()f8'), ('y', '()u1')]), ('name', '()S10'),
('value', '()f8')])

column--> StringCol(itemsize=10, shape=(), dflt='', pos=1)
column--> Float64Col(shape=(), dflt=0.0, pos=2)
column--> Description([('name', '()S10'), ('value', '()f8')])
column--> StringCol(itemsize=10, shape=(), dflt='', pos=0)
column--> Float64Col(shape=(), dflt=0.0, pos=1)
column--> Description([('x', '()f8'), ('y', '()u1')])
column--> Float64Col(shape=(), dflt=1.0, pos=0)
column--> UInt8Col(shape=(), dflt=1, pos=1)

See the The Description class for the complete listing of attributes and methods of Description.

Well, this is the end of this tutorial. As always, do not forget to close your files:

>>> fileh.close()

Finally, you may want to have a look at your resulting data file.

$ ptdump -d nested-tut.h5
/ (RootGroup) ''
/table (Table(13,)) ''

Data dump:
[0] (((1.0, 0), 'name2-0', 0.0), ('name1-0', 0.0), 0L)
[1] (((1.0, 1), 'name2-1', 0.0), ('name1-1', 0.0), 1L)
[2] (((1.0, 2), 'name2-2', 0.0), ('name1-2', 0.0), 2L)

60 Chapter 3. Tutorials

PyTables User Guide, Release 3.3.0

[3] (((1.0, 3), 'name2-3', 0.0), ('name1-3', 0.0), 0L)
[4] (((1.0, 4), 'name2-4', 0.0), ('name1-4', 0.0), 1L)
[5] (((1.0, 5), 'name2-5', 0.0), ('name1-5', 0.0), 2L)
[6] (((1.0, 6), 'name2-6', 0.0), ('name1-6', 0.0), 0L)
[7] (((1.0, 7), 'name2-7', 0.0), ('name1-7', 0.0), 1L)
[8] (((1.0, 8), 'name2-8', 0.0), ('name1-8', 0.0), 2L)
[9] (((1.0, 9), 'name2-9', 0.0), ('name1-9', 0.0), 0L)
[10] (((1.0, 0), 'name2-0', 0.0), ('name1-0', 0.0), 0L)
[11] (((1.0, 4), 'name2-4', 0.0), ('name1-4', 0.0), 1L)
[12] (((1.0, 8), 'name2-8', 0.0), ('name1-8', 0.0), 2L)
/table2 (Table(3,)) ''
Data dump:

[0] (((1.0, 0), 'name2-0', 0.0), ('name1-0', 0.0), 0L)
[1] (((1.0, 4), 'name2-4', 0.0), ('name1-4', 0.0), 1L)
[2] (((1.0, 8), 'name2-8', 0.0), ('name1-8', 0.0), 2L)

Most of the code in this section is also available in examples/nested-tut.py.

All in all, PyTables provides a quite comprehensive toolset to cope with nested structures and address your classi-
fication needs. However, caveat emptor, be sure to not nest your data too deeply or you will get inevitably messed
interpreting too intertwined lists, tuples and description objects.

Other examples in PyTables distribution

Feel free to examine the rest of examples in directory examples/, and try to understand them. We have written
several practical sample scripts to give you an idea of the PyTables capabilities, its way of dealing with HDF5 objects,
and how it can be used in the real world.

3.9. Other examples in PyTables distribution 61

PyTables User Guide, Release 3.3.0

62 Chapter 3. Tutorials

CHAPTER

FOUR

LIBRARY REFERENCE

PyTables implements several classes to represent the different nodes in the object tree. They are named File, Group,
Leaf, Table, Array, CArray, EArray, VLArray and UnImplemented. Another one allows the user to complement the
information on these different objects; its name is AttributeSet. Finally, another important class called IsDescription
allows to build a Table record description by declaring a subclass of it. Many other classes are defined in PyTables,
but they can be regarded as helpers whose goal is mainly to declare the data type properties of the different first class
objects and will be described at the end of this chapter as well.

An important function, called open_file is responsible to create, open or append to files. In addition, a few utility
functions are defined to guess if the user supplied file is a PyTables or HDF5 file. These are called is_pytables_file()
and is_hdf5_file(), respectively. There exists also a function called which_lib_version() that informs about the versions
of the underlying C libraries (for example, HDF5 or Zlib) and another called print_versions() that prints all the versions
of the software that PyTables relies on. Finally, test() lets you run the complete test suite from a Python console
interactively.

Top-level variables and functions

Global variables

tables.__version__ = ‘3.3.0’
The PyTables version number.

tables.hdf5_version = ‘1.8.17’
The underlying HDF5 library version number.

New in version 3.0.

Global functions

tables.copy_file(srcfilename, dstfilename, overwrite=False, **kwargs)
An easy way of copying one PyTables file to another.

This function allows you to copy an existing PyTables file named srcfilename to another file called dstfilename.
The source file must exist and be readable. The destination file can be overwritten in place if existing by asserting
the overwrite argument.

This function is a shorthand for the File.copy_file() method, which acts on an already opened
file. kwargs takes keyword arguments used to customize the copying process. See the documentation of
File.copy_file() for a description of those arguments.

tables.is_hdf5_file(filename)
Determine whether a file is in the HDF5 format.

63

PyTables User Guide, Release 3.3.0

When successful, it returns a true value if the file is an HDF5 file, false otherwise. If there were problems
identifying the file, an HDF5ExtError is raised.

tables.is_pytables_file(filename)
Determine whether a file is in the PyTables format.

When successful, it returns the format version string if the file is a PyTables file, None otherwise. If there were
problems identifying the file, an HDF5ExtError is raised.

tables.open_file(filename, mode=’r’, title=’‘, root_uep=’/’, filters=None, **kwargs)
Open a PyTables (or generic HDF5) file and return a File object.

Parameters filename : str

The name of the file (supports environment variable expansion). It is suggested that file
names have any of the .h5, .hdf or .hdf5 extensions, although this is not mandatory.

mode : str

The mode to open the file. It can be one of the following:

• ‘r’: Read-only; no data can be modified.

• ‘w’: Write; a new file is created (an existing file with the same name would be
deleted).

• ‘a’: Append; an existing file is opened for reading and writing, and if the file does
not exist it is created.

• ‘r+’: It is similar to ‘a’, but the file must already exist.

title : str

If the file is to be created, a TITLE string attribute will be set on the root group with
the given value. Otherwise, the title will be read from disk, and this will not have any
effect.

root_uep : str

The root User Entry Point. This is a group in the HDF5 hierarchy which will be taken
as the starting point to create the object tree. It can be whatever existing group in the
file, named by its HDF5 path. If it does not exist, an HDF5ExtError is issued. Use this
if you do not want to build the entire object tree, but rather only a subtree of it.

Changed in version 3.0: The rootUEP parameter has been renamed into root_uep.

filters : Filters

An instance of the Filters (see The Filters class) class that provides information about
the desired I/O filters applicable to the leaves that hang directly from the root group,
unless other filter properties are specified for these leaves. Besides, if you do not spec-
ify filter properties for child groups, they will inherit these ones, which will in turn
propagate to child nodes.

Notes

In addition, it recognizes the (lowercase) names of parameters present in tables/parameters.py as addi-
tional keyword arguments. See PyTables parameter files for a detailed info on the supported parameters.

Note: If you need to deal with a large number of nodes in an efficient way, please see Getting the most from
the node LRU cache for more info and advices about the integrated node cache engine.

64 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

tables.set_blosc_max_threads(nthreads)
Set the maximum number of threads that Blosc can use.

This actually overrides the tables.parameters.MAX_BLOSC_THREADS setting in
tables.parameters, so the new value will be effective until this function is called again or a new
file with a different tables.parameters.MAX_BLOSC_THREADS value is specified.

Returns the previous setting for maximum threads.

tables.print_versions()
Print all the versions of software that PyTables relies on.

tables.restrict_flavors(keep=[’python’])
Disable all flavors except those in keep.

Providing an empty keep sequence implies disabling all flavors (but the internal one). If the sequence is not
specified, only optional flavors are disabled.

Important: Once you disable a flavor, it can not be enabled again.

tables.split_type(type)
Split a PyTables type into a PyTables kind and an item size.

Returns a tuple of (kind, itemsize). If no item size is present in the type (in the form of a precision), the returned
item size is None:

>>> split_type('int32')
('int', 4)
>>> split_type('string')
('string', None)
>>> split_type('int20')
Traceback (most recent call last):
...
ValueError: precision must be a multiple of 8: 20
>>> split_type('foo bar')
Traceback (most recent call last):
...
ValueError: malformed type: 'foo bar'

tables.test(verbose=False, heavy=False)
Run all the tests in the test suite.

If verbose is set, the test suite will emit messages with full verbosity (not recommended unless you are looking
into a certain problem).

If heavy is set, the test suite will be run in heavy mode (you should be careful with this because it can take a lot
of time and resources from your computer).

Return 0 (os.EX_OK) if all tests pass, 1 in case of failure

tables.which_lib_version(name)
Get version information about a C library.

If the library indicated by name is available, this function returns a 3-tuple containing the major library version
as an integer, its full version as a string, and the version date as a string. If the library is not available, None is
returned.

The currently supported library names are hdf5, zlib, lzo, bzip2, and blosc. If another name is given, a ValueError
is raised.

4.1. Top-level variables and functions 65

PyTables User Guide, Release 3.3.0

tables.silence_hdf5_messages(silence=True)
Silence (or re-enable) messages from the HDF5 C library.

The silence parameter can be used control the behaviour and reset the standard HDF5 logging.

New in version 2.4.

File manipulation class

The File Class

class tables.File(filename, mode=’r’, title=’‘, root_uep=’/’, filters=None, **kwargs)
The in-memory representation of a PyTables file.

An instance of this class is returned when a PyTables file is opened with the tables.open_file() function.
It offers methods to manipulate (create, rename, delete...) nodes and handle their attributes, as well as methods
to traverse the object tree. The user entry point to the object tree attached to the HDF5 file is represented in the
root_uep attribute. Other attributes are available.

File objects support an Undo/Redo mechanism which can be enabled with the File.enable_undo()
method. Once the Undo/Redo mechanism is enabled, explicit marks (with an optional unique name) can be
set on the state of the database using the File.mark() method. There are two implicit marks which are
always available: the initial mark (0) and the final mark (-1). Both the identifier of a mark and its name can be
used in undo and redo operations.

Hierarchy manipulation operations (node creation, movement and removal) and attribute handling operations
(setting and deleting) made after a mark can be undone by using the File.undo() method, which returns
the database to the state of a past mark. If undo() is not followed by operations that modify the hierarchy or
attributes, the File.redo() method can be used to return the database to the state of a future mark. Else,
future states of the database are forgotten.

Note that data handling operations can not be undone nor redone by now. Also, hierarchy manipulation opera-
tions on nodes that do not support the Undo/Redo mechanism issue an UndoRedoWarning before changing the
database.

The Undo/Redo mechanism is persistent between sessions and can only be disabled by calling the
File.disable_undo() method.

File objects can also act as context managers when using the with statement introduced in Python 2.5. When
exiting a context, the file is automatically closed.

Parameters filename : str

The name of the file (supports environment variable expansion). It is suggested that file
names have any of the .h5, .hdf or .hdf5 extensions, although this is not mandatory.

mode : str

The mode to open the file. It can be one of the following:

• ‘r’: Read-only; no data can be modified.

• ‘w’: Write; a new file is created (an existing file with the same name would be
deleted).

• ‘a’: Append; an existing file is opened for reading and writing, and if the file does
not exist it is created.

• ‘r+’: It is similar to ‘a’, but the file must already exist.

66 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

title : str

If the file is to be created, a TITLE string attribute will be set on the root group with
the given value. Otherwise, the title will be read from disk, and this will not have any
effect.

root_uep : str

The root User Entry Point. This is a group in the HDF5 hierarchy which will be taken
as the starting point to create the object tree. It can be whatever existing group in the
file, named by its HDF5 path. If it does not exist, an HDF5ExtError is issued. Use this
if you do not want to build the entire object tree, but rather only a subtree of it.

Changed in version 3.0: The rootUEP parameter has been renamed into root_uep.

filters : Filters

An instance of the Filters (see The Filters class) class that provides information about
the desired I/O filters applicable to the leaves that hang directly from the root group,
unless other filter properties are specified for these leaves. Besides, if you do not spec-
ify filter properties for child groups, they will inherit these ones, which will in turn
propagate to child nodes.

Notes

In addition, it recognizes the (lowercase) names of parameters present in tables/parameters.py as addi-
tional keyword arguments. See PyTables parameter files for a detailed info on the supported parameters.

File attributes

filename
The name of the opened file.

format_version
The PyTables version number of this file.

isopen
True if the underlying file is open, false otherwise.

mode
The mode in which the file was opened.

root
The root of the object tree hierarchy (a Group instance).

root_uep
The UEP (user entry point) group name in the file (see the open_file() function).

Changed in version 3.0: The rootUEP attribute has been renamed into root_uep.

File properties

File.title
The title of the root group in the file.

File.filters
Default filter properties for the root group (see The Filters class).

4.2. File manipulation class 67

PyTables User Guide, Release 3.3.0

File.open_count
The number of times this file handle has been opened.

Changed in version 3.1: The mechanism for caching and sharing file handles has been removed in PyTables 3.1.
Now this property should always be 1 (or 0 for closed files).

Deprecated since version 3.1.

File methods - file handling

File.close()
Flush all the alive leaves in object tree and close the file.

File.copy_file(dstfilename, overwrite=False, **kwargs)
Copy the contents of this file to dstfilename.

Parameters dstfilename : str

A path string indicating the name of the destination file. If it already exists, the copy
will fail with an IOError, unless the overwrite argument is true.

overwrite : bool, optional

If true, the destination file will be overwritten if it already exists. In this case, the
destination file must be closed, or errors will occur. Defaults to False.

kwargs :

Additional keyword arguments discussed below.

Notes

Additional keyword arguments may be passed to customize the copying process. For instance, title and filters
may be changed, user attributes may be or may not be copied, data may be sub-sampled, stats may be collected,
etc. Arguments unknown to nodes are simply ignored. Check the documentation for copying operations of
nodes to see which options they support.

In addition, it recognizes the names of parameters present in tables/parameters.py as additional key-
word arguments. See PyTables parameter files for a detailed info on the supported parameters.

Copying a file usually has the beneficial side effect of creating a more compact and cleaner version of the original
file.

File.flush()
Flush all the alive leaves in the object tree.

File.fileno()
Return the underlying OS integer file descriptor.

This is needed for lower-level file interfaces, such as the fcntl module.

File.__enter__()
Enter a context and return the same file.

File.__exit__(*exc_info)
Exit a context and close the file.

File.__str__()
Return a short string representation of the object tree.

68 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

Examples

>>> f = tables.open_file('data/test.h5')
>>> print(f)
data/test.h5 (File) 'Table Benchmark'
Last modif.: 'Mon Sep 20 12:40:47 2004'
Object Tree:
/ (Group) 'Table Benchmark'
/tuple0 (Table(100,)) 'This is the table title'
/group0 (Group) ''
/group0/tuple1 (Table(100,)) 'This is the table title'
/group0/group1 (Group) ''
/group0/group1/tuple2 (Table(100,)) 'This is the table title'
/group0/group1/group2 (Group) ''

File.__repr__()
Return a detailed string representation of the object tree.

File.get_file_image()
Retrieves an in-memory image of an existing, open HDF5 file.

Note: this method requires HDF5 >= 1.8.9.

New in version 3.0.

File.get_filesize()
Returns the size of an HDF5 file.

The returned size is that of the entire file, as opposed to only the HDF5 portion of the file. I.e., size includes
the user block, if any, the HDF5 portion of the file, and any data that may have been appended beyond the data
written through the HDF5 Library.

New in version 3.0.

File.get_userblock_size()
Retrieves the size of a user block.

New in version 3.0.

File methods - hierarchy manipulation

File.copy_children(srcgroup, dstgroup, overwrite=False, recursive=False, createparents=False,
**kwargs)

Copy the children of a group into another group.

Parameters srcgroup : str

The group to copy from.

dstgroup : str

The destination group.

overwrite : bool, optional

If True, the destination group will be overwritten if it already exists. Defaults to False.

recursive : bool, optional

If True, all descendant nodes of srcgroup are recursively copied. Defaults to False.

4.2. File manipulation class 69

PyTables User Guide, Release 3.3.0

createparents : bool, optional

If True, any necessary parents of dstgroup will be created. Defaults to False.

kwargs : dict

Additional keyword arguments can be used to customize the copying process. See the
documentation of Group._f_copy_children() for a description of those argu-
ments.

File.copy_node(where, newparent=None, newname=None, name=None, overwrite=False, recur-
sive=False, createparents=False, **kwargs)

Copy the node specified by where and name to newparent/newname.

Parameters where : str

These arguments work as in File.get_node(), referencing the node to be acted
upon.

newparent : str or Group

The destination group that the node will be copied into (a path name or a Group in-
stance). If not specified or None, the current parent group is chosen as the new parent.

newname : str

The name to be assigned to the new copy in its destination (a string). If it is not specified
or None, the current name is chosen as the new name.

name : str

These arguments work as in File.get_node(), referencing the node to be acted
upon.

overwrite : bool, optional

If True, the destination group will be overwritten if it already exists. Defaults to False.

recursive : bool, optional

If True, all descendant nodes of srcgroup are recursively copied. Defaults to False.

createparents : bool, optional

If True, any necessary parents of dstgroup will be created. Defaults to False.

kwargs :

Additional keyword arguments can be used to customize the copying process. See the
documentation of Group._f_copy() for a description of those arguments.

Returns node : Node

The newly created copy of the source node (i.e. the destination node). See
Node._f_copy() for further details on the semantics of copying nodes.

File.create_array(where, name, obj=None, title=’‘, byteorder=None, createparents=False,
atom=None, shape=None)

Create a new array.

Parameters where : str or Group

The parent group from which the new array will hang. It can be a path string (for
example ‘/level1/leaf5’), or a Group instance (see The Group class).

name : str

The name of the new array

70 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

obj : python object

The array or scalar to be saved. Accepted types are NumPy arrays and scalars, as well
as native Python sequences and scalars, provided that values are regular (i.e. they are
not like [[1,2],2]) and homogeneous (i.e. all the elements are of the same type).

Also, objects that have some of their dimensions equal to 0 are not supported (use
an EArray node (see The EArray class) if you want to store an array with one of its
dimensions equal to 0).

Changed in version 3.0: The Object parameter has been renamed into *obj.*

title : str

A description for this node (it sets the TITLE HDF5 attribute on disk).

byteorder : str

The byteorder of the data on disk, specified as ‘little’ or ‘big’. If this is not specified,
the byteorder is that of the given object.

createparents : bool, optional

Whether to create the needed groups for the parent path to exist (not done by default).

atom : Atom

An Atom (see The Atom class and its descendants) instance representing the type and
shape of the atomic objects to be saved.

New in version 3.0.

shape : tuple of ints

The shape of the stored array.

New in version 3.0.

See also:

Array for more information on arrays

create_table for more information on the rest of parameters

File.create_carray(where, name, atom=None, shape=None, title=’‘, filters=None, chunkshape=None,
byteorder=None, createparents=False, obj=None)

Create a new chunked array.

Parameters where : str or Group

The parent group from which the new array will hang. It can be a path string (for
example ‘/level1/leaf5’), or a Group instance (see The Group class).

name : str

The name of the new array

atom : Atom

An Atom (see The Atom class and its descendants) instance representing the type and
shape of the atomic objects to be saved.

Changed in version 3.0: The atom parameter can be None (default) if obj is provided.

shape : tuple

4.2. File manipulation class 71

PyTables User Guide, Release 3.3.0

The shape of the new array.

Changed in version 3.0: The shape parameter can be None (default) if obj is provided.

title : str, optional

A description for this node (it sets the TITLE HDF5 attribute on disk).

filters : Filters, optional

An instance of the Filters class (see The Filters class) that provides information about
the desired I/O filters to be applied during the life of this object.

chunkshape : tuple or number or None, optional

The shape of the data chunk to be read or written in a single HDF5 I/O operation. Filters
are applied to those chunks of data. The dimensionality of chunkshape must be the same
as that of shape. If None, a sensible value is calculated (which is recommended).

byteorder : str, optional

The byteorder of the data on disk, specified as ‘little’ or ‘big’. If this is not specified,
the byteorder is that of the given object.

createparents : bool, optional

Whether to create the needed groups for the parent path to exist (not done by default).

obj : python object

The array or scalar to be saved. Accepted types are NumPy arrays and scalars, as well
as native Python sequences and scalars, provided that values are regular (i.e. they are
not like [[1,2],2]) and homogeneous (i.e. all the elements are of the same type).

Also, objects that have some of their dimensions equal to 0 are not supported. Please
use an EArray node (see The EArray class) if you want to store an array with one of its
dimensions equal to 0.

The obj parameter is optional and it can be provided in alternative to the atom and shape
parameters. If both obj and atom and/or shape are provided they must be consistent with
each other.

New in version 3.0.

See also:

CArray for more information on chunked arrays

File.create_earray(where, name, atom=None, shape=None, title=’‘, filters=None, expect-
edrows=1000, chunkshape=None, byteorder=None, createparents=False,
obj=None)

Create a new enlargeable array.

Parameters where : str or Group

The parent group from which the new array will hang. It can be a path string (for
example ‘/level1/leaf5’), or a Group instance (see The Group class).

name : str

The name of the new array

atom : Atom

72 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

An Atom (see The Atom class and its descendants) instance representing the type and
shape of the atomic objects to be saved.

Changed in version 3.0: The atom parameter can be None (default) if obj is provided.

shape : tuple

The shape of the new array. One (and only one) of the shape dimensions must be 0.
The dimension being 0 means that the resulting EArray object can be extended along it.
Multiple enlargeable dimensions are not supported right now.

Changed in version 3.0: The shape parameter can be None (default) if obj is provided.

title : str, optional

A description for this node (it sets the TITLE HDF5 attribute on disk).

expectedrows : int, optional

A user estimate about the number of row elements that will be added to the grow-
able dimension in the EArray node. If not provided, the default value is EX-
PECTED_ROWS_EARRAY (see tables/parameters.py). If you plan to create either
a much smaller or a much bigger array try providing a guess; this will optimize the
HDF5 B-Tree creation and management process time and the amount of memory used.

chunkshape : tuple, numeric, or None, optional

The shape of the data chunk to be read or written in a single HDF5 I/O operation. Filters
are applied to those chunks of data. The dimensionality of chunkshape must be the same
as that of shape (beware: no dimension should be 0 this time!). If None, a sensible value
is calculated based on the expectedrows parameter (which is recommended).

byteorder : str, optional

The byteorder of the data on disk, specified as ‘little’ or ‘big’. If this is not specified,
the byteorder is that of the platform.

createparents : bool, optional

Whether to create the needed groups for the parent path to exist (not done by default).

obj : python object

The array or scalar to be saved. Accepted types are NumPy arrays and scalars, as well
as native Python sequences and scalars, provided that values are regular (i.e. they are
not like [[1,2],2]) and homogeneous (i.e. all the elements are of the same type).

The obj parameter is optional and it can be provided in alternative to the atom and shape
parameters. If both obj and atom and/or shape are provided they must be consistent with
each other.

New in version 3.0.

See also:

EArray for more information on enlargeable arrays

File.create_external_link(where, name, target, createparents=False)
Create an external link.

Create an external link to a target node with the given name in where location. target can be a node object in
another file or a path string in the form ‘file:/path/to/node‘. If createparents is true, the intermediate groups
required for reaching where are created (the default is not doing so).

4.2. File manipulation class 73

PyTables User Guide, Release 3.3.0

The returned node is an ExternalLink instance.

File.create_group(where, name, title=’‘, filters=None, createparents=False)
Create a new group.

Parameters where : str or Group

The parent group from which the new group will hang. It can be a path string (for
example ‘/level1/leaf5’), or a Group instance (see The Group class).

name : str

The name of the new group.

title : str, optional

A description for this node (it sets the TITLE HDF5 attribute on disk).

filters : Filters

An instance of the Filters class (see The Filters class) that provides information about
the desired I/O filters applicable to the leaves that hang directly from this new group
(unless other filter properties are specified for these leaves). Besides, if you do not
specify filter properties for its child groups, they will inherit these ones.

createparents : bool

Whether to create the needed groups for the parent path to exist (not done by default).

See also:

Group for more information on groups

File.create_hard_link(where, name, target, createparents=False)
Create a hard link.

Create a hard link to a target node with the given name in where location. target can be a node object or a path
string. If createparents is true, the intermediate groups required for reaching where are created (the default is
not doing so).

The returned node is a regular Group or Leaf instance.

File.create_soft_link(where, name, target, createparents=False)
Create a soft link (aka symbolic link) to a target node.

Create a soft link (aka symbolic link) to a target nodewith the given name in where location. target can be a
node object or a path string. If createparents is true, the intermediate groups required for reaching where are
created.

(the default is not doing so).

The returned node is a SoftLink instance. See the SoftLink class (in The SoftLink class) for more information
on soft links.

File.create_table(where, name, description=None, title=’‘, filters=None, expectedrows=10000,
chunkshape=None, byteorder=None, createparents=False, obj=None)

Create a new table with the given name in where location.

Parameters where : str or Group

The parent group from which the new table will hang. It can be a path string (for
example ‘/level1/leaf5’), or a Group instance (see The Group class).

name : str

The name of the new table.

74 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

description : Description

This is an object that describes the table, i.e. how many columns it has, their names,
types, shapes, etc. It can be any of the following:

• A user-defined class: This should inherit from the IsDescription class (see The IsDe-
scription class) where table fields are specified.

• A dictionary: For example, when you do not know beforehand which structure your
table will have).

• A Description instance: You can use the description attribute of another table to create
a new one with the same structure.

• A NumPy dtype: A completely general structured NumPy dtype.

• A NumPy (structured) array instance: The dtype of this structured array will be used
as the description. Also, in case the array has actual data, it will be injected into the
newly created table.

Changed in version 3.0: The description parameter can be None (default) if obj is pro-
vided. In that case the structure of the table is deduced by obj.

title : str

A description for this node (it sets the TITLE HDF5 attribute on disk).

filters : Filters

An instance of the Filters class (see The Filters class) that provides information about
the desired I/O filters to be applied during the life of this object.

expectedrows : int

A user estimate of the number of records that will be in the table. If not provided, the
default value is EXPECTED_ROWS_TABLE (see tables/parameters.py). If
you plan to create a bigger table try providing a guess; this will optimize the HDF5
B-Tree creation and management process time and memory used.

chunkshape :

The shape of the data chunk to be read or written in a single HDF5 I/O operation. Filters
are applied to those chunks of data. The rank of the chunkshape for tables must be 1.
If None, a sensible value is calculated based on the expectedrows parameter (which is
recommended).

byteorder : str

The byteorder of data on disk, specified as ‘little’ or ‘big’. If this is not specified, the
byteorder is that of the platform, unless you passed an array as the description, in which
case its byteorder will be used.

createparents : bool

Whether to create the needed groups for the parent path to exist (not done by default).

obj : python object

The recarray to be saved. Accepted types are NumPy record arrays.

The obj parameter is optional and it can be provided in alternative to the description
parameter. If both obj and description are provided they must be consistent with each
other.

New in version 3.0.

4.2. File manipulation class 75

PyTables User Guide, Release 3.3.0

See also:

Table for more information on tables

File.create_vlarray(where, name, atom=None, title=’‘, filters=None, expectedrows=None,
chunkshape=None, byteorder=None, createparents=False, obj=None)

Create a new variable-length array.

Parameters where : str or Group

The parent group from which the new array will hang. It can be a path string (for
example ‘/level1/leaf5’), or a Group instance (see The Group class).

name : str

The name of the new array

atom : Atom

An Atom (see The Atom class and its descendants) instance representing the type and
shape of the atomic objects to be saved.

Changed in version 3.0: The atom parameter can be None (default) if obj is provided.

title : str, optional

A description for this node (it sets the TITLE HDF5 attribute on disk).

filters : Filters

An instance of the Filters class (see The Filters class) that provides information about
the desired I/O filters to be applied during the life of this object.

expectedrows : int, optional

A user estimate about the number of row elements that will be added to the
growable dimension in the VLArray node. If not provided, the default value is
EXPECTED_ROWS_VLARRAY (see tables/parameters.py). If you plan to cre-
ate either a much smaller or a much bigger VLArray try providing a guess; this will
optimize the HDF5 B-Tree creation and management process time and the amount of
memory used.

New in version 3.0.

chunkshape : int or tuple of int, optional

The shape of the data chunk to be read or written in a single HDF5 I/O operation. Filters
are applied to those chunks of data. The dimensionality of chunkshape must be 1. If
None, a sensible value is calculated (which is recommended).

byteorder : str, optional

The byteorder of the data on disk, specified as ‘little’ or ‘big’. If this is not specified,
the byteorder is that of the platform.

createparents : bool, optional

Whether to create the needed groups for the parent path to exist (not done by default).

obj : python object

The array or scalar to be saved. Accepted types are NumPy arrays and scalars, as well
as native Python sequences and scalars, provided that values are regular (i.e. they are
not like [[1,2],2]) and homogeneous (i.e. all the elements are of the same type).

76 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

The obj parameter is optional and it can be provided in alternative to the atom parameter.
If both obj and atom and are provided they must be consistent with each other.

New in version 3.0.

See also:

VLArray for more informationon variable-length arrays

The expectedsizeinMB parameter has been replaced by expectedrows.

File.move_node(where, newparent=None, newname=None, name=None, overwrite=False, createpar-
ents=False)

Move the node specified by where and name to newparent/newname.

Parameters where, name : path

These arguments work as in File.get_node(), referencing the node to be acted
upon.

newparent :

The destination group the node will be moved into (a path name or a Group instance).
If it is not specified or None, the current parent group is chosen as the new parent.

newname :

The new name to be assigned to the node in its destination (a string). If it is not specified
or None, the current name is chosen as the new name.

Notes

The other arguments work as in Node._f_move().

File.remove_node(where, name=None, recursive=False)
Remove the object node name under where location.

Parameters where, name :

These arguments work as in File.get_node(), referencing the node to be acted
upon.

recursive : bool

If not supplied or false, the node will be removed only if it has no children; if it does, a
NodeError will be raised. If supplied with a true value, the node and all its descendants
will be completely removed.

File.rename_node(where, newname, name=None, overwrite=False)
Change the name of the node specified by where and name to newname.

Parameters where, name :

These arguments work as in File.get_node(), referencing the node to be acted
upon.

newname : str

The new name to be assigned to the node (a string).

overwrite : bool

Whether to recursively remove a node with the same newname if it already exists (not
done by default).

4.2. File manipulation class 77

PyTables User Guide, Release 3.3.0

File methods - tree traversal

File.get_node(where, name=None, classname=None)
Get the node under where with the given name.

Parameters where : str or Node

This can be a path string leading to a node or a Node instance (see The Node class). If
no name is specified, that node is returned.

Note: If where is a Node instance from a different file than the one on which this
function is called, the returned node will also be from that other file.

name : str, optional

If a name is specified, this must be a string with the name of a node under where. In this
case the where argument can only lead to a Group (see The Group class) instance (else
a TypeError is raised). The node called name under the group where is returned.

classname : str, optional

If the classname argument is specified, it must be the name of a class derived from Node
(e.g. Table). If the node is found but it is not an instance of that class, a NoSuchNodeEr-
ror is also raised.

If the node to be returned does not exist, a NoSuchNodeError is :

raised. Please note that hidden nodes are also considered. :

File.is_visible_node(path)
Is the node under path visible?

If the node does not exist, a NoSuchNodeError is raised.

File.iter_nodes(where, classname=None)
Iterate over children nodes hanging from where.

Parameters where :

This argument works as in File.get_node(), referencing the node to be acted
upon.

classname :

If the name of a class derived from Node (see The Node class) is supplied, only instances
of that class (or subclasses of it) will be returned.

Notes

The returned nodes are alphanumerically sorted by their name. This is an iterator version of
File.list_nodes().

File.list_nodes(where, classname=None)
Return a list with children nodes hanging from where.

This is a list-returning version of File.iter_nodes().

File.walk_groups(where=’/’)
Recursively iterate over groups (not leaves) hanging from where.

78 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

The where group itself is listed first (preorder), then each of its child groups (following an alphanumerical order)
is also traversed, following the same procedure. If where is not supplied, the root group is used.

The where argument can be a path string or a Group instance (see The Group class).

File.walk_nodes(where=’/’, classname=None)
Recursively iterate over nodes hanging from where.

Parameters where : str or Group, optional

If supplied, the iteration starts from (and includes) this group. It can be a path string or
a Group instance (see The Group class).

classname :

If the name of a class derived from Node (see The Group class) is supplied, only in-
stances of that class (or subclasses of it) will be returned.

Notes

This version iterates over the leaves in the same group in order to avoid having a list referencing to them and
thus, preventing the LRU cache to remove them after their use.

Examples

Recursively print all the nodes hanging from '/detector'.
print("Nodes hanging from group '/detector':")
for node in h5file.walk_nodes('/detector', classname='EArray'):

print(node)

File.__contains__(path)
Is there a node with that path?

Returns True if the file has a node with the given path (a string), False otherwise.

File.__iter__()
Recursively iterate over the nodes in the tree.

This is equivalent to calling File.walk_nodes() with no arguments.

Examples

Recursively list all the nodes in the object tree.
h5file = tables.open_file('vlarray1.h5')
print("All nodes in the object tree:")
for node in h5file:

print(node)

File methods - Undo/Redo support

File.disable_undo()
Disable the Undo/Redo mechanism.

Disabling the Undo/Redo mechanism leaves the database in the current state and forgets past and future database
states. This makes File.mark(), File.undo(), File.redo() and other methods fail with an UndoRe-
doError.

4.2. File manipulation class 79

PyTables User Guide, Release 3.3.0

Calling this method when the Undo/Redo mechanism is already disabled raises an UndoRedoError.

File.enable_undo(filters=Filters(complevel=1, complib=’zlib’, shuffle=True, bitshuffle=False,
fletcher32=False, least_significant_digit=None))

Enable the Undo/Redo mechanism.

This operation prepares the database for undoing and redoing modifications in the node hierarchy. This allows
File.mark(), File.undo(), File.redo() and other methods to be called.

The filters argument, when specified, must be an instance of class Filters (see The Filters class) and is meant
for setting the compression values for the action log. The default is having compression enabled, as the gains
in terms of space can be considerable. You may want to disable compression if you want maximum speed for
Undo/Redo operations.

Calling this method when the Undo/Redo mechanism is already enabled raises an UndoRedoError.

File.get_current_mark()
Get the identifier of the current mark.

Returns the identifier of the current mark. This can be used to know the state of a database after an application
crash, or to get the identifier of the initial implicit mark after a call to File.enable_undo().

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an UndoRedo-
Error is raised.

File.goto(mark)
Go to a specific mark of the database.

Returns the database to the state associated with the specified mark. Both the identifier of a mark and its name
can be used.

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an UndoRedo-
Error is raised.

File.is_undo_enabled()
Is the Undo/Redo mechanism enabled?

Returns True if the Undo/Redo mechanism has been enabled for this file, False otherwise. Please note that this
mechanism is persistent, so a newly opened PyTables file may already have Undo/Redo support enabled.

File.mark(name=None)
Mark the state of the database.

Creates a mark for the current state of the database. A unique (and immutable) identifier for the mark is returned.
An optional name (a string) can be assigned to the mark. Both the identifier of a mark and its name can be used
in File.undo() and File.redo() operations. When the name has already been used for another mark,
an UndoRedoError is raised.

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an UndoRedo-
Error is raised.

File.redo(mark=None)
Go to a future state of the database.

Returns the database to the state associated with the specified mark. Both the identifier of a mark and its name
can be used. If the mark is omitted, the next created mark is used. If there are no future marks, or the specified
mark is not newer than the current one, an UndoRedoError is raised.

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an UndoRedo-
Error is raised.

File.undo(mark=None)
Go to a past state of the database.

80 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

Returns the database to the state associated with the specified mark. Both the identifier of a mark and its name
can be used. If the mark is omitted, the last created mark is used. If there are no past marks, or the specified
mark is not older than the current one, an UndoRedoError is raised.

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an UndoRedo-
Error is raised.

File methods - attribute handling

File.copy_node_attrs(where, dstnode, name=None)
Copy PyTables attributes from one node to another.

Parameters where, name :

These arguments work as in File.get_node(), referencing the node to be acted
upon.

dstnode :

The destination node where the attributes will be copied to. It can be a path string or a
Node instance (see The Node class).

File.del_node_attr(where, attrname, name=None)
Delete a PyTables attribute from the given node.

Parameters where, name :

These arguments work as in File.get_node(), referencing the node to be acted
upon.

attrname :

The name of the attribute to delete. If the named attribute does not exist, an AttributeEr-
ror is raised.

File.get_node_attr(where, attrname, name=None)
Get a PyTables attribute from the given node.

Parameters where, name :

These arguments work as in File.get_node(), referencing the node to be acted
upon.

attrname :

The name of the attribute to retrieve. If the named attribute does not exist, an Attribu-
teError is raised.

File.set_node_attr(where, attrname, attrvalue, name=None)
Set a PyTables attribute for the given node.

Parameters where, name :

These arguments work as in File.get_node(), referencing the node to be acted
upon.

attrname :

The name of the attribute to set.

attrvalue :

4.2. File manipulation class 81

PyTables User Guide, Release 3.3.0

The value of the attribute to set. Any kind of Python object (like strings, ints, floats,
lists, tuples, dicts, small NumPy objects ...) can be stored as an attribute. However, if
necessary, pickle is automatically used so as to serialize objects that you might want to
save. See the AttributeSet class for details.

Notes

If the node already has a large number of attributes, a PerformanceWarning is issued.

Hierarchy definition classes

The Node class

class tables.Node(parentnode, name, _log=True)
Abstract base class for all PyTables nodes.

This is the base class for all nodes in a PyTables hierarchy. It is an abstract class, i.e. it may not be directly
instantiated; however, every node in the hierarchy is an instance of this class.

A PyTables node is always hosted in a PyTables file, under a parent group, at a certain depth in the node
hierarchy. A node knows its own name in the parent group and its own path name in the file.

All the previous information is location-dependent, i.e. it may change when moving or renaming a node in the
hierarchy. A node also has location-independent information, such as its HDF5 object identifier and its attribute
set.

This class gathers the operations and attributes (both location-dependent and independent) which are common
to all PyTables nodes, whatever their type is. Nonetheless, due to natural naming restrictions, the names of all
of these members start with a reserved prefix (see the Group class in The Group class).

Sub-classes with no children (e.g. leaf nodes) may define new methods, attributes and properties to avoid natural
naming restrictions. For instance, _v_attrs may be shortened to attrs and _f_rename to rename. However, the
original methods and attributes should still be available.

Node attributes

_v_depth
The depth of this node in the tree (an non-negative integer value).

_v_file
The hosting File instance (see The File Class).

_v_name
The name of this node in its parent group (a string).

_v_pathname
The path of this node in the tree (a string).

_v_objectid
A node identifier (may change from run to run).

Changed in version 3.0: The _v_objectID attribute has been renamed into _v_object_id.

82 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

Node instance variables - location dependent

Node._v_parent
The parent Group instance

Node instance variables - location independent

Node._v_attrs
The associated AttributeSet instance.

See also:

tables.attributeset.AttributeSet container for the HDF5 attributes

Node._v_isopen = False
Whether this node is open or not.

Node instance variables - attribute shorthands

Node._v_title
A description of this node. A shorthand for TITLE attribute.

Node methods - hierarchy manipulation

Node._f_close()
Close this node in the tree.

This releases all resources held by the node, so it should not be used again. On nodes with data, it may be
flushed to disk.

You should not need to close nodes manually because they are automatically opened/closed when they are
loaded/evicted from the integrated LRU cache.

Node._f_copy(newparent=None, newname=None, overwrite=False, recursive=False, createpar-
ents=False, **kwargs)

Copy this node and return the new node.

Creates and returns a copy of the node, maybe in a different place in the hierarchy. newparent can be a Group
object (see The Group class) or a pathname in string form. If it is not specified or None, the current parent
group is chosen as the new parent. newname must be a string with a new name. If it is not specified or None,
the current name is chosen as the new name. If recursive copy is stated, all descendants are copied as well. If
createparents is true, the needed groups for the given new parent group path to exist will be created.

Copying a node across databases is supported but can not be undone. Copying a node over itself is not allowed,
nor it is recursively copying a node into itself. These result in a NodeError. Copying over another existing node
is similarly not allowed, unless the optional overwrite argument is true, in which case that node is recursively
removed before copying.

Additional keyword arguments may be passed to customize the copying process. For instance, title and filters
may be changed, user attributes may be or may not be copied, data may be sub-sampled, stats may be collected,
etc. See the documentation for the particular node type.

Using only the first argument is equivalent to copying the node to a new location without changing its name.
Using only the second argument is equivalent to making a copy of the node in the same group.

Node._f_isvisible()
Is this node visible?

4.3. Hierarchy definition classes 83

PyTables User Guide, Release 3.3.0

Node._f_move(newparent=None, newname=None, overwrite=False, createparents=False)
Move or rename this node.

Moves a node into a new parent group, or changes the name of the node. newparent can be a Group object (see
The Group class) or a pathname in string form. If it is not specified or None, the current parent group is chosen
as the new parent. newname must be a string with a new name. If it is not specified or None, the current name is
chosen as the new name. If createparents is true, the needed groups for the given new parent group path to exist
will be created.

Moving a node across databases is not allowed, nor it is moving a node into itself. These result in a NodeError.
However, moving a node over itself is allowed and simply does nothing. Moving over another existing node
is similarly not allowed, unless the optional overwrite argument is true, in which case that node is recursively
removed before moving.

Usually, only the first argument will be used, effectively moving the node to a new location without changing
its name. Using only the second argument is equivalent to renaming the node in place.

Node._f_remove(recursive=False, force=False)
Remove this node from the hierarchy.

If the node has children, recursive removal must be stated by giving recursive a true value; otherwise, a NodeEr-
ror will be raised.

If the node is a link to a Group object, and you are sure that you want to delete it, you can do this by setting the
force flag to true.

Node._f_rename(newname, overwrite=False)
Rename this node in place.

Changes the name of a node to newname (a string). If a node with the same newname already exists and
overwrite is true, recursively remove it before renaming.

Node methods - attribute handling

Node._f_delattr(name)
Delete a PyTables attribute from this node.

If the named attribute does not exist, an AttributeError is raised.

Node._f_getattr(name)
Get a PyTables attribute from this node.

If the named attribute does not exist, an AttributeError is raised.

Node._f_setattr(name, value)
Set a PyTables attribute for this node.

If the node already has a large number of attributes, a PerformanceWarning is issued.

The Group class

class tables.Group(parentnode, name, title=’‘, new=False, filters=None, _log=True)
Basic PyTables grouping structure.

Instances of this class are grouping structures containing child instances of zero or more groups or leaves,
together with supporting metadata. Each group has exactly one parent group.

Working with groups and leaves is similar in many ways to working with directories and files, respectively, in a
Unix filesystem. As with Unix directories and files, objects in the object tree are often described by giving their

84 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

full (or absolute) path names. This full path can be specified either as a string (like in ‘/group1/group2’) or as a
complete object path written in natural naming schema (like in file.root.group1.group2).

A collateral effect of the natural naming schema is that the names of members in the Group class and its
instances must be carefully chosen to avoid colliding with existing children node names. For this reason and
to avoid polluting the children namespace all members in a Group start with some reserved prefix, like _f_ (for
public methods), _g_ (for private ones), _v_ (for instance variables) or _c_ (for class variables). Any attempt to
create a new child node whose name starts with one of these prefixes will raise a ValueError exception.

Another effect of natural naming is that children named after Python keywords or having names not valid as
Python identifiers (e.g. class, $a or 44) can not be accessed using the node.child syntax. You will be forced to
use node._f_get_child(child) to access them (which is recommended for programmatic accesses).

You will also need to use _f_get_child() to access an existing child node if you set a Python attribute in the
Group with the same name as that node (you will get a NaturalNameWarning when doing this).

Parameters parentnode :

The parent Group object.

Changed in version 3.0: Renamed from parentNode to parentnode

name : str

The name of this node in its parent group.

title :

The title for this group

new :

If this group is new or has to be read from disk

filters : Filters

A Filters instance

Notes

The following documentation includes methods that are automatically called when a Group instance is accessed
in a special way.

For instance, this class defines the __setattr__, __getattr__, and __delattr__ methods, and they set, get and delete
ordinary Python attributes as normally intended. In addition to that, __getattr__ allows getting child nodes by
their name for the sake of easy interaction on the command line, as long as there is no Python attribute with the
same name. Groups also allow the interactive completion (when using readline) of the names of child nodes.
For instance:

get a Python attribute
nchild = group._v_nchildren

Add a Table child called 'table' under 'group'.
h5file.create_table(group, 'table', myDescription)
table = group.table # get the table child instance
group.table = 'foo' # set a Python attribute

(PyTables warns you here about using the name of a child node.)
foo = group.table # get a Python attribute
del group.table # delete a Python attribute
table = group.table # get the table child instance again

4.3. Hierarchy definition classes 85

PyTables User Guide, Release 3.3.0

Group attributes

The following instance variables are provided in addition to those in Node (see The Node class):

_v_children
Dictionary with all nodes hanging from this group.

_v_groups
Dictionary with all groups hanging from this group.

_v_hidden
Dictionary with all hidden nodes hanging from this group.

_v_leaves
Dictionary with all leaves hanging from this group.

_v_links
Dictionary with all links hanging from this group.

_v_unknown
Dictionary with all unknown nodes hanging from this group.

Group properties

Group._v_nchildren
The number of children hanging from this group.

Group._v_filters
Default filter properties for child nodes.

You can (and are encouraged to) use this property to get, set and delete the FILTERS HDF5 attribute of the
group, which stores a Filters instance (see The Filters class). When the group has no such attribute, a default
Filters instance is used.

Group methods

Important: Caveat: The following methods are documented for completeness, and they can be used without any
problem. However, you should use the high-level counterpart methods in the File class (see The File Class, because
they are most used in documentation and examples, and are a bit more powerful than those exposed here.

The following methods are provided in addition to those in Node (see The Node class):

Group._f_close()
Close this group and all its descendents.

This method has the behavior described in Node._f_close(). It should be noted that this operation closes
all the nodes descending from this group.

You should not need to close nodes manually because they are automatically opened/closed when they are
loaded/evicted from the integrated LRU cache.

Group._f_copy(newparent=None, newname=None, overwrite=False, recursive=False, createpar-
ents=False, **kwargs)

Copy this node and return the new one.

This method has the behavior described in Node._f_copy(). In addition, it recognizes the following key-
word arguments:

86 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

Parameters title :

The new title for the destination. If omitted or None, the original title is used. This only
applies to the topmost node in recursive copies.

filters : Filters

Specifying this parameter overrides the original filter properties in the source node. If
specified, it must be an instance of the Filters class (see The Filters class). The default
is to copy the filter properties from the source node.

copyuserattrs :

You can prevent the user attributes from being copied by setting thisparameter to False.
The default is to copy them.

stats :

This argument may be used to collect statistics on the copy process. When used, it
should be a dictionary with keys ‘groups’, ‘leaves’, ‘links’ and ‘bytes’ having a numeric
value. Their values willbe incremented to reflect the number of groups, leaves and bytes,
respectively, that have been copied during the operation.

Group._f_copy_children(dstgroup, overwrite=False, recursive=False, createparents=False,
**kwargs)

Copy the children of this group into another group.

Children hanging directly from this group are copied into dstgroup, which can be a Group (see The Group class)
object or its pathname in string form. If createparents is true, the needed groups for the given destination group
path to exist will be created.

The operation will fail with a NodeError if there is a child node in the destination group with the same name
as one of the copied children from this one, unless overwrite is true; in this case, the former child node is
recursively removed before copying the later.

By default, nodes descending from children groups of this node are not copied. If the recursive argument is true,
all descendant nodes of this node are recursively copied.

Additional keyword arguments may be passed to customize the copying process. For instance, title and filters
may be changed, user attributes may be or may not be copied, data may be sub-sampled, stats may be collected,
etc. Arguments unknown to nodes are simply ignored. Check the documentation for copying operations of
nodes to see which options they support.

Group._f_get_child(childname)
Get the child called childname of this group.

If the child exists (be it visible or not), it is returned. Else, a NoSuchNodeError is raised.

Using this method is recommended over getattr() when doing programmatic accesses to children if childname
is unknown beforehand or when its name is not a valid Python identifier.

Group._f_iter_nodes(classname=None)
Iterate over children nodes.

Child nodes are yielded alphanumerically sorted by node name. If the name of a class derived from Node (see
The Node class) is supplied in the classname parameter, only instances of that class (or subclasses of it) will be
returned.

This is an iterator version of Group._f_list_nodes().

Group._f_list_nodes(classname=None)
Return a list with children nodes.

This is a list-returning version of Group._f_iter_nodes().

4.3. Hierarchy definition classes 87

PyTables User Guide, Release 3.3.0

Group._f_walk_groups()
Recursively iterate over descendent groups (not leaves).

This method starts by yielding self, and then it goes on to recursively iterate over all child groups in alphanu-
merical order, top to bottom (preorder), following the same procedure.

Group._f_walknodes(classname=None)
Iterate over descendant nodes.

This method recursively walks self top to bottom (preorder), iterating over child groups in alphanumerical order,
and yielding nodes. If classname is supplied, only instances of the named class are yielded.

If classname is Group, it behaves like Group._f_walk_groups(), yielding only groups. If you don’t want
a recursive behavior, use Group._f_iter_nodes() instead.

Examples

Recursively print all the arrays hanging from '/'
print("Arrays in the object tree '/':")
for array in h5file.root._f_walknodes('Array', recursive=True):

print(array)

Group special methods

Following are described the methods that automatically trigger actions when a Group instance is accessed in a special
way.

This class defines the __setattr__(), __getattr__() and __delattr__() methods, and they set, get and
delete ordinary Python attributes as normally intended. In addition to that, __getattr__() allows getting child
nodes by their name for the sake of easy interaction on the command line, as long as there is no Python attribute with
the same name. Groups also allow the interactive completion (when using readline) of the names of child nodes. For
instance:

get a Python attribute
nchild = group._v_nchildren

Add a Table child called 'table' under 'group'.
h5file.create_table(group, 'table', my_description)
table = group.table # get the table child instance
group.table = 'foo' # set a Python attribute

(PyTables warns you here about using the name of a child node.)
foo = group.table # get a Python attribute
del group.table # delete a Python attribute
table = group.table # get the table child instance again

Group.__contains__(name)
Is there a child with that name?

Returns a true value if the group has a child node (visible or hidden) with the given name (a string), false
otherwise.

Group.__delattr__(name)
Delete a Python attribute called name.

This method only provides a extra warning in case the user tries to delete a children node using __delattr__.

88 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

To remove a children node from this group use File.remove_node() or Node._f_remove(). To delete
a PyTables node attribute use File.del_node_attr(), Node._f_delattr() or Node._v_attrs‘.

If there is an attribute and a child node with the same name, the child node will be made accessible again via
natural naming.

Group.__getattr__(name)
Get a Python attribute or child node called name. If the node has a child node called name it is returned, else an
AttributeError is raised.

Group.__iter__()
Iterate over the child nodes hanging directly from the group.

This iterator is not recursive.

Examples

Non-recursively list all the nodes hanging from '/detector'
print("Nodes in '/detector' group:")
for node in h5file.root.detector:

print(node)

Group.__repr__()
Return a detailed string representation of the group.

Examples

>>> f = tables.open_file('data/test.h5')
>>> f.root.group0
/group0 (Group) 'First Group'
children := ['tuple1' (Table), 'group1' (Group)]

Group.__setattr__(name, value)
Set a Python attribute called name with the given value.

This method stores an ordinary Python attribute in the object. It does not store new children nodes under this
group; for that, use the File.create*() methods (see the File class in The File Class). It does neither store a PyTa-
bles node attribute; for that, use File.set_node_attr(), :meth‘:Node._f_setattr‘ or Node._v_attrs.

If there is already a child node with the same name, a NaturalNameWarning will be issued and the child node
will not be accessible via natural naming nor getattr(). It will still be available via File.get_node(),
Group._f_get_child() and children dictionaries in the group (if visible).

Group.__str__()
Return a short string representation of the group.

Examples

>>> f=tables.open_file('data/test.h5')
>>> print(f.root.group0)
/group0 (Group) 'First Group'

4.3. Hierarchy definition classes 89

PyTables User Guide, Release 3.3.0

The Leaf class

class tables.Leaf(parentnode, name, new=False, filters=None, byteorder=None, _log=True)
Abstract base class for all PyTables leaves.

A leaf is a node (see the Node class in Node) which hangs from a group (see the Group class in Group) but,
unlike a group, it can not have any further children below it (i.e. it is an end node).

This definition includes all nodes which contain actual data (datasets handled by the Table - see The Table class,
Array - see The Array class, CArray - see The CArray class, EArray - see The EArray class, and VLArray -
see The VLArray class classes) and unsupported nodes (the UnImplemented class - The UnImplemented class)
these classes do in fact inherit from Leaf.

Leaf attributes

These instance variables are provided in addition to those in Node (see The Node class):

byteorder
The byte ordering of the leaf data on disk. It will be either little or big.

dtype
The NumPy dtype that most closely matches this leaf type.

extdim
The index of the enlargeable dimension (-1 if none).

nrows
The length of the main dimension of the leaf data.

nrowsinbuf
The number of rows that fit in internal input buffers.

You can change this to fine-tune the speed or memory requirements of your application.

shape
The shape of data in the leaf.

Leaf properties

Leaf.chunkshape
The HDF5 chunk size for chunked leaves (a tuple).

This is read-only because you cannot change the chunk size of a leaf once it has been created.

Leaf.ndim
The number of dimensions of the leaf data.

Leaf.filters
Filter properties for this leaf.

See also:

Filters

Leaf.maindim
The dimension along which iterators work.

Its value is 0 (i.e. the first dimension) when the dataset is not extendable, and self.extdim (where available) for
extendable ones.

90 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

Leaf.flavor
The type of data object read from this leaf.

It can be any of ‘numpy’ or ‘python’.

You can (and are encouraged to) use this property to get, set and delete the FLAVOR HDF5 attribute of the leaf.
When the leaf has no such attribute, the default flavor is used..

Leaf.size_in_memory
The size of this leaf’s data in bytes when it is fully loaded into memory.

Leaf.size_on_disk
The size of this leaf’s data in bytes as it is stored on disk. If the data is compressed, this shows the compressed
size. In the case of uncompressed, chunked data, this may be slightly larger than the amount of data, due to
partially filled chunks.

Leaf instance variables - aliases

The following are just easier-to-write aliases to their Node (see The Node class) counterparts (indicated between
parentheses):

Leaf.attrs
The associated AttributeSet instance - see The AttributeSet class (This is an easier-to-write alias of
Node._v_attrs.

Leaf.name
The name of this node in its parent group (This is an easier-to-write alias of Node._v_name).

Leaf.object_id
A node identifier, which may change from run to run. (This is an easier-to-write alias of
Node._v_objectid).

Changed in version 3.0: The objectID property has been renamed into object_id.

Leaf.title
A description for this node (This is an easier-to-write alias of Node._v_title).

Leaf methods

Leaf.close(flush=True)
Close this node in the tree.

This method is completely equivalent to Leaf._f_close().

Leaf.copy(newparent=None, newname=None, overwrite=False, createparents=False, **kwargs)
Copy this node and return the new one.

This method has the behavior described in Node._f_copy(). Please note that there is no recursive flag since
leaves do not have child nodes.

Warning: Note that unknown parameters passed to this method will be ignored, so may want to double
check the spelling of these (i.e. if you write them incorrectly, they will most probably be ignored).

Parameters title :

The new title for the destination. If omitted or None, the original title is used.

filters : Filters

4.3. Hierarchy definition classes 91

PyTables User Guide, Release 3.3.0

Specifying this parameter overrides the original filter properties in the source node. If
specified, it must be an instance of the Filters class (see The Filters class). The default
is to copy the filter properties from the source node.

copyuserattrs :

You can prevent the user attributes from being copied by setting this parameter to False.
The default is to copy them.

start, stop, step : int

Specify the range of rows to be copied; the default is to copy all the rows.

stats :

This argument may be used to collect statistics on the copy process. When used, it
should be a dictionary with keys ‘groups’, ‘leaves’ and ‘bytes’ having a numeric value.
Their values will be incremented to reflect the number of groups, leaves and bytes,
respectively, that have been copied during the operation.

chunkshape :

The chunkshape of the new leaf. It supports a couple of special values. A value of keep
means that the chunkshape will be the same than original leaf (this is the default). A
value of auto means that a new shape will be computed automatically in order to ensure
best performance when accessing the dataset through the main dimension. Any other
value should be an integer or a tuple matching the dimensions of the leaf.

Leaf.flush()
Flush pending data to disk.

Saves whatever remaining buffered data to disk. It also releases I/O buffers, so if you are filling many datasets in
the same PyTables session, please call flush() extensively so as to help PyTables to keep memory requirements
low.

Leaf.isvisible()
Is this node visible?

This method has the behavior described in Node._f_isvisible().

Leaf.move(newparent=None, newname=None, overwrite=False, createparents=False)
Move or rename this node.

This method has the behavior described in Node._f_move()

Leaf.rename(newname)
Rename this node in place.

This method has the behavior described in Node._f_rename().

Leaf.remove()
Remove this node from the hierarchy.

This method has the behavior described in Node._f_remove(). Please note that there is no recursive flag
since leaves do not have child nodes.

Leaf.get_attr(name)
Get a PyTables attribute from this node.

This method has the behavior described in Node._f_getattr().

Leaf.set_attr(name, value)
Set a PyTables attribute for this node.

This method has the behavior described in Node._f_setattr().

92 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

Leaf.del_attr(name)
Delete a PyTables attribute from this node.

This method has the behavior described in Node_f_delAttr().

Leaf.truncate(size)
Truncate the main dimension to be size rows.

If the main dimension previously was larger than this size, the extra data is lost. If the main dimension previously
was shorter, it is extended, and the extended part is filled with the default values.

The truncation operation can only be applied to enlargeable datasets, else a TypeError will be raised.

Leaf.__len__()
Return the length of the main dimension of the leaf data.

Please note that this may raise an OverflowError on 32-bit platforms for datasets having more than 2**31-1
rows. This is a limitation of Python that you can work around by using the nrows or shape attributes.

Leaf._f_close(flush=True)
Close this node in the tree.

This method has the behavior described in Node._f_close(). Besides that, the optional argument flush tells
whether to flush pending data to disk or not before closing.

Structured storage classes

The Table class

class tables.Table(parentnode, name, description=None, title=’‘, filters=None, expectedrows=None,
chunkshape=None, byteorder=None, _log=True)

This class represents heterogeneous datasets in an HDF5 file.

Tables are leaves (see the Leaf class in The Leaf class) whose data consists of a unidimensional sequence of
rows, where each row contains one or more fields. Fields have an associated unique name and position, with the
first field having position 0. All rows have the same fields, which are arranged in columns.

Fields can have any type supported by the Col class (see The Col class and its descendants) and its descendants,
which support multidimensional data. Moreover, a field can be nested (to an arbitrary depth), meaning that it
includes further fields inside. A field named x inside a nested field a in a table can be accessed as the field a/x
(its path name) from the table.

The structure of a table is declared by its description, which is made available in the Table.description attribute
(see Table).

This class provides new methods to read, write and search table data efficiently. It also provides special Python
methods to allow accessing the table as a normal sequence or array (with extended slicing supported).

PyTables supports in-kernel searches working simultaneously on several columns using complex conditions.
These are faster than selections using Python expressions. See the Table.where() method for more infor-
mation on in-kernel searches.

Non-nested columns can be indexed. Searching an indexed column can be several times faster than searching a
non-nested one. Search methods automatically take advantage of indexing where available.

When iterating a table, an object from the Row (see The Row class) class is used. This object allows to read
and write data one row at a time, as well as to perform queries which are not supported by in-kernel syntax (at
a much lower speed, of course).

4.4. Structured storage classes 93

PyTables User Guide, Release 3.3.0

Objects of this class support access to individual columns via natural naming through the Table.cols acces-
sor. Nested columns are mapped to Cols instances, and non-nested ones to Column instances. See the Column
class in The Column class for examples of this feature.

Parameters parentnode :

The parent Group object.

Changed in version 3.0: Renamed from parentNode to parentnode.

name : str

The name of this node in its parent group.

description :

An IsDescription subclass or a dictionary where the keys are the field names, and the
values the type definitions. In addition, a pure NumPy dtype is accepted. If None, the
table metadata is read from disk, else, it’s taken from previous parameters.

title :

Sets a TITLE attribute on the HDF5 table entity.

filters : Filters

An instance of the Filters class that provides information about the desired I/O filters to
be applied during the life of this object.

expectedrows :

A user estimate about the number of rows that will be on table. If not provided, the
default value is EXPECTED_ROWS_TABLE (see tables/parameters.py). If you
plan to save bigger tables, try providing a guess; this will optimize the HDF5 B-Tree
creation and management process time and memory used.

chunkshape :

The shape of the data chunk to be read or written as a single HDF5 I/O operation. The
filters are applied to those chunks of data. Its rank for tables has to be 1. If None, a sen-
sible value is calculated based on the expectedrows parameter (which is recommended).

byteorder :

The byteorder of the data on-disk, specified as ‘little’ or ‘big’. If this is not specified,
the byteorder is that of the platform, unless you passed a recarray as the description, in
which case the recarray byteorder will be chosen.

Notes

The instance variables below are provided in addition to those in Leaf (see The Leaf class). Please note that there
are several col* dictionaries to ease retrieving information about a column directly by its path name, avoiding
the need to walk through Table.description or Table.cols.

Table attributes

coldescrs
Maps the name of a column to its Col description (see The Col class and its descendants).

coldflts
Maps the name of a column to its default value.

94 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

coldtypes
Maps the name of a column to its NumPy data type.

colindexed
Is the column which name is used as a key indexed?

colinstances
Maps the name of a column to its Column (see The Column class) or Cols (see The Cols class) instance.

colnames
A list containing the names of top-level columns in the table.

colpathnames
A list containing the pathnames of bottom-level columns in the table.

These are the leaf columns obtained when walking the table description left-to-right, bottom-first. Columns
inside a nested column have slashes (/) separating name components in their pathname.

cols
A Cols instance that provides natural naming access to non-nested (Column, see The Column class) and
nested (Cols, see The Cols class) columns.

coltypes
Maps the name of a column to its PyTables data type.

description
A Description instance (see The Description class) reflecting the structure of the table.

extdim
The index of the enlargeable dimension (always 0 for tables).

indexed
Does this table have any indexed columns?

nrows
The current number of rows in the table.

Table properties

Table.autoindex
Automatically keep column indexes up to date?

Setting this value states whether existing indexes should be automatically updated after an append operation or
recomputed after an index-invalidating operation (i.e. removal and modification of rows). The default is true.

This value gets into effect whenever a column is altered. If you don’t have automatic indexing activated and you
want to do an an immediate update use Table.flush_rows_to_index(); for an immediate reindexing of invalidated
indexes, use Table.reindex_dirty().

This value is persistent.

Changed in version 3.0: The autoIndex property has been renamed into autoindex.

Table.colindexes
A dictionary with the indexes of the indexed columns.

Table.indexedcolpathnames
List of pathnames of indexed columns in the table.

Table.row
The associated Row instance (see The Row class).

4.4. Structured storage classes 95

PyTables User Guide, Release 3.3.0

Table.rowsize
The size in bytes of each row in the table.

Table methods - reading

Table.col(name)
Get a column from the table.

If a column called name exists in the table, it is read and returned as a NumPy object. If it does not exist, a
KeyError is raised.

Examples

narray = table.col('var2')

That statement is equivalent to:

narray = table.read(field='var2')

Here you can see how this method can be used as a shorthand for the Table.read() method.

Table.iterrows(start=None, stop=None, step=None)
Iterate over the table using a Row instance.

If a range is not supplied, all the rows in the table are iterated upon - you can also use the Table.__iter__()
special method for that purpose. If you want to iterate over a given range of rows in the table, you may use the
start, stop and step parameters.

Warning: When in the middle of a table row iterator, you should not use methods that can change the
number of rows in the table (like Table.append() or Table.remove_rows()) or unexpected errors
will happen.

See also:

tableextension.Row the table row iterator and field accessor

Examples

result = [row['var2'] for row in table.iterrows(step=5)
if row['var1'] <= 20]

Changed in version 3.0: If the start parameter is provided and stop is None then the table is iterated from start
to the last line. In PyTables < 3.0 only one element was returned.

Table.itersequence(sequence)
Iterate over a sequence of row coordinates.

Table.itersorted(sortby, checkCSI=False, start=None, stop=None, step=None)
Iterate table data following the order of the index of sortby column.

The sortby column must have associated a full index. If you want to ensure a fully sorted order, the index must
be a CSI one. You may want to use the checkCSI argument in order to explicitly check for the existence of a
CSI index.

The meaning of the start, stop and step arguments is the same as in Table.read().

96 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

Changed in version 3.0: If the start parameter is provided and stop is None then the table is iterated from start
to the last line. In PyTables < 3.0 only one element was returned.

Table.read(start=None, stop=None, step=None, field=None, out=None)
Get data in the table as a (record) array.

The start, stop and step parameters can be used to select only a range of rows in the table. Their meanings are
the same as in the built-in Python slices.

If field is supplied only the named column will be selected. If the column is not nested, an array of the current
flavor will be returned; if it is, a structured array will be used instead. If no field is specified, all the columns
will be returned in a structured array of the current flavor.

Columns under a nested column can be specified in the field parameter by using a slash character (/) as a
separator (e.g. ‘position/x’).

The out parameter may be used to specify a NumPy array to receive the output data. Note that the array must
have the same size as the data selected with the other parameters. Note that the array’s datatype is not checked
and no type casting is performed, so if it does not match the datatype on disk, the output will not be correct.

When specifying a single nested column with the field parameter, and supplying an output buffer with the out
parameter, the output buffer must contain all columns in the table. The data in all columns will be read into the
output buffer. However, only the specified nested column will be returned from the method call.

When data is read from disk in NumPy format, the output will be in the current system’s byteorder, regardless
of how it is stored on disk. If the out parameter is specified, the output array also must be in the current system’s
byteorder.

Changed in version 3.0: Added the out parameter. Also the start, stop and step parameters now behave like in
slice.

Examples

Reading the entire table:

t.read()

Reading record n. 6:

t.read(6, 7)

Reading from record n. 6 to the end of the table:

t.read(6)

Table.read_coordinates(coords, field=None)
Get a set of rows given their indexes as a (record) array.

This method works much like the Table.read() method, but it uses a sequence (coords) of row indexes to
select the wanted columns, instead of a column range.

The selected rows are returned in an array or structured array of the current flavor.

Table.read_sorted(sortby, checkCSI=False, field=None, start=None, stop=None, step=None)
Read table data following the order of the index of sortby column.

The sortby column must have associated a full index. If you want to ensure a fully sorted order, the index must
be a CSI one. You may want to use the checkCSI argument in order to explicitly check for the existence of a
CSI index.

4.4. Structured storage classes 97

PyTables User Guide, Release 3.3.0

If field is supplied only the named column will be selected. If the column is not nested, an array of the current
flavor will be returned; if it is, a structured array will be used instead. If no field is specified, all the columns
will be returned in a structured array of the current flavor.

The meaning of the start, stop and step arguments is the same as in Table.read().

Changed in version 3.0: The start, stop and step parameters now behave like in slice.

Table.__getitem__(key)
Get a row or a range of rows from the table.

If key argument is an integer, the corresponding table row is returned as a record of the current flavor. If key is
a slice, the range of rows determined by it is returned as a structured array of the current flavor.

In addition, NumPy-style point selections are supported. In particular, if key is a list of row coordinates, the
set of rows determined by it is returned. Furthermore, if key is an array of boolean values, only the coordinates
where key is True are returned. Note that for the latter to work it is necessary that key list would contain exactly
as many rows as the table has.

Examples

record = table[4]
recarray = table[4:1000:2]
recarray = table[[4,1000]] # only retrieves rows 4 and 1000
recarray = table[[True, False, ..., True]]

Those statements are equivalent to:

record = table.read(start=4)[0]
recarray = table.read(start=4, stop=1000, step=2)
recarray = table.read_coordinates([4,1000])
recarray = table.read_coordinates([True, False, ..., True])

Here, you can see how indexing can be used as a shorthand for the Table.read() and
Table.read_coordinates() methods.

Table.__iter__()
Iterate over the table using a Row instance.

This is equivalent to calling Table.iterrows() with default arguments, i.e. it iterates over all the rows in
the table.

See also:

tableextension.Row the table row iterator and field accessor

Examples

result = [row['var2'] for row in table if row['var1'] <= 20]

Which is equivalent to:

result = [row['var2'] for row in table.iterrows()
if row['var1'] <= 20]

98 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

Table methods - writing

Table.append(rows)
Append a sequence of rows to the end of the table.

The rows argument may be any object which can be converted to a structured array compliant with the table
structure (otherwise, a ValueError is raised). This includes NumPy structured arrays, lists of tuples or array
records, and a string or Python buffer.

Examples

import tables as tb

class Particle(tb.IsDescription):
name = tb.StringCol(16, pos=1) # 16-character String
lati = tb.IntCol(pos=2) # integer
longi = tb.IntCol(pos=3) # integer
pressure = tb.Float32Col(pos=4) # float (single-precision)
temperature = tb.FloatCol(pos=5) # double (double-precision)

fileh = tb.open_file('test4.h5', mode='w')
table = fileh.create_table(fileh.root, 'table', Particle,

"A table")

Append several rows in only one call
table.append([("Particle: 10", 10, 0, 10 * 10, 10**2),

("Particle: 11", 11, -1, 11 * 11, 11**2),
("Particle: 12", 12, -2, 12 * 12, 12**2)])

fileh.close()

Table.modify_column(start=None, stop=None, step=None, column=None, colname=None)
Modify one single column in the row slice [start:stop:step].

The colname argument specifies the name of the column in the table to be modified with the data given in
column. This method returns the number of rows modified. Should the modification exceed the length of the
table, an IndexError is raised before changing data.

The column argument may be any object which can be converted to a (record) array compliant with the structure
of the column to be modified (otherwise, a ValueError is raised). This includes NumPy (record) arrays, lists of
scalars, tuples or array records, and a string or Python buffer.

Table.modify_columns(start=None, stop=None, step=None, columns=None, names=None)
Modify a series of columns in the row slice [start:stop:step].

The names argument specifies the names of the columns in the table to be modified with the data given in
columns. This method returns the number of rows modified. Should the modification exceed the length of the
table, an IndexError is raised before changing data.

The columns argument may be any object which can be converted to a structured array compliant with the
structure of the columns to be modified (otherwise, a ValueError is raised). This includes NumPy structured
arrays, lists of tuples or array records, and a string or Python buffer.

Table.modify_coordinates(coords, rows)
Modify a series of rows in positions specified in coords.

The values in the selected rows will be modified with the data given in rows. This method returns the number
of rows modified.

The possible values for the rows argument are the same as in Table.append().

4.4. Structured storage classes 99

PyTables User Guide, Release 3.3.0

Table.modify_rows(start=None, stop=None, step=None, rows=None)
Modify a series of rows in the slice [start:stop:step].

The values in the selected rows will be modified with the data given in rows. This method returns the number of
rows modified. Should the modification exceed the length of the table, an IndexError is raised before changing
data.

The possible values for the rows argument are the same as in Table.append().

Table.remove_rows(start=None, stop=None, step=None)
Remove a range of rows in the table.

If only start is supplied, that row and all following will be deleted. If a range is supplied, i.e. both the start and
stop parameters are passed, all the rows in the range are removed.

Changed in version 3.0: The start, stop and step parameters now behave like in slice.

See also:

remove_row()

Parameters start : int

Sets the starting row to be removed. It accepts negative values meaning that the count
starts from the end. A value of 0 means the first row.

stop : int

Sets the last row to be removed to stop-1, i.e. the end point is omitted (in the Python
range() tradition). Negative values are also accepted. If None all rows after start will be
removed.

step : int

The step size between rows to remove.

New in version 3.0.

Examples

Removing rows from 5 to 10 (excluded):

t.remove_rows(5, 10)

Removing all rows starting from the 10th:

t.remove_rows(10)

Removing the 6th row:

t.remove_rows(6, 7)

Note: removing a single row can be done using the specific remove_row() method.

Table.remove_row(n)
Removes a row from the table.

Parameters n : int

The index of the row to remove.

.. versionadded:: 3.0 :

100 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

Examples

Remove row 15:

table.remove_row(15)

Which is equivalent to:

table.remove_rows(15, 16)

Warning: This is not equivalent to:

table.remove_rows(15)

Table.__setitem__(key, value)
Set a row or a range of rows in the table.

It takes different actions depending on the type of the key parameter: if it is an integer, the corresponding table
row is set to value (a record or sequence capable of being converted to the table structure). If key is a slice, the
row slice determined by it is set to value (a record array or sequence capable of being converted to the table
structure).

In addition, NumPy-style point selections are supported. In particular, if key is a list of row coordinates, the set
of rows determined by it is set to value. Furthermore, if key is an array of boolean values, only the coordinates
where key is True are set to values from value. Note that for the latter to work it is necessary that key list would
contain exactly as many rows as the table has.

Examples

Modify just one existing row
table[2] = [456,'db2',1.2]

Modify two existing rows
rows = numpy.rec.array([[457,'db1',1.2],[6,'de2',1.3]],

formats='i4,a3,f8')
table[1:30:2] = rows # modify a table slice
table[[1,3]] = rows # only modifies rows 1 and 3
table[[True,False,True]] = rows # only modifies rows 0 and 2

Which is equivalent to:

table.modify_rows(start=2, rows=[456,'db2',1.2])
rows = numpy.rec.array([[457,'db1',1.2],[6,'de2',1.3]],

formats='i4,a3,f8')
table.modify_rows(start=1, stop=3, step=2, rows=rows)
table.modify_coordinates([1,3,2], rows)
table.modify_coordinates([True, False, True], rows)

Here, you can see how indexing can be used as a shorthand for the Table.modify_rows() and
Table.modify_coordinates() methods.

Table methods - querying

Table.get_where_list(condition, condvars=None, sort=False, start=None, stop=None, step=None)
Get the row coordinates fulfilling the given condition.

4.4. Structured storage classes 101

PyTables User Guide, Release 3.3.0

The coordinates are returned as a list of the current flavor. sort means that you want to retrieve the coordinates
ordered. The default is to not sort them.

The meaning of the other arguments is the same as in the Table.where() method.

Table.read_where(condition, condvars=None, field=None, start=None, stop=None, step=None)
Read table data fulfilling the given condition.

This method is similar to Table.read(), having their common arguments and return values the same mean-
ings. However, only the rows fulfilling the condition are included in the result.

The meaning of the other arguments is the same as in the Table.where() method.

Table.where(condition, condvars=None, start=None, stop=None, step=None)
Iterate over values fulfilling a condition.

This method returns a Row iterator (see The Row class) which only selects rows in the table that satisfy the
given condition (an expression-like string).

The condvars mapping may be used to define the variable names appearing in the condition. condvars should
consist of identifier-like strings pointing to Column (see The Column class) instances of this table, or to other
values (which will be converted to arrays). A default set of condition variables is provided where each top-level,
non-nested column with an identifier-like name appears. Variables in condvars override the default ones.

When condvars is not provided or None, the current local and global namespace is sought instead of condvars.
The previous mechanism is mostly intended for interactive usage. To disable it, just specify a (maybe empty)
mapping as condvars.

If a range is supplied (by setting some of the start, stop or step parameters), only the rows in that range and
fulfilling the condition are used. The meaning of the start, stop and step parameters is the same as for Python
slices.

When possible, indexed columns participating in the condition will be used to speed up the search. It is recom-
mended that you place the indexed columns as left and out in the condition as possible. Anyway, this method
has always better performance than regular Python selections on the table.

You can mix this method with regular Python selections in order to support even more complex queries. It is
strongly recommended that you pass the most restrictive condition as the parameter to this method if you want
to achieve maximum performance.

Warning: When in the middle of a table row iterator, you should not use methods that can change the
number of rows in the table (like Table.append() or Table.remove_rows()) or unexpected errors
will happen.

Examples

>>> passvalues = [row['col3'] for row in
... table.where('(col1 > 0) & (col2 <= 20)', step=5)
... if your_function(row['col2'])]
>>> print("Values that pass the cuts:", passvalues)

Note: A special care should be taken when the query condition includes string literals. Indeed Python 2 string
literals are string of bytes while Python 3 strings are unicode objects.

Let’s assume that the table table has the following structure:

102 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

class Record(IsDescription):
col1 = StringCol(4) # 4-character String of bytes
col2 = IntCol()
col3 = FloatCol()

The type of “col1” do not change depending on the Python version used (of course) and it always corresponds
to strings of bytes.

Any condition involving “col1” should be written using the appropriate type for string literals in order to avoid
TypeErrors.

The code below will work fine in Python 2 but will fail with a TypeError in Python 3:

condition = 'col1 == "AAAA"'
for record in table.where(condition): # TypeError in Python3

do something with "record"

The reason is that in Python 3 “condition” implies a comparison between a string of bytes (“col1” contents) and
an unicode literal (“AAAA”).

The correct way to write the condition is:

condition = 'col1 == b"AAAA"'

Changed in version 3.0: The start, stop and step parameters now behave like in slice.

Table.append_where(dstTable, condition=None, condvars=None, start=None, stop=None, step=None)
Append rows fulfilling the condition to the dstTable table.

dstTable must be capable of taking the rows resulting from the query, i.e. it must have columns with the expected
names and compatible types. The meaning of the other arguments is the same as in the Table.where()
method.

The number of rows appended to dstTable is returned as a result.

Changed in version 3.0: The whereAppend method has been renamed into append_where.

Table.will_query_use_indexing(condition, condvars=None)
Will a query for the condition use indexing?

The meaning of the condition and condvars arguments is the same as in the Table.where() method. If
condition can use indexing, this method returns a frozenset with the path names of the columns whose index is
usable. Otherwise, it returns an empty list.

This method is mainly intended for testing. Keep in mind that changing the set of indexed columns or their
dirtiness may make this method return different values for the same arguments at different times.

Table methods - other

Table.copy(newparent=None, newname=None, overwrite=False, createparents=False, **kwargs)
Copy this table and return the new one.

This method has the behavior and keywords described in Leaf.copy(). Moreover, it recognises the following
additional keyword arguments.

Parameters sortby :

If specified, and sortby corresponds to a column with an index, then the copy will be
sorted by this index. If you want to ensure a fully sorted order, the index must be a CSI

4.4. Structured storage classes 103

PyTables User Guide, Release 3.3.0

one. A reverse sorted copy can be achieved by specifying a negative value for the step
keyword. If sortby is omitted or None, the original table order is used.

checkCSI :

If true and a CSI index does not exist for the sortby column, an error will be raised. If
false (the default), it does nothing. You can use this flag in order to explicitly check for
the existence of a CSI index.

propindexes :

If true, the existing indexes in the source table are propagated (created) to the new one.
If false (the default), the indexes are not propagated.

Table.flush_rows_to_index(_lastrow=True)
Add remaining rows in buffers to non-dirty indexes.

This can be useful when you have chosen non-automatic indexing for the table (see the Table.autoindex
property in Table) and you want to update the indexes on it.

Table.get_enum(colname)
Get the enumerated type associated with the named column.

If the column named colname (a string) exists and is of an enumerated type, the corresponding Enum instance
(see The Enum class) is returned. If it is not of an enumerated type, a TypeError is raised. If the column does
not exist, a KeyError is raised.

Table.reindex()
Recompute all the existing indexes in the table.

This can be useful when you suspect that, for any reason, the index information for columns is no longer valid
and want to rebuild the indexes on it.

Table.reindex_dirty()
Recompute the existing indexes in table, if they are dirty.

This can be useful when you have set Table.autoindex (see Table) to false for the table and you want to
update the indexes after a invalidating index operation (Table.remove_rows(), for example).

The Description class

class tables.Description(classdict, nestedlvl=-1, validate=True)
This class represents descriptions of the structure of tables.

An instance of this class is automatically bound to Table (see The Table class) objects when they are created. It
provides a browseable representation of the structure of the table, made of non-nested (Col - see The Col class
and its descendants) and nested (Description) columns.

Column definitions under a description can be accessed as attributes of it (natural naming). For instance,
if table.description is a Description instance with a column named col1 under it, the later can be ac-
cessed as table.description.col1. If col1 is nested and contains a col2 column, this can be accessed as ta-
ble.description.col1.col2. Because of natural naming, the names of members start with special prefixes, like
in the Group class (see The Group class).

Description attributes

_v_colobjects
A dictionary mapping the names of the columns hanging directly from the associated table or nested

104 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

column to their respective descriptions (Col - see The Col class and its descendants or Description - see
The Description class instances).

Changed in version 3.0: The _v_colObjects attobute has been renamed into _v_colobjects.

_v_dflts
A dictionary mapping the names of non-nested columns hanging directly from the associated table or
nested column to their respective default values.

_v_dtype
The NumPy type which reflects the structure of this table or nested column. You can use this as the dtype
argument of NumPy array factories.

_v_dtypes
A dictionary mapping the names of non-nested columns hanging directly from the associated table or
nested column to their respective NumPy types.

_v_is_nested
Whether the associated table or nested column contains further nested columns or not.

_v_itemsize
The size in bytes of an item in this table or nested column.

_v_name
The name of this description group. The name of the root group is ‘/’.

_v_names
A list of the names of the columns hanging directly from the associated table or nested column. The order
of the names matches the order of their respective columns in the containing table.

_v_nested_descr
A nested list of pairs of (name, format) tuples for all the columns under this table or nested column. You
can use this as the dtype and descr arguments of NumPy array factories.

Changed in version 3.0: The _v_nestedDescr attribute has been renamed into _v_nested_descr.

_v_nested_formats
A nested list of the NumPy string formats (and shapes) of all the columns under this table or nested column.
You can use this as the formats argument of NumPy array factories.

Changed in version 3.0: The _v_nestedFormats attribute has been renamed into _v_nested_formats.

_v_nestedlvl
The level of the associated table or nested column in the nested datatype.

_v_nested_names
A nested list of the names of all the columns under this table or nested column. You can use this as the
names argument of NumPy array factories.

Changed in version 3.0: The _v_nestedNames attribute has been renamed into _v_nested_names.

_v_pathname
Pathname of the table or nested column.

_v_pathnames
A list of the pathnames of all the columns under this table or nested column (in preorder). If it does not
contain nested columns, this is exactly the same as the Description._v_names attribute.

_v_types
A dictionary mapping the names of non-nested columns hanging directly from the associated table or
nested column to their respective PyTables types.

4.4. Structured storage classes 105

PyTables User Guide, Release 3.3.0

Description methods

Description._f_walk(type=’All’)
Iterate over nested columns.

If type is ‘All’ (the default), all column description objects (Col and Description instances) are yielded in top-
to-bottom order (preorder).

If type is ‘Col’ or ‘Description’, only column descriptions of that type are yielded.

The Row class

class tables.tableextension.Row
Table row iterator and field accessor.

Instances of this class are used to fetch and set the values of individual table fields. It works very much like
a dictionary, where keys are the pathnames or positions (extended slicing is supported) of the fields in the
associated table in a specific row.

This class provides an iterator interface so that you can use the same Row instance to access successive table
rows one after the other. There are also some important methods that are useful for accessing, adding and
modifying values in tables.

Row attributes

nrow
The current row number.

This property is useful for knowing which row is being dealt with in the middle of a loop or iterator.

Row methods

Row.append()
Add a new row of data to the end of the dataset.

Once you have filled the proper fields for the current row, calling this method actually appends the new data to
the output buffer (which will eventually be dumped to disk). If you have not set the value of a field, the default
value of the column will be used.

Warning: After completion of the loop in which Row.append() has been called, it is always convenient
to make a call to Table.flush() in order to avoid losing the last rows that may still remain in internal
buffers.

Examples

row = table.row
for i in xrange(nrows):

row['col1'] = i-1
row['col2'] = 'a'
row['col3'] = -1.0
row.append()

table.flush()

106 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

Row.fetch_all_fields()
Retrieve all the fields in the current row.

Contrarily to row[:] (see Row special methods), this returns row data as a NumPy void scalar. For instance:

[row.fetch_all_fields() for row in table.where('col1 < 3')]

will select all the rows that fulfill the given condition as a list of NumPy records.

Row.update()
Change the data of the current row in the dataset.

This method allows you to modify values in a table when you are in the middle of a table iterator like
Table.iterrows() or Table.where().

Once you have filled the proper fields for the current row, calling this method actually changes data in the output
buffer (which will eventually be dumped to disk). If you have not set the value of a field, its original value will
be used.

Warning: After completion of the loop in which Row.update() has been called, it is always convenient
to make a call to Table.flush() in order to avoid losing changed rows that may still remain in internal
buffers.

Examples

for row in table.iterrows(step=10):
row['col1'] = row.nrow
row['col2'] = 'b'
row['col3'] = 0.0
row.update()

table.flush()

which modifies every tenth row in table. Or:

for row in table.where('col1 > 3'):
row['col1'] = row.nrow
row['col2'] = 'b'
row['col3'] = 0.0
row.update()

table.flush()

which just updates the rows with values bigger than 3 in the first column.

Row special methods

Row.__contains__(item)
A true value is returned if item is found in current row, false otherwise.

Row.__getitem__(key)
Get the row field specified by the key.

The key can be a string (the name of the field), an integer (the position of the field) or a slice (the range of field
positions). When key is a slice, the returned value is a tuple containing the values of the specified fields.

4.4. Structured storage classes 107

PyTables User Guide, Release 3.3.0

Examples

res = [row['var3'] for row in table.where('var2 < 20')]

which selects the var3 field for all the rows that fulfil the condition. Or:

res = [row[4] for row in table if row[1] < 20]

which selects the field in the 4th position for all the rows that fulfil the condition. Or:

res = [row[:] for row in table if row['var2'] < 20]

which selects the all the fields (in the form of a tuple) for all the rows that fulfil the condition. Or:

res = [row[1::2] for row in table.iterrows(2, 3000, 3)]

which selects all the fields in even positions (in the form of a tuple) for all the rows in the slice [2:3000:3].

Row.__setitem__(key, value)
Set the key row field to the specified value.

Differently from its __getitem__() counterpart, in this case key can only be a string (the name of the field). The
changes done via __setitem__() will not take effect on the data on disk until any of the Row.append() or
Row.update() methods are called.

Examples

for row in table.iterrows(step=10):
row['col1'] = row.nrow
row['col2'] = 'b'
row['col3'] = 0.0
row.update()

table.flush()

which modifies every tenth row in the table.

The Cols class

class tables.Cols(table, desc)
Container for columns in a table or nested column.

This class is used as an accessor to the columns in a table or nested column. It supports the natural naming
convention, so that you can access the different columns as attributes which lead to Column instances (for
non-nested columns) or other Cols instances (for nested columns).

For instance, if table.cols is a Cols instance with a column named col1 under it, the later can be accessed as
table.cols.col1. If col1 is nested and contains a col2 column, this can be accessed as table.cols.col1.col2 and so
on. Because of natural naming, the names of members start with special prefixes, like in the Group class (see
The Group class).

Like the Column class (see The Column class), Cols supports item access to read and write ranges of values in
the table or nested column.

108 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

Cols attributes

_v_colnames
A list of the names of the columns hanging directly from the associated table or nested column. The order
of the names matches the order of their respective columns in the containing table.

_v_colpathnames
A list of the pathnames of all the columns under the associated table or nested column (in preorder). If it
does not contain nested columns, this is exactly the same as the Cols._v_colnames attribute.

_v_desc
The associated Description instance (see The Description class).

Cols properties

Cols._v_table
The parent Table instance (see The Table class).

Cols methods

Cols._f_col(colname)
Get an accessor to the column colname.

This method returns a Column instance (see The Column class) if the requested column is not nested, and a Cols
instance (see The Cols class) if it is. You may use full column pathnames in colname.

Calling cols._f_col(‘col1/col2’) is equivalent to using cols.col1.col2. However, the first syntax is more intended
for programmatic use. It is also better if you want to access columns with names that are not valid Python
identifiers.

Cols.__getitem__(key)
Get a row or a range of rows from a table or nested column.

If key argument is an integer, the corresponding nested type row is returned as a record of the current flavor. If
key is a slice, the range of rows determined by it is returned as a structured array of the current flavor.

Examples

record = table.cols[4] # equivalent to table[4]
recarray = table.cols.Info[4:1000:2]

Those statements are equivalent to:

nrecord = table.read(start=4)[0]
nrecarray = table.read(start=4, stop=1000, step=2).field('Info')

Here you can see how a mix of natural naming, indexing and slicing can be used as shorthands for the
Table.read() method.

Cols.__len__()
Get the number of top level columns in table.

Cols.__setitem__(key, value)
Set a row or a range of rows in a table or nested column.

If key argument is an integer, the corresponding row is set to value. If key is a slice, the range of rows determined
by it is set to value.

4.4. Structured storage classes 109

PyTables User Guide, Release 3.3.0

Examples

table.cols[4] = record
table.cols.Info[4:1000:2] = recarray

Those statements are equivalent to:

table.modify_rows(4, rows=record)
table.modify_column(4, 1000, 2, colname='Info', column=recarray)

Here you can see how a mix of natural naming, indexing and slicing can be used as shorthands for the
Table.modify_rows() and Table.modify_column() methods.

The Column class

class tables.Column(table, name, descr)
Accessor for a non-nested column in a table.

Each instance of this class is associated with one non-nested column of a table. These instances are mainly used
to read and write data from the table columns using item access (like the Cols class - see The Cols class), but
there are a few other associated methods to deal with indexes.

Column attributes

descr
The Description (see The Description class) instance of the parent table or nested column.

name
The name of the associated column.

pathname
The complete pathname of the associated column (the same as Column.name if the column is not inside a
nested column).

Parameters table :

The parent table instance

name :

The name of the column that is associated with this object

descr :

The parent description object

Column instance variables

Column.dtype
The NumPy dtype that most closely matches this column.

Column.index
The Index instance (see The Index class) associated with this column (None if the column is not indexed).

Column.is_indexed
True if the column is indexed, false otherwise.

110 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

Column.maindim
“The dimension along which iterators work. Its value is 0 (i.e. the first dimension).

Column.shape
The shape of this column.

Column.table
The parent Table instance (see The Table class).

Column.type
The PyTables type of the column (a string).

Column methods

Column.create_index(optlevel=6, kind=’medium’, filters=None, tmp_dir=None, _blocksizes=None,
_testmode=False, _verbose=False)

Create an index for this column.

Warning: In some situations it is useful to get a completely sorted index (CSI). For those cases, it is best to
use the Column.create_csindex() method instead.

Parameters optlevel : int

The optimization level for building the index. The levels ranges from 0 (no opti-
mization) up to 9 (maximum optimization). Higher levels of optimization mean better
chances for reducing the entropy of the index at the price of using more CPU, memory
and I/O resources for creating the index.

kind : str

The kind of the index to be built. It can take the ‘ultralight’, ‘light’, ‘medium’ or ‘full’
values. Lighter kinds (‘ultralight’ and ‘light’) mean that the index takes less space on
disk, but will perform queries slower. Heavier kinds (‘medium’ and ‘full’) mean better
chances for reducing the entropy of the index (increasing the query speed) at the price
of using more disk space as well as more CPU, memory and I/O resources for creating
the index.

Note that selecting a full kind with an optlevel of 9 (the maximum) guarantees the cre-
ation of an index with zero entropy, that is, a completely sorted index (CSI) - provided
that the number of rows in the table does not exceed the 2**48 figure (that is more than
100 trillions of rows). See Column.create_csindex() method for a more direct
way to create a CSI index.

filters : Filters

Specify the Filters instance used to compress the index. If None, default index filters
will be used (currently, zlib level 1 with shuffling).

tmp_dir :

When kind is other than ‘ultralight’, a temporary file is created during the index build
process. You can use the tmp_dir argument to specify the directory for this temporary
file. The default is to create it in the same directory as the file containing the original
table.

Column.create_csindex(filters=None, tmp_dir=None, _blocksizes=None, _testmode=False, _ver-
bose=False)

Create a completely sorted index (CSI) for this column.

4.4. Structured storage classes 111

PyTables User Guide, Release 3.3.0

This method guarantees the creation of an index with zero entropy, that is, a completely sorted index
(CSI) – provided that the number of rows in the table does not exceed the 2**48 figure (that is more than
100 trillions of rows). A CSI index is needed for some table methods (like Table.itersorted() or
Table.read_sorted()) in order to ensure completely sorted results.

For the meaning of filters and tmp_dir arguments see Column.create_index().

Notes

This method is equivalent to Column.create_index(optlevel=9, kind=’full’, ...).

Column.reindex()
Recompute the index associated with this column.

This can be useful when you suspect that, for any reason, the index information is no longer valid and you want
to rebuild it.

This method does nothing if the column is not indexed.

Column.reindex_dirty()
Recompute the associated index only if it is dirty.

This can be useful when you have set Table.autoindex to false for the table and you want to update the
column’s index after an invalidating index operation (like Table.remove_rows()).

This method does nothing if the column is not indexed.

Column.remove_index()
Remove the index associated with this column.

This method does nothing if the column is not indexed. The removed index can be created again by calling the
Column.create_index() method.

Column special methods

Column.__getitem__(key)
Get a row or a range of rows from a column.

If key argument is an integer, the corresponding element in the column is returned as an object of the current
flavor. If key is a slice, the range of elements determined by it is returned as an array of the current flavor.

Examples

print("Column handlers:")
for name in table.colnames:

print(table.cols._f_col(name))
print("Select table.cols.name[1]-->", table.cols.name[1])
print("Select table.cols.name[1:2]-->", table.cols.name[1:2])
print("Select table.cols.name[:]-->", table.cols.name[:])
print("Select table.cols._f_col('name')[:]-->",

table.cols._f_col('name')[:])

The output of this for a certain arbitrary table is:

Column handlers:
/table.cols.name (Column(), string, idx=None)
/table.cols.lati (Column(), int32, idx=None)

112 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

/table.cols.longi (Column(), int32, idx=None)
/table.cols.vector (Column(2,), int32, idx=None)
/table.cols.matrix2D (Column(2, 2), float64, idx=None)
Select table.cols.name[1]--> Particle: 11
Select table.cols.name[1:2]--> ['Particle: 11']
Select table.cols.name[:]--> ['Particle: 10'
'Particle: 11' 'Particle: 12'
'Particle: 13' 'Particle: 14']
Select table.cols._f_col('name')[:]--> ['Particle: 10'
'Particle: 11' 'Particle: 12'
'Particle: 13' 'Particle: 14']

See the examples/table2.py file for a more complete example.

Column.__len__()
Get the number of elements in the column.

This matches the length in rows of the parent table.

Column.__setitem__(key, value)
Set a row or a range of rows in a column.

If key argument is an integer, the corresponding element is set to value. If key is a slice, the range of elements
determined by it is set to value.

Examples

Modify row 1
table.cols.col1[1] = -1

Modify rows 1 and 3
table.cols.col1[1::2] = [2,3]

Which is equivalent to:

Modify row 1
table.modify_columns(start=1, columns=[[-1]], names=['col1'])

Modify rows 1 and 3
columns = numpy.rec.fromarrays([[2,3]], formats='i4')
table.modify_columns(start=1, step=2, columns=columns,

names=['col1'])

Homogenous storage classes

The Array class

class tables.Array(parentnode, name, obj=None, title=’‘, byteorder=None, _log=True, _atom=None)
This class represents homogeneous datasets in an HDF5 file.

This class provides methods to write or read data to or from array objects in the file. This class does not allow
you neither to enlarge nor compress the datasets on disk; use the EArray class (see The EArray class) if you
want enlargeable dataset support or compression features, or CArray (see The CArray class) if you just want
compression.

4.5. Homogenous storage classes 113

PyTables User Guide, Release 3.3.0

An interesting property of the Array class is that it remembers the flavor of the object that has been saved so that
if you saved, for example, a list, you will get a list during readings afterwards; if you saved a NumPy array, you
will get a NumPy object, and so forth.

Note that this class inherits all the public attributes and methods that Leaf (see The Leaf class) already provides.
However, as Array instances have no internal I/O buffers, it is not necessary to use the flush() method they
inherit from Leaf in order to save their internal state to disk. When a writing method call returns, all the data is
already on disk.

Parameters parentnode :

The parent Group object.

Changed in version 3.0: Renamed from parentNode to parentnode

name : str

The name of this node in its parent group.

obj :

The array or scalar to be saved. Accepted types are NumPy arrays and scalars as well
as native Python sequences and scalars, provided that values are regular (i.e. they are
not like [[1,2],2]) and homogeneous (i.e. all the elements are of the same type).

Changed in version 3.0: Renamed form object into obj.

title :

A description for this node (it sets the TITLE HDF5 attribute on disk).

byteorder :

The byteorder of the data on disk, specified as ‘little’ or ‘big’. If this is not specified,
the byteorder is that of the given object.

Array instance variables

Array.atom
An Atom (see The Atom class and its descendants) instance representing the type and shape of the atomic objects
to be saved.

Array.rowsize
The size of the rows in bytes in dimensions orthogonal to maindim.

Array.nrow
On iterators, this is the index of the current row.

Array.nrows
The number of rows in the array.

Array methods

Array.get_enum()
Get the enumerated type associated with this array.

If this array is of an enumerated type, the corresponding Enum instance (see The Enum class) is returned. If it
is not of an enumerated type, a TypeError is raised.

114 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

Array.iterrows(start=None, stop=None, step=None)
Iterate over the rows of the array.

This method returns an iterator yielding an object of the current flavor for each selected row in the array. The
returned rows are taken from the main dimension.

If a range is not supplied, all the rows in the array are iterated upon - you can also use the Array.__iter__()
special method for that purpose. If you only want to iterate over a given range of rows in the array, you may use
the start, stop and step parameters.

Examples

result = [row for row in arrayInstance.iterrows(step=4)]

Changed in version 3.0: If the start parameter is provided and stop is None then the array is iterated from start
to the last line. In PyTables < 3.0 only one element was returned.

Array.next()

Array.read(start=None, stop=None, step=None, out=None)
Get data in the array as an object of the current flavor.

The start, stop and step parameters can be used to select only a range of rows in the array. Their meanings
are the same as in the built-in range() Python function, except that negative values of step are not allowed yet.
Moreover, if only start is specified, then stop will be set to start + 1. If you do not specify neither start nor stop,
then all the rows in the array are selected.

The out parameter may be used to specify a NumPy array to receive the output data. Note that the array must
have the same size as the data selected with the other parameters. Note that the array’s datatype is not checked
and no type casting is performed, so if it does not match the datatype on disk, the output will not be correct.
Also, this parameter is only valid when the array’s flavor is set to ‘numpy’. Otherwise, a TypeError will be
raised.

When data is read from disk in NumPy format, the output will be in the current system’s byteorder, regardless
of how it is stored on disk. The exception is when an output buffer is supplied, in which case the output will be
in the byteorder of that output buffer.

Changed in version 3.0: Added the out parameter.

Array special methods

The following methods automatically trigger actions when an Array instance is accessed in a special way (e.g.
array[2:3,...,::2] will be equivalent to a call to array.__getitem__((slice(2, 3, None),
Ellipsis, slice(None, None, 2)))).

Array.__getitem__(key)
Get a row, a range of rows or a slice from the array.

The set of tokens allowed for the key is the same as that for extended slicing in Python (including the Ellipsis or
... token). The result is an object of the current flavor; its shape depends on the kind of slice used as key and the
shape of the array itself.

Furthermore, NumPy-style fancy indexing, where a list of indices in a certain axis is specified, is also supported.
Note that only one list per selection is supported right now. Finally, NumPy-style point and boolean selections
are supported as well.

4.5. Homogenous storage classes 115

PyTables User Guide, Release 3.3.0

Examples

array1 = array[4] # simple selection
array2 = array[4:1000:2] # slice selection
array3 = array[1, ..., ::2, 1:4, 4:] # general slice selection
array4 = array[1, [1,5,10], ..., -1] # fancy selection
array5 = array[np.where(array[:] > 4)] # point selection
array6 = array[array[:] > 4] # boolean selection

Array.__iter__()
Iterate over the rows of the array.

This is equivalent to calling Array.iterrows() with default arguments, i.e. it iterates over all the rows in
the array.

Examples

result = [row[2] for row in array]

Which is equivalent to:

result = [row[2] for row in array.iterrows()]

Array.__setitem__(key, value)
Set a row, a range of rows or a slice in the array.

It takes different actions depending on the type of the key parameter: if it is an integer, the corresponding array
row is set to value (the value is broadcast when needed). If key is a slice, the row slice determined by it is set
to value (as usual, if the slice to be updated exceeds the actual shape of the array, only the values in the existing
range are updated).

If value is a multidimensional object, then its shape must be compatible with the shape determined by key,
otherwise, a ValueError will be raised.

Furthermore, NumPy-style fancy indexing, where a list of indices in a certain axis is specified, is also supported.
Note that only one list per selection is supported right now. Finally, NumPy-style point and boolean selections
are supported as well.

Examples

a1[0] = 333 # assign an integer to a Integer Array row
a2[0] = 'b' # assign a string to a string Array row
a3[1:4] = 5 # broadcast 5 to slice 1:4
a4[1:4:2] = 'xXx' # broadcast 'xXx' to slice 1:4:2

General slice update (a5.shape = (4,3,2,8,5,10).
a5[1, ..., ::2, 1:4, 4:] = numpy.arange(1728, shape=(4,3,2,4,3,6))
a6[1, [1,5,10], ..., -1] = arr # fancy selection
a7[np.where(a6[:] > 4)] = 4 # point selection + broadcast
a8[arr > 4] = arr2 # boolean selection

116 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

The CArray class

class tables.CArray(parentnode, name, atom=None, shape=None, title=’‘, filters=None,
chunkshape=None, byteorder=None, _log=True)

This class represents homogeneous datasets in an HDF5 file.

The difference between a CArray and a normal Array (see The Array class), from which it inherits, is that a
CArray has a chunked layout and, as a consequence, it supports compression. You can use datasets of this class
to easily save or load arrays to or from disk, with compression support included.

CArray includes all the instance variables and methods of Array. Only those with different behavior are men-
tioned here.

Parameters parentnode :

The parent Group object.

Changed in version 3.0: Renamed from parentNode to parentnode.

name : str

The name of this node in its parent group.

atom :

An Atom instance representing the type and shape of the atomic objects to be saved.

shape :

The shape of the new array.

title :

A description for this node (it sets the TITLE HDF5 attribute on disk).

filters :

An instance of the Filters class that provides information about the desired I/O filters to
be applied during the life of this object.

chunkshape :

The shape of the data chunk to be read or written in a single HDF5 I/O operation. Filters
are applied to those chunks of data. The dimensionality of chunkshape must be the same
as that of shape. If None, a sensible value is calculated (which is recommended).

byteorder :

The byteorder of the data on disk, specified as ‘little’ or ‘big’. If this is not specified,
the byteorder is that of the platform.

Examples

See below a small example of the use of the CArray class. The code is available in examples/carray1.py:

import numpy
import tables

fileName = 'carray1.h5'
shape = (200, 300)
atom = tables.UInt8Atom()
filters = tables.Filters(complevel=5, complib='zlib')

4.5. Homogenous storage classes 117

PyTables User Guide, Release 3.3.0

h5f = tables.open_file(fileName, 'w')
ca = h5f.create_carray(h5f.root, 'carray', atom, shape,

filters=filters)

Fill a hyperslab in ``ca``.
ca[10:60, 20:70] = numpy.ones((50, 50))
h5f.close()

Re-open a read another hyperslab
h5f = tables.open_file(fileName)
print(h5f)
print(h5f.root.carray[8:12, 18:22])
h5f.close()

The output for the previous script is something like:

carray1.h5 (File) ''
Last modif.: 'Thu Apr 12 10:15:38 2007'
Object Tree:
/ (RootGroup) ''
/carray (CArray(200, 300), shuffle, zlib(5)) ''

[[0 0 0 0]
[0 0 0 0]
[0 0 1 1]
[0 0 1 1]]

The EArray class

class tables.EArray(parentnode, name, atom=None, shape=None, title=’‘, filters=None, expect-
edrows=None, chunkshape=None, byteorder=None, _log=True)

This class represents extendable, homogeneous datasets in an HDF5 file.

The main difference between an EArray and a CArray (see The CArray class), from which it inherits, is that
the former can be enlarged along one of its dimensions, the enlargeable dimension. That means that the
Leaf.extdim attribute (see Leaf) of any EArray instance will always be non-negative. Multiple enlargeable
dimensions might be supported in the future.

New rows can be added to the end of an enlargeable array by using the EArray.append() method.

Parameters parentnode :

The parent Group object.

Changed in version 3.0: Renamed from parentNode to parentnode.

name : str

The name of this node in its parent group.

atom :

An Atom instance representing the type and shape of the atomic objects to be saved.

shape :

The shape of the new array. One (and only one) of the shape dimensions must be 0.
The dimension being 0 means that the resulting EArray object can be extended along it.
Multiple enlargeable dimensions are not supported right now.

title :

118 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

A description for this node (it sets the TITLE HDF5 attribute on disk).

filters :

An instance of the Filters class that provides information about the desired I/O filters to
be applied during the life of this object.

expectedrows :

A user estimate about the number of row elements that will be added to the
growable dimension in the EArray node. If not provided, the default value is
EXPECTED_ROWS_EARRAY (see tables/parameters.py). If you plan to create
either a much smaller or a much bigger EArray try providing a guess; this will optimize
the HDF5 B-Tree creation and management process time and the amount of memory
used.

chunkshape :

The shape of the data chunk to be read or written in a single HDF5 I/O operation. Filters
are applied to those chunks of data. The dimensionality of chunkshape must be the same
as that of shape (beware: no dimension should be 0 this time!). If None, a sensible value
is calculated based on the expectedrows parameter (which is recommended).

byteorder :

The byteorder of the data on disk, specified as ‘little’ or ‘big’. If this is not specified,
the byteorder is that of the platform.

Examples

See below a small example of the use of the EArray class. The code is available in examples/earray1.py:

import tables
import numpy

fileh = tables.open_file('earray1.h5', mode='w')
a = tables.StringAtom(itemsize=8)

Use ``a`` as the object type for the enlargeable array.
array_c = fileh.create_earray(fileh.root, 'array_c', a, (0,),

"Chars")
array_c.append(numpy.array(['a'*2, 'b'*4], dtype='S8'))
array_c.append(numpy.array(['a'*6, 'b'*8, 'c'*10], dtype='S8'))

Read the string ``EArray`` we have created on disk.
for s in array_c:

print('array_c[%s] => %r' % (array_c.nrow, s))
Close the file.
fileh.close()

The output for the previous script is something like:

array_c[0] => 'aa'
array_c[1] => 'bbbb'
array_c[2] => 'aaaaaa'
array_c[3] => 'bbbbbbbb'
array_c[4] => 'cccccccc'

4.5. Homogenous storage classes 119

PyTables User Guide, Release 3.3.0

EArray methods

EArray.append(sequence)
Add a sequence of data to the end of the dataset.

The sequence must have the same type as the array; otherwise a TypeError is raised. In the same way, the
dimensions of the sequence must conform to the shape of the array, that is, all dimensions must match, with the
exception of the enlargeable dimension, which can be of any length (even 0!). If the shape of the sequence is
invalid, a ValueError is raised.

The VLArray class

class tables.VLArray(parentnode, name, atom=None, title=’‘, filters=None, expectedrows=None,
chunkshape=None, byteorder=None, _log=True)

This class represents variable length (ragged) arrays in an HDF5 file.

Instances of this class represent array objects in the object tree with the property that their rows can have a
variable number of homogeneous elements, called atoms. Like Table datasets (see The Table class), variable
length arrays can have only one dimension, and the elements (atoms) of their rows can be fully multidimensional.

When reading a range of rows from a VLArray, you will always get a Python list of objects of the current flavor
(each of them for a row), which may have different lengths.

This class provides methods to write or read data to or from variable length array objects in the file. Note that it
also inherits all the public attributes and methods that Leaf (see The Leaf class) already provides.

Note: VLArray objects also support compression although compression is only performed on the data structures
used internally by the HDF5 to take references of the location of the variable length data. Data itself (the raw
data) are not compressed or filtered.

Please refer to the VLTypes Technical Note for more details on the topic.

Parameters parentnode :

The parent Group object.

Changed in version 3.0: Renamed from parentNode to parentnode.

name : str

The name of this node in its parent group.

atom :

An Atom instance representing the type and shape of the atomic objects to be saved.

title :

A description for this node (it sets the TITLE HDF5 attribute on disk).

filters :

An instance of the Filters class that provides information about the desired I/O filters to
be applied during the life of this object.

expectedrows :

A user estimate about the number of row elements that will be added to the
growable dimension in the VLArray node. If not provided, the default value is

120 Chapter 4. Library Reference

http://www.hdfgroup.org/HDF5/doc/TechNotes/VLTypes.html

PyTables User Guide, Release 3.3.0

EXPECTED_ROWS_VLARRAY (see tables/parameters.py). If you plan to cre-
ate either a much smaller or a much bigger VLArray try providing a guess; this will
optimize the HDF5 B-Tree creation and management process time and the amount of
memory used.

New in version 3.0.

chunkshape :

The shape of the data chunk to be read or written in a single HDF5 I/O operation. Filters
are applied to those chunks of data. The dimensionality of chunkshape must be 1. If
None, a sensible value is calculated (which is recommended).

byteorder :

The byteorder of the data on disk, specified as ‘little’ or ‘big’. If this is not specified,
the byteorder is that of the platform.

.. versionchanged:: 3.0 :

The expectedsizeinMB parameter has been replaced by expectedrows.

Examples

See below a small example of the use of the VLArray class. The code is available in
examples/vlarray1.py:

import tables
from numpy import *

Create a VLArray:
fileh = tables.open_file('vlarray1.h5', mode='w')
vlarray = fileh.create_vlarray(fileh.root, 'vlarray1',
tables.Int32Atom(shape=()),

"ragged array of ints",
filters=tables.Filters(1))

Append some (variable length) rows:
vlarray.append(array([5, 6]))
vlarray.append(array([5, 6, 7]))
vlarray.append([5, 6, 9, 8])

Now, read it through an iterator:
print('-->', vlarray.title)
for x in vlarray:

print('%s[%d]--> %s' % (vlarray.name, vlarray.nrow, x))

Now, do the same with native Python strings.
vlarray2 = fileh.create_vlarray(fileh.root, 'vlarray2',
tables.StringAtom(itemsize=2),

"ragged array of strings",
filters=tables.Filters(1))

vlarray2.flavor = 'python'

Append some (variable length) rows:
print('-->', vlarray2.title)
vlarray2.append(['5', '66'])
vlarray2.append(['5', '6', '77'])
vlarray2.append(['5', '6', '9', '88'])

4.5. Homogenous storage classes 121

PyTables User Guide, Release 3.3.0

Now, read it through an iterator:
for x in vlarray2:

print('%s[%d]--> %s' % (vlarray2.name, vlarray2.nrow, x))

Close the file.
fileh.close()

The output for the previous script is something like:

--> ragged array of ints
vlarray1[0]--> [5 6]
vlarray1[1]--> [5 6 7]
vlarray1[2]--> [5 6 9 8]
--> ragged array of strings
vlarray2[0]--> ['5', '66']
vlarray2[1]--> ['5', '6', '77']
vlarray2[2]--> ['5', '6', '9', '88']

VLArray attributes

The instance variables below are provided in addition to those in Leaf (see The Leaf class).

atom
An Atom (see The Atom class and its descendants) instance representing the type and shape of the atomic
objects to be saved. You may use a pseudo-atom for storing a serialized object or variable length string per
row.

flavor
The type of data object read from this leaf.

Please note that when reading several rows of VLArray data, the flavor only applies to the components of
the returned Python list, not to the list itself.

nrow
On iterators, this is the index of the current row.

nrows
The current number of rows in the array.

extdim
The index of the enlargeable dimension (always 0 for vlarrays).

VLArray properties

VLArray.size_on_disk
The HDF5 library does not include a function to determine size_on_disk for variable-length arrays. Accessing
this attribute will raise a NotImplementedError.

VLArray.size_in_memory
The size of this array’s data in bytes when it is fully loaded into memory.

Note: When data is stored in a VLArray using the ObjectAtom type, it is first serialized using pickle, and
then converted to a NumPy array suitable for storage in an HDF5 file. This attribute will return the size of that
NumPy representation. If you wish to know the size of the Python objects after they are loaded from disk, you
can use this ActiveState recipe.

122 Chapter 4. Library Reference

http://code.activestate.com/recipes/577504/

PyTables User Guide, Release 3.3.0

VLArray methods

VLArray.append(sequence)
Add a sequence of data to the end of the dataset.

This method appends the objects in the sequence to a single row in this array. The type and shape of individual
objects must be compliant with the atoms in the array. In the case of serialized objects and variable length
strings, the object or string to append is itself the sequence.

VLArray.get_enum()
Get the enumerated type associated with this array.

If this array is of an enumerated type, the corresponding Enum instance (see The Enum class) is returned. If it
is not of an enumerated type, a TypeError is raised.

VLArray.iterrows(start=None, stop=None, step=None)
Iterate over the rows of the array.

This method returns an iterator yielding an object of the current flavor for each selected row in the array.

If a range is not supplied, all the rows in the array are iterated upon. You can also use the
VLArray.__iter__() special method for that purpose. If you only want to iterate over a given range
of rows in the array, you may use the start, stop and step parameters.

Examples

for row in vlarray.iterrows(step=4):
print('%s[%d]--> %s' % (vlarray.name, vlarray.nrow, row))

Changed in version 3.0: If the start parameter is provided and stop is None then the array is iterated from start
to the last line. In PyTables < 3.0 only one element was returned.

VLArray.next()

VLArray.read(start=None, stop=None, step=1)
Get data in the array as a list of objects of the current flavor.

Please note that, as the lengths of the different rows are variable, the returned value is a Python list (not an array
of the current flavor), with as many entries as specified rows in the range parameters.

The start, stop and step parameters can be used to select only a range of rows in the array. Their meanings
are the same as in the built-in range() Python function, except that negative values of step are not allowed yet.
Moreover, if only start is specified, then stop will be set to start + 1. If you do not specify neither start nor stop,
then all the rows in the array are selected.

VLArray.get_row_size()
Return the total size in bytes of all the elements contained in a given row.

VLArray special methods

The following methods automatically trigger actions when a VLArray instance is accessed in a special way (e.g.,
vlarray[2:5] will be equivalent to a call to vlarray.__getitem__(slice(2, 5, None)).

VLArray.__getitem__(key)
Get a row or a range of rows from the array.

If key argument is an integer, the corresponding array row is returned as an object of the current flavor. If key is
a slice, the range of rows determined by it is returned as a list of objects of the current flavor.

4.5. Homogenous storage classes 123

PyTables User Guide, Release 3.3.0

In addition, NumPy-style point selections are supported. In particular, if key is a list of row coordinates, the
set of rows determined by it is returned. Furthermore, if key is an array of boolean values, only the coordinates
where key is True are returned. Note that for the latter to work it is necessary that key list would contain exactly
as many rows as the array has.

Examples

a_row = vlarray[4]
a_list = vlarray[4:1000:2]
a_list2 = vlarray[[0,2]] # get list of coords
a_list3 = vlarray[[0,-2]] # negative values accepted
a_list4 = vlarray[numpy.array([True,...,False])] # array of bools

VLArray.__iter__()
Iterate over the rows of the array.

This is equivalent to calling VLArray.iterrows() with default arguments, i.e. it iterates over all the rows
in the array.

Examples

result = [row for row in vlarray]

Which is equivalent to:

result = [row for row in vlarray.iterrows()]

VLArray.__setitem__(key, value)
Set a row, or set of rows, in the array.

It takes different actions depending on the type of the key parameter: if it is an integer, the corresponding table
row is set to value (a record or sequence capable of being converted to the table structure). If key is a slice, the
row slice determined by it is set to value (a record array or sequence of rows capable of being converted to the
table structure).

In addition, NumPy-style point selections are supported. In particular, if key is a list of row coordinates, the set
of rows determined by it is set to value. Furthermore, if key is an array of boolean values, only the coordinates
where key is True are set to values from value. Note that for the latter to work it is necessary that key list would
contain exactly as many rows as the table has.

Note: When updating the rows of a VLArray object which uses a pseudo-atom, there is a problem: you can
only update values with exactly the same size in bytes than the original row. This is very difficult to meet with
object pseudo-atoms, because pickle applied on a Python object does not guarantee to return the same number
of bytes than over another object, even if they are of the same class. This effectively limits the kinds of objects
than can be updated in variable-length arrays.

Examples

vlarray[0] = vlarray[0] * 2 + 3
vlarray[99] = arange(96) * 2 + 3

Negative values for the index are supported.

124 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

vlarray[-99] = vlarray[5] * 2 + 3
vlarray[1:30:2] = list_of_rows
vlarray[[1,3]] = new_1_and_3_rows

Link classes

The Link class

class tables.link.Link(parentnode, name, target=None, _log=False)
Abstract base class for all PyTables links.

A link is a node that refers to another node. The Link class inherits from Node class and the links that inherits
from Link are SoftLink and ExternalLink. There is not a HardLink subclass because hard links behave like a
regular Group or Leaf. Contrarily to other nodes, links cannot have HDF5 attributes. This is an HDF5 library
limitation that might be solved in future releases.

See Using links for more convenient access to nodes for a small tutorial on how to work with links.

Link attributes

target
The path string to the pointed node.

Link instance variables

Link._v_attrs
A NoAttrs instance replacing the typical AttributeSet instance of other node objects. The purpose of NoAttrs is
to make clear that HDF5 attributes are not supported in link nodes.

Link methods

The following methods are useful for copying, moving, renaming and removing links.

Link.copy(newparent=None, newname=None, overwrite=False, createparents=False)
Copy this link and return the new one.

See Node._f_copy() for a complete explanation of the arguments. Please note that there is no recursive flag
since links do not have child nodes.

Link.move(newparent=None, newname=None, overwrite=False)
Move or rename this link.

See Node._f_move() for a complete explanation of the arguments.

Link.remove()
Remove this link from the hierarchy.

Link.rename(newname=None, overwrite=False)
Rename this link in place.

See Node._f_rename() for a complete explanation of the arguments.

4.6. Link classes 125

PyTables User Guide, Release 3.3.0

The SoftLink class

class tables.link.SoftLink(parentnode, name, target=None, _log=False)
Represents a soft link (aka symbolic link).

A soft link is a reference to another node in the same file hierarchy. Provided that the target node exists, its
attributes and methods can be accessed directly from the softlink using the normal . syntax.

Softlinks also have the following public methods/attributes:

•target

•dereference()

•copy()

•move()

•remove()

•rename()

•is_dangling()

Note that these will override any correspondingly named methods/attributes of the target node.

For backwards compatibility, it is also possible to obtain the target node via the __call__() special method (this
action is called dereferencing; see below)

Examples

>>> f = tables.open_file('/tmp/test_softlink.h5', 'w')
>>> a = f.create_array('/', 'A', np.arange(10))
>>> link_a = f.create_soft_link('/', 'link_A', target='/A')

transparent read/write access to a softlinked node
>>> link_a[0] = -1
>>> print(link_a[:], link_a.dtype)
(array([-1, 1, 2, 3, 4, 5, 6, 7, 8, 9]), dtype('int64'))

dereferencing a softlink using the __call__() method
>>> print(link_a() is a)
True

SoftLink.remove() overrides Array.remove()
>>> link_a.remove()
>>> print(link_a)
<closed tables.link.SoftLink at 0x7febe97186e0>
>>> print(a[:], a.dtype)
(array([-1, 1, 2, 3, 4, 5, 6, 7, 8, 9]), dtype('int64'))

SoftLink special methods

The following methods are specific for dereferrencing and representing soft links.

SoftLink.__call__()
Dereference self.target and return the object.

126 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

Examples

>>> f=tables.open_file('data/test.h5')
>>> print(f.root.link0)
/link0 (SoftLink) -> /another/path
>>> print(f.root.link0())
/another/path (Group) ''

SoftLink.__str__()
Return a short string representation of the link.

Examples

>>> f=tables.open_file('data/test.h5')
>>> print(f.root.link0)
/link0 (SoftLink) -> /path/to/node

The ExternalLink class

class tables.link.ExternalLink(parentnode, name, target=None, _log=False)
Represents an external link.

An external link is a reference to a node in another file. Getting access to the pointed node (this action is called
dereferencing) is done via the __call__() special method (see below).

ExternalLink attributes

extfile
The external file handler, if the link has been dereferenced. In case the link has not been dereferenced yet,
its value is None.

ExternalLink methods

ExternalLink.umount()
Safely unmount self.extfile, if opened.

ExternalLink special methods

The following methods are specific for dereferrencing and representing external links.

ExternalLink.__call__(**kwargs)
Dereference self.target and return the object.

You can pass all the arguments supported by the open_file() function (except filename, of course) so as to
open the referenced external file.

Examples

4.6. Link classes 127

PyTables User Guide, Release 3.3.0

>>> f=tables.open_file('data1/test1.h5')
>>> print(f.root.link2)
/link2 (ExternalLink) -> data2/test2.h5:/path/to/node
>>> plink2 = f.root.link2('a') # open in 'a'ppend mode
>>> print(plink2)
/path/to/node (Group) ''
>>> print(plink2._v_filename)
'data2/test2.h5' # belongs to referenced file

ExternalLink.__str__()
Return a short string representation of the link.

Examples

>>> f=tables.open_file('data1/test1.h5')
>>> print(f.root.link2)
/link2 (ExternalLink) -> data2/test2.h5:/path/to/node

Declarative classes

In this section a series of classes that are meant to declare datatypes that are required for creating primary PyTables
datasets are described.

The Atom class and its descendants

class tables.Atom(nptype, shape, dflt)
Defines the type of atomic cells stored in a dataset.

The meaning of atomic is that individual elements of a cell can not be extracted directly by indexing (i.e.
__getitem__()) the dataset; e.g. if a dataset has shape (2, 2) and its atoms have shape (3,), to get the third
element of the cell at (1, 0) one should use dataset[1,0][2] instead of dataset[1,0,2].

The Atom class is meant to declare the different properties of the base element (also known as atom) of CAr-
ray, EArray and VLArray datasets, although they are also used to describe the base elements of Array datasets.
Atoms have the property that their length is always the same. However, you can grow datasets along the exten-
sible dimension in the case of EArray or put a variable number of them on a VLArray row. Moreover, they are
not restricted to scalar values, and they can be fully multidimensional objects.

Parameters itemsize : int

For types with a non-fixed size, this sets the size in bytes of individual items in the atom.

shape : tuple

Sets the shape of the atom. An integer shape of N is equivalent to the tuple (N,).

dflt :

Sets the default value for the atom.

The following are the public methods and attributes of the Atom class. :

128 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

Notes

A series of descendant classes are offered in order to make the use of these element descriptions easier. You
should use a particular Atom descendant class whenever you know the exact type you will need when writing
your code. Otherwise, you may use one of the Atom.from_*() factory Methods.

Atom attributes

dflt
The default value of the atom.

If the user does not supply a value for an element while filling a dataset, this default value will be written to
disk. If the user supplies a scalar value for a multidimensional atom, this value is automatically broadcast
to all the items in the atom cell. If dflt is not supplied, an appropriate zero value (or null string) will be
chosen by default. Please note that default values are kept internally as NumPy objects.

dtype
The NumPy dtype that most closely matches this atom.

itemsize
Size in bytes of a single item in the atom. Specially useful for atoms of the string kind.

kind
The PyTables kind of the atom (a string).

shape
The shape of the atom (a tuple for scalar atoms).

type
The PyTables type of the atom (a string).

Atoms can be compared with atoms and other objects for strict (in)equality without having to compare
individual attributes:

>>> atom1 = StringAtom(itemsize=10) # same as ``atom2``
>>> atom2 = Atom.from_kind('string', 10) # same as ``atom1``
>>> atom3 = IntAtom()
>>> atom1 == 'foo'
False
>>> atom1 == atom2
True
>>> atom2 != atom1
False
>>> atom1 == atom3
False
>>> atom3 != atom2
True

Atom properties

Atom.ndim
The number of dimensions of the atom.

New in version 2.4.

Atom.recarrtype
String type to be used in numpy.rec.array().

4.7. Declarative classes 129

PyTables User Guide, Release 3.3.0

Atom.size
Total size in bytes of the atom.

Atom methods

Atom.copy(**override)
Get a copy of the atom, possibly overriding some arguments.

Constructor arguments to be overridden must be passed as keyword arguments:

>>> atom1 = Int32Atom(shape=12)
>>> atom2 = atom1.copy()
>>> print(atom1)
Int32Atom(shape=(12,), dflt=0)
>>> print(atom2)
Int32Atom(shape=(12,), dflt=0)
>>> atom1 is atom2
False
>>> atom3 = atom1.copy(shape=(2, 2))
>>> print(atom3)
Int32Atom(shape=(2, 2), dflt=0)
>>> atom1.copy(foobar=42)
Traceback (most recent call last):
...
TypeError: __init__() got an unexpected keyword argument 'foobar'

Atom factory methods

classmethod Atom.from_dtype(class_, dtype, dflt=None)
Create an Atom from a NumPy dtype.

An optional default value may be specified as the dflt argument. Information in the dtype not represented in an
Atom is ignored:

>>> import numpy
>>> Atom.from_dtype(numpy.dtype((numpy.int16, (2, 2))))
Int16Atom(shape=(2, 2), dflt=0)
>>> Atom.from_dtype(numpy.dtype('Float64'))
Float64Atom(shape=(), dflt=0.0)

Note: for easier use in Python 3, where all strings lead to the Unicode dtype, this dtype will also generate a
StringAtom. Since this is only viable for strings that are castable as ascii, a warning is issued.

>>> Atom.from_dtype(numpy.dtype('U20'))
Atom.py:392: FlavorWarning: support for unicode type is very limited,

and only works for strings that can be cast as ascii
StringAtom(itemsize=20, shape=(), dflt=b'')

classmethod Atom.from_kind(class_, kind, itemsize=None, shape=(), dflt=None)
Create an Atom from a PyTables kind.

Optional item size, shape and default value may be specified as the itemsize, shape and dflt arguments, respec-
tively. Bear in mind that not all atoms support a default item size:

>>> Atom.from_kind('int', itemsize=2, shape=(2, 2))
Int16Atom(shape=(2, 2), dflt=0)
>>> Atom.from_kind('int', shape=(2, 2))
Int32Atom(shape=(2, 2), dflt=0)

130 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

>>> Atom.from_kind('int', shape=1)
Int32Atom(shape=(1,), dflt=0)
>>> Atom.from_kind('string', dflt=b'hello')
Traceback (most recent call last):
...
ValueError: no default item size for kind ``string``
>>> Atom.from_kind('Float')
Traceback (most recent call last):
...
ValueError: unknown kind: 'Float'

Moreover, some kinds with atypical constructor signatures are not supported; you need to use the proper con-
structor:

>>> Atom.from_kind('enum')
Traceback (most recent call last):
...
ValueError: the ``enum`` kind is not supported...

classmethod Atom.from_sctype(class_, sctype, shape=(), dflt=None)
Create an Atom from a NumPy scalar type sctype.

Optional shape and default value may be specified as the shape and dflt arguments, respectively. Information in
the sctype not represented in an Atom is ignored:

>>> import numpy
>>> Atom.from_sctype(numpy.int16, shape=(2, 2))
Int16Atom(shape=(2, 2), dflt=0)
>>> Atom.from_sctype('S5', dflt='hello')
Traceback (most recent call last):
...
ValueError: unknown NumPy scalar type: 'S5'
>>> Atom.from_sctype('Float64')
Float64Atom(shape=(), dflt=0.0)

classmethod Atom.from_type(class_, type, shape=(), dflt=None)
Create an Atom from a PyTables type.

Optional shape and default value may be specified as the shape and dflt arguments, respectively:

>>> Atom.from_type('bool')
BoolAtom(shape=(), dflt=False)
>>> Atom.from_type('int16', shape=(2, 2))
Int16Atom(shape=(2, 2), dflt=0)
>>> Atom.from_type('string40', dflt='hello')
Traceback (most recent call last):
...
ValueError: unknown type: 'string40'
>>> Atom.from_type('Float64')
Traceback (most recent call last):
...
ValueError: unknown type: 'Float64'

Atom Sub-classes

class tables.StringAtom(itemsize, shape=(), dflt=’‘)
Defines an atom of type string.

The item size is the maximum length in characters of strings.

4.7. Declarative classes 131

PyTables User Guide, Release 3.3.0

itemsize
Size in bytes of a sigle item in the atom.

class tables.BoolAtom(shape=(), dflt=False)
Defines an atom of type bool.

class tables.IntAtom(itemsize=4, shape=(), dflt=0)
Defines an atom of a signed integral type (int kind).

class tables.Int8Atom(shape=(), dflt=0)
Defines an atom of type int8.

class tables.Int16Atom(shape=(), dflt=0)
Defines an atom of type int16.

class tables.Int32Atom(shape=(), dflt=0)
Defines an atom of type int32.

class tables.Int64Atom(shape=(), dflt=0)
Defines an atom of type int64.

class tables.UIntAtom(itemsize=4, shape=(), dflt=0)
Defines an atom of an unsigned integral type (uint kind).

class tables.UInt8Atom(shape=(), dflt=0)
Defines an atom of type uint8.

class tables.UInt16Atom(shape=(), dflt=0)
Defines an atom of type uint16.

class tables.UInt32Atom(shape=(), dflt=0)
Defines an atom of type uint32.

class tables.UInt64Atom(shape=(), dflt=0)
Defines an atom of type uint64.

class tables.FloatAtom(itemsize=8, shape=(), dflt=0.0)
Defines an atom of a floating point type (float kind).

class tables.Float32Atom(shape=(), dflt=0.0)
Defines an atom of type float32.

class tables.Float64Atom(shape=(), dflt=0.0)
Defines an atom of type float64.

class tables.ComplexAtom(itemsize, shape=(), dflt=0j)
Defines an atom of kind complex.

Allowed item sizes are 8 (single precision) and 16 (double precision). This class must be used instead of more
concrete ones to avoid confusions with numarray-like precision specifications used in PyTables 1.X.

itemsize
Size in bytes of a sigle item in the atom.

class tables.Time32Atom(shape=(), dflt=0)
Defines an atom of type time32.

class tables.Time64Atom(shape=(), dflt=0.0)
Defines an atom of type time64.

class tables.EnumAtom(enum, dflt, base, shape=())
Description of an atom of an enumerated type.

132 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

Instances of this class describe the atom type used to store enumerated values. Those values belong to an
enumerated type, defined by the first argument (enum) in the constructor of the atom, which accepts the same
kinds of arguments as the Enum class (see The Enum class). The enumerated type is stored in the enum attribute
of the atom.

A default value must be specified as the second argument (dflt) in the constructor; it must be the name (a string)
of one of the enumerated values in the enumerated type. When the atom is created, the corresponding concrete
value is broadcast and stored in the dflt attribute (setting different default values for items in a multidimensional
atom is not supported yet). If the name does not match any value in the enumerated type, a KeyError is raised.

Another atom must be specified as the base argument in order to determine the base type used for storing the
values of enumerated values in memory and disk. This storage atom is kept in the base attribute of the created
atom. As a shorthand, you may specify a PyTables type instead of the storage atom, implying that this has a
scalar shape.

The storage atom should be able to represent each and every concrete value in the enumeration. If it is not, a
TypeError is raised. The default value of the storage atom is ignored.

The type attribute of enumerated atoms is always enum.

Enumerated atoms also support comparisons with other objects:

>>> enum = ['T0', 'T1', 'T2']
>>> atom1 = EnumAtom(enum, 'T0', 'int8') # same as ``atom2``
>>> atom2 = EnumAtom(enum, 'T0', Int8Atom()) # same as ``atom1``
>>> atom3 = EnumAtom(enum, 'T0', 'int16')
>>> atom4 = Int8Atom()
>>> atom1 == enum
False
>>> atom1 == atom2
True
>>> atom2 != atom1
False
>>> atom1 == atom3
False
>>> atom1 == atom4
False
>>> atom4 != atom1
True

Examples

The next C enum construction:

enum myEnum {
T0,
T1,
T2

};

would correspond to the following PyTables declaration:

>>> my_enum_atom = EnumAtom(['T0', 'T1', 'T2'], 'T0', 'int32')

Please note the dflt argument with a value of ‘T0’. Since the concrete value matching T0 is unknown right now
(we have not used explicit concrete values), using the name is the only option left for defining a default value
for the atom.

4.7. Declarative classes 133

PyTables User Guide, Release 3.3.0

The chosen representation of values for this enumerated atom uses unsigned 32-bit integers, which surely wastes
quite a lot of memory. Another size could be selected by using the base argument (this time with a full-blown
storage atom):

>>> my_enum_atom = EnumAtom(['T0', 'T1', 'T2'], 'T0', UInt8Atom())

You can also define multidimensional arrays for data elements:

>>> my_enum_atom = EnumAtom(
... ['T0', 'T1', 'T2'], 'T0', base='uint32', shape=(3,2))

for 3x2 arrays of uint32.

itemsize
Size in bytes of a single item in the atom.

Pseudo atoms

Now, there come three special classes, ObjectAtom, VLStringAtom and VLUnicodeAtom, that actually do not descend
from Atom, but which goal is so similar that they should be described here. Pseudo-atoms can only be used with
VLArray datasets (see The VLArray class), and they do not support multidimensional values, nor multiple values per
row.

They can be recognised because they also have kind, type and shape attributes, but no size, itemsize or dflt ones.
Instead, they have a base atom which defines the elements used for storage.

See examples/vlarray1.py and examples/vlarray2.py for further examples on VLArray datasets, in-
cluding object serialization and string management.

ObjectAtom

class tables.ObjectAtom
Defines an atom of type object.

This class is meant to fit any kind of Python object in a row of a VLArray dataset by using pickle behind the
scenes. Due to the fact that you can not foresee how long will be the output of the pickle serialization (i.e. the
atom already has a variable length), you can only fit one object per row. However, you can still group several
objects in a single tuple or list and pass it to the VLArray.append() method.

Object atoms do not accept parameters and they cause the reads of rows to always return Python objects. You
can regard object atoms as an easy way to save an arbitrary number of generic Python objects in a VLArray
dataset.

VLStringAtom

class tables.VLStringAtom
Defines an atom of type vlstring.

This class describes a row of the VLArray class, rather than an atom. It differs from the StringAtom class in that
you can only add one instance of it to one specific row, i.e. the VLArray.append() method only accepts
one object when the base atom is of this type.

This class stores bytestrings. It does not make assumptions on the encoding of the string, and raw bytes are
stored as is. To store a string you will need to explicitly convert it to a bytestring before you can save them:

134 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

>>> s = 'A unicode string: hbar = \u210f'
>>> bytestring = s.encode('utf-8')
>>> VLArray.append(bytestring)

For full Unicode support, using VLUnicodeAtom (see VLUnicodeAtom) is recommended.

Variable-length string atoms do not accept parameters and they cause the reads of rows to always return Python
bytestrings. You can regard vlstring atoms as an easy way to save generic variable length strings.

VLUnicodeAtom

class tables.VLUnicodeAtom
Defines an atom of type vlunicode.

This class describes a row of the VLArray class, rather than an atom. It is very similar to VLStringAtom (see
VLStringAtom), but it stores Unicode strings (using 32-bit characters a la UCS-4, so all strings of the same
length also take up the same space).

This class does not make assumptions on the encoding of plain input strings. Plain strings are supported as long
as no character is out of the ASCII set; otherwise, you will need to explicitly convert them to Unicode before
you can save them.

Variable-length Unicode atoms do not accept parameters and they cause the reads of rows to always return
Python Unicode strings. You can regard vlunicode atoms as an easy way to save variable length Unicode
strings.

The Col class and its descendants

class tables.Col(nptype, shape, dflt)
Defines a non-nested column.

Col instances are used as a means to declare the different properties of a non-nested column in a table or nested
column. Col classes are descendants of their equivalent Atom classes (see The Atom class and its descendants),
but their instances have an additional _v_pos attribute that is used to decide the position of the column inside its
parent table or nested column (see the IsDescription class in The IsDescription class for more information on
column positions).

In the same fashion as Atom, you should use a particular Col descendant class whenever you know the exact
type you will need when writing your code. Otherwise, you may use one of the Col.from_*() factory methods.

Each factory method inherited from the Atom class is available with the same signature, plus an additional pos
parameter (placed in last position) which defaults to None and that may take an integer value. This parameter
might be used to specify the position of the column in the table.

Besides, there are the next additional factory methods, available only for Col objects.

The following parameters are available for most Col-derived constructors.

Parameters itemsize : int

For types with a non-fixed size, this sets the size in bytes of individual items in the
column.

shape : tuple

Sets the shape of the column. An integer shape of N is equivalent to the tuple (N,).

dflt :

Sets the default value for the column.

4.7. Declarative classes 135

PyTables User Guide, Release 3.3.0

pos : int

Sets the position of column in table. If unspecified, the position will be randomly se-
lected.

Col instance variables

In addition to the variables that they inherit from the Atom class, Col instances have the following attributes.

Col._v_pos
The relative position of this column with regard to its column siblings.

Col factory methods

classmethod Col.from_atom(class_, atom, pos=None)
Create a Col definition from a PyTables atom.

An optional position may be specified as the pos argument.

Col sub-classes

class tables.StringCol(*args, **kwargs)
Defines a non-nested column of a particular type.

The constructor accepts the same arguments as the equivalent Atom class, plus an additional pos argument for
position information, which is assigned to the _v_pos attribute.

class tables.BoolCol(*args, **kwargs)
Defines a non-nested column of a particular type.

The constructor accepts the same arguments as the equivalent Atom class, plus an additional pos argument for
position information, which is assigned to the _v_pos attribute.

class tables.IntCol(*args, **kwargs)
Defines a non-nested column of a particular type.

The constructor accepts the same arguments as the equivalent Atom class, plus an additional pos argument for
position information, which is assigned to the _v_pos attribute.

class tables.Int8Col(*args, **kwargs)
Defines a non-nested column of a particular type.

The constructor accepts the same arguments as the equivalent Atom class, plus an additional pos argument for
position information, which is assigned to the _v_pos attribute.

class tables.Int16Col(*args, **kwargs)
Defines a non-nested column of a particular type.

The constructor accepts the same arguments as the equivalent Atom class, plus an additional pos argument for
position information, which is assigned to the _v_pos attribute.

class tables.Int32Col(*args, **kwargs)
Defines a non-nested column of a particular type.

The constructor accepts the same arguments as the equivalent Atom class, plus an additional pos argument for
position information, which is assigned to the _v_pos attribute.

136 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

class tables.Int64Col(*args, **kwargs)
Defines a non-nested column of a particular type.

The constructor accepts the same arguments as the equivalent Atom class, plus an additional pos argument for
position information, which is assigned to the _v_pos attribute.

class tables.UIntCol(*args, **kwargs)
Defines a non-nested column of a particular type.

The constructor accepts the same arguments as the equivalent Atom class, plus an additional pos argument for
position information, which is assigned to the _v_pos attribute.

class tables.UInt8Col(*args, **kwargs)
Defines a non-nested column of a particular type.

The constructor accepts the same arguments as the equivalent Atom class, plus an additional pos argument for
position information, which is assigned to the _v_pos attribute.

class tables.UInt16Col(*args, **kwargs)
Defines a non-nested column of a particular type.

The constructor accepts the same arguments as the equivalent Atom class, plus an additional pos argument for
position information, which is assigned to the _v_pos attribute.

class tables.UInt32Col(*args, **kwargs)
Defines a non-nested column of a particular type.

The constructor accepts the same arguments as the equivalent Atom class, plus an additional pos argument for
position information, which is assigned to the _v_pos attribute.

class tables.UInt64Col(*args, **kwargs)
Defines a non-nested column of a particular type.

The constructor accepts the same arguments as the equivalent Atom class, plus an additional pos argument for
position information, which is assigned to the _v_pos attribute.

class tables.Float32Col(*args, **kwargs)
Defines a non-nested column of a particular type.

The constructor accepts the same arguments as the equivalent Atom class, plus an additional pos argument for
position information, which is assigned to the _v_pos attribute.

class tables.Float64Col(*args, **kwargs)
Defines a non-nested column of a particular type.

The constructor accepts the same arguments as the equivalent Atom class, plus an additional pos argument for
position information, which is assigned to the _v_pos attribute.

class tables.ComplexCol(*args, **kwargs)
Defines a non-nested column of a particular type.

The constructor accepts the same arguments as the equivalent Atom class, plus an additional pos argument for
position information, which is assigned to the _v_pos attribute.

class tables.TimeCol(*args, **kwargs)
Defines a non-nested column of a particular type.

The constructor accepts the same arguments as the equivalent Atom class, plus an additional pos argument for
position information, which is assigned to the _v_pos attribute.

class tables.Time32Col(*args, **kwargs)
Defines a non-nested column of a particular type.

4.7. Declarative classes 137

PyTables User Guide, Release 3.3.0

The constructor accepts the same arguments as the equivalent Atom class, plus an additional pos argument for
position information, which is assigned to the _v_pos attribute.

class tables.Time64Col(*args, **kwargs)
Defines a non-nested column of a particular type.

The constructor accepts the same arguments as the equivalent Atom class, plus an additional pos argument for
position information, which is assigned to the _v_pos attribute.

class tables.EnumCol(*args, **kwargs)
Defines a non-nested column of a particular type.

The constructor accepts the same arguments as the equivalent Atom class, plus an additional pos argument for
position information, which is assigned to the _v_pos attribute.

The IsDescription class

class tables.IsDescription
Description of the structure of a table or nested column.

This class is designed to be used as an easy, yet meaningful way to describe the structure of new Table (see The
Table class) datasets or nested columns through the definition of derived classes. In order to define such a class,
you must declare it as descendant of IsDescription, with as many attributes as columns you want in your table.
The name of each attribute will become the name of a column, and its value will hold a description of it.

Ordinary columns can be described using instances of the Col class (see The Col class and its descendants).
Nested columns can be described by using classes derived from IsDescription, instances of it, or name-
description dictionaries. Derived classes can be declared in place (in which case the column takes the name
of the class) or referenced by name.

Nested columns can have a _v_pos special attribute which sets the relative position of the column among sibling
columns also having explicit positions. The pos constructor argument of Col instances is used for the same
purpose. Columns with no explicit position will be placed afterwards in alphanumeric order.

Once you have created a description object, you can pass it to the Table constructor, where all the information it
contains will be used to define the table structure.

IsDescription attributes

_v_pos
Sets the position of a possible nested column description among its sibling columns. This attribute can be
specified when declaring an IsDescription subclass to complement its metadata.

columns
Maps the name of each column in the description to its own descriptive object. This attribute is automati-
cally created when an IsDescription subclass is declared. Please note that declared columns can no longer
be accessed as normal class variables after its creation.

Description helper functions

tables.description.descr_from_dtype(dtype_)
Get a description instance and byteorder from a (nested) NumPy dtype.

tables.description.dtype_from_descr(descr, byteorder=None)
Get a (nested) NumPy dtype from a description instance and byteorder.

The descr parameter can be a Description or IsDescription instance, sub-class of IsDescription or a dictionary.

138 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

The AttributeSet class

class tables.attributeset.AttributeSet(node)
Container for the HDF5 attributes of a Node.

This class provides methods to create new HDF5 node attributes, and to get, rename or delete existing ones.

Like in Group instances (see The Group class), AttributeSet instances make use of the natural naming con-
vention, i.e. you can access the attributes on disk as if they were normal Python attributes of the AttributeSet
instance.

This offers the user a very convenient way to access HDF5 node attributes. However, for this reason and in
order not to pollute the object namespace, one can not assign normal attributes to AttributeSet instances, and
their members use names which start by special prefixes as happens with Group objects.

Notes on native and pickled attributes

The values of most basic types are saved as HDF5 native data in the HDF5 file. This includes Python bool,
int, float, complex and str (but not long nor unicode) values, as well as their NumPy scalar versions and homo-
geneous or structured NumPy arrays of them. When read, these values are always loaded as NumPy scalar or
array objects, as needed.

For that reason, attributes in native HDF5 files will be always mapped into NumPy objects. Specifically, a
multidimensional attribute will be mapped into a multidimensional ndarray and a scalar will be mapped into a
NumPy scalar object (for example, a scalar H5T_NATIVE_LLONG will be read and returned as a numpy.int64
scalar).

However, other kinds of values are serialized using pickle, so you only will be able to correctly retrieve them
using a Python-aware HDF5 library. Thus, if you want to save Python scalar values and make sure you are able
to read them with generic HDF5 tools, you should make use of scalar or homogeneous/structured array NumPy
objects (for example, numpy.int64(1) or numpy.array([1, 2, 3], dtype=’int16’)).

One more advice: because of the various potential difficulties in restoring a Python object stored in an attribute,
you may end up getting a pickle string where a Python object is expected. If this is the case, you may wish to
run pickle.loads() on that string to get an idea of where things went wrong, as shown in this example:

>>> import os, tempfile
>>> import tables
>>>
>>> class MyClass(object):
... foo = 'bar'
...
>>> myObject = MyClass() # save object of custom class in HDF5 attr
>>> h5fname = tempfile.mktemp(suffix='.h5')
>>> h5f = tables.open_file(h5fname, 'w')
>>> h5f.root._v_attrs.obj = myObject # store the object
>>> print(h5f.root._v_attrs.obj.foo) # retrieve it
bar
>>> h5f.close()
>>>
>>> del MyClass, myObject # delete class of object and reopen file
>>> h5f = tables.open_file(h5fname, 'r')
>>> print(repr(h5f.root._v_attrs.obj))
'ccopy_reg\n_reconstructor...
>>> import pickle # let's unpickle that to see what went wrong
>>> pickle.loads(h5f.root._v_attrs.obj)
Traceback (most recent call last):
...

4.7. Declarative classes 139

PyTables User Guide, Release 3.3.0

AttributeError: 'module' object has no attribute 'MyClass'
>>> # So the problem was not in the stored object,
... # but in the *environment* where it was restored.
... h5f.close()
>>> os.remove(h5fname)

Notes on AttributeSet methods

Note that this class overrides the __getattr__(), __setattr__() and __delattr__() special methods. This allows you
to read, assign or delete attributes on disk by just using the next constructs:

leaf.attrs.myattr = 'str attr' # set a string (native support)
leaf.attrs.myattr2 = 3 # set an integer (native support)
leaf.attrs.myattr3 = [3, (1, 2)] # a generic object (Pickled)
attrib = leaf.attrs.myattr # get the attribute ``myattr``
del leaf.attrs.myattr # delete the attribute ``myattr``

In addition, the dictionary-like __getitem__(), __setitem__() and __delitem__() methods are available, so you
may write things like this:

for name in node._v_attrs._f_list():
print("name: %s, value: %s" % (name, node._v_attrs[name]))

Use whatever idiom you prefer to access the attributes.

If an attribute is set on a target node that already has a large number of attributes, a PerformanceWarning will
be issued.

AttributeSet attributes

_v_attrnames
A list with all attribute names.

_v_attrnamessys
A list with system attribute names.

_v_attrnamesuser
A list with user attribute names.

_v_unimplemented
A list of attribute names with unimplemented native HDF5 types.

AttributeSet properties

AttributeSet._v_node
The Node instance this attribute set is associated with.

AttributeSet methods

AttributeSet._f_copy(where)
Copy attributes to the where node.

Copies all user and certain system attributes to the given where node (a Node instance - see The Node class),
replacing the existing ones.

140 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

AttributeSet._f_list(attrset=’user’)
Get a list of attribute names.

The attrset string selects the attribute set to be used. A ‘user’ value returns only user attributes (this is the
default). A ‘sys’ value returns only system attributes. Finally, ‘all’ returns both system and user attributes.

AttributeSet._f_rename(oldattrname, newattrname)
Rename an attribute from oldattrname to newattrname.

AttributeSet.__contains__(name)
Is there an attribute with that name?

A true value is returned if the attribute set has an attribute with the given name, false otherwise.

Helper classes

This section describes some classes that do not fit in any other section and that mainly serve for ancillary purposes.

The Filters class

class tables.Filters(complevel=0, complib=’zlib’, shuffle=True, bitshuffle=False, fletcher32=False,
least_significant_digit=None, _new=True)

Container for filter properties.

This class is meant to serve as a container that keeps information about the filter properties associated with the
chunked leaves, that is Table, CArray, EArray and VLArray.

Instances of this class can be directly compared for equality.

Parameters complevel : int

Specifies a compression level for data. The allowed range is 0-9. A value of 0 (the
default) disables compression.

complib : str

Specifies the compression library to be used. Right now, ‘zlib’ (the default), ‘lzo’,
‘bzip2’ and ‘blosc’ are supported. Additional compressors for Blosc like ‘blosc:blosclz’
(‘blosclz’ is the default in case the additional compressor is not specified), ‘blosc:lz4’,
‘blosc:lz4hc’, ‘blosc:snappy’, ‘blosc:zlib’ and ‘blosc:zstd’ are supported too. Specify-
ing a compression library which is not available in the system issues a FiltersWarning
and sets the library to the default one.

shuffle : bool

Whether or not to use the Shuffle filter in the HDF5 library. This is normally used to
improve the compression ratio. A false value disables shuffling and a true one enables
it. The default value depends on whether compression is enabled or not; if compression
is enabled, shuffling defaults to be enabled, else shuffling is disabled. Shuffling can only
be used when compression is enabled.

bitshuffle : bool

Whether or not to use the BitShuffle filter in the Blosc library. This is normally used
to improve the compression ratio. A false value disables bitshuffling and a true one
enables it. The default value is disabled.

fletcher32 : bool

4.8. Helper classes 141

PyTables User Guide, Release 3.3.0

Whether or not to use the Fletcher32 filter in the HDF5 library. This is used to add a
checksum on each data chunk. A false value (the default) disables the checksum.

least_significant_digit : int

If specified, data will be truncated (quantized). In conjunction with enabling
compression, this produces ‘lossy’, but significantly more efficient compres-
sion. For example, if least_significant_digit=1, data will be quantized using
around(scale*data)/scale, where scale = 2**bits, and bits is deter-
mined so that a precision of 0.1 is retained (in this case bits=4). Default is None, or
no quantization.

Note: quantization is only applied if some form of compression is enabled

Examples

This is a small example on using the Filters class:

import numpy
import tables

fileh = tables.open_file('test5.h5', mode='w')
atom = Float32Atom()
filters = Filters(complevel=1, complib='blosc', fletcher32=True)
arr = fileh.create_earray(fileh.root, 'earray', atom, (0,2),

"A growable array", filters=filters)

Append several rows in only one call
arr.append(numpy.array([[1., 2.],

[2., 3.],
[3., 4.]], dtype=numpy.float32))

Print information on that enlargeable array
print("Result Array:")
print(repr(arr))
fileh.close()

This enforces the use of the Blosc library, a compression level of 1 and a Fletcher32 checksum filter as well.
See the output of this example:

Result Array:
/earray (EArray(3, 2), fletcher32, shuffle, blosc(1)) 'A growable array'
type = float32
shape = (3, 2)
itemsize = 4
nrows = 3
extdim = 0
flavor = 'numpy'
byteorder = 'little'

Filters attributes

fletcher32
Whether the Fletcher32 filter is active or not.

142 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

complevel
The compression level (0 disables compression).

complib
The compression filter used (irrelevant when compression is not enabled).

shuffle
Whether the Shuffle filter is active or not.

bitshuffle
Whether the BitShuffle filter is active or not (Blosc only).

Filters methods

Filters.copy(**override)
Get a copy of the filters, possibly overriding some arguments.

Constructor arguments to be overridden must be passed as keyword arguments.

Using this method is recommended over replacing the attributes of an instance, since instances of this class may
become immutable in the future:

>>> filters1 = Filters()
>>> filters2 = filters1.copy()
>>> filters1 == filters2
True
>>> filters1 is filters2
False
>>> filters3 = filters1.copy(complevel=1)
Traceback (most recent call last):
...
ValueError: compression library ``None`` is not supported...
>>> filters3 = filters1.copy(complevel=1, complib='zlib')
>>> print(filters1)
Filters(complevel=0, shuffle=False, bitshuffle=False, fletcher32=False, least_significant_digit=None)
>>> print(filters3)
Filters(complevel=1, complib='zlib', shuffle=False, bitshuffle=False, fletcher32=False, least_significant_digit=None)
>>> filters1.copy(foobar=42)
Traceback (most recent call last):
...
TypeError: __init__() got an unexpected keyword argument 'foobar'

The Index class

class tables.index.Index(parentnode, name, atom=None, title=’‘, kind=None, optlevel=None,
filters=None, tmp_dir=None, expectedrows=0, byteorder=None, block-
sizes=None, new=True)

Represents the index of a column in a table.

This class is used to keep the indexing information for columns in a Table dataset (see The Table class). It is
actually a descendant of the Group class (see The Group class), with some added functionality. An Index is
always associated with one and only one column in the table.

Note: This class is mainly intended for internal use, but some of its documented attributes and methods may
be interesting for the programmer.

4.8. Helper classes 143

PyTables User Guide, Release 3.3.0

Parameters parentnode :

The parent Group object.

Changed in version 3.0: Renamed from parentNode to parentnode.

name : str

The name of this node in its parent group.

atom : Atom

An Atom object representing the shape and type of the atomic objects to be saved. Only
scalar atoms are supported.

title :

Sets a TITLE attribute of the Index entity.

kind :

The desired kind for this index. The ‘full’ kind specifies a complete track of the row
position (64-bit), while the ‘medium’, ‘light’ or ‘ultralight’ kinds only specify in which
chunk the row is (using 32-bit, 16-bit and 8-bit respectively).

optlevel :

The desired optimization level for this index.

filters : Filters

An instance of the Filters class that provides information about the desired I/O filters to
be applied during the life of this object.

tmp_dir :

The directory for the temporary files.

expectedrows :

Represents an user estimate about the number of row slices that will be added to the
growable dimension in the IndexArray object.

byteorder :

The byteorder of the index datasets on-disk.

blocksizes :

The four main sizes of the compound blocks in index datasets (a low level parameter).

Index instance variables

Index.column
The Column (see The Column class) instance for the indexed column.

Index.dirty
Whether the index is dirty or not. Dirty indexes are out of sync with column data, so they exist but they are not
usable.

Index.filters
Filter properties for this index - see Filters in The Filters class.

144 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

Index.is_csi
Whether the index is completely sorted or not.

Changed in version 3.0: The is_CSI property has been renamed into is_csi.

tables.index.Index.nelements
The number of currently indexed rows for this column.

Index methods

Index.read_sorted(start=None, stop=None, step=None)
Return the sorted values of index in the specified range.

The meaning of the start, stop and step arguments is the same as in Table.read_sorted().

Index.read_indices(start=None, stop=None, step=None)
Return the indices values of index in the specified range.

The meaning of the start, stop and step arguments is the same as in Table.read_sorted().

Index special methods

Index.__getitem__(key)
Return the indices values of index in the specified range.

If key argument is an integer, the corresponding index is returned. If key is a slice, the range of indices deter-
mined by it is returned. A negative value of step in slice is supported, meaning that the results will be returned
in reverse order.

This method is equivalent to Index.read_indices().

The IndexArray class

class tables.indexes.IndexArray(parentnode, name, atom=None, title=’‘, filters=None, byte-
order=None)

Represent the index (sorted or reverse index) dataset in HDF5 file.

All NumPy typecodes are supported except for complex datatypes.

Parameters parentnode :

The Index class from which this object will hang off.

Changed in version 3.0: Renamed from parentNode to parentnode.

name : str

The name of this node in its parent group.

atom :

An Atom object representing the shape and type of the atomic objects to be saved. Only
scalar atoms are supported.

title :

Sets a TITLE attribute on the array entity.

filters : Filters

4.8. Helper classes 145

PyTables User Guide, Release 3.3.0

An instance of the Filters class that provides information about the desired I/O filters to
be applied during the life of this object.

byteorder :

The byteroder of the data on-disk.

chunksize
The chunksize for this object.

slicesize
The slicesize for this object.

The Enum class

class tables.misc.enum.Enum(enum)
Enumerated type.

Each instance of this class represents an enumerated type. The values of the type must be declared exhaustively
and named with strings, and they might be given explicit concrete values, though this is not compulsory. Once
the type is defined, it can not be modified.

There are three ways of defining an enumerated type. Each one of them corresponds to the type of the only
argument in the constructor of Enum:

•Sequence of names: each enumerated value is named using a string, and its order is determined by its
position in the sequence; the concrete value is assigned automatically:

>>> boolEnum = Enum(['True', 'False'])

•Mapping of names: each enumerated value is named by a string and given an explicit concrete value. All
of the concrete values must be different, or a ValueError will be raised:

>>> priority = Enum({'red': 20, 'orange': 10, 'green': 0})
>>> colors = Enum({'red': 1, 'blue': 1})
Traceback (most recent call last):
...
ValueError: enumerated values contain duplicate concrete values: 1

•Enumerated type: in that case, a copy of the original enumerated type is created. Both enumerated types
are considered equal:

>>> prio2 = Enum(priority)
>>> priority == prio2
True

Please note that names starting with _ are not allowed, since they are reserved for internal usage:

>>> prio2 = Enum(['_xx'])
Traceback (most recent call last):
...
ValueError: name of enumerated value can not start with ``_``: '_xx'

The concrete value of an enumerated value is obtained by getting its name as an attribute of the Enum instance
(see __getattr__()) or as an item (see __getitem__()). This allows comparisons between enumerated values and
assigning them to ordinary Python variables:

>>> redv = priority.red
>>> redv == priority['red']
True

146 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

>>> redv > priority.green
True
>>> priority.red == priority.orange
False

The name of the enumerated value corresponding to a concrete value can also be obtained by using the __call__()
method of the enumerated type. In this way you get the symbolic name to use it later with __getitem__():

>>> priority(redv)
'red'
>>> priority.red == priority[priority(priority.red)]
True

(If you ask, the __getitem__() method is not used for this purpose to avoid ambiguity in the case of using strings
as concrete values.)

Enum special methods

Enum.__call__(value, *default)
Get the name of the enumerated value with that concrete value.

If there is no value with that concrete value in the enumeration and a second argument is given as a default, this
is returned. Else, a ValueError is raised.

This method can be used for checking that a concrete value belongs to the set of concrete values in an enumerated
type.

Examples

Let enum be an enumerated type defined as:

>>> enum = Enum({'T0': 0, 'T1': 2, 'T2': 5})

then:

>>> enum(5)
'T2'
>>> enum(42, None) is None
True
>>> enum(42)
Traceback (most recent call last):
...

ValueError: no enumerated value with that concrete value: 42

Enum.__contains__(name)
Is there an enumerated value with that name in the type?

If the enumerated type has an enumerated value with that name, True is returned. Otherwise, False is returned.
The name must be a string.

This method does not check for concrete values matching a value in an enumerated type. For that, please use
the Enum.__call__() method.

Examples

Let enum be an enumerated type defined as:

4.8. Helper classes 147

PyTables User Guide, Release 3.3.0

>>> enum = Enum({'T0': 0, 'T1': 2, 'T2': 5})

then:

>>> 'T1' in enum
True
>>> 'foo' in enum
False
>>> 0 in enum
Traceback (most recent call last):
...

TypeError: name of enumerated value is not a string: 0
>>> enum.T1 in enum # Be careful with this!
Traceback (most recent call last):
...

TypeError: name of enumerated value is not a string: 2

Enum.__eq__(other)
Is the other enumerated type equivalent to this one?

Two enumerated types are equivalent if they have exactly the same enumerated values (i.e. with the same names
and concrete values).

Examples

Let enum* be enumerated types defined as:

>>> enum1 = Enum({'T0': 0, 'T1': 2})
>>> enum2 = Enum(enum1)
>>> enum3 = Enum({'T1': 2, 'T0': 0})
>>> enum4 = Enum({'T0': 0, 'T1': 2, 'T2': 5})
>>> enum5 = Enum({'T0': 0})
>>> enum6 = Enum({'T0': 10, 'T1': 20})

then:

>>> enum1 == enum1
True
>>> enum1 == enum2 == enum3
True
>>> enum1 == enum4
False
>>> enum5 == enum1
False
>>> enum1 == enum6
False

Comparing enumerated types with other kinds of objects produces a false result:

>>> enum1 == {'T0': 0, 'T1': 2}
False
>>> enum1 == ['T0', 'T1']
False
>>> enum1 == 2
False

Enum.__getattr__(name)
Get the concrete value of the enumerated value with that name.

148 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

The name of the enumerated value must be a string. If there is no value with that name in the enumeration, an
AttributeError is raised.

Examples

Let enum be an enumerated type defined as:

>>> enum = Enum({'T0': 0, 'T1': 2, 'T2': 5})

then:

>>> enum.T1
2
>>> enum.foo
Traceback (most recent call last):
...

AttributeError: no enumerated value with that name: 'foo'

Enum.__getitem__(name)
Get the concrete value of the enumerated value with that name.

The name of the enumerated value must be a string. If there is no value with that name in the enumeration, a
KeyError is raised.

Examples

Let enum be an enumerated type defined as:

>>> enum = Enum({'T0': 0, 'T1': 2, 'T2': 5})

then:

>>> enum['T1']
2
>>> enum['foo']
Traceback (most recent call last):
...

KeyError: "no enumerated value with that name: 'foo'"

Enum.__iter__()
Iterate over the enumerated values.

Enumerated values are returned as (name, value) pairs in no particular order.

Examples

>>> enumvals = {'red': 4, 'green': 2, 'blue': 1}
>>> enum = Enum(enumvals)
>>> enumdict = dict([(name, value) for (name, value) in enum])
>>> enumvals == enumdict
True

Enum.__len__()
Return the number of enumerated values in the enumerated type.

4.8. Helper classes 149

PyTables User Guide, Release 3.3.0

Examples

>>> len(Enum(['e%d' % i for i in range(10)]))
10

Enum.__repr__()
Return the canonical string representation of the enumeration. The output of this method can be evaluated to
give a new enumeration object that will compare equal to this one.

Examples

>>> repr(Enum({'name': 10}))
"Enum({'name': 10})"

The UnImplemented class

class tables.UnImplemented(parentnode, name)
This class represents datasets not supported by PyTables in an HDF5 file.

When reading a generic HDF5 file (i.e. one that has not been created with PyTables, but with some other HDF5
library based tool), chances are that the specific combination of datatypes or dataspaces in some dataset might
not be supported by PyTables yet. In such a case, this dataset will be mapped into an UnImplemented instance
and the user will still be able to access the complete object tree of the generic HDF5 file. The user will also be
able to read and write the attributes of the dataset, access some of its metadata, and perform certain hierarchy
manipulation operations like deleting or moving (but not copying) the node. Of course, the user will not be able
to read the actual data on it.

This is an elegant way to allow users to work with generic HDF5 files despite the fact that some of its datasets
are not supported by PyTables. However, if you are really interested in having full access to an unimplemented
dataset, please get in contact with the developer team.

This class does not have any public instance variables or methods, except those inherited from the Leaf class
(see The Leaf class).

byteorder = None
The endianness of data in memory (‘big’, ‘little’ or ‘irrelevant’).

nrows = None
The length of the first dimension of the data.

shape = None
The shape of the stored data.

The Unknown class

class tables.Unknown(parentnode, name)
This class represents nodes reported as unknown by the underlying HDF5 library.

This class does not have any public instance variables or methods, except those inherited from the Node class.

Exceptions module

In the exceptions module exceptions and warnings that are specific to PyTables are declared.

150 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

exception tables.HDF5ExtError(*args, **kargs)
A low level HDF5 operation failed.

This exception is raised the low level PyTables components used for accessing HDF5 files. It usually signals
that something is not going well in the HDF5 library or even at the Input/Output level.

Errors in the HDF5 C library may be accompanied by an extensive HDF5 back trace on standard error (see also
tables.silence_hdf5_messages()).

Changed in version 2.4.

Parameters message :

error message

h5bt :

This parameter (keyword only) controls the HDF5 back trace handling. Any keyword
arguments other than h5bt is ignored.

• if set to False the HDF5 back trace is ignored and the
HDF5ExtError.h5backtrace attribute is set to None

• if set to True the back trace is retrieved from the HDF5 library and stored in the
HDF5ExtError.h5backtrace attribute as a list of tuples

• if set to “VERBOSE” (default) the HDF5 back trace is stored in the
HDF5ExtError.h5backtrace attribute and also included in the string repre-
sentation of the exception

• if not set (or set to None) the default policy is used (see
HDF5ExtError.DEFAULT_H5_BACKTRACE_POLICY)

format_h5_backtrace(backtrace=None)
Convert the HDF5 trace back represented as a list of tuples. (see HDF5ExtError.h5backtrace) into
a string.

New in version 2.4.

DEFAULT_H5_BACKTRACE_POLICY = ‘VERBOSE’
Default policy for HDF5 backtrace handling

•if set to False the HDF5 back trace is ignored and the HDF5ExtError.h5backtrace attribute is
set to None

•if set to True the back trace is retrieved from the HDF5 library and stored in the
HDF5ExtError.h5backtrace attribute as a list of tuples

•if set to “VERBOSE” (default) the HDF5 back trace is stored in the
HDF5ExtError.h5backtrace attribute and also included in the string representation of
the exception

This parameter can be set using the PT_DEFAULT_H5_BACKTRACE_POLICY environment variable.
Allowed values are “IGNORE” (or “FALSE”), “SAVE” (or “TRUE”) and “VERBOSE” to set the policy
to False, True and “VERBOSE” respectively. The special value “DEFAULT” can be used to reset the
policy to the default value

New in version 2.4.

h5backtrace = None
HDF5 back trace.

Contains the HDF5 back trace as a (possibly empty) list of tuples. Each tuple has the following format:

4.8. Helper classes 151

PyTables User Guide, Release 3.3.0

(filename, line number, function name, text)

Depending on the value of the h5bt parameter passed to the initializer the h5backtrace attribute can be set
to None. This means that the HDF5 back trace has been simply ignored (not retrieved from the HDF5 C
library error stack) or that there has been an error (silently ignored) during the HDF5 back trace retrieval.

New in version 2.4.

See also:

traceback.format_list traceback.format_list()

exception tables.ClosedNodeError
The operation can not be completed because the node is closed.

For instance, listing the children of a closed group is not allowed.

exception tables.ClosedFileError
The operation can not be completed because the hosting file is closed.

For instance, getting an existing node from a closed file is not allowed.

exception tables.FileModeError
The operation can not be carried out because the mode in which the hosting file is opened is not adequate.

For instance, removing an existing leaf from a read-only file is not allowed.

exception tables.NodeError
Invalid hierarchy manipulation operation requested.

This exception is raised when the user requests an operation on the hierarchy which can not be run because of
the current layout of the tree. This includes accessing nonexistent nodes, moving or copying or creating over an
existing node, non-recursively removing groups with children, and other similarly invalid operations.

A node in a PyTables database cannot be simply overwritten by replacing it. Instead, the old node must be
removed explicitely before another one can take its place. This is done to protect interactive users from inad-
vertedly deleting whole trees of data by a single erroneous command.

exception tables.NoSuchNodeError
An operation was requested on a node that does not exist.

This exception is raised when an operation gets a path name or a (where, name) pair leading to a nonexistent
node.

exception tables.UndoRedoError
Problems with doing/redoing actions with Undo/Redo feature.

This exception indicates a problem related to the Undo/Redo mechanism, such as trying to undo or redo actions
with this mechanism disabled, or going to a nonexistent mark.

exception tables.UndoRedoWarning
Issued when an action not supporting Undo/Redo is run.

This warning is only shown when the Undo/Redo mechanism is enabled.

exception tables.NaturalNameWarning
Issued when a non-pythonic name is given for a node.

This is not an error and may even be very useful in certain contexts, but one should be aware that such nodes
cannot be accessed using natural naming (instead, getattr() must be used explicitly).

152 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

exception tables.PerformanceWarning
Warning for operations which may cause a performance drop.

This warning is issued when an operation is made on the database which may cause it to slow down on future
operations (i.e. making the node tree grow too much).

exception tables.FlavorError
Unsupported or unavailable flavor or flavor conversion.

This exception is raised when an unsupported or unavailable flavor is given to a dataset, or when a conversion
of data between two given flavors is not supported nor available.

exception tables.FlavorWarning
Unsupported or unavailable flavor conversion.

This warning is issued when a conversion of data between two given flavors is not supported nor available, and
raising an error would render the data inaccessible (e.g. on a dataset of an unavailable flavor in a read-only file).

See the FlavorError class for more information.

exception tables.FiltersWarning
Unavailable filters.

This warning is issued when a valid filter is specified but it is not available in the system. It may mean that an
available default filter is to be used instead.

exception tables.OldIndexWarning
Unsupported index format.

This warning is issued when an index in an unsupported format is found. The index will be marked as invalid
and will behave as if doesn’t exist.

exception tables.DataTypeWarning
Unsupported data type.

This warning is issued when an unsupported HDF5 data type is found (normally in a file created with other tool
than PyTables).

exception tables.ExperimentalFeatureWarning
Generic warning for experimental features.

This warning is issued when using a functionality that is still experimental and that users have to use with care.

General purpose expression evaluator class

The Expr class

class tables.Expr(expr, uservars=None, **kwargs)
A class for evaluating expressions with arbitrary array-like objects.

Expr is a class for evaluating expressions containing array-like objects. With it, you can evaluate expressions
(like “3 * a + 4 * b”) that operate on arbitrary large arrays while optimizing the resources required to perform
them (basically main memory and CPU cache memory). It is similar to the Numexpr package (see [NUM-
EXPR]), but in addition to NumPy objects, it also accepts disk-based homogeneous arrays, like the Array,
CArray, EArray and Column PyTables objects.

All the internal computations are performed via the Numexpr package, so all the broadcast and upcasting rules of
Numexpr applies here too. These rules are very similar to the NumPy ones, but with some exceptions due to the
particularities of having to deal with potentially very large disk-based arrays. Be sure to read the documentation
of the Expr constructor and methods as well as that of Numexpr, if you want to fully grasp these particularities.

4.9. General purpose expression evaluator class 153

PyTables User Guide, Release 3.3.0

Parameters expr : str

This specifies the expression to be evaluated, such as “2 * a + 3 * b”.

uservars : dict

This can be used to define the variable names appearing in expr. This mapping should
consist of identifier-like strings pointing to any Array, CArray, EArray, Column or
NumPy ndarray instances (or even others which will tried to be converted to ndar-
rays). When uservars is not provided or None, the current local and global namespace
is sought instead of uservars. It is also possible to pass just some of the variables in ex-
pression via the uservars mapping, and the rest will be retrieved from the current local
and global namespaces.

kwargs : dict

This is meant to pass additional parameters to the Numexpr kernel. This is basically the
same as the kwargs argument in Numexpr.evaluate(), and is mainly meant for advanced
use.

Examples

The following shows an example of using Expr.

>>> a = f.create_array('/', 'a', np.array([1,2,3]))
>>> b = f.create_array('/', 'b', np.array([3,4,5]))
>>> c = np.array([4,5,6])
>>> expr = tb.Expr("2 * a + b * c") # initialize the expression
>>> expr.eval() # evaluate it
array([14, 24, 36])
>>> sum(expr) # use as an iterator
74

where you can see that you can mix different containers in the expression (whenever shapes are consistent).

You can also work with multidimensional arrays:

>>> a2 = f.create_array('/', 'a2', np.array([[1,2],[3,4]]))
>>> b2 = f.create_array('/', 'b2', np.array([[3,4],[5,6]]))
>>> c2 = np.array([4,5]) # This will be broadcasted
>>> expr = tb.Expr("2 * a2 + b2-c2")
>>> expr.eval()
array([[1, 3],

[7, 9]])
>>> sum(expr)
array([8, 12])

Expr attributes

append_mode
The append mode for user-provided output containers.

maindim
Common main dimension for inputs in expression.

names
The names of variables in expression (list).

154 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

out
The user-provided container (if any) for the expression outcome.

o_start
The start range selection for the user-provided output.

o_stop
The stop range selection for the user-provided output.

o_step
The step range selection for the user-provided output.

shape
Common shape for the arrays in expression.

values
The values of variables in expression (list).

Expr methods

Expr.eval()
Evaluate the expression and return the outcome.

Because of performance reasons, the computation order tries to go along the common main dimension of all
inputs. If not such a common main dimension is found, the iteration will go along the leading dimension
instead.

For non-consistent shapes in inputs (i.e. shapes having a different number of dimensions), the regular NumPy
broadcast rules applies. There is one exception to this rule though: when the dimensions orthogonal to the main
dimension of the expression are consistent, but the main dimension itself differs among the inputs, then the
shortest one is chosen for doing the computations. This is so because trying to expand very large on-disk arrays
could be too expensive or simply not possible.

Also, the regular Numexpr casting rules (which are similar to those of NumPy, although you should check the
Numexpr manual for the exceptions) are applied to determine the output type.

Finally, if the setOuput() method specifying a user container has already been called, the output is sent to this
user-provided container. If not, a fresh NumPy container is returned instead.

Warning: When dealing with large on-disk inputs, failing to specify an on-disk container may consume all
your available memory.

Expr.set_inputs_range(start=None, stop=None, step=None)
Define a range for all inputs in expression.

The computation will only take place for the range defined by the start, stop and step parameters in the main
dimension of inputs (or the leading one, if the object lacks the concept of main dimension, like a NumPy
container). If not a common main dimension exists for all inputs, the leading dimension will be used instead.

Expr.set_output(out, append_mode=False)
Set out as container for output as well as the append_mode.

The out must be a container that is meant to keep the outcome of the expression. It should be an homogeneous
type container and can typically be an Array, CArray, EArray, Column or a NumPy ndarray.

The append_mode specifies the way of which the output is filled. If true, the rows of the outcome are appended
to the out container. Of course, for doing this it is necessary that out would have an append() method (like an
EArray, for example).

4.9. General purpose expression evaluator class 155

PyTables User Guide, Release 3.3.0

If append_mode is false, the output is set via the __setitem__() method (see the Expr.set_output_range() for
info on how to select the rows to be updated). If out is smaller than what is required by the expression, only
the computations that are needed to fill up the container are carried out. If it is larger, the excess elements are
unaffected.

Expr.set_output_range(start=None, stop=None, step=None)
Define a range for user-provided output object.

The output object will only be modified in the range specified by the start, stop and step parameters in the main
dimension of output (or the leading one, if the object does not have the concept of main dimension, like a NumPy
container).

Expr special methods

Expr.__iter__()
Iterate over the rows of the outcome of the expression.

This iterator always returns rows as NumPy objects, so a possible out container specified in
Expr.set_output() method is ignored here.

Filenode Module

A file interface to nodes for PyTables databases.

The FileNode module provides a file interface for using inside of PyTables database files. Use the new_node() function
to create a brand new file node which can be read and written as any ordinary Python file. Use the open_node()
function to open an existing (i.e. created with new_node()) node for read-only or read-write access. Read acces is
always available. Write access (enabled on new files and files opened with mode ‘a+’) only allows appending data to
a file node.

Currently only binary I/O is supported.

See filenode - simulating a filesystem with PyTables for instructions on use.

Changed in version 3.0: In version 3.0 the module as been completely rewritten to be fully compliant with the interfaces
defined in the io module.

Module constants

tables.nodes.filenode.NodeType = ‘file’
Value for NODE_TYPE node system attribute.

tables.nodes.filenode.NodeTypeVersions = [1, 2]
Supported values for NODE_TYPE_VERSION node system attribute.

Module functions

tables.nodes.filenode.new_node(h5file, **kwargs)
Creates a new file node object in the specified PyTables file object.

Additional named arguments where and name must be passed to specify where the file node is to be created.
Other named arguments such as title and filters may also be passed.

The special named argument expectedsize, indicating an estimate of the file size in bytes, may also be passed.
It returns the file node object.

156 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

tables.nodes.filenode.open_node(node, mode=’r’)
Opens an existing file node.

Returns a file node object from the existing specified PyTables node. If mode is not specified or it is ‘r’, the file
can only be read, and the pointer is positioned at the beginning of the file. If mode is ‘a+’, the file can be read
and appended, and the pointer is positioned at the end of the file.

tables.nodes.filenode.read_from_filenode(h5file, filename, where, name=None, over-
write=False, create_target=False)

Read a filenode from a PyTables file and write its contents to a file.

New in version 3.2.

Parameters h5file :

The PyTables file to be read from; can be either a string giving the file’s location or a
File object.

filename :

Path of the file where the contents of the filenode shall be written to. If filename points
to a directory or ends with / (\ on Windows), the filename will be set to the _filename
(if present; otherwise the name) attribute of the read filenode.

where, name :

Location of the filenode where the data shall be read from. If no node name can be
found at where, the first node at where whose _filename attribute matches name will be
read.

overwrite :

Whether or not a possibly existing file of the specified filename shall be overwritten.

create_target :

Whether or not the folder hierarchy needed to accomodate the given target filename
will be created.

tables.nodes.filenode.save_to_filenode(h5file, filename, where, name=None, over-
write=False, title=’‘, filters=None)

Save a file’s contents to a filenode inside a PyTables file.

New in version 3.2.

Parameters h5file :

The PyTables file to be written to; can be either a string giving the file’s location or a
File object. If a file with name h5file already exists, it will be opened in mode a.

filename :

Path of the file which shall be stored within the PyTables file.

where, name :

Location of the filenode where the data shall be stored. If name is not given, and where
is either a Group object or a string ending on /, the leaf name will be set to the file
name of filename. The name will be modified to adhere to Python’s natural naming
convention; the original filename will be preserved in the filenode’s _filename attribute.

overwrite :

Whether or not a possibly existing filenode of the specified name shall be overwritten.

title :

4.10. Filenode Module 157

PyTables User Guide, Release 3.3.0

A description for this node (it sets the TITLE HDF5 attribute on disk).

filters :

An instance of the Filters class that provides information about the desired I/O filters
to be applied during the life of this object.

The RawPyTablesIO base class

class tables.nodes.filenode.RawPyTablesIO(node, mode=None)
Base class for raw binary I/O on HDF5 files using PyTables.

RawPyTablesIO attributes

RawPyTablesIO.mode
File mode.

RawPyTablesIO methods

RawPyTablesIO.tell()
Return current stream position.

RawPyTablesIO.seek(pos, whence=0)
Change stream position.

Change the stream position to byte offset offset. offset is interpreted relative to the position indicated by whence.
Values for whence are:

•0 – start of stream (the default); offset should be zero or positive

•1 – current stream position; offset may be negative

•2 – end of stream; offset is usually negative

Return the new absolute position.

RawPyTablesIO.seekable()
Return whether object supports random access.

If False, seek(), tell() and truncate() will raise IOError. This method may need to do a test seek().

RawPyTablesIO.fileno()
Returns underlying file descriptor if one exists.

An IOError is raised if the IO object does not use a file descriptor.

RawPyTablesIO.close()
Flush and close the IO object.

This method has no effect if the file is already closed.

RawPyTablesIO.flush()
Flush write buffers, if applicable.

This is not implemented for read-only and non-blocking streams.

RawPyTablesIO.truncate(pos=None)
Truncate file to size bytes.

Size defaults to the current IO position as reported by tell(). Return the new size.

158 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

Currently, this method only makes sense to grow the file node, since data can not be rewritten nor deleted.

RawPyTablesIO.readable()
Return whether object was opened for reading.

If False, read() will raise IOError.

RawPyTablesIO.writable()
Return whether object was opened for writing.

If False, write() and truncate() will raise IOError.

RawPyTablesIO.readinto(b)
Read up to len(b) bytes into b.

Returns number of bytes read (0 for EOF), or None if the object is set not to block as has no data to read.

RawPyTablesIO.readline(limit=-1)
Read and return a line from the stream.

If limit is specified, at most limit bytes will be read.

The line terminator is always \n for binary files; for text files, the newlines argument to open can be used to
select the line terminator(s) recognized.

RawPyTablesIO.write(b)
Write the given buffer to the IO stream.

Returns the number of bytes written, which may be less than len(b).

The ROFileNode class

class tables.nodes.filenode.ROFileNode(node)
Creates a new read-only file node.

Creates a new read-only file node associated with the specified PyTables node, providing a standard Python file
interface to it. The node has to have been created on a previous occasion using the new_node() function.

The node used as storage is also made available via the read-only attribute node. Please do not tamper with this
object if it’s avoidable, since you may break the operation of the file node object.

The constructor is not intended to be used directly. Use the open_node() function in read-only mode (‘r’) instead.

Version 1 implements the file storage as a UInt8 uni-dimensional EArray.

Version 2 uses an UInt8 N vector EArray.

Changed in version 3.0: The offset attribute is no more available, please use seek/tell methods instead.

Changed in version 3.0: The line_separator property is no more available. The only line separator used for
binary I/O is \n.

ROFileNode attributes

ROFileNode.attrs
A property pointing to the attribute set of the file node.

4.10. Filenode Module 159

PyTables User Guide, Release 3.3.0

ROFileNode methods

ROFileNode.flush()
Flush write buffers, if applicable.

This is not implemented for read-only and non-blocking streams.

ROFileNode.read()

ROFileNode.readline(limit=-1)
Read and return a line from the stream.

If limit is specified, at most limit bytes will be read.

The line terminator is always \n for binary files; for text files, the newlines argument to open can be used to
select the line terminator(s) recognized.

ROFileNode.readlines()
Return a list of lines from the stream.

hint can be specified to control the number of lines read: no more lines will be read if the total size (in
bytes/characters) of all lines so far exceeds hint.

ROFileNode.close()
Flush and close the IO object.

This method has no effect if the file is already closed.

ROFileNode.seek(pos, whence=0)
Change stream position.

Change the stream position to byte offset offset. offset is interpreted relative to the position indicated by whence.
Values for whence are:

•0 – start of stream (the default); offset should be zero or positive

•1 – current stream position; offset may be negative

•2 – end of stream; offset is usually negative

Return the new absolute position.

ROFileNode.tell()
Return current stream position.

ROFileNode.readable()
Return whether object was opened for reading.

If False, read() will raise IOError.

ROFileNode.writable()
Return whether object was opened for writing.

If False, write() and truncate() will raise IOError.

ROFileNode.seekable()
Return whether object supports random access.

If False, seek(), tell() and truncate() will raise IOError. This method may need to do a test seek().

ROFileNode.fileno()
Returns underlying file descriptor if one exists.

An IOError is raised if the IO object does not use a file descriptor.

160 Chapter 4. Library Reference

PyTables User Guide, Release 3.3.0

The RAFileNode class

class tables.nodes.filenode.RAFileNode(node, h5file, **kwargs)
Creates a new read-write file node.

The first syntax opens the specified PyTables node, while the second one creates a new node in the specified
PyTables file. In the second case, additional named arguments ‘where’ and ‘name’ must be passed to specify
where the file node is to be created. Other named arguments such as ‘title’ and ‘filters’ may also be passed. The
special named argument ‘expectedsize’, indicating an estimate of the file size in bytes, may also be passed.

Write access means reading as well as appending data is allowed.

The node used as storage is also made available via the read-only attribute node. Please do not tamper with this
object if it’s avoidable, since you may break the operation of the file node object.

The constructor is not intended to be used directly. Use the new_node() or open_node() functions instead.

Version 1 implements the file storage as a UInt8 uni-dimensional EArray.

Version 2 uses an UInt8 N vector EArray.

Changed in version 3.0: The offset attribute is no more available, please use seek/tell methods instead.

Changed in version 3.0: The line_separator property is no more available. The only line separator used for
binary I/O is \n.

RAFileNode attributes

RAFileNode.attrs
A property pointing to the attribute set of the file node.

RAFileNode methods

RAFileNode.flush()
Flush write buffers, if applicable.

This is not implemented for read-only and non-blocking streams.

RAFileNode.read()

RAFileNode.readline(limit=-1)
Read and return a line from the stream.

If limit is specified, at most limit bytes will be read.

The line terminator is always \n for binary files; for text files, the newlines argument to open can be used to
select the line terminator(s) recognized.

RAFileNode.readlines()
Return a list of lines from the stream.

hint can be specified to control the number of lines read: no more lines will be read if the total size (in
bytes/characters) of all lines so far exceeds hint.

RAFileNode.truncate(pos=None)
Truncate file to size bytes.

Size defaults to the current IO position as reported by tell(). Return the new size.

Currently, this method only makes sense to grow the file node, since data can not be rewritten nor deleted.

4.10. Filenode Module 161

PyTables User Guide, Release 3.3.0

RAFileNode.write(b)
Write the given buffer to the IO stream.

Returns the number of bytes written, which may be less than len(b).

RAFileNode.writelines()

RAFileNode.close()
Flush and close the IO object.

This method has no effect if the file is already closed.

RAFileNode.seek(pos, whence=0)
Change stream position.

Change the stream position to byte offset offset. offset is interpreted relative to the position indicated by whence.
Values for whence are:

•0 – start of stream (the default); offset should be zero or positive

•1 – current stream position; offset may be negative

•2 – end of stream; offset is usually negative

Return the new absolute position.

RAFileNode.tell()
Return current stream position.

RAFileNode.readable()
Return whether object was opened for reading.

If False, read() will raise IOError.

RAFileNode.writable()
Return whether object was opened for writing.

If False, write() and truncate() will raise IOError.

RAFileNode.seekable()
Return whether object supports random access.

If False, seek(), tell() and truncate() will raise IOError. This method may need to do a test seek().

RAFileNode.fileno()
Returns underlying file descriptor if one exists.

An IOError is raised if the IO object does not use a file descriptor.

162 Chapter 4. Library Reference

CHAPTER

FIVE

OPTIMIZATION TIPS

... durch planmässiges Tattonieren.

[... through systematic, palpable experimentation.]

—Johann Karl Friedrich Gauss [asked how he came upon his theorems]

On this chapter, you will get deeper knowledge of PyTables internals. PyTables has many tunable features so that you
can improve the performance of your application. If you are planning to deal with really large data, you should read
carefully this section in order to learn how to get an important efficiency boost for your code. But if your datasets
are small (say, up to 10 MB) or your number of nodes is contained (up to 1000), you should not worry about that as
the default parameters in PyTables are already tuned for those sizes (although you may want to adjust them further
anyway). At any rate, reading this chapter will help you in your life with PyTables.

Understanding chunking

The underlying HDF5 library that is used by PyTables allows for certain datasets (the so-called chunked datasets) to
take the data in bunches of a certain length, named chunks, and write them on disk as a whole, i.e. the HDF5 library
treats chunks as atomic objects and disk I/O is always made in terms of complete chunks. This allows data filters to be
defined by the application to perform tasks such as compression, encryption, check-summing, etc. on entire chunks.

HDF5 keeps a B-tree in memory that is used to map chunk structures on disk. The more chunks that are allocated for a
dataset the larger the B-tree. Large B-trees take memory and cause file storage overhead as well as more disk I/O and
higher contention forthe metadata cache. Consequently, it’s important to balance between memory and I/O overhead
(small B-trees) and time to access data (big B-trees).

In the next couple of sections, you will discover how to inform PyTables about the expected size of your datasets for
allowing a sensible computation of the chunk sizes. Also, you will be presented some experiments so that you can get
a feeling on the consequences of manually specifying the chunk size. Although doing this latter is only reserved to
experienced people, these benchmarks may allow you to understand more deeply the chunk size implications and let
you quickly start with the fine-tuning of this important parameter.

Informing PyTables about expected number of rows in tables or arrays

PyTables can determine a sensible chunk size to your dataset size if you helps it by providing an estimation of the
final number of rows for an extensible leaf 1. You should provide this information at leaf creation time by passing
this value to the expectedrows argument of the File.create_table() method or File.create_earray()
method (see The EArray class). For VLArray leaves, you must pass the expected size in MBytes by using the argument
expectedsizein MB of File.create_vlarray() (see The VLArray class) instead.

1 CArray nodes, though not extensible, are chunked and have their optimum chunk size automatically computed at creation time, since their
final shape is known.

163

PyTables User Guide, Release 3.3.0

When your leaf size is bigger than 10 MB (take this figure only as a reference, not strictly), by providing this guess you
will be optimizing the access to your data. When the table or array size is larger than, say 100MB, you are strongly
suggested to provide such a guess; failing to do that may cause your application to do very slow I/O operations and to
demand huge amounts of memory. You have been warned!

Fine-tuning the chunksize

Warning: This section is mostly meant for experts. If you are a beginner, you must know that setting manually
the chunksize is a potentially dangerous action.

Most of the time, informing PyTables about the extent of your dataset is enough. However, for more sophisticated
applications, when one has special requirements for doing the I/O or when dealing with really large datasets, you
should really understand the implications of the chunk size in order to be able to find the best value for your own
application.

You can specify the chunksize for every chunked dataset in PyTables by passing the chunkshape argument to the
corresponding constructors. It is important to point out that chunkshape is not exactly the same thing than a chunksize;
in fact, the chunksize of a dataset can be computed multiplying all the dimensions of the chunkshape among them and
multiplying the outcome by the size of the atom.

We are going to describe a series of experiments where an EArray of 15 GB is written with different chunksizes,
and then it is accessed in both sequential (i.e. first element 0, then element 1 and so on and so forth until the data
is exhausted) and random mode (i.e. single elements are read randomly all through the dataset). These benchmarks
have been carried out with PyTables 2.1 on a machine with an Intel Core2 processor @ 3 GHz and a RAID-0 made
of two SATA disks spinning at 7200 RPM, and using GNU/Linux with an XFS filesystem. The script used for the
benchmarks is available in bench/optimal-chunksize.py.

In figures Figure 1, Figure 2, Figure 3 and Figure 4, you can see how the chunksize affects different aspects, like
creation time, file sizes, sequential read time and random read time. So, if you properly inform PyTables about the
extent of your datasets, you will get an automatic chunksize value (256 KB in this case) that is pretty optimal for most
of uses. However, if what you want is, for example, optimize the creation time when using the Zlib compressor, you
may want to reduce the chunksize to 32 KB (see Figure 1). Or, if your goal is to optimize the sequential access time
for an dataset compressed with Blosc, you may want to increase the chunksize to 512 KB (see Figure 3).

You will notice that, by manually specifying the chunksize of a leave you will not normally get a drastic increase in
performance, but at least, you have the opportunity to fine-tune such an important parameter for improve performance.

Finally, it is worth noting that adjusting the chunksize can be specially important if you want to access your dataset by
blocks of certain dimensions. In this case, it is normally a good idea to set your chunkshape to be the same than these
dimensions; you only have to be careful to not end with a too small or too large chunksize. As always, experimenting
prior to pass your application into production is your best ally.

Accelerating your searches

Note: Many of the explanations and plots in this section and the forthcoming ones still need to be updated to include
Blosc (see [BLOSC]), the new and powerful compressor added in PyTables 2.2 series. You should expect it to be the
fastest compressor among all the described here, and its use is strongly recommended whenever you need extreme
speed and not a very high compression ratio.

164 Chapter 5. Optimization tips

PyTables User Guide, Release 3.3.0

Fig. 5.1: Figure 1. Creation time per element for a 15 GB EArray and different chunksizes.

5.2. Accelerating your searches 165

PyTables User Guide, Release 3.3.0

Fig. 5.2: Figure 2. File sizes for a 15 GB EArray and different chunksizes.

166 Chapter 5. Optimization tips

PyTables User Guide, Release 3.3.0

Fig. 5.3: Figure 3. Sequential access time per element for a 15 GB EArray and different chunksizes.

5.2. Accelerating your searches 167

PyTables User Guide, Release 3.3.0

Fig. 5.4: Figure 4. Random access time per element for a 15 GB EArray and different chunksizes.

168 Chapter 5. Optimization tips

PyTables User Guide, Release 3.3.0

Searching in tables is one of the most common and time consuming operations that a typical user faces in the process
of mining through his data. Being able to perform queries as fast as possible will allow more opportunities for finding
the desired information quicker and also allows to deal with larger datasets.

PyTables offers many sort of techniques so as to speed-up the search process as much as possible and, in order to give
you hints to use them based, a series of benchmarks have been designed and carried out. All the results presented
in this section have been obtained with synthetic, random data and using PyTables 2.1. Also, the tests have been
conducted on a machine with an Intel Core2 (64-bit) @ 3 GHz processor with RAID-0 disk storage (made of four
spinning disks @ 7200 RPM), using GNU/Linux with an XFS filesystem. The script used for the benchmarks is
available in bench/indexed_search.py. As your data, queries and platform may be totally different for your case, take
this just as a guide because your mileage may vary (and will vary).

In order to be able to play with tables with a number of rows as large as possible, the record size has been chosen to
be rather small (24 bytes). Here it is its definition:

class Record(tables.IsDescription):
col1 = tables.Int32Col()
col2 = tables.Int32Col()
col3 = tables.Float64Col()
col4 = tables.Float64Col()

In the next sections, we will be optimizing the times for a relatively complex query like this:

result = [row['col2'] for row in table if (
((row['col4'] >= lim1 and row['col4'] < lim2) or
((row['col2'] > lim3 and row['col2'] < lim4])) and
((row['col1']+3.1*row['col2']+row['col3']*row['col4']) > lim5)
)]

(for future reference, we will call this sort of queries regular queries). So, if you want to see how to greatly improve
the time taken to run queries like this, keep reading.

In-kernel searches

PyTables provides a way to accelerate data selections inside of a single table, through the use of the Table methods -
querying iterator and related query methods. This mode of selecting data is called in-kernel. Let’s see an example of
an in-kernel query based on the regular one mentioned above:

result = [row['col2'] for row in table.where(
'''(((col4 >= lim1) & (col4 < lim2)) |

((col2 > lim3) & (col2 < lim4)) &
((col1+3.1*col2+col3*col4) > lim5))''')]

This simple change of mode selection can improve search times quite a lot and actually make PyTables very competi-
tive when compared against typical relational databases as you can see in Figure 5 and Figure 6.

By looking at Figure 5 you can see how in the case that table data fits easily in memory, in-kernel searches on un-
compressed tables are generally much faster (10x) than standard queries as well as PostgreSQL (5x). Regarding com-
pression, we can see how Zlib compressor actually slows down the performance of in-kernel queries by a factor 3.5x;
however, it remains faster than PostgreSQL (40%). On his hand, LZO compressor only decreases the performance
by a 75% with respect to uncompressed in-kernel queries and is still a lot faster than PostgreSQL (3x). Finally, one
can observe that, for low selectivity queries (large number of hits), PostgreSQL performance degrades quite steadily,
while in PyTables this slow down rate is significantly smaller. The reason of this behaviour is not entirely clear to the
authors, but the fact is clearly reproducible in our benchmarks.

But, why in-kernel queries are so fast when compared with regular ones?. The answer is that in regular selection
mode the data for all the rows in table has to be brought into Python space so as to evaluate the condition and decide
if the corresponding field should be added to the result list. On the contrary, in the in-kernel mode, the condition is

5.2. Accelerating your searches 169

PyTables User Guide, Release 3.3.0

Fig. 5.5: Figure 5. Times for non-indexed complex queries in a small table with 10 millions of rows: the data
fits in memory.

170 Chapter 5. Optimization tips

PyTables User Guide, Release 3.3.0

passed to the PyTables kernel (hence the name), written in C, and evaluated there at full C speed (with the help of the
integrated Numexpr package, see [NUMEXPR]), so that the only values that are brought to Python space are the rows
that fulfilled the condition. Hence, for selections that only have a relatively small number of hits (compared with the
total amount of rows), the savings are very large. It is also interesting to note the fact that, although for queries with a
large number of hits the speed-up is not as high, it is still very important.

On the other hand, when the table is too large to fit in memory (see Figure 6), the difference in speed between regular
and in-kernel is not so important, but still significant (2x). Also, and curiously enough, large tables compressed with
Zlib offers slightly better performance (around 20%) than uncompressed ones; this is because the additional CPU
spent by the uncompressor is compensated by the savings in terms of net I/O (one has to read less actual data from
disk). However, when using the extremely fast LZO compressor, it gives a clear advantage over Zlib, and is up to 2.5x
faster than not using compression at all. The reason is that LZO decompression speed is much faster than Zlib, and
that allows PyTables to read the data at full disk speed (i.e. the bottleneck is in the I/O subsystem, not in the CPU). In
this case the compression rate is around 2.5x, and this is why the data can be read 2.5x faster. So, in general, using
the LZO compressor is the best way to ensure best reading/querying performance for out-of-core datasets (more about
how compression affects performance in Compression issues).

Fig. 5.6: Figure 6. Times for non-indexed complex queries in a large table with 1 billion of rows: the data does
not fit in memory.

Furthermore, you can mix the in-kernel and regular selection modes for evaluating arbitrarily complex conditions
making use of external functions. Look at this example:

5.2. Accelerating your searches 171

PyTables User Guide, Release 3.3.0

result = [row['var2']
for row in table.where('(var3 == "foo") & (var1 <= 20)')
if your_function(row['var2'])]

Here, we use an in-kernel selection to choose rows according to the values of the var3 and var1 fields. Then, we apply
a regular selection to complete the query. Of course, when you mix the in-kernel and regular selection modes you
should pass the most restrictive condition to the in-kernel part, i.e. to the where() iterator. In situations where it is not
clear which is the most restrictive condition, you might want to experiment a bit in order to find the best combination.

However, since in-kernel condition strings allow rich expressions allowing the coexistence of multiple columns, vari-
ables, arithmetic operations and many typical functions, it is unlikely that you will be forced to use external regular
selections in conditions of small to medium complexity. See Condition Syntax for more information on in-kernel
condition syntax.

Indexed searches

When you need more speed than in-kernel selections can offer you, PyTables offers a third selection method, the so-
called indexed mode (based on the highly efficient OPSI indexing engine). In this mode, you have to decide which
column(s) you are going to apply your selections over, and index them. Indexing is just a kind of sorting operation
over a column, so that searches along such a column (or columns) will look at this sorted information by using a binary
search which is much faster than the sequential search described in the previous section.

You can index the columns you want by calling the Column.create_index() method on an already created
table. For example:

indexrows = table.cols.var1.create_index()
indexrows = table.cols.var2.create_index()
indexrows = table.cols.var3.create_index()

will create indexes for all var1, var2 and var3 columns.

After you have indexed a series of columns, the PyTables query optimizer will try hard to discover the usable indexes
in a potentially complex expression. However, there are still places where it cannot determine that an index can be
used. See below for examples where the optimizer can safely determine if an index, or series of indexes, can be used
or not.

Example conditions where an index can be used:

• var1 >= “foo” (var1 is used)

• var1 >= mystr (var1 is used)

• (var1 >= “foo”) & (var4 > 0.0) (var1 is used)

• (“bar” <= var1) & (var1 < “foo”) (var1 is used)

• ((“bar” <= var1) & (var1 < “foo”)) & (var4 > 0.0) (var1 is used)

• (var1 >= “foo”) & (var3 > 10) (var1 and var3 are used)

• (var1 >= “foo”) | (var3 > 10) (var1 and var3 are used)

• ~(var1 >= “foo”) | ~(var3 > 10) (var1 and var3 are used)

Example conditions where an index can not be used:

• var4 > 0.0 (var4 is not indexed)

• var1 != 0.0 (range has two pieces)

• ~((“bar” <= var1) & (var1 < “foo”)) & (var4 > 0.0) (negation of a complex boolean expression)

172 Chapter 5. Optimization tips

PyTables User Guide, Release 3.3.0

Note: From PyTables 2.3 on, several indexes can be used in a single query.

Note: If you want to know for sure whether a particular query will use indexing or not (without actually running it),
you are advised to use the Table.will_query_use_indexing() method.

One important aspect of the new indexing in PyTables (>= 2.3) is that it has been designed from the ground up with
the goal of being capable to effectively manage very large tables. To this goal, it sports a wide spectrum of different
quality levels (also called optimization levels) for its indexes so that the user can choose the best one that suits her
needs (more or less size, more or less performance).

In Figure 7, you can see that the times to index columns in tables can be really short. In particular, the time to index
a column with 1 billion rows (1 Gigarow) with the lowest optimization level is less than 4 minutes while indexing the
same column with full optimization (so as to get a completely sorted index or CSI) requires around 1 hour. These are
rather competitive figures compared with a relational database (in this case, PostgreSQL 8.3.1, which takes around
1.5 hours for getting the index done). This is because PyTables is geared towards read-only or append-only tables and
takes advantage of this fact to optimize the indexes properly. On the contrary, most relational databases have to deliver
decent performance in other scenarios as well (specially updates and deletions), and this fact leads not only to slower
index creation times, but also to indexes taking much more space on disk, as you can see in Figure 8.

Fig. 5.7: Figure 7. Times for indexing an Int32 and Float64 column.

5.2. Accelerating your searches 173

PyTables User Guide, Release 3.3.0

Fig. 5.8: Figure 8. Sizes for an index of a Float64 column with 1 billion of rows.

174 Chapter 5. Optimization tips

PyTables User Guide, Release 3.3.0

The user can select the index quality by passing the desired optlevel and kind arguments to the
Column.create_index() method. We can see in figures Figure 7 and Figure 8 how the different optimization
levels affects index time creation and index sizes.

So, which is the effect of the different optimization levels in terms of query times? You can see that in Figure 9.

Fig. 5.9: Figure 9. Times for complex queries with a cold cache (mean of 5 first random queries) for different
optimization levels. Benchmark made on a machine with Intel Core2 (64-bit) @ 3 GHz processor with RAID-0
disk storage.

Of course, compression also has an effect when doing indexed queries, although not very noticeable, as can be seen in
Figure 10. As you can see, the difference between using no compression and using Zlib or LZO is very little, although
LZO achieves relatively better performance generally speaking.

You can find a more complete description and benchmarks about OPSI, the indexing system of PyTables (>= 2.3) in
[OPSI].

Indexing and Solid State Disks (SSD)

Lately, the long promised Solid State Disks (SSD for brevity) with decent capacities and affordable prices have finally
hit the market and will probably stay in coexistence with the traditional spinning disks for the foreseeable future (sepa-
rately or forming hybrid systems). SSD have many advantages over spinning disks, like much less power consumption
and better throughput. But of paramount importance, specially in the context of accelerating indexed queries, is its

5.2. Accelerating your searches 175

PyTables User Guide, Release 3.3.0

Fig. 5.10: Figure 10. Times for complex queries with a cold cache (mean of 5 first random queries) for different
compressors.

176 Chapter 5. Optimization tips

PyTables User Guide, Release 3.3.0

very reduced latency during disk seeks, which is typically 100x better than traditional disks. Such a huge improvement
has to have a clear impact in reducing the query times, specially when the selectivity is high (i.e. the number of hits is
small).

In order to offer an estimate on the performance improvement we can expect when using a low-latency SSD instead
of traditional spinning disks, the benchmark in the previous section has been repeated, but this time using a single
SSD disk instead of the four spinning disks in RAID-0. The result can be seen in Figure 11. There one can see how a
query in a table of 1 billion of rows with 100 hits took just 1 tenth of second when using a SSD, instead of 1 second
that needed the RAID made of spinning disks. This factor of 10x of speed-up for high-selectivity queries is nothing
to sneeze at, and should be kept in mind when really high performance in queries is needed. It is also interesting that
using compression with LZO does have a clear advantage over when no compression is done.

Fig. 5.11: Figure 11. Times for complex queries with a cold cache (mean of 5 first random queries) for different
disk storage (SSD vs spinning disks).

Finally, we should remark that SSD can’t compete with traditional spinning disks in terms of capacity as they can only
provide, for a similar cost, between 1/10th and 1/50th of the size of traditional disks. It is here where the compression
capabilities of PyTables can be very helpful because both tables and indexes can be compressed and the final space can
be reduced by typically 2x to 5x (4x to 10x when compared with traditional relational databases). Best of all, as already
mentioned, performance is not degraded when compression is used, but actually improved. So, by using PyTables and
SSD you can query larger datasets that otherwise would require spinning disks when using other databases

In fact, we were unable to run the PostgreSQL benchmark in this case because the space needed exceeded the capacity
of our SSD., while allowing improvements in the speed of indexed queries between 2x (for medium to low selectivity

5.2. Accelerating your searches 177

PyTables User Guide, Release 3.3.0

queries) and 10x (for high selectivity queries).

Achieving ultimate speed: sorted tables and beyond

Warning: Sorting a large table is a costly operation. The next procedure should only be performed when your
dataset is mainly read-only and meant to be queried many times.

When querying large tables, most of the query time is spent in locating the interesting rows to be read from disk.
In some occasions, you may have queries whose result depends mainly of one single column (a query with only one
single condition is the trivial example), so we can guess that sorting the table by this column would lead to locate the
interesting rows in a much more efficient way (because they would be mostly contiguous). We are going to confirm
this guess.

For the case of the query that we have been using in the previous sections:

result = [row['col2'] for row in table.where(
'''(((col4 >= lim1) & (col4 < lim2)) |

((col2 > lim3) & (col2 < lim4)) &
((col1+3.1*col2+col3*col4) > lim5))''')]

it is possible to determine, by analysing the data distribution and the query limits, that col4 is such a main column.
So, by ordering the table by the col4 column (for example, by specifying setting the column to sort by in the sortby
parameter in the Table.copy() method and re-indexing col2 and col4 afterwards, we should get much faster
performance for our query. This is effectively demonstrated in Figure 12, where one can see how queries with a low
to medium (up to 10000) number of hits can be done in around 1 tenth of second for a RAID-0 setup and in around
1 hundredth of second for a SSD disk. This represents up to more that 100x improvement in speed with respect to
the times with unsorted tables. On the other hand, when the number of hits is large (> 1 million), the query times
grow almost linearly, showing a near-perfect scalability for both RAID-0 and SSD setups (the sequential access to
disk becomes the bottleneck in this case).

Even though we have shown many ways to improve query times that should fulfill the needs of most of people, for
those needing more, you can for sure discover new optimization opportunities. For example, querying against sorted
tables is limited mainly by sequential access to data on disk and data compression capability, so you may want to read
Fine-tuning the chunksize, for ways on improving this aspect. Reading the other sections of this chapter will help in
finding new roads for increasing the performance as well. You know, the limit for stopping the optimization process is
basically your imagination (but, most plausibly, your available time ;-).

Compression issues

One of the beauties of PyTables is that it supports compression on tables and arrays 2, although it is not used by
default. Compression of big amounts of data might be a bit controversial feature, because it has a legend of being a
very big consumer of CPU time resources. However, if you are willing to check if compression can help not only by
reducing your dataset file size but also by improving I/O efficiency, specially when dealing with very large datasets,
keep reading.

A study on supported compression libraries

The compression library used by default is the Zlib (see [ZLIB]). Since HDF5 requires it, you can safely use it and
expect that your HDF5 files will be readable on any other platform that has HDF5 libraries installed. Zlib provides

2 Except for Array objects.

178 Chapter 5. Optimization tips

PyTables User Guide, Release 3.3.0

Fig. 5.12: Figure 12. Times for complex queries with a cold cache (mean of 5 first random queries) for unsorted
and sorted tables.

5.3. Compression issues 179

PyTables User Guide, Release 3.3.0

good compression ratio, although somewhat slow, and reasonably fast decompression. Because of that, it is a good
candidate to be used for compressing you data.

However, in some situations it is critical to have a very good decompression speed (at the expense of lower compression
ratios or more CPU wasted on compression, as we will see soon). In others, the emphasis is put in achieving the
maximum compression ratios, no matter which reading speed will result. This is why support for two additional
compressors has been added to PyTables: LZO (see [LZO]) and bzip2 (see [BZIP2]). Following the author of LZO
(and checked by the author of this section, as you will see soon), LZO offers pretty fast compression and extremely
fast decompression. In fact, LZO is so fast when compressing/decompressing that it may well happen (that depends
on your data, of course) that writing or reading a compressed dataset is sometimes faster than if it is not compressed
at all (specially when dealing with extremely large datasets). This fact is very important, specially if you have to deal
with very large amounts of data. Regarding bzip2, it has a reputation of achieving excellent compression ratios, but at
the price of spending much more CPU time, which results in very low compression/decompression speeds.

Be aware that the LZO and bzip2 support in PyTables is not standard on HDF5, so if you are going to use your
PyTables files in other contexts different from PyTables you will not be able to read them. Still, see the ptrepack
(where the ptrepack utility is described) to find a way to free your files from LZO or bzip2 dependencies, so that you
can use these compressors locally with the warranty that you can replace them with Zlib (or even remove compression
completely) if you want to use these files with other HDF5 tools or platforms afterwards.

In order to allow you to grasp what amount of compression can be achieved, and how this affects performance, a series
of experiments has been carried out. All the results presented in this section (and in the next one) have been obtained
with synthetic data and using PyTables 1.3. Also, the tests have been conducted on a IBM OpenPower 720 (e-series)
with a PowerPC G5 at 1.65 GHz and a hard disk spinning at 15K RPM. As your data and platform may be totally
different for your case, take this just as a guide because your mileage may vary. Finally, and to be able to play with
tables with a number of rows as large as possible, the record size has been chosen to be small (16 bytes). Here is its
definition:

class Bench(IsDescription):
var1 = StringCol(length=4)
var2 = IntCol()
var3 = FloatCol()

With this setup, you can look at the compression ratios that can be achieved in Figure 13. As you can see, LZO is the
compressor that performs worse in this sense, but, curiously enough, there is not much difference between Zlib and
bzip2.

Also, PyTables lets you select different compression levels for Zlib and bzip2, although you may get a bit disappointed
by the small improvement that these compressors show when dealing with a combination of numbers and strings as in
our example. As a reference, see plot Figure 14 for a comparison of the compression achieved by selecting different
levels of Zlib. Very oddly, the best compression ratio corresponds to level 1 (!). See later for an explanation and more
figures on this subject.

Have also a look at Figure 15. It shows how the speed of writing rows evolves as the size (number of rows) of the
table grows. Even though in these graphs the size of one single row is 16 bytes, you can most probably extrapolate
these figures to other row sizes.

In Figure 16 you can see how compression affects the reading performance. In fact, what you see in the plot is an
in-kernel selection speed, but provided that this operation is very fast (see In-kernel searches), we can accept it as an
actual read test. Compared with the reference line without compression, the general trend here is that LZO does not
affect too much the reading performance (and in some points it is actually better), Zlib makes speed drop to a half,
while bzip2 is performing very slow (up to 8x slower).

Also, in the same Figure 16 you can notice some strange peaks in the speed that we might be tempted to attribute to
libraries on which PyTables relies (HDF5, compressors...), or to PyTables itself. However, Figure 17 reveals that, if we
put the file in the filesystem cache (by reading it several times before, for example), the evolution of the performance
is much smoother. So, the most probable explanation would be that such peaks are a consequence of the underlying
OS filesystem, rather than a flaw in PyTables (or any other library behind it). Another consequence that can be

180 Chapter 5. Optimization tips

PyTables User Guide, Release 3.3.0

Fig. 5.13: Figure 13. Comparison between different compression libraries.

5.3. Compression issues 181

PyTables User Guide, Release 3.3.0

Fig. 5.14: Figure 14. Comparison between different compression levels of Zlib.

182 Chapter 5. Optimization tips

PyTables User Guide, Release 3.3.0

Fig. 5.15: Figure 15. Writing tables with several compressors.

5.3. Compression issues 183

PyTables User Guide, Release 3.3.0

derived from the aforementioned plot is that LZO decompression performance is much better than Zlib, allowing an
improvement in overall speed of more than 2x, and perhaps more important, the read performance for really large
datasets (i.e. when they do not fit in the OS filesystem cache) can be actually better than not using compression at all.
Finally, one can see that reading performance is very badly affected when bzip2 is used (it is 10x slower than LZO and
4x than Zlib), but this was somewhat expected anyway.

Fig. 5.16: Figure 16. Selecting values in tables with several compressors. The file is not in the OS cache.

So, generally speaking and looking at the experiments above, you can expect that LZO will be the fastest in both
compressing and decompressing, but the one that achieves the worse compression ratio (although that may be just OK
for many situations, specially when used with shuffling - see Shuffling (or how to make the compression process more
effective)). bzip2 is the slowest, by large, in both compressing and decompressing, and besides, it does not achieve
any better compression ratio than Zlib. Zlib represents a balance between them: it’s somewhat slow compressing (2x)
and decompressing (3x) than LZO, but it normally achieves better compression ratios.

Finally, by looking at the plots Figure 18, Figure 19, and the aforementioned Figure 14 you can see why the recom-
mended compression level to use for all compression libraries is 1. This is the lowest level of compression, but as the
size of the underlying HDF5 chunk size is normally rather small compared with the size of compression buffers, there
is not much point in increasing the latter (i.e. increasing the compression level). Nonetheless, in some situations (like
for example, in extremely large tables or arrays, where the computed chunk size can be rather large) you may want to
check, on your own, how the different compression levels do actually affect your application.

You can select the compression library and level by setting the complib and complevel keywords in the Filters class
(see The Filters class). A compression level of 0 will completely disable compression (the default), 1 is the less
memory and CPU time demanding level, while 9 is the maximum level and the most memory demanding and CPU

184 Chapter 5. Optimization tips

PyTables User Guide, Release 3.3.0

Fig. 5.17: Figure 17. Selecting values in tables with several compressors. The file is in the OS cache.

5.3. Compression issues 185

PyTables User Guide, Release 3.3.0

intensive. Finally, have in mind that LZO is not accepting a compression level right now, so, when using LZO, 0
means that compression is not active, and any other value means that LZO is active.

So, in conclusion, if your ultimate goal is writing and reading as fast as possible, choose LZO. If you want to reduce
as much as possible your data, while retaining acceptable read speed, choose Zlib. Finally, if portability is important
for you, Zlib is your best bet. So, when you want to use bzip2? Well, looking at the results, it is difficult to recommend
its use in general, but you may want to experiment with it in those cases where you know that it is well suited for your
data pattern (for example, for dealing with repetitive string datasets).

Fig. 5.18: Figure 18. Writing in tables with different levels of compression.

Shuffling (or how to make the compression process more effective)

The HDF5 library provides an interesting filter that can leverage the results of your favorite compressor. Its name
is shuffle, and because it can greatly benefit compression and it does not take many CPU resources (see below for
a justification), it is active by default in PyTables whenever compression is activated (independently of the chosen
compressor). It is deactivated when compression is off (which is the default, as you already should know). Of course,
you can deactivate it if you want, but this is not recommended.

Note: Since PyTables 3.3, a new bitshuffle filter for Blosc compressor has been added. Contrarily to shuffle that
shuffles bytes, bitshuffle shuffles the chunk data at bit level which could improve compression ratios at the expense of

186 Chapter 5. Optimization tips

PyTables User Guide, Release 3.3.0

Fig. 5.19: Figure 19. Selecting values in tables with different levels of compression. The file is in the OS cache.

5.3. Compression issues 187

PyTables User Guide, Release 3.3.0

some speed penalty. Look at the The Filters class documentation on how to activate bitshuffle and experiment with it
so as to decide if it can be useful for you.

So, how does this mysterious filter exactly work? From the HDF5 reference manual:

"The shuffle filter de-interlaces a block of data by reordering the
bytes. All the bytes from one consistent byte position of each data
element are placed together in one block; all bytes from a second
consistent byte position of each data element are placed together a
second block; etc. For example, given three data elements of a 4-byte
datatype stored as 012301230123, shuffling will re-order data as
000111222333. This can be a valuable step in an effective compression
algorithm because the bytes in each byte position are often closely
related to each other and putting them together can increase the
compression ratio."

In Figure 20 you can see a benchmark that shows how the shuffle filter can help the different libraries in compressing
data. In this experiment, shuffle has made LZO compress almost 3x more (!), while Zlib and bzip2 are seeing im-
provements of 2x. Once again, the data for this experiment is synthetic, and shuffle seems to do a great work with it,
but in general, the results will vary in each case 3.

Fig. 5.20: Figure 20. Comparison between different compression libraries with and without the shuffle filter.
3 Some users reported that the typical improvement with real data is between a factor 1.5x and 2.5x over the already compressed datasets.

188 Chapter 5. Optimization tips

PyTables User Guide, Release 3.3.0

At any rate, the most remarkable fact about the shuffle filter is the relatively high level of compression that compressor
filters can achieve when used in combination with it. A curious thing to note is that the Bzip2 compression rate does
not seem very much improved (less than a 40%), and what is more striking, Bzip2+shuffle does compress quite less
than Zlib+shuffle or LZO+shuffle combinations, which is kind of unexpected. The thing that seems clear is that Bzip2
is not very good at compressing patterns that result of shuffle application. As always, you may want to experiment
with your own data before widely applying the Bzip2+shuffle combination in order to avoid surprises.

Now, how does shuffling affect performance? Well, if you look at plots Figure 21, Figure 22 and Figure 23, you will get
a somewhat unexpected (but pleasant) surprise. Roughly, shuffle makes the writing process (shuffling+compressing)
faster (approximately a 15% for LZO, 30% for Bzip2 and a 80% for Zlib), which is an interesting result by itself. But
perhaps more exciting is the fact that the reading process (unshuffling+decompressing) is also accelerated by a similar
extent (a 20% for LZO, 60% for Zlib and a 75% for Bzip2, roughly).

Fig. 5.21: Figure 21. Writing with different compression libraries with and without the shuffle filter.

You may wonder why introducing another filter in the write/read pipelines does effectively accelerate the throughput.
Well, maybe data elements are more similar or related column-wise than row-wise, i.e. contiguous elements in the
same column are more alike, so shuffling makes the job of the compressor easier (faster) and more effective (greater
ratios). As a side effect, compressed chunks do fit better in the CPU cache (at least, the chunks are smaller!) so that the
process of unshuffle/decompress can make a better use of the cache (i.e. reducing the number of CPU cache faults).

So, given the potential gains (faster writing and reading, but specially much improved compression level), it is a good
thing to have such a filter enabled by default in the battle for discovering redundancy when you want to compress your
data, just as PyTables does.

5.3. Compression issues 189

PyTables User Guide, Release 3.3.0

Fig. 5.22: Figure 22. Reading with different compression libraries with the shuffle filter. The file is not in OS
cache.

190 Chapter 5. Optimization tips

PyTables User Guide, Release 3.3.0

Fig. 5.23: Figure 23. Reading with different compression libraries with and without the shuffle filter. The file
is in OS cache.

5.3. Compression issues 191

PyTables User Guide, Release 3.3.0

Using Psyco

Psyco (see [PSYCO]) is a kind of specialized compiler for Python that typically accelerates Python applications with
no change in source code. You can think of Psyco as a kind of just-in-time (JIT) compiler, a little bit like Java’s,
that emits machine code on the fly instead of interpreting your Python program step by step. The result is that your
unmodified Python programs run faster.

Psyco is very easy to install and use, so in most scenarios it is worth to give it a try. However, it only runs on Intel
386 architectures, so if you are using other architectures, you are out of luck (and, moreover, it seems that there are no
plans to support other platforms). Besides, with the addition of flexible (and very fast) in-kernel queries (by the way,
they cannot be optimized at all by Psyco), the use of Psyco will only help in rather few scenarios. In fact, the only
important situation that you might benefit right now from using Psyco (I mean, in PyTables contexts) is for speeding-
up the write speed in tables when using the Row interface (see The Row class). But again, this latter case can also be
accelerated by using the Table.append() method and building your own buffers 4.

As an example, imagine that you have a small script that reads and selects data over a series of datasets, like this:

def read_file(filename):
"Select data from all the tables in filename"
fileh = open_file(filename, mode = "r")
result = []
for table in fileh("/", 'Table'):

result = [p['var3'] for p in table if p['var2'] <= 20]
fileh.close()
return result

if __name__=="__main__":
print(read_file("myfile.h5"))

In order to accelerate this piece of code, you can rewrite your main program to look like:

if __name__=="__main__":
import psyco
psyco.bind(read_file)
print(read_file("myfile.h5"))

That’s all! From now on, each time that you execute your Python script, Psyco will deploy its sophisticated algorithms
so as to accelerate your calculations.

You can see in the graphs Figure 24 and Figure 25 how much I/O speed improvement you can get by using Psyco.
By looking at this figures you can get an idea if these improvements are of your interest or not. In general, if you are
not going to use compression you will take advantage of Psyco if your tables are medium sized (from a thousand to a
million rows), and this advantage will disappear progressively when the number of rows grows well over one million.
However if you use compression, you will probably see improvements even beyond this limit (see Compression issues).
As always, there is no substitute for experimentation with your own dataset.

Getting the most from the node LRU cache

One limitation of the initial versions of PyTables was that they needed to load all nodes in a file completely before
being ready to deal with them, making the opening times for files with a lot of nodes very high and unacceptable in
many cases.

Starting from PyTables 1.2 on, a new lazy node loading schema was setup that avoids loading all the nodes of the
object tree in memory. In addition, a new LRU cache was introduced in order to accelerate the access to already

4 So, there is not much point in using Psyco with recent versions of PyTables anymore.

192 Chapter 5. Optimization tips

PyTables User Guide, Release 3.3.0

Fig. 5.24: Figure 24. Writing tables with/without Psyco.

5.5. Getting the most from the node LRU cache 193

PyTables User Guide, Release 3.3.0

Fig. 5.25: Figure 25. Reading tables with/without Psyco.

194 Chapter 5. Optimization tips

PyTables User Guide, Release 3.3.0

visited nodes. This cache (one per file) is responsible for keeping up the most recently visited nodes in memory and
discard the least recent used ones. This represents a big advantage over the old schema, not only in terms of memory
usage (as there is no need to load every node in memory), but it also adds very convenient optimizations for working
interactively like, for example, speeding-up the opening times of files with lots of nodes, allowing to open almost any
kind of file in typically less than one tenth of second (compare this with the more than 10 seconds for files with more
than 10000 nodes in PyTables pre-1.2 era) as well as optimizing the access to frequently visited nodes. See for more
info on the advantages (and also drawbacks) of this approach.

One thing that deserves some discussion is the election of the parameter that sets the maximum amount of nodes to be
kept in memory at any time. As PyTables is meant to be deployed in machines that can have potentially low memory,
the default for it is quite conservative (you can look at its actual value in the parameters.NODE_CACHE_SLOTS
parameter in module tables/parameters.py). However, if you usually need to deal with files that have many
more nodes than the maximum default, and you have a lot of free memory in your system, then you may want to
experiment in order to see which is the appropriate value of parameters.NODE_CACHE_SLOTS that fits better
your needs.

As an example, look at the next code:

def browse_tables(filename):
fileh = open_file(filename,'a')
group = fileh.root.newgroup
for j in range(10):

for tt in fileh.walk_nodes(group, "Table"):
title = tt.attrs.TITLE
for row in tt:

pass
fileh.close()

We will be running the code above against a couple of files having a /newgroup containing 100 tables and 1000
tables respectively. In addition, this benchmark is run twice for two different values of the LRU cache size, specifically
256 and 1024. You can see the results in table.

Table 5.1: Retrieval speed and memory consumption depending on the number of nodes in LRU cache.

Number: 100 nodes 1000 nodes
Mem and Speed Memory (MB) Time (ms) Memory (MB) Time (ms)
Node is coming from... Cache size 256 1024 256 1024 256 1024 256 1024
Disk 14 14 1.24 1.24 51 66 1.33 1.31
Cache 14 14 0.53 0.52 65 73 1.35 0.68

From the data in table, one can see that when the number of objects that you are dealing with does fit in
cache, you will get better access times to them. Also, incrementing the node cache size effectively consumes more
memory only if the total nodes exceeds the slots in cache; otherwise the memory consumption remains the same. It
is also worth noting that incrementing the node cache size in the case you want to fit all your nodes in cache does not
take much more memory than being too conservative. On the other hand, it might happen that the speed-up that you
can achieve by allocating more slots in your cache is not worth the amount of memory used.

Also worth noting is that if you have a lot of memory available and performance is absolutely critical, you may
want to try out a negative value for parameters.NODE_CACHE_SLOTS. This will cause that all the touched
nodes will be kept in an internal dictionary and this is the faster way to load/retrieve nodes. However, and in order
to avoid a large memory consumption, the user will be warned when the number of loaded nodes will reach the
-NODE_CACHE_SLOTS value.

Finally, a value of zero in parameters.NODE_CACHE_SLOTS means that any cache mechanism is disabled.

At any rate, if you feel that this issue is important for you, there is no replacement for setting your own experiments
up in order to proceed to fine-tune the parameters.NODE_CACHE_SLOTS parameter.

5.5. Getting the most from the node LRU cache 195

PyTables User Guide, Release 3.3.0

Note: PyTables >= 2.3 sports an optimized LRU cache node written in C, so you should expect significantly faster
LRU cache operations when working with it.

Note: Numerical results reported in table have been obtained with PyTables < 3.1. In PyTables 3.1 the node cache
mechanism has been completely redesigned so while all comments above are still valid, numerical values could be a
little bit different from the ones reported in table.

Compacting your PyTables files

Let’s suppose that you have a file where you have made a lot of row deletions on one or more tables, or deleted many
leaves or even entire subtrees. These operations might leave holes (i.e. space that is not used anymore) in your files
that may potentially affect not only the size of the files but, more importantly, the performance of I/O. This is because
when you delete a lot of rows in a table, the space is not automatically recovered on the fly. In addition, if you add
many more rows to a table than specified in the expectedrows keyword at creation time this may affect performance
as well, as explained in Informing PyTables about expected number of rows in tables or arrays.

In order to cope with these issues, you should be aware that PyTables includes a handy utility called ptrepack which
can be very useful not only to compact fragmented files, but also to adjust some internal parameters in order to use
better buffer and chunk sizes for optimum I/O speed. Please check the ptrepack for a brief tutorial on its use.

Another thing that you might want to use ptrepack for is changing the compression filters or compression levels on
your existing data for different goals, like checking how this can affect both final size and I/O performance, or getting
rid of the optional compressors like LZO or bzip2 in your existing files, in case you want to use them with generic
HDF5 tools that do not have support for these filters.

196 Chapter 5. Optimization tips

Part II

Complementary modules

197

CHAPTER

SIX

FILENODE - SIMULATING A FILESYSTEM WITH PYTABLES

What is filenode?

filenode is a module which enables you to create a PyTables database of nodes which can be used like regular opened
files in Python. In other words, you can store a file in a PyTables database, and read and write it as you would do
with any other file in Python. Used in conjunction with PyTables hierarchical database organization, you can have
your database turned into an open, extensible, efficient, high capacity, portable and metadata-rich filesystem for data
exchange with other systems (including backup purposes).

Between the main features of filenode, one can list:

• Open: Since it relies on PyTables, which in turn, sits over HDF5 (see [HDGG1]), a standard hierarchical data
format from NCSA.

• Extensible: You can define new types of nodes, and their instances will be safely preserved (as are normal
groups, leafs and attributes) by PyTables applications having no knowledge of their types. Moreover, the set of
possible attributes for a node is not fixed, so you can define your own node attributes.

• Efficient: Thanks to PyTables’ proven extreme efficiency on handling huge amounts of data. filenode can make
use of PyTables’ on-the-fly compression and decompression of data.

• High capacity: Since PyTables and HDF5 are designed for massive data storage (they use 64-bit addressing
even where the platform does not support it natively).

• Portable: Since the HDF5 format has an architecture-neutral design, and the HDF5 libraries and PyTables are
known to run under a variety of platforms. Besides that, a PyTables database fits into a single file, which poses
no trouble for transportation.

• Metadata-rich: Since PyTables can store arbitrary key-value pairs (even Python objects!) for every database
node. Metadata may include authorship, keywords, MIME types and encodings, ownership information, access
control lists (ACL), decoding functions and anything you can imagine!

Finding a filenode node

filenode nodes can be recognized because they have a NODE_TYPE system attribute with a ‘file’ value. It is recom-
mended that you use the File.get_node_attr() method of tables.File class to get the NODE_TYPE attribute
independently of the nature (group or leaf) of the node, so you do not need to care about.

filenode - simulating files inside PyTables

The filenode module is part of the nodes sub-package of PyTables. The recommended way to import the module is:

199

PyTables User Guide, Release 3.3.0

>>> from tables.nodes import filenode

However, filenode exports very few symbols, so you can import * for interactive usage. In fact, you will most probably
only use the NodeType constant and the new_node() and open_node() calls.

The NodeType constant contains the value that the NODE_TYPE system attribute of a node file is expected to contain
(‘file’, as we have seen). Although this is not expected to change, you should use filenode.NodeType instead of the
literal ‘file’ when possible.

new_node() and open_node() are the equivalent to the Python file() call (alias open()) for ordinary files. Their argu-
ments differ from that of file(), but this is the only point where you will note the difference between working with a
node file and working with an ordinary file.

For this little tutorial, we will assume that we have a PyTables database opened for writing. Also, if you are somewhat
lazy at typing sentences, the code that we are going to explain is included in the examples/filenodes1.py file.

You can create a brand new file with these sentences:

>>> import tables
>>> h5file = tables.open_file('fnode.h5', 'w')

Creating a new file node

Creation of a new file node is achieved with the new_node() call. You must tell it in which PyTables file you want to
create it, where in the PyTables hierarchy you want to create the node and which will be its name. The PyTables file is
the first argument to new_node(); it will be also called the ‘host PyTables file’. The other two arguments must be given
as keyword arguments where and name, respectively. As a result of the call, a brand new appendable and readable file
node object is returned.

So let us create a new node file in the previously opened h5file PyTables file, named ‘fnode_test’ and placed right
under the root of the database hierarchy. This is that command:

>>> fnode = filenode.new_node(h5file, where='/', name='fnode_test')

That is basically all you need to create a file node. Simple, isn’t it? From that point on, you can use fnode as any
opened Python file (i.e. you can write data, read data, lines of text and so on).

new_node() accepts some more keyword arguments. You can give a title to your file with the title argument. You
can use PyTables’ compression features with the filters argument. If you know beforehand the size that your file will
have, you can give its final file size in bytes to the expectedsize argument so that the PyTables library would be able to
optimize the data access.

new_node() creates a PyTables node where it is told to. To prove it, we will try to get the NODE_TYPE attribute from
the newly created node:

>>> print(h5file.get_node_attr('/fnode_test', 'NODE_TYPE'))
file

Using a file node

As stated above, you can use the new node file as any other opened file. Let us try to write some text in and read it:

>>> print("This is a test text line.", file=fnode)
>>> print("And this is another one.", file=fnode)
>>> print(file=fnode)
>>> fnode.write("Of course, file methods can also be used.")
>>>

200 Chapter 6. filenode - simulating a filesystem with PyTables

PyTables User Guide, Release 3.3.0

>>> fnode.seek(0) # Go back to the beginning of file.
>>>
>>> for line in fnode:
... print(repr(line))
'This is a test text line.\\n'
'And this is another one.\\n'
'\\n'
'Of course, file methods can also be used.'

This was run on a Unix system, so newlines are expressed as ‘n’. In fact, you can override the line separator for a file
by setting its line_separator property to any string you want.

While using a file node, you should take care of closing it before you close the PyTables host file. Because of the way
PyTables works, your data it will not be at a risk, but every operation you execute after closing the host file will fail
with a ValueError. To close a file node, simply delete it or call its close() method:

>>> fnode.close()
>>> print(fnode.closed)
True

Opening an existing file node

If you have a file node that you created using new_node(), you can open it later by calling open_node(). Its arguments
are similar to that of file() or open(): the first argument is the PyTables node that you want to open (i.e. a node with
a NODE_TYPE attribute having a ‘file’ value), and the second argument is a mode string indicating how to open the
file. Contrary to file(), open_node() can not be used to create a new file node.

File nodes can be opened in read-only mode (‘r’) or in read-and-append mode (‘a+’). Reading from a file node is
allowed in both modes, but appending is only allowed in the second one. Just like Python files do, writing data to an
appendable file places it after the file pointer if it is on or beyond the end of the file, or otherwise after the existing
data. Let us see an example:

>>> node = h5file.root.fnode_test
>>> fnode = filenode.open_node(node, 'a+')
>>> print(repr(fnode.readline()))
'This is a test text line.\\n'
>>> print(fnode.tell())
26
>>> print("This is a new line.", file=fnode)
>>> print(repr(fnode.readline()))
''

Of course, the data append process places the pointer at the end of the file, so the last readline() call hit EOF. Let us
seek to the beginning of the file to see the whole contents of our file:

>>> fnode.seek(0)
>>> for line in fnode:
... print(repr(line))
'This is a test text line.\\n'
'And this is another one.\\n'
'\\n'
'Of course, file methods can also be used.This is a new line.\\n'

As you can check, the last string we wrote was correctly appended at the end of the file, instead of overwriting the
second line, where the file pointer was positioned by the time of the appending.

6.3. filenode - simulating files inside PyTables 201

PyTables User Guide, Release 3.3.0

Adding metadata to a file node

You can associate arbitrary metadata to any open node file, regardless of its mode, as long as the host PyTables file is
writable. Of course, you could use the set_node_attr() method of tables.File to do it directly on the proper node, but
filenode offers a much more comfortable way to do it. filenode objects have an attrs property which gives you direct
access to their corresponding AttributeSet object.

For instance, let us see how to associate MIME type metadata to our file node:

>>> fnode.attrs.content_type = 'text/plain; charset=us-ascii'

As simple as A-B-C. You can put nearly anything in an attribute, which opens the way to authorship, keywords,
permissions and more. Moreover, there is not a fixed list of attributes. However, you should avoid names in all caps
or starting with ‘_’, since PyTables and filenode may use them internally. Some valid examples:

>>> fnode.attrs.author = "Ivan Vilata i Balaguer"
>>> fnode.attrs.creation_date = '2004-10-20T13:25:25+0200'
>>> fnode.attrs.keywords_en = ["FileNode", "test", "metadata"]
>>> fnode.attrs.keywords_ca = ["FileNode", "prova", "metadades"]
>>> fnode.attrs.owner = 'ivan'
>>> fnode.attrs.acl = {'ivan': 'rw', '@users': 'r'}

You can check that these attributes get stored by running the ptdump command on the host PyTables file.

$ ptdump -a fnode.h5:/fnode_test
/fnode_test (EArray(113,)) ''
/fnode_test.attrs (AttributeSet), 14 attributes:
[CLASS := 'EARRAY',
EXTDIM := 0,
FLAVOR := 'numpy',
NODE_TYPE := 'file',
NODE_TYPE_VERSION := 2,
TITLE := '',
VERSION := '1.2',
acl := {'ivan': 'rw', '@users': 'r'},
author := 'Ivan Vilata i Balaguer',
content_type := 'text/plain; charset=us-ascii',
creation_date := '2004-10-20T13:25:25+0200',
keywords_ca := ['FileNode', 'prova', 'metadades'],
keywords_en := ['FileNode', 'test', 'metadata'],
owner := 'ivan']

Note that filenode makes no assumptions about the meaning of your metadata, so its handling is entirely left to your
needs and imagination.

Complementary notes

You can use file nodes and PyTables groups to mimic a filesystem with files and directories. Since you can store
nearly anything you want as file metadata, this enables you to use a PyTables file as a portable compressed backup,
even between radically different platforms. Take this with a grain of salt, since node files are restricted in their naming
(only valid Python identifiers are valid); however, remember that you can use node titles and metadata to overcome
this limitation. Also, you may need to devise some strategy to represent special files such as devices, sockets and such
(not necessarily using filenode).

We are eager to hear your opinion about filenode and its potential uses. Suggestions to improve filenode and create
other node types are also welcome. Do not hesitate to contact us!

202 Chapter 6. filenode - simulating a filesystem with PyTables

PyTables User Guide, Release 3.3.0

Current limitations

filenode is still a young piece of software, so it lacks some functionality. This is a list of known current limitations:

1. Node files can only be opened for read-only or read and append mode. This should be enhanced in the future.

2. Near future?

3. Only binary I/O is supported currently (read/write strings of bytes)

4. There is no universal newline support yet. The only new-line character used at the moment is \n. This is likely
to be improved in a near future.

5. Sparse files (files with lots of zeros) are not treated specially; if you want them to take less space, you should be
better off using compression.

These limitations still make filenode entirely adequate to work with most binary and text files. Of course, suggestions
and patches are welcome.

See Filenode Module for detailed documentation on the filenode interface.

6.5. Current limitations 203

PyTables User Guide, Release 3.3.0

204 Chapter 6. filenode - simulating a filesystem with PyTables

Part III

Appendixes

205

CHAPTER

SEVEN

SUPPORTED DATA TYPES IN PYTABLES

All PyTables datasets can handle the complete set of data types supported by the NumPy (see [NUMPY]) package
in Python. The data types for table fields can be set via instances of the Col class and its descendants (see The Col
class and its descendants), while the data type of array elements can be set through the use of the Atom class and its
descendants (see The Atom class and its descendants).

PyTables uses ordinary strings to represent its types, with most of them matching the names of NumPy scalar types.
Usually, a PyTables type consists of two parts: a kind and a precision in bits. The precision may be omitted in types
with just one supported precision (like bool) or with a non-fixed size (like string).

There are eight kinds of types supported by PyTables:

• bool: Boolean (true/false) types. Supported precisions: 8 (default) bits.

• int: Signed integer types. Supported precisions: 8, 16, 32 (default) and 64 bits.

• uint: Unsigned integer types. Supported precisions: 8, 16, 32 (default) and 64 bits.

• float: Floating point types. Supported precisions: 16, 32, 64 (default) bits and extended precision floating point
(see note on floating point types).

• complex: Complex number types. Supported precisions: 64 (32+32), 128 (64+64, default) bits and extended
precision complex (see note on floating point types).

• string: Raw string types. Supported precisions: 8-bit positive multiples.

• time: Data/time types. Supported precisions: 32 and 64 (default) bits.

• enum: Enumerated types. Precision depends on base type.

Note: Floating point types.

The half precision floating point data type (float16) and extended precision ones (fload96, float128, complex192,
complex256) are only available if numpy supports them on the host platform.

Also, in order to use the half precision floating point type (float16) it is required numpy >= 1.6.0.

The time and enum kinds area little bit special, since they represent HDF5 types which have no direct Python counter-
part, though atoms of these kinds have a more-or-less equivalent NumPy data type.

There are two types of time: 4-byte signed integer (time32) and 8-byte double precision floating point (time64). Both
of them reflect the number of seconds since the Unix epoch, i.e. Jan 1 00:00:00 UTC 1970. They are stored in
memory as NumPy’s int32 and float64, respectively, and in the HDF5 file using the H5T_TIME class. Integer times
are stored on disk as such, while floating point times are split into two signed integer values representing seconds and
microseconds (beware: smaller decimals will be lost!).

PyTables also supports HDF5 H5T_ENUM enumerations (restricted sets of unique name and unique value pairs). The
NumPy representation of an enumerated value (an Enum, see The Enum class) depends on the concrete base type

207

http://www.numpy.org
http://www.numpy.org

PyTables User Guide, Release 3.3.0

used to store the enumeration in the HDF5 file. Currently, only scalar integer values (both signed and unsigned) are
supported in enumerations. This restriction may be lifted when HDF5 supports other kinds on enumerated values.

Here you have a quick reference to the complete set of supported data types:

Table 7.1: Data types supported for array elements and tables columns in PyTables.
Type Code Description C Type Size (in bytes) Python Counterpart
bool boolean unsigned char 1 bool
int8 8-bit integer signed char 1 int
uint8 8-bit unsigned integer unsigned char 1 int
int16 16-bit integer short 2 int
uint16 16-bit unsigned inte-

ger
unsigned short 2 int

int32 integer int 4 int
uint32 unsigned integer unsigned int 4 long
int64 64-bit integer long long 8 long
uint64 unsigned 64-bit inte-

ger
unsigned long long 8 long

float16 1 half-precision float • 2 •

float32 single-precision float float 4 float
float64 double-precision float double 8 float
float96 1 2 extended precision

float
• 12 •

float128 1 2 extended precision
float

• 16 •

complex64 single-precision com-
plex

struct {float r, i;} 8 complex

complex128 double-precision
complex

struct {double r, i;} 16 complex

complex192 1 extended precision
complex

• 24 •

complex256 1 extended precision
complex

• 32 •

string arbitrary length string char[] • str

time32 integer time POSIX’s time_t 4 int
time64 floating point time POSIX’s struct

timeval
8 float

enum enumerated value enum • •

1 see the above note on floating point types.
2 currently in numpy. “float96” and “float128” are equivalent of “longdouble” i.e. 80 bit extended precision floating point.

208 Chapter 7. Supported data types in PyTables

http://www.numpy.org

CHAPTER

EIGHT

CONDITION SYNTAX

Conditions in PyTables are used in methods related with in-kernel and indexed searches such as Table.where()
or Table.read_where(). They are interpreted using Numexpr, a powerful package for achieving C-speed com-
putation of array operations (see [NUMEXPR]).

A condition on a table is just a string containing a Python expression involving at least one column, and maybe some
constants and external variables, all combined with algebraic operators and functions. The result of a valid condition
is always a boolean array of the same length as the table, where the i-th element is true if the value of the expression
on the i-th row of the table evaluates to true

That is the reason why multidimensional fields in a table are not supported in conditions, since the truth value of each
resulting multidimensional boolean value is not obvious. Usually, a method using a condition will only consider the
rows where the boolean result is true.

For instance, the condition ‘sqrt(x*x + y*y) < 1’ applied on a table with x and y columns consisting of floating point
numbers results in a boolean array where the i-th element is true if (unsurprisingly) the value of the square root of
the sum of squares of x and y is less than 1. The sqrt() function works element-wise, the 1 constant is adequately
broadcast to an array of ones of the length of the table for evaluation, and the less than operator makes the result a
valid boolean array. A condition like ‘mycolumn’ alone will not usually be valid, unless mycolumn is itself a column
of scalar, boolean values.

In the previous conditions, mycolumn, x and y are examples of variables which are associated with columns. Methods
supporting conditions do usually provide their own ways of binding variable names to columns and other values. You
can read the documentation of Table.where() for more information on that. Also, please note that the names
None, True and False, besides the names of functions (see below) can not be overridden, but you can always define
other new names for the objects you intend to use.

Values in a condition may have the following types:

• 8-bit boolean (bool).

• 32-bit signed integer (int).

• 64-bit signed integer (long).

• 32-bit, single-precision floating point number (float or float32).

• 64-bit, double-precision floating point number (double or float64).

• 2x64-bit, double-precision complex number (complex).

• Raw string of bytes (str).

Nevertheless, if the type passed is not among the above ones, it will be silently upcasted, so you don’t need to worry
too much about passing supported types, except for the Unsigned 64 bits integer, that cannot be upcasted to any of the
supported types.

209

PyTables User Guide, Release 3.3.0

However, the types in PyTables conditions are somewhat stricter than those of Python. For instance, the only valid
constants for booleans are True and False, and they are never automatically cast to integers. The type strengthening
also affects the availability of operators and functions. Beyond that, the usual type inference rules apply.

Conditions support the set of operators listed below:

• Logical operators: &, |, ~.

• Comparison operators: <, <=, ==, !=, >=, >.

• Unary arithmetic operators: -.

• Binary arithmetic operators: +, -, *, /, **, %.

Types do not support all operators. Boolean values only support logical and strict (in)equality comparison operators,
while strings only support comparisons, numbers do not work with logical operators, and complex comparisons can
only check for strict (in)equality. Unsupported operations (including invalid castings) raise NotImplementedError
exceptions.

You may have noticed the special meaning of the usually bitwise operators &, | and ~. Because of the way Python
handles the short-circuiting of logical operators and the truth values of their operands, conditions must use the bitwise
operator equivalents instead. This is not difficult to remember, but you must be careful because bitwise operators
have a higher precedence than logical operators. For instance, ‘a and b == c’ (a is true AND b is equal to c) is not
equivalent to ‘a & b == c’ (a AND b is equal to c). The safest way to avoid confusions is to use parentheses around
logical operators, like this: ‘a & (b == c)’. Another effect of short-circuiting is that expressions like ‘0 < x < 1’ will
not work as expected; you should use ‘(0 < x) & (x < 1)’.

All of this may be solved if Python supported overloadable boolean operators (see PEP 335) or some kind of non-
shortcircuiting boolean operators (like C’s &&, || and !).

You can also use the following functions in conditions:

• where(bool, number1, number2): number - number1 if the bool condition is true, number2 otherwise.

• {sin,cos,tan}(float|complex): float|complex - trigonometric sine, cosine or tangent.

• {arcsin,arccos,arctan}(float|complex): float|complex - trigonometric inverse sine, cosine or tangent.

• arctan2(float1, float2): float - trigonometric inverse tangent of float1/float2.

• {sinh,cosh,tanh}(float|complex): float|complex - hyperbolic sine, cosine or tangent.

• {arcsinh,arccosh,arctanh}(float|complex): float|complex - hyperbolic inverse sine, cosine or tangent.

• {log,log10,log1p}(float|complex): float|complex - natural, base-10 and log(1+x) logarithms.

• {exp,expm1}(float|complex): float|complex - exponential and exponential minus one.

• sqrt(float|complex): float|complex - square root.

• abs(float|complex): float|complex - absolute value.

• {real,imag}(complex): float - real or imaginary part of complex.

• complex(float, float): complex - complex from real and imaginary parts.

210 Chapter 8. Condition Syntax

CHAPTER

NINE

PYTABLES PARAMETER FILES

PyTables issues warnings when certain limits are exceeded. Those limits are not intrinsic limitations of the underlying
software, but rather are proactive measures to avoid large resource consumptions. The default limits should be enough
for most of cases, and users should try to respect them. However, in some situations, it can be convenient to increase
(or decrease) these limits.

Also, and in order to get maximum performance, PyTables implements a series of sophisticated features, like I/O
buffers or different kind of caches (for nodes, chunks and other internal metadata). These features comes with a
default set of parameters that ensures a decent performance in most of situations. But, as there is always a need for
every case, it is handy to have the possibility to fine-tune some of these parameters.

Because of these reasons, PyTables implements a couple of ways to change the values of these parameters. All the
tunable parameters live in the tables/parameters.py. The user can choose to change them in the parameter
files themselves for a global and persistent change. Moreover, if he wants a finer control, he can pass any of these
parameters directly to the tables.open_file() function, and the new parameters will only take effect in the
corresponding file (the defaults will continue to be in the parameter files).

A description of all of the tunable parameters follows. As the defaults stated here may change from release to release,
please check with your actual parameter files so as to know your actual default values.

Warning: Changing the next parameters may have a very bad effect in the resource consumption and performance
of your PyTables scripts.
Please be careful when touching these!

Tunable parameters in parameters.py

Recommended maximum values

tables.parameters.MAX_COLUMNS = 512
Maximum number of columns in tables.Table objects before a tables.PerformanceWarning is
issued. This limit is somewhat arbitrary and can be increased.

tables.parameters.MAX_NODE_ATTRS = 4096
Maximum allowed number of attributes in a node.

tables.parameters.MAX_GROUP_WIDTH = 16384
Maximum allowed number of children hanging from a group.

tables.parameters.MAX_TREE_DEPTH = 2048
Maximum depth in object tree allowed.

tables.parameters.MAX_UNDO_PATH_LENGTH = 10240
Maximum length of paths allowed in undo/redo operations.

211

PyTables User Guide, Release 3.3.0

Cache limits

tables.parameters.CHUNK_CACHE_NELMTS = 521
Number of elements for HDF5 chunk cache.

tables.parameters.CHUNK_CACHE_PREEMPT = 0.0
Chunk preemption policy. This value should be between 0 and 1 inclusive and indicates how much chunks
that have been fully read are favored for preemption. A value of zero means fully read chunks are treated no
differently than other chunks (the preemption is strictly LRU) while a value of one means fully read chunks are
always preempted before other chunks.

tables.parameters.CHUNK_CACHE_SIZE = 2097152
Size (in bytes) for HDF5 chunk cache.

tables.parameters.COND_CACHE_SLOTS = 128
Maximum number of conditions for table queries to be kept in memory.

tables.parameters.METADATA_CACHE_SIZE = 1048576
Size (in bytes) of the HDF5 metadata cache.

tables.parameters.NODE_CACHE_SLOTS = 64
Maximum number of nodes to be kept in the metadata cache.

It is the number of nodes to be kept in the metadata cache. Least recently used nodes are unloaded from memory
when this number of loaded nodes is reached. To load a node again, simply access it as usual. Nodes referenced
by user variables and, in general, all nodes that are still open are registered in the node manager and can be
quickly accessed even if they are not in the cache.

Negative value means that all the touched nodes will be kept in an internal dictionary. This is the faster way
to load/retrieve nodes. However, and in order to avoid a large memory comsumption, the user will be warned
when the number of loaded nodes will reach the -NODE_CACHE_SLOTS value.

Finally, a value of zero means that any cache mechanism is disabled.

Parameters for the different internal caches

tables.parameters.BOUNDS_MAX_SIZE = 1048576
The maximum size for bounds values cached during index lookups.

tables.parameters.BOUNDS_MAX_SLOTS = 4096
The maximum number of slots for the BOUNDS cache.

tables.parameters.ITERSEQ_MAX_ELEMENTS = 1024
The maximum number of iterator elements cached in data lookups.

tables.parameters.ITERSEQ_MAX_SIZE = 1048576
The maximum space that will take ITERSEQ cache (in bytes).

tables.parameters.ITERSEQ_MAX_SLOTS = 128
The maximum number of slots in ITERSEQ cache.

tables.parameters.LIMBOUNDS_MAX_SIZE = 262144
The maximum size for the query limits (for example, (lim1, lim2) in conditions like lim1 <= col <
lim2) cached during index lookups (in bytes).

tables.parameters.LIMBOUNDS_MAX_SLOTS = 128
The maximum number of slots for LIMBOUNDS cache.

tables.parameters.TABLE_MAX_SIZE = 1048576
The maximum size for table chunks cached during index queries.

212 Chapter 9. PyTables parameter files

PyTables User Guide, Release 3.3.0

tables.parameters.SORTED_MAX_SIZE = 1048576
The maximum size for sorted values cached during index lookups.

tables.parameters.SORTEDLR_MAX_SIZE = 8388608
The maximum size for chunks in last row cached in index lookups (in bytes).

tables.parameters.SORTEDLR_MAX_SLOTS = 1024
The maximum number of chunks for SORTEDLR cache.

Parameters for general cache behaviour

Warning: The next parameters will not take any effect if passed to the open_file() function, so they can only be
changed in a global way. You can change them in the file, but this is strongly discouraged unless you know well
what you are doing.

tables.parameters.DISABLE_EVERY_CYCLES = 10
The number of cycles in which a cache will be forced to be disabled if the hit ratio is lower than the LOW-
EST_HIT_RATIO (see below). This value should provide time enough to check whether the cache is being
efficient or not.

tables.parameters.ENABLE_EVERY_CYCLES = 50
The number of cycles in which a cache will be forced to be (re-)enabled, irregardingly of the hit ratio. This will
provide a chance for checking if we are in a better scenario for doing caching again.

tables.parameters.LOWEST_HIT_RATIO = 0.6
The minimum acceptable hit ratio for a cache to avoid disabling (and freeing) it.

Parameters for the I/O buffer in Leaf objects

tables.parameters.IO_BUFFER_SIZE = 1048576
The PyTables internal buffer size for I/O purposes. Should not exceed the amount of highest level cache size in
your CPU.

tables.parameters.BUFFER_TIMES = 100
The maximum buffersize/rowsize ratio before issuing a tables.PerformanceWarning.

Miscellaneous

tables.parameters.EXPECTED_ROWS_EARRAY = 1000
Default expected number of rows for EArray objects.

tables.parameters.EXPECTED_ROWS_TABLE = 10000
Default expected number of rows for Table objects.

tables.parameters.PYTABLES_SYS_ATTRS = True
Set this to False if you don’t want to create PyTables system attributes in datasets. Also, if set to False the
possible existing system attributes are not considered for guessing the class of the node during its loading from
disk (this work is delegated to the PyTables’ class discoverer function for general HDF5 files).

tables.parameters.MAX_NUMEXPR_THREADS = 4
The maximum number of threads that PyTables should use internally in Numexpr. If None, it is automatically
set to the number of cores in your machine. In general, it is a good idea to set this to the number of cores in
your machine or, when your machine has many of them (e.g. > 8), perhaps stay at 8 at maximum. In general, 4
threads is a good tradeoff.

9.1. Tunable parameters in parameters.py 213

PyTables User Guide, Release 3.3.0

tables.parameters.MAX_BLOSC_THREADS = 1
The maximum number of threads that PyTables should use internally in Blosc. If None, it is automatically set
to the number of cores in your machine. For applications that use several PyTables instances concurrently and
so as to avoid locking problems, the recommended value is 1. In other cases a value of 2 or 4 could make sense.

HDF5 driver management

tables.parameters.DRIVER = None
The HDF5 driver that should be used for reading/writing to the file.

Following drivers are supported:

•H5FD_SEC2: this driver uses POSIX file-system functions like read and write to perform I/O to a single,
permanent file on local disk with no system buffering. This driver is POSIX-compliant and is the default
file driver for all systems.

•H5FD_DIRECT: this is the H5FD_SEC2 driver except data is written to or read from the file synchronously
without being cached by the system.

•H5FD_WINDOWS: this driver was modified in HDF5-1.8.8 to be a wrapper of the POSIX driver,
H5FD_SEC2. This change should not affect user applications.

•H5FD_STDIO: this driver uses functions from the standard C stdio.h to perform I/O to a single, permanent
file on local disk with additional system buffering.

•H5FD_CORE: with this driver, an application can work with a file in memory for faster reads and writes.
File contents are kept in memory until the file is closed. At closing, the memory version of the file can be
written back to disk or abandoned.

•H5FD_SPLIT: this file driver splits a file into two parts. One part stores metadata, and the other part stores
raw data. This splitting a file into two parts is a limited case of the Multi driver.

The following drivers are not currently supported:

•H5FD_LOG: this is the H5FD_SEC2 driver with logging capabilities.

•H5FD_FAMILY: with this driver, the HDF5 file’s address space is partitioned into pieces and sent to
separate storage files using an underlying driver of the user’s choice. This driver is for systems that do not
support files larger than 2 gigabytes.

•H5FD_MULTI: with this driver, data can be stored in multiple files according to the type of the data. I/O
might work better if data is stored in separate files based on the type of data. The Split driver is a special
case of this driver.

•H5FD_MPIO: this is the standard HDF5 file driver for parallel file systems. This driver uses the MPI
standard for both communication and file I/O.

•H5FD_MPIPOSIX: this parallel file system driver uses MPI for communication and POSIX file-system
calls for file I/O.

•H5FD_STREAM: this driver is no longer available.

See also:

the Drivers section of the HDF5 User’s Guide for more information.

Note: not all supported drivers are always available. For example the H5FD_WINDOWS driver is not available
on non Windows platforms.

If the user try to use a driver that is not available on the target platform a RuntimeError is raised.

214 Chapter 9. PyTables parameter files

http://www.hdfgroup.org/HDF5/doc/UG/08_TheFile.html#Drivers
http://www.hdfgroup.org/HDF5/doc/UG/index.html

PyTables User Guide, Release 3.3.0

New in version 3.0.

tables.parameters.DRIVER_DIRECT_ALIGNMENT = 0
Specifies the required alignment boundary in memory.

A value of 0 (zero) means to use HDF5 Library’s default value.

New in version 3.0.

tables.parameters.DRIVER_DIRECT_BLOCK_SIZE = 0
Specifies the file system block size.

A value of 0 (zero) means to use HDF5 Library’s default value of 4KB.

New in version 3.0.

tables.parameters.DRIVER_DIRECT_CBUF_SIZE = 0
Specifies the copy buffer size.

A value of 0 (zero) means to use HDF5 Library’s default value.

New in version 3.0.

tables.parameters.DRIVER_CORE_INCREMENT = 65536
Core driver memory increment.

Specifies the increment by which allocated memory is to be increased each time more memory is required.

New in version 3.0.

tables.parameters.DRIVER_CORE_BACKING_STORE = 1
Enables backing store for the core driver.

With the H5FD_CORE driver, if the DRIVER_CORE_BACKING_STORE is set to 1 (True), the file contents
are flushed to a file with the same name as this core file when the file is closed or access to the file is terminated
in memory.

The application is allowed to open an existing file with H5FD_CORE driver. In that case, if the
DRIVER_CORE_BACKING_STORE is set to 1 and the flags for tables.open_file() is set to
H5F_ACC_RDWR, any change to the file contents are saved to the file when the file is closed. If backing_store is
set to 0 and the flags for tables.open_file() is set to H5F_ACC_RDWR, any change to the file contents
will be lost when the file is closed. If the flags for tables.open_file() is set to H5F_ACC_RDONLY, no
change to the file is allowed either in memory or on file.

New in version 3.0.

tables.parameters.DRIVER_CORE_IMAGE = None
String containing an HDF5 file image.

If this option is passed to the tables.open_file() function then the returned file object is set up using the
specified image.

A file image can be retrieved from an existing (and opened) file object using the
tables.File.get_file_image() method.

Note: requires HDF5 >= 1.8.9.

New in version 3.0.

tables.parameters.DRIVER_SPLIT_META_EXT = ‘-m.h5’
The extension for the metadata file used by the H5FD_SPLIT driver.

9.1. Tunable parameters in parameters.py 215

PyTables User Guide, Release 3.3.0

If this option is passed to the tables.openFile() function along with driver=’H5FD_SPLIT’, the exten-
sion is appended to the name passed as the first parameter to form the name of the metadata file. If the string
‘%s’ is used in the extension, the metadata file name is formed by replacing ‘%s’ with the name passed as the
first parameter instead.

New in version 3.1.

tables.parameters.DRIVER_SPLIT_RAW_EXT = ‘-r.h5’
The extension for the raw data file used by the H5FD_SPLIT driver.

If this option is passed to the tables.openFile() function along with driver=’H5FD_SPLIT’, the exten-
sion is appended to the name passed as the first parameter to form the name of the raw data file. If the string
‘%s’ is used in the extension, the raw data file name is formed by replacing ‘%s’ with the name passed as the
first parameter instead.

New in version 3.1.

216 Chapter 9. PyTables parameter files

CHAPTER

TEN

UTILITIES

PyTables comes with a couple of utilities that make the life easier to the user. One is called ptdump and lets you see
the contents of a PyTables file (or generic HDF5 file, if supported). The other one is named ptrepack that allows to
(recursively) copy sub-hierarchies of objects present in a file into another one, changing, if desired, some of the filters
applied to the leaves during the copy process.

Normally, these utilities will be installed somewhere in your PATH during the process of installation of the PyTables
package, so that you can invoke them from any place in your file system after the installation has successfully finished.

ptdump

As has been said before, ptdump utility allows you look into the contents of your PyTables files. It lets you see not
only the data but also the metadata (that is, the structure and additional information in the form of attributes).

Usage

For instructions on how to use it, just pass the -h flag to the command:

$ ptdump -h

to see the message usage:

usage: ptdump [-h] [-v] [-d] [-a] [-s] [-c] [-i] [-R RANGE]
filename[:nodepath]

The ptdump utility allows you look into the contents of your PyTables files.
It lets you see not only the data but also the metadata (that is, the

structure and additional information in the form of *attributes*).

positional arguments:
filename[:nodepath] name of the HDF5 file to dump

optional arguments:
-h, --help show this help message and exit
-v, --verbose dump more metainformation on nodes
-d, --dump dump data information on leaves
-a, --showattrs show attributes in nodes (only useful when -v or -d

are active)
-s, --sort sort output by node name
-c, --colinfo show info of columns in tables (only useful when -v or

-d are active)
-i, --idxinfo show info of indexed columns (only useful when -v or

217

PyTables User Guide, Release 3.3.0

-d are active)
-R RANGE, --range RANGE

select a RANGE of rows (in the form "start,stop,step")
during the copy of *all* the leaves. Default values
are "None,None,1", which means a copy of all the rows.

Read on for a brief introduction to this utility.

A small tutorial on ptdump

Let’s suppose that we want to know only the structure of a file. In order to do that, just don’t pass any flag, just the file
as parameter.

$ ptdump vlarray1.h5
/ (RootGroup) ''
/vlarray1 (VLArray(3,), shuffle, zlib(1)) 'ragged array of ints'
/vlarray2 (VLArray(3,), shuffle, zlib(1)) 'ragged array of strings'

we can see that the file contains just a leaf object called vlarray1, that is an instance of VLArray, has 4 rows, and two
filters has been used in order to create it: shuffle and zlib (with a compression level of 1).

Let’s say we want more meta-information. Just add the -v (verbose) flag:

$ ptdump -v vlarray1.h5
/ (RootGroup) ''
/vlarray1 (VLArray(3,), shuffle, zlib(1)) 'ragged array of ints'

atom = Int32Atom(shape=(), dflt=0)
byteorder = 'little'
nrows = 3
flavor = 'numpy'

/vlarray2 (VLArray(3,), shuffle, zlib(1)) 'ragged array of strings'
atom = StringAtom(itemsize=2, shape=(), dflt='')
byteorder = 'irrelevant'
nrows = 3
flavor = 'python'

so we can see more info about the atoms that are the components of the vlarray1 dataset, i.e. they are scalars of type
Int32 and with NumPy flavor.

If we want information about the attributes on the nodes, we must add the -a flag:

$ ptdump -va vlarray1.h5
/ (RootGroup) ''

/._v_attrs (AttributeSet), 4 attributes:
[CLASS := 'GROUP',
PYTABLES_FORMAT_VERSION := '2.0',
TITLE := '',
VERSION := '1.0']

/vlarray1 (VLArray(3,), shuffle, zlib(1)) 'ragged array of ints'
atom = Int32Atom(shape=(), dflt=0)
byteorder = 'little'
nrows = 3
flavor = 'numpy'
/vlarray1._v_attrs (AttributeSet), 3 attributes:
[CLASS := 'VLARRAY',
TITLE := 'ragged array of ints',
VERSION := '1.3']

/vlarray2 (VLArray(3,), shuffle, zlib(1)) 'ragged array of strings'

218 Chapter 10. Utilities

PyTables User Guide, Release 3.3.0

atom = StringAtom(itemsize=2, shape=(), dflt='')
byteorder = 'irrelevant'
nrows = 3
flavor = 'python'
/vlarray2._v_attrs (AttributeSet), 4 attributes:
[CLASS := 'VLARRAY',
FLAVOR := 'python',
TITLE := 'ragged array of strings',
VERSION := '1.3']

Let’s have a look at the real data:

$ ptdump -d vlarray1.h5
/ (RootGroup) ''
/vlarray1 (VLArray(3,), shuffle, zlib(1)) 'ragged array of ints'

Data dump:
[0] [5 6]
[1] [5 6 7]
[2] [5 6 9 8]
/vlarray2 (VLArray(3,), shuffle, zlib(1)) 'ragged array of strings'

Data dump:
[0] ['5', '66']
[1] ['5', '6', '77']
[2] ['5', '6', '9', '88']

We see here a data dump of the 4 rows in vlarray1 object, in the form of a list. Because the object is a VLA, we see a
different number of integers on each row.

Say that we are interested only on a specific row range of the /vlarray1 object:

ptdump -R2,3 -d vlarray1.h5:/vlarray1
/vlarray1 (VLArray(3,), shuffle, zlib(1)) 'ragged array of ints'

Data dump:
[2] [5 6 9 8]

Here, we have specified the range of rows between 2 and 4 (the upper limit excluded, as usual in Python). See how we
have selected only the /vlarray1 object for doing the dump (vlarray1.h5:/vlarray1).

Finally, you can mix several information at once:

$ ptdump -R2,3 -vad vlarray1.h5:/vlarray1
/vlarray1 (VLArray(3,), shuffle, zlib(1)) 'ragged array of ints'

atom = Int32Atom(shape=(), dflt=0)
byteorder = 'little'
nrows = 3
flavor = 'numpy'
/vlarray1._v_attrs (AttributeSet), 3 attributes:
[CLASS := 'VLARRAY',
TITLE := 'ragged array of ints',
VERSION := '1.3']

Data dump:
[2] [5 6 9 8]

ptrepack

This utility is a very powerful one and lets you copy any leaf, group or complete subtree into another file. During the
copy process you are allowed to change the filter properties if you want so. Also, in the case of duplicated pathnames,

10.2. ptrepack 219

PyTables User Guide, Release 3.3.0

you can decide if you want to overwrite already existing nodes on the destination file. Generally speaking, ptrepack
can be useful in may situations, like replicating a subtree in another file, change the filters in objects and see how
affect this to the compression degree or I/O performance, consolidating specific data in repositories or even importing
generic HDF5 files and create true PyTables counterparts.

Usage

For instructions on how to use it, just pass the -h flag to the command:

$ ptrepack -h

to see the message usage:

usage: ptrepack [-h] [-v] [-o] [-R RANGE] [--non-recursive]
[--dest-title TITLE] [--dont-create-sysattrs]
[--dont-copy-userattrs] [--overwrite-nodes]
[--complevel COMPLEVEL]
[--complib {zlib,lzo,bzip2,blosc,blosc:blosclz,blosc:lz4,blosc:lz4hc,blosc:snappy,blosc:zlib,blosc:zstd}]
[--shuffle {0,1}] [--bitshuffle {0,1}] [--fletcher32 {0,1}]
[--keep-source-filters] [--chunkshape CHUNKSHAPE]
[--upgrade-flavors] [--dont-regenerate-old-indexes]
[--sortby COLUMN] [--checkCSI] [--propindexes]
sourcefile:sourcegroup destfile:destgroup

This utility is very powerful and lets you copy any leaf, group or complete
subtree into another file. During the copy process you are allowed to change
the filter properties if you want so. Also, in the case of duplicated
pathnames, you can decide if you want to overwrite already existing nodes on
the destination file. Generally speaking, ptrepack can be useful in may
situations, like replicating a subtree in another file, change the filters in
objects and see how affect this to the compression degree or I/O performance,
consolidating specific data in repositories or even *importing* generic HDF5
files and create true PyTables counterparts.

positional arguments:
sourcefile:sourcegroup

source file/group
destfile:destgroup destination file/group

optional arguments:
-h, --help show this help message and exit
-v, --verbose show verbose information
-o, --overwrite overwrite destination file
-R RANGE, --range RANGE

select a RANGE of rows (in the form "start,stop,step")
during the copy of *all* the leaves. Default values
are "None,None,1", which means a copy of all the rows.

--non-recursive do not do a recursive copy. Default is to do it
--dest-title TITLE title for the new file (if not specified, the source

is copied)
--dont-create-sysattrs

do not create sys attrs (default is to do it)
--dont-copy-userattrs

do not copy the user attrs (default is to do it)
--overwrite-nodes overwrite destination nodes if they exist. Default is

to not overwrite them
--complevel COMPLEVEL

set a compression level (0 for no compression, which

220 Chapter 10. Utilities

PyTables User Guide, Release 3.3.0

is the default)
--complib {zlib,lzo,bzip2,blosc,blosc:blosclz,blosc:lz4,blosc:lz4hc,blosc:snappy,blosc:zlib,blosc:zstd}

set the compression library to be used during the
copy. Defaults to zlib

--shuffle {0,1} activate or not the shuffle filter (default is active
if complevel > 0)

--bitshuffle {0,1} activate or not the bitshuffle filter (not active by
default)

--fletcher32 {0,1} whether to activate or not the fletcher32 filter (not
active by default)

--keep-source-filters
use the original filters in source files. The default
is not doing that if any of --complevel, --complib,
--shuffle --bitshuffle or --fletcher32 option is
specified

--chunkshape CHUNKSHAPE
set a chunkshape. Possible options are: "keep" |
"auto" | int | tuple. A value of "auto" computes a
sensible value for the chunkshape of the leaves
copied. The default is to "keep" the original value

--upgrade-flavors when repacking PyTables 1.x or PyTables 2.x files, the
flavor of leaves will be unset. With this, such a
leaves will be serialized as objects with the internal
flavor ('numpy' for 3.x series)

--dont-regenerate-old-indexes
disable regenerating old indexes. The default is to
regenerate old indexes as they are found

--sortby COLUMN do a table copy sorted by the index in "column". For
reversing the order, use a negative value in the
"step" part of "RANGE" (see "-r" flag). Only applies
to table objects

--checkCSI Force the check for a CSI index for the --sortby
column

--propindexes propagate the indexes existing in original tables. The
default is to not propagate them. Only applies to
table objects

Read on for a brief introduction to this utility.

A small tutorial on ptrepack

Imagine that we have ended the tutorial 1 (see the output of examples/tutorial1-1.py), and we want to copy our reduced
data (i.e. those datasets that hangs from the /column group) to another file. First, let’s remember the content of the
examples/tutorial1.h5:

$ ptdump tutorial1.h5
/ (RootGroup) 'Test file'
/columns (Group) 'Pressure and Name'
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'
/detector (Group) 'Detector information'
/detector/readout (Table(10,)) 'Readout example'

Now, copy the /columns to other non-existing file. That’s easy:

$ ptrepack tutorial1.h5:/columns reduced.h5

That’s all. Let’s see the contents of the newly created reduced.h5 file:

10.2. ptrepack 221

PyTables User Guide, Release 3.3.0

$ ptdump reduced.h5
/ (RootGroup) ''
/name (Array(3,)) 'Name column selection'
/pressure (Array(3,)) 'Pressure column selection'

so, you have copied the children of /columns group into the root of the reduced.h5 file.

Now, you suddenly realized that what you intended to do was to copy all the hierarchy, the group /columns itself
included. You can do that by just specifying the destination group:

$ ptrepack tutorial1.h5:/columns reduced.h5:/columns
$ ptdump reduced.h5
/ (RootGroup) ''
/name (Array(3,)) 'Name column selection'
/pressure (Array(3,)) 'Pressure column selection'
/columns (Group) ''
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'

OK. Much better. But you want to get rid of the existing nodes on the new file. You can achieve this by adding the -o
flag:

$ ptrepack -o tutorial1.h5:/columns reduced.h5:/columns
$ ptdump reduced.h5
/ (RootGroup) ''
/columns (Group) ''
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'

where you can see how the old contents of the reduced.h5 file has been overwritten.

You can copy just one single node in the repacking operation and change its name in destination:

$ ptrepack tutorial1.h5:/detector/readout reduced.h5:/rawdata
$ ptdump reduced.h5
/ (RootGroup) ''
/rawdata (Table(10,)) 'Readout example'
/columns (Group) ''
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'

where the /detector/readout has been copied to /rawdata in destination.

We can change the filter properties as well:

$ ptrepack --complevel=1 tutorial1.h5:/detector/readout reduced.h5:/rawdata
Problems doing the copy from 'tutorial1.h5:/detector/readout' to 'reduced.h5:/rawdata'
The error was --> tables.exceptions.NodeError: destination group \``/\`` already has a node named \``rawdata``; you may want to use the \``overwrite`` argument
The destination file looks like:
/ (RootGroup) ''
/rawdata (Table(10,)) 'Readout example'
/columns (Group) ''
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'
Traceback (most recent call last):

File "utils/ptrepack", line 3, in ?
main()

File ".../tables/scripts/ptrepack.py", line 349, in main
stats = stats, start = start, stop = stop, step = step)

File ".../tables/scripts/ptrepack.py", line 107, in copy_leaf

222 Chapter 10. Utilities

PyTables User Guide, Release 3.3.0

raise RuntimeError, "Please check that the node names are not
duplicated in destination, and if so, add the --overwrite-nodes flag
if desired."

RuntimeError: Please check that the node names are not duplicated in
destination, and if so, add the --overwrite-nodes flag if desired.

Ooops! We ran into problems: we forgot that the /rawdata pathname already existed in destination file. Let’s add the
–overwrite-nodes, as the verbose error suggested:

$ ptrepack --overwrite-nodes --complevel=1 tutorial1.h5:/detector/readout
reduced.h5:/rawdata
$ ptdump reduced.h5
/ (RootGroup) ''
/rawdata (Table(10,), shuffle, zlib(1)) 'Readout example'
/columns (Group) ''
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'

you can check how the filter properties has been changed for the /rawdata table. Check as the other nodes still exists.

Finally, let’s copy a slice of the readout table in origin to destination, under a new group called /slices and with the
name, for example, aslice:

$ ptrepack -R1,8,3 tutorial1.h5:/detector/readout reduced.h5:/slices/aslice
$ ptdump reduced.h5
/ (RootGroup) ''
/rawdata (Table(10,), shuffle, zlib(1)) 'Readout example'
/columns (Group) ''
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'
/slices (Group) ''
/slices/aslice (Table(3,)) 'Readout example'

note how only 3 rows of the original readout table has been copied to the new aslice destination. Note as well how the
previously nonexistent slices group has been created in the same operation.

pt2to3

The PyTables 3.x series now follows PEP 8 coding standard. This makes using PyTables more idiomatic with sur-
rounding Python code that also adheres to this standard. The primary way that the 2.x series was not PEP 8 compliant
was with respect to variable naming conventions. Approximately 450 API variables were identified and updated for
PyTables 3.x.

To ease migration, PyTables ships with a new pt2to3 command line tool. This tool will run over a file and replace
any instances of the old variable names with the 3.x version of the name. This tool covers the overwhelming majority
of cases was used to transition the PyTables code base itself! However, it may also accidentally also pick up variable
names in 3rd party codes that have exactly the same name as a PyTables’ variable. This is because pt2to3 was
implemented using regular expressions rather than a fancier AST-based method. By using regexes, pt2to3 works on
Python and Cython code.

pt2to3 help:

usage: pt2to3 [-h] [-r] [-p] [-o OUTPUT] [-i] filename

PyTables 2.x -> 3.x API transition tool This tool displays to standard out, so
it is common to pipe this to another file: $ pt2to3 oldfile.py > newfile.py

10.3. pt2to3 223

http://www.python.org/dev/peps/pep-0008/

PyTables User Guide, Release 3.3.0

positional arguments:
filename path to input file.

optional arguments:
-h, --help show this help message and exit
-r, --reverse reverts changes, going from 3.x -> 2.x.
-p, --no-ignore-previous

ignores previous_api() calls.
-o OUTPUT output file to write to.
-i, --inplace overwrites the file in-place.

Note that pt2to3 only works on a single file, not a a directory. However, a simple BASH script may be written to
run pt2to3 over an entire directory and all sub-directories:

#!/bin/bash
for f in $(find .)
do

echo $f
pt2to3 $f > temp.txt
mv temp.txt $f

done

Note: pt2to3 uses the argparse module that is part of the Python standard library since Python 2.7. Users of
Python 2.6 should install argparse separately (e.g. via pip).

224 Chapter 10. Utilities

CHAPTER

ELEVEN

PYTABLES FILE FORMAT

PyTables has a powerful capability to deal with native HDF5 files created with another tools. However, there are
situations were you may want to create truly native PyTables files with those tools while retaining fully compatibility
with PyTables format. That is perfectly possible, and in this appendix is presented the format that you should endow
to your own-generated files in order to get a fully PyTables compatible file.

We are going to describe the 2.0 version of PyTables file format (introduced in PyTables version 2.0). As time goes
by, some changes might be introduced (and documented here) in order to cope with new necessities. However, the
changes will be carefully pondered so as to ensure backward compatibility whenever is possible.

A PyTables file is composed with arbitrarily large amounts of HDF5 groups (Groups in PyTables naming scheme) and
datasets (Leaves in PyTables naming scheme). For groups, the only requirements are that they must have some system
attributes available. By convention, system attributes in PyTables are written in upper case, and user attributes in lower
case but this is not enforced by the software. In the case of datasets, besides the mandatory system attributes, some
conditions are further needed in their storage layout, as well as in the datatypes used in there, as we will see shortly.

As a final remark, you can use any filter as you want to create a PyTables file, provided that the filter is a standard one
in HDF5, like zlib, shuffle or szip (although the last one can not be used from within PyTables to create a new file,
datasets compressed with szip can be read, because it is the HDF5 library which do the decompression transparently).

Mandatory attributes for a File

The File object is, in fact, an special HDF5 group structure that is root for the rest of the objects on the object tree.
The next attributes are mandatory for the HDF5 root group structure in PyTables files:

• CLASS: This attribute should always be set to ‘GROUP’ for group structures.

• PYTABLES_FORMAT_VERSION: It represents the internal format version, and currently should be set to the
‘2.0’ string.

• TITLE: A string where the user can put some description on what is this group used for.

• VERSION: Should contains the string ‘1.0’.

Mandatory attributes for a Group

The next attributes are mandatory for group structures:

• CLASS: This attribute should always be set to ‘GROUP’ for group structures.

• TITLE: A string where the user can put some description on what is this group used for.

• VERSION: Should contains the string ‘1.0’.

225

PyTables User Guide, Release 3.3.0

Optional attributes for a Group

The next attributes are optional for group structures:

• FILTERS: When present, this attribute contains the filter properties (a Filters instance, see section The Filters
class) that may be inherited by leaves or groups created immediately under this group. This is a packed 64-bit
integer structure, where

– byte 0 (the least-significant byte) is the compression level (complevel).

– byte 1 is the compression library used (complib): 0 when irrelevant, 1 for Zlib, 2 for LZO and 3 for Bzip2.

– byte 2 indicates which parameterless filters are enabled (shuffle and fletcher32): bit 0 is for Shuffle while
bit 1 is for*Fletcher32*.

– other bytes are reserved for future use.

Mandatory attributes, storage layout and supported data types for
Leaves

This depends on the kind of Leaf. The format for each type follows.

Table format

Mandatory attributes

The next attributes are mandatory for table structures:

• CLASS: Must be set to ‘TABLE’.

• TITLE: A string where the user can put some description on what is this dataset used for.

• VERSION: Should contain the string ‘2.6’.

• FIELD_X_NAME: It contains the names of the different fields. The X means the number of the field, zero-based
(beware, order do matter). You should add as many attributes of this kind as fields you have in your records.

• FIELD_X_FILL: It contains the default values of the different fields. All the datatypes are supported natively,
except for complex types that are currently serialized using Pickle. The X means the number of the field, zero-
based (beware, order do matter). You should add as many attributes of this kind as fields you have in your
records. These fields are meant for saving the default values persistently and their existence is optional.

• NROWS: This should contain the number of compound data type entries in the dataset. It must be an int data
type.

Storage Layout

A Table has a dataspace with a 1-dimensional chunked layout.

Datatypes supported

The datatype of the elements (rows) of Table must be the H5T_COMPOUND compound data type, and each of these
compound components must be built with only the next HDF5 data types classes:

226 Chapter 11. PyTables File Format

PyTables User Guide, Release 3.3.0

• H5T_BITFIELD: This class is used to represent the Bool type. Such a type must be build using a
H5T_NATIVE_B8 datatype, followed by a HDF5 H5Tset_precision call to set its precision to be just 1 bit.

• H5T_INTEGER: This includes the next data types:

– H5T_NATIVE_SCHAR: This represents a signed char C type, but it is effectively used to represent an
Int8 type.

– H5T_NATIVE_UCHAR: This represents an unsigned char C type, but it is effectively used to represent
an UInt8 type.

– H5T_NATIVE_SHORT: This represents a short C type, and it is effectively used to represent an Int16
type.

– H5T_NATIVE_USHORT: This represents an unsigned short C type, and it is effectively used to rep-
resent an UInt16 type.

– H5T_NATIVE_INT: This represents an int C type, and it is effectively used to represent an Int32 type.

– H5T_NATIVE_UINT: This represents an unsigned int C type, and it is effectively used to represent an
UInt32 type.

– H5T_NATIVE_LONG: This represents a long C type, and it is effectively used to represent an Int32
or an Int64, depending on whether you are running a 32-bit or 64-bit architecture.

– H5T_NATIVE_ULONG: This represents an unsigned long C type, and it is effectively used to represent
an UInt32 or an UInt64, depending on whether you are running a 32-bit or 64-bit architecture.

– H5T_NATIVE_LLONG: This represents a long long C type (__int64, if you are using a Windows
system) and it is effectively used to represent an Int64 type.

– H5T_NATIVE_ULLONG: This represents an unsigned long long C type (beware: this type does not
have a correspondence on Windows systems) and it is effectively used to represent an UInt64 type.

• H5T_FLOAT: This includes the next datatypes:

– H5T_NATIVE_FLOAT: This represents a float C type and it is effectively used to represent an Float32
type.

– H5T_NATIVE_DOUBLE: This represents a double C type and it is effectively used to represent an
Float64 type.

• H5T_TIME: This includes the next datatypes:

– H5T_UNIX_D32: This represents a POSIX time_t C type and it is effectively used to represent a
‘Time32’ aliasing type, which corresponds to an Int32 type.

– H5T_UNIX_D64: This represents a POSIX struct timeval C type and it is effectively used to represent
a ‘Time64’ aliasing type, which corresponds to a Float64 type.

• H5T_STRING: The datatype used to describe strings in PyTables is H5T_C_S1 (i.e. a string C type) followed
with a call to the HDF5 H5Tset_size() function to set their length.

• H5T_ARRAY: This allows the construction of homogeneous, multidimensional arrays, so that you can include
such objects in compound records. The types supported as elements of H5T_ARRAY data types are the ones
described above. Currently, PyTables does not support nested H5T_ARRAY types.

• H5T_COMPOUND: This allows the support for datatypes that are compounds of compounds (this is also known
as nested types along this manual).

This support can also be used for defining complex numbers. Its format is described below:

The H5T_COMPOUND type class contains two members. Both members must have the H5T_FLOAT atomic
datatype class. The name of the first member should be “r” and represents the real part. The name of
the second member should be “i” and represents the imaginary part. The precision property of both of the

11.4. Mandatory attributes, storage layout and supported data types for Leaves 227

PyTables User Guide, Release 3.3.0

H5T_FLOAT members must be either 32 significant bits (e.g. H5T_NATIVE_FLOAT) or 64 significant bits
(e.g. H5T_NATIVE_DOUBLE). They represent Complex32 and Complex64 types respectively.

Array format

Mandatory attributes

The next attributes are mandatory for array structures:

• CLASS: Must be set to ‘ARRAY’.

• TITLE: A string where the user can put some description on what is this dataset used for.

• VERSION: Should contain the string ‘2.3’.

Storage Layout

An Array has a dataspace with a N-dimensional contiguous layout (if you prefer a chunked layout see EArray below).

Datatypes supported

The elements of Array must have either HDF5 atomic data types or a compound data type representing a com-
plex number. The atomic data types can currently be one of the next HDF5 data type classes: H5T_BITFIELD,
H5T_INTEGER, H5T_FLOAT and H5T_STRING. The H5T_TIME class is also supported for reading existing Array
objects, but not for creating them. See the Table format description in Table format for more info about these types.

In addition to the HDF5 atomic data types, the Array format supports complex numbers with the H5T_COMPOUND
data type class. See the Table format description in Table format for more info about this special type.

You should note that H5T_ARRAY class datatypes are not allowed in Array objects.

CArray format

Mandatory attributes

The next attributes are mandatory for CArray structures:

• CLASS: Must be set to ‘CARRAY’.

• TITLE: A string where the user can put some description on what is this dataset used for.

• VERSION: Should contain the string ‘1.0’.

Storage Layout

An CArray has a dataspace with a N-dimensional chunked layout.

228 Chapter 11. PyTables File Format

PyTables User Guide, Release 3.3.0

Datatypes supported

The elements of CArray must have either HDF5 atomic data types or a compound data type representing a com-
plex number. The atomic data types can currently be one of the next HDF5 data type classes: H5T_BITFIELD,
H5T_INTEGER, H5T_FLOAT and H5T_STRING. The H5T_TIME class is also supported for reading existing CAr-
ray objects, but not for creating them. See the Table format description in Table format for more info about these
types.

In addition to the HDF5 atomic data types, the CArray format supports complex numbers with the H5T_COMPOUND
data type class. See the Table format description in Table format for more info about this special type.

You should note that H5T_ARRAY class datatypes are not allowed yet in Array objects.

EArray format

Mandatory attributes

The next attributes are mandatory for earray structures:

• CLASS: Must be set to ‘EARRAY’.

• EXTDIM: (Integer) Must be set to the extendable dimension. Only one extendable dimension is supported right
now.

• TITLE: A string where the user can put some description on what is this dataset used for.

• VERSION: Should contain the string ‘1.3’.

Storage Layout

An EArray has a dataspace with a N-dimensional chunked layout.

Datatypes supported

The elements of EArray are allowed to have the same data types as for the elements in the Array format. They
can be one of the HDF5 atomic data type classes: H5T_BITFIELD, H5T_INTEGER, H5T_FLOAT, H5T_TIME or
H5T_STRING, see the Table format description in Table format for more info about these types. They can also be a
H5T_COMPOUND datatype representing a complex number, see the Table format description in Table format.

You should note that H5T_ARRAY class data types are not allowed in EArray objects.

VLArray format

Mandatory attributes

The next attributes are mandatory for vlarray structures:

• CLASS: Must be set to ‘VLARRAY’.

• PSEUDOATOM: This is used so as to specify the kind of pseudo-atom (see VLArray format) for the VLArray.
It can take the values ‘vlstring’, ‘vlunicode’ or ‘object’. If your atom is not a pseudo-atom then you should not
specify it.

• TITLE: A string where the user can put some description on what is this dataset used for.

• VERSION: Should contain the string ‘1.3’.

11.4. Mandatory attributes, storage layout and supported data types for Leaves 229

PyTables User Guide, Release 3.3.0

Storage Layout

An VLArray has a dataspace with a 1-dimensional chunked layout.

Data types supported

The data type of the elements (rows) of VLArray objects must be the H5T_VLEN variable-length (or VL for short)
datatype, and the base datatype specified for the VL datatype can be of any atomic HDF5 datatype that is listed in the
Table format description Table format. That includes the classes:

• H5T_BITFIELD

• H5T_INTEGER

• H5T_FLOAT

• H5T_TIME

• H5T_STRING

• H5T_ARRAY

They can also be a H5T_COMPOUND data type representing a complex number, see the Table format description in
Table format for a detailed description.

You should note that this does not include another VL datatype, or a compound datatype that does not fit the description
of a complex number. Note as well that, for object and vlstring pseudo-atoms, the base for the VL datatype is always a
H5T_NATIVE_UCHAR (H5T_NATIVE_UINT for vlunicode). That means that the complete row entry in the dataset
has to be used in order to fully serialize the object or the variable length string.

Optional attributes for Leaves

The next attributes are optional for leaves:

• FLAVOR: This is meant to provide the information about the kind of object kept in the Leaf, i.e. when the dataset
is read, it will be converted to the indicated flavor. It can take one the next string values:

– “numpy”: Read data (structures arrays, arrays, records, scalars) will be returned as NumPy objects.

– “python”: Read data will be returned as Python lists, tuples, or scalars.

230 Chapter 11. PyTables File Format

CHAPTER

TWELVE

BIBLIOGRAPHY

[HDFG1] The HDF Group. What is HDF5?. Concise description about HDF5 capabilities and its differences from
earlier versions (HDF4). http://www.hdfgroup.org/HDF5/whatishdf5.html.

[HDFG2] The HDF Group. Introduction to HDF5. Introduction to the HDF5 data model and programming model.
http://www.hdfgroup.org/HDF5/doc/H5.intro.html.

[HDFG3] The HDF Group. The HDF5 table programming model. Examples on using HDF5 tables with the C API.
http://www.hdfgroup.org/HDF5/Tutor/h5table.html.

[MERTZ] David Mertz. Objectify. On the ‘Pythonic’ treatment of XML documents as objects(II). Article describing
XML Objectify, a Python module that allows working with XML documents as Python objects. Some of the
ideas presented here are used in PyTables. http://gnosis.cx/publish/programming/xml_matters_2.html.

[CYTHON] Stefan Behnel, Robert Bradshaw, Dag Sverre Seljebotn, and Greg Ewing. Cython. A language that
makes writing C extensions for the Python language as easy as Python itself. http://www.cython.org.

[NUMPY] Travis Oliphant and et al. NumPy. Scientific Computing with Numerical Python. The latest and most
powerful re-implementation of Numeric to date. It implements all the features that can be found in Numeric and
numarray, plus a bunch of new others. In general, it is more efficient as well. http://www.numpy.org.

[NUMEXPR] David Cooke, Francesc Alted, and et al. Numexpr. Fast evaluation of array expressions by using a
vector-based virtual machine. It is an enhaced computing kernel that is generally faster (between 1x and 10x,
depending on the kind of operations) than NumPy at evaluating complex array expressions. http://code.google.
com/p/numexpr.

[ZLIB] JeanLoup Gailly and Mark Adler. zlib. A Massively Spiffy Yet Delicately Unobtrusive Compression Library.
A standard library for compression purposes. http://www.gzip.org/zlib/.

[LZO] Markus F Oberhumer. LZO. A data compression library which is suitable for data de-/compression in real-
time. It offers pretty fast compression and decompression with reasonable compression ratio. http://www.
oberhumer.com/opensource/.

[BZIP2] Julian Seward. bzip2. A high performance lossless compressor. It offers very high compression ratios within
reasonable times. http://www.bzip.org/.

[BLOSC] Francesc Alted. Blosc. A blocking, shuffling and loss-less compression library. A compressor designed to
transmit data from memory to CPU (and back) faster than a plain memcpy(). http://www.blosc.org/.

[GNUWIN32] Alexis Wilke, Jerry S., Kees Zeelenberg, and Mathias Michaelis. GnuWin32. GNU (and other) tools
ported to Win32. GnuWin32 provides native Win32-versions of GNU tools, or tools with a similar open source
licence. http://gnuwin32.sourceforge.net/.

[PSYCO] Armin Rigo. Psyco. A Python specializing compiler. Run existing Python software faster, with no change
in your source. http://psyco.sourceforge.net.

[SCIPY1] Konrad Hinsen. Scientific Python. Collection of Python modules useful for scientific computing. http:
//dirac.cnrs-orleans.fr/ScientificPython.

231

http://www.hdfgroup.org/HDF5/whatishdf5.html
http://www.hdfgroup.org/HDF5/doc/H5.intro.html
http://www.hdfgroup.org/HDF5/Tutor/h5table.html
http://gnosis.cx/publish/programming/xml_matters_2.html
http://www.cython.org
http://www.numpy.org
http://code.google.com/p/numexpr
http://code.google.com/p/numexpr
http://www.gzip.org/zlib/
http://www.oberhumer.com/opensource/
http://www.oberhumer.com/opensource/
http://www.bzip.org/
http://www.blosc.org/
http://gnuwin32.sourceforge.net/
http://psyco.sourceforge.net
http://dirac.cnrs-orleans.fr/ScientificPython
http://dirac.cnrs-orleans.fr/ScientificPython

PyTables User Guide, Release 3.3.0

[SCIPY2] Eric Jones, Travis Oliphant, Pearu Peterson, and et al. SciPy. Scientific tools for Python. SciPy supple-
ments the popular Numeric module, gathering a variety of high level science and engineering modules together
as a single package. http://www.scipy.org.

[OPTIM] Francesc Alted and Ivan Vilata. Optimization of file openings in PyTables. This document explores the
savings of the opening process in terms of both CPU time and memory, due to the adoption of a LRU cache for
the nodes in the object tree. http://www.pytables.org/docs/NewObjectTreeCache.pdf.

[OPSI] Francesc Alted and Ivan Vilata. OPSI: The indexing system of PyTables 2 Professional Edition. Exhaustive
description and benchmarks about the indexing engine that comes with PyTables Pro. http://www.pytables.org/
docs/OPSI-indexes.pdf.

[VITABLES] Vicent Mas. ViTables. A GUI for PyTables/HDF5 files. It is a graphical tool for browsing and editing
files in both PyTables and HDF5 formats. http://vitables.org.

[GIT] Git is a free and open source, distributed version control system designed to handle everything from small to
very large projects with speed and efficiency http://git-scm.com.

[SPHINX] Sphinx is a tool that makes it easy to create intelligent and beautiful documentation, written by Georg
Brandl and licensed under the BSD license http://sphinx-doc.org.

232 Chapter 12. Bibliography

http://www.scipy.org
http://www.pytables.org/docs/NewObjectTreeCache.pdf
http://www.pytables.org/docs/OPSI-indexes.pdf
http://www.pytables.org/docs/OPSI-indexes.pdf
http://vitables.org
http://git-scm.com
http://sphinx-doc.org

INDEX

Symbols
__call__() (tables.Enum method), 147
__call__() (tables.link.ExternalLink method), 127
__call__() (tables.link.SoftLink method), 126
__contains__() (tables.Enum method), 147
__contains__() (tables.File method), 79
__contains__() (tables.Group method), 88
__contains__() (tables.attributeset.AttributeSet method),

141
__contains__() (tables.tableextension.Row method), 107
__delattr__() (tables.Group method), 88
__enter__() (tables.File method), 68
__eq__() (tables.Enum method), 148
__exit__() (tables.File method), 68
__getattr__() (tables.Enum method), 148
__getattr__() (tables.Group method), 89
__getitem__() (tables.Array method), 115
__getitem__() (tables.Cols method), 109
__getitem__() (tables.Column method), 112
__getitem__() (tables.Enum method), 149
__getitem__() (tables.Table method), 98
__getitem__() (tables.VLArray method), 123
__getitem__() (tables.index.Index method), 145
__getitem__() (tables.tableextension.Row method), 107
__iter__() (tables.Array method), 116
__iter__() (tables.Enum method), 149
__iter__() (tables.Expr method), 156
__iter__() (tables.File method), 79
__iter__() (tables.Group method), 89
__iter__() (tables.Table method), 98
__iter__() (tables.VLArray method), 124
__len__() (tables.Cols method), 109
__len__() (tables.Column method), 113
__len__() (tables.Enum method), 149
__len__() (tables.Leaf method), 93
__repr__() (tables.Enum method), 150
__repr__() (tables.File method), 69
__repr__() (tables.Group method), 89
__setattr__() (tables.Group method), 89
__setitem__() (tables.Array method), 116
__setitem__() (tables.Cols method), 109
__setitem__() (tables.Column method), 113

__setitem__() (tables.Table method), 101
__setitem__() (tables.VLArray method), 124
__setitem__() (tables.tableextension.Row method), 108
__str__() (tables.File method), 68
__str__() (tables.Group method), 89
__str__() (tables.link.ExternalLink method), 128
__str__() (tables.link.SoftLink method), 127
__version__ (in module tables), 63
_f_close() (tables.Group method), 86
_f_close() (tables.Leaf method), 93
_f_close() (tables.Node method), 83
_f_col() (tables.Cols method), 109
_f_copy() (tables.Group method), 86
_f_copy() (tables.Node method), 83
_f_copy() (tables.attributeset.AttributeSet method), 140
_f_copy_children() (tables.Group method), 87
_f_delattr() (tables.Node method), 84
_f_get_child() (tables.Group method), 87
_f_getattr() (tables.Node method), 84
_f_isvisible() (tables.Node method), 83
_f_iter_nodes() (tables.Group method), 87
_f_list() (tables.attributeset.AttributeSet method), 140
_f_list_nodes() (tables.Group method), 87
_f_move() (tables.Node method), 84
_f_remove() (tables.Node method), 84
_f_rename() (tables.Node method), 84
_f_rename() (tables.attributeset.AttributeSet method),

141
_f_setattr() (tables.Node method), 84
_f_walk() (tables.Description method), 106
_f_walk_groups() (tables.Group method), 87
_f_walknodes() (tables.Group method), 88
_v_attrnames (tables.AttributeSet attribute), 140
_v_attrnamessys (tables.AttributeSet attribute), 140
_v_attrnamesuser (tables.AttributeSet attribute), 140
_v_attrs (tables.Node attribute), 83
_v_attrs (tables.link.Link attribute), 125
_v_children (tables.Group attribute), 86
_v_colnames (tables.Cols attribute), 109
_v_colobjects (tables.Description attribute), 104
_v_colpathnames (tables.Cols attribute), 109
_v_depth (tables.Node attribute), 82

233

PyTables User Guide, Release 3.3.0

_v_desc (tables.Cols attribute), 109
_v_dflts (tables.Description attribute), 105
_v_dtype (tables.Description attribute), 105
_v_dtypes (tables.Description attribute), 105
_v_file (tables.Node attribute), 82
_v_filters (tables.Group attribute), 86
_v_groups (tables.Group attribute), 86
_v_hidden (tables.Group attribute), 86
_v_is_nested (tables.Description attribute), 105
_v_isopen (tables.Node attribute), 83
_v_itemsize (tables.Description attribute), 105
_v_leaves (tables.Group attribute), 86
_v_links (tables.Group attribute), 86
_v_name (tables.Description attribute), 105
_v_name (tables.Node attribute), 82
_v_names (tables.Description attribute), 105
_v_nchildren (tables.Group attribute), 86
_v_nested_descr (tables.Description attribute), 105
_v_nested_formats (tables.Description attribute), 105
_v_nested_names (tables.Description attribute), 105
_v_nestedlvl (tables.Description attribute), 105
_v_node (tables.attributeset.AttributeSet attribute), 140
_v_objectid (tables.Node attribute), 82
_v_parent (tables.Node attribute), 83
_v_pathname (tables.Description attribute), 105
_v_pathname (tables.Node attribute), 82
_v_pathnames (tables.Description attribute), 105
_v_pos (tables.Col attribute), 136
_v_pos (tables.IsDescription attribute), 138
_v_table (tables.Cols attribute), 109
_v_title (tables.Node attribute), 83
_v_types (tables.Description attribute), 105
_v_unimplemented (tables.AttributeSet attribute), 140
_v_unknown (tables.Group attribute), 86

A
append() (tables.EArray method), 120
append() (tables.Table method), 99
append() (tables.tableextension.Row method), 106
append() (tables.VLArray method), 123
append_mode (tables.Expr attribute), 154
append_where() (tables.Table method), 103
Array (class in tables), 113
Atom (class in tables), 128
atom (tables.Array attribute), 114
atom (tables.VLArray attribute), 122
AttributeSet (class in tables.attributeset), 139
attrs (tables.Leaf attribute), 91
attrs (tables.nodes.filenode.RAFileNode attribute), 161
attrs (tables.nodes.filenode.ROFileNode attribute), 159
autoindex (tables.Table attribute), 95

B
bitshuffle (tables.Filters attribute), 143

BLOSC_DIR, 15, 16
BoolAtom (class in tables), 132
BoolCol (class in tables), 136
BOUNDS_MAX_SIZE (in module tables.parameters),

212
BOUNDS_MAX_SLOTS (in module tables.parameters),

212
BUFFER_TIMES (in module tables.parameters), 213
byteorder (tables.Leaf attribute), 90
byteorder (tables.UnImplemented attribute), 150
BZIP2_DIR, 16

C
CArray (class in tables), 117
CHUNK_CACHE_NELMTS (in module ta-

bles.parameters), 212
CHUNK_CACHE_PREEMPT (in module ta-

bles.parameters), 212
CHUNK_CACHE_SIZE (in module tables.parameters),

212
chunkshape (tables.Leaf attribute), 90
chunksize (tables.indexes.IndexArray attribute), 146
close() (tables.File method), 68
close() (tables.Leaf method), 91
close() (tables.nodes.filenode.RAFileNode method), 162
close() (tables.nodes.filenode.RawPyTablesIO method),

158
close() (tables.nodes.filenode.ROFileNode method), 160
ClosedFileError, 152
ClosedNodeError, 152
Col (class in tables), 135
col() (tables.Table method), 96
coldescrs (tables.Table attribute), 94
coldflts (tables.Table attribute), 94
coldtypes (tables.Table attribute), 94
colindexed (tables.Table attribute), 95
colindexes (tables.Table attribute), 95
colinstances (tables.Table attribute), 95
colnames (tables.Table attribute), 95
colpathnames (tables.Table attribute), 95
Cols (class in tables), 108
cols (tables.Table attribute), 95
coltypes (tables.Table attribute), 95
Column (class in tables), 110
column (tables.index.Index attribute), 144
columns (tables.IsDescription attribute), 138
complevel (tables.Filters attribute), 142
ComplexAtom (class in tables), 132
ComplexCol (class in tables), 137
complib (tables.Filters attribute), 143
COND_CACHE_SLOTS (in module tables.parameters),

212
copy() (tables.Atom method), 130
copy() (tables.Filters method), 143

234 Index

PyTables User Guide, Release 3.3.0

copy() (tables.Leaf method), 91
copy() (tables.link.Link method), 125
copy() (tables.Table method), 103
copy_children() (tables.File method), 69
copy_file() (in module tables), 63
copy_file() (tables.File method), 68
copy_node() (tables.File method), 70
copy_node_attrs() (tables.File method), 81
create_array() (tables.File method), 70
create_carray() (tables.File method), 71
create_csindex() (tables.Column method), 111
create_earray() (tables.File method), 72
create_external_link() (tables.File method), 73
create_group() (tables.File method), 74
create_hard_link() (tables.File method), 74
create_index() (tables.Column method), 111
create_soft_link() (tables.File method), 74
create_table() (tables.File method), 74
create_vlarray() (tables.File method), 76

D
DataTypeWarning, 153
DEFAULT_H5_BACKTRACE_POLICY (ta-

bles.HDF5ExtError attribute), 151
del_attr() (tables.Leaf method), 92
del_node_attr() (tables.File method), 81
descr (tables.Column attribute), 110
descr_from_dtype() (in module tables.description), 138
Description (class in tables), 104
description (tables.Table attribute), 95
dflt (tables.Atom attribute), 129
dirty (tables.index.Index attribute), 144
DISABLE_EVERY_CYCLES (in module ta-

bles.parameters), 213
disable_undo() (tables.File method), 79
DRIVER (in module tables.parameters), 214
DRIVER_CORE_BACKING_STORE (in module ta-

bles.parameters), 215
DRIVER_CORE_IMAGE (in module tables.parameters),

215
DRIVER_CORE_INCREMENT (in module ta-

bles.parameters), 215
DRIVER_DIRECT_ALIGNMENT (in module ta-

bles.parameters), 215
DRIVER_DIRECT_BLOCK_SIZE (in module ta-

bles.parameters), 215
DRIVER_DIRECT_CBUF_SIZE (in module ta-

bles.parameters), 215
DRIVER_SPLIT_META_EXT (in module ta-

bles.parameters), 215
DRIVER_SPLIT_RAW_EXT (in module ta-

bles.parameters), 216
dtype (tables.Atom attribute), 129
dtype (tables.Column attribute), 110

dtype (tables.Leaf attribute), 90
dtype_from_descr() (in module tables.description), 138

E
EArray (class in tables), 118
ENABLE_EVERY_CYCLES (in module ta-

bles.parameters), 213
enable_undo() (tables.File method), 80
Enum (class in tables.misc.enum), 146
EnumAtom (class in tables), 132
EnumCol (class in tables), 138
environment variable

BLOSC_DIR, 15, 16
BZIP2_DIR, 16
HDF5_DIR, 16
LD_LIBRARY_PATH, 16
LIBS, 16
LZO_DIR, 16
PATH, 19
PT_DEFAULT_H5_BACKTRACE_POLICY, 151
PYTHONPATH, 17–19
USE-PKGCONFIG, 16

eval() (tables.Expr method), 155
EXPECTED_ROWS_EARRAY (in module ta-

bles.parameters), 213
EXPECTED_ROWS_TABLE (in module ta-

bles.parameters), 213
ExperimentalFeatureWarning, 153
Expr (class in tables), 153
extdim (tables.Leaf attribute), 90
extdim (tables.Table attribute), 95
extdim (tables.VLArray attribute), 122
ExternalLink (class in tables.link), 127
extfile (tables.ExternalLink attribute), 127

F
fetch_all_fields() (tables.tableextension.Row method),

106
File (class in tables), 66
FileModeError, 152
filename (tables.File attribute), 67
fileno() (tables.File method), 68
fileno() (tables.nodes.filenode.RAFileNode method), 162
fileno() (tables.nodes.filenode.RawPyTablesIO method),

158
fileno() (tables.nodes.filenode.ROFileNode method), 160
Filters (class in tables), 141
filters (tables.File attribute), 67
filters (tables.index.Index attribute), 144
filters (tables.Leaf attribute), 90
FiltersWarning, 153
flavor (tables.Leaf attribute), 90
flavor (tables.VLArray attribute), 122
FlavorError, 153

Index 235

PyTables User Guide, Release 3.3.0

FlavorWarning, 153
fletcher32 (tables.Filters attribute), 142
Float32Atom (class in tables), 132
Float32Col (class in tables), 137
Float64Atom (class in tables), 132
Float64Col (class in tables), 137
FloatAtom (class in tables), 132
flush() (tables.File method), 68
flush() (tables.Leaf method), 92
flush() (tables.nodes.filenode.RAFileNode method), 161
flush() (tables.nodes.filenode.RawPyTablesIO method),

158
flush() (tables.nodes.filenode.ROFileNode method), 160
flush_rows_to_index() (tables.Table method), 104
format_h5_backtrace() (tables.HDF5ExtError method),

151
format_version (tables.File attribute), 67
from_atom() (tables.Col class method), 136
from_dtype() (tables.Atom class method), 130
from_kind() (tables.Atom class method), 130
from_sctype() (tables.Atom class method), 131
from_type() (tables.Atom class method), 131

G
get_attr() (tables.Leaf method), 92
get_current_mark() (tables.File method), 80
get_enum() (tables.Array method), 114
get_enum() (tables.Table method), 104
get_enum() (tables.VLArray method), 123
get_file_image() (tables.File method), 69
get_filesize() (tables.File method), 69
get_node() (tables.File method), 78
get_node_attr() (tables.File method), 81
get_row_size() (tables.VLArray method), 123
get_userblock_size() (tables.File method), 69
get_where_list() (tables.Table method), 101
goto() (tables.File method), 80
Group (class in tables), 84

H
h5backtrace (tables.HDF5ExtError attribute), 151
HDF5_DIR, 16
hdf5_version (in module tables), 63
HDF5ExtError, 150

I
Index (class in tables.index), 143
index (tables.Column attribute), 110
IndexArray (class in tables.indexes), 145
indexed (tables.Table attribute), 95
indexedcolpathnames (tables.Table attribute), 95
Int16Atom (class in tables), 132
Int16Col (class in tables), 136
Int32Atom (class in tables), 132

Int32Col (class in tables), 136
Int64Atom (class in tables), 132
Int64Col (class in tables), 136
Int8Atom (class in tables), 132
Int8Col (class in tables), 136
IntAtom (class in tables), 132
IntCol (class in tables), 136
IO_BUFFER_SIZE (in module tables.parameters), 213
is_csi (tables.index.Index attribute), 144
is_hdf5_file() (in module tables), 63
is_indexed (tables.Column attribute), 110
is_pytables_file() (in module tables), 64
is_undo_enabled() (tables.File method), 80
is_visible_node() (tables.File method), 78
IsDescription (class in tables), 138
isopen (tables.File attribute), 67
isvisible() (tables.Leaf method), 92
itemsize (tables.Atom attribute), 129
itemsize (tables.ComplexAtom attribute), 132
itemsize (tables.EnumAtom attribute), 134
itemsize (tables.StringAtom attribute), 131
iter_nodes() (tables.File method), 78
iterrows() (tables.Array method), 114
iterrows() (tables.Table method), 96
iterrows() (tables.VLArray method), 123
ITERSEQ_MAX_ELEMENTS (in module ta-

bles.parameters), 212
ITERSEQ_MAX_SIZE (in module tables.parameters),

212
ITERSEQ_MAX_SLOTS (in module tables.parameters),

212
itersequence() (tables.Table method), 96
itersorted() (tables.Table method), 96

K
kind (tables.Atom attribute), 129

L
LD_LIBRARY_PATH, 16
Leaf (class in tables), 90
LIBS, 16
LIMBOUNDS_MAX_SIZE (in module ta-

bles.parameters), 212
LIMBOUNDS_MAX_SLOTS (in module ta-

bles.parameters), 212
Link (class in tables.link), 125
list_nodes() (tables.File method), 78
LOWEST_HIT_RATIO (in module tables.parameters),

213
LZO_DIR, 16

M
maindim (tables.Column attribute), 110
maindim (tables.Expr attribute), 154

236 Index

PyTables User Guide, Release 3.3.0

maindim (tables.Leaf attribute), 90
mark() (tables.File method), 80
MAX_BLOSC_THREADS (in module ta-

bles.parameters), 213
MAX_COLUMNS (in module tables.parameters), 211
MAX_GROUP_WIDTH (in module tables.parameters),

211
MAX_NODE_ATTRS (in module tables.parameters),

211
MAX_NUMEXPR_THREADS (in module ta-

bles.parameters), 213
MAX_TREE_DEPTH (in module tables.parameters),

211
MAX_UNDO_PATH_LENGTH (in module ta-

bles.parameters), 211
METADATA_CACHE_SIZE (in module ta-

bles.parameters), 212
mode (tables.File attribute), 67
mode (tables.nodes.filenode.RawPyTablesIO attribute),

158
modify_column() (tables.Table method), 99
modify_columns() (tables.Table method), 99
modify_coordinates() (tables.Table method), 99
modify_rows() (tables.Table method), 99
move() (tables.Leaf method), 92
move() (tables.link.Link method), 125
move_node() (tables.File method), 77

N
name (tables.Column attribute), 110
name (tables.Leaf attribute), 91
names (tables.Expr attribute), 154
NaturalNameWarning, 152
ndim (tables.Atom attribute), 129
ndim (tables.Leaf attribute), 90
nelements (tables.tables.index.Index attribute), 145
new_node() (in module tables.nodes.filenode), 156
next() (tables.Array method), 115
next() (tables.VLArray method), 123
Node (class in tables), 82
NODE_CACHE_SLOTS (in module tables.parameters),

212
NodeError, 152
NodeType (in module tables.nodes.filenode), 156
NodeTypeVersions (in module tables.nodes.filenode), 156
NoSuchNodeError, 152
nrow (tables.Array attribute), 114
nrow (tables.Row attribute), 106
nrow (tables.VLArray attribute), 122
nrows (tables.Array attribute), 114
nrows (tables.Leaf attribute), 90
nrows (tables.Table attribute), 95
nrows (tables.UnImplemented attribute), 150
nrows (tables.VLArray attribute), 122

nrowsinbuf (tables.Leaf attribute), 90

O
o_start (tables.Expr attribute), 155
o_step (tables.Expr attribute), 155
o_stop (tables.Expr attribute), 155
object_id (tables.Leaf attribute), 91
ObjectAtom (class in tables), 134
OldIndexWarning, 153
open_count (tables.File attribute), 67
open_file() (in module tables), 64
open_node() (in module tables.nodes.filenode), 156
out (tables.Expr attribute), 154

P
PATH, 19
pathname (tables.Column attribute), 110
PerformanceWarning, 152
print_versions() (in module tables), 65
PT_DEFAULT_H5_BACKTRACE_POLICY, 151
PYTABLES_SYS_ATTRS (in module ta-

bles.parameters), 213
PYTHONPATH, 17–19

R
RAFileNode (class in tables.nodes.filenode), 161
RawPyTablesIO (class in tables.nodes.filenode), 158
read() (tables.Array method), 115
read() (tables.nodes.filenode.RAFileNode method), 161
read() (tables.nodes.filenode.ROFileNode method), 160
read() (tables.Table method), 97
read() (tables.VLArray method), 123
read_coordinates() (tables.Table method), 97
read_from_filenode() (in module tables.nodes.filenode),

157
read_indices() (tables.index.Index method), 145
read_sorted() (tables.index.Index method), 145
read_sorted() (tables.Table method), 97
read_where() (tables.Table method), 102
readable() (tables.nodes.filenode.RAFileNode method),

162
readable() (tables.nodes.filenode.RawPyTablesIO

method), 159
readable() (tables.nodes.filenode.ROFileNode method),

160
readinto() (tables.nodes.filenode.RawPyTablesIO

method), 159
readline() (tables.nodes.filenode.RAFileNode method),

161
readline() (tables.nodes.filenode.RawPyTablesIO

method), 159
readline() (tables.nodes.filenode.ROFileNode method),

160

Index 237

PyTables User Guide, Release 3.3.0

readlines() (tables.nodes.filenode.RAFileNode method),
161

readlines() (tables.nodes.filenode.ROFileNode method),
160

recarrtype (tables.Atom attribute), 129
redo() (tables.File method), 80
reindex() (tables.Column method), 112
reindex() (tables.Table method), 104
reindex_dirty() (tables.Column method), 112
reindex_dirty() (tables.Table method), 104
remove() (tables.Leaf method), 92
remove() (tables.link.Link method), 125
remove_index() (tables.Column method), 112
remove_node() (tables.File method), 77
remove_row() (tables.Table method), 100
remove_rows() (tables.Table method), 100
rename() (tables.Leaf method), 92
rename() (tables.link.Link method), 125
rename_node() (tables.File method), 77
restrict_flavors() (in module tables), 65
ROFileNode (class in tables.nodes.filenode), 159
root (tables.File attribute), 67
root_uep (tables.File attribute), 67
Row (class in tables.tableextension), 106
row (tables.Table attribute), 95
rowsize (tables.Array attribute), 114
rowsize (tables.Table attribute), 95

S
save_to_filenode() (in module tables.nodes.filenode), 157
seek() (tables.nodes.filenode.RAFileNode method), 162
seek() (tables.nodes.filenode.RawPyTablesIO method),

158
seek() (tables.nodes.filenode.ROFileNode method), 160
seekable() (tables.nodes.filenode.RAFileNode method),

162
seekable() (tables.nodes.filenode.RawPyTablesIO

method), 158
seekable() (tables.nodes.filenode.ROFileNode method),

160
set_attr() (tables.Leaf method), 92
set_blosc_max_threads() (in module tables), 64
set_inputs_range() (tables.Expr method), 155
set_node_attr() (tables.File method), 81
set_output() (tables.Expr method), 155
set_output_range() (tables.Expr method), 156
shape (tables.Atom attribute), 129
shape (tables.Column attribute), 111
shape (tables.Expr attribute), 155
shape (tables.Leaf attribute), 90
shape (tables.UnImplemented attribute), 150
shuffle (tables.Filters attribute), 143
silence_hdf5_messages() (in module tables), 65
size (tables.Atom attribute), 129

size_in_memory (tables.Leaf attribute), 91
size_in_memory (tables.VLArray attribute), 122
size_on_disk (tables.Leaf attribute), 91
size_on_disk (tables.VLArray attribute), 122
slicesize (tables.indexes.IndexArray attribute), 146
SoftLink (class in tables.link), 126
SORTED_MAX_SIZE (in module tables.parameters),

212
SORTEDLR_MAX_SIZE (in module tables.parameters),

213
SORTEDLR_MAX_SLOTS (in module ta-

bles.parameters), 213
split_type() (in module tables), 65
StringAtom (class in tables), 131
StringCol (class in tables), 136

T
Table (class in tables), 93
table (tables.Column attribute), 111
TABLE_MAX_SIZE (in module tables.parameters), 212
tables.nodes.filenode (module), 156
target (tables.Link attribute), 125
tell() (tables.nodes.filenode.RAFileNode method), 162
tell() (tables.nodes.filenode.RawPyTablesIO method),

158
tell() (tables.nodes.filenode.ROFileNode method), 160
test() (in module tables), 65
Time32Atom (class in tables), 132
Time32Col (class in tables), 137
Time64Atom (class in tables), 132
Time64Col (class in tables), 138
TimeCol (class in tables), 137
title (tables.File attribute), 67
title (tables.Leaf attribute), 91
truncate() (tables.Leaf method), 93
truncate() (tables.nodes.filenode.RAFileNode method),

161
truncate() (tables.nodes.filenode.RawPyTablesIO

method), 158
type (tables.Atom attribute), 129
type (tables.Column attribute), 111

U
UInt16Atom (class in tables), 132
UInt16Col (class in tables), 137
UInt32Atom (class in tables), 132
UInt32Col (class in tables), 137
UInt64Atom (class in tables), 132
UInt64Col (class in tables), 137
UInt8Atom (class in tables), 132
UInt8Col (class in tables), 137
UIntAtom (class in tables), 132
UIntCol (class in tables), 137
umount() (tables.link.ExternalLink method), 127

238 Index

PyTables User Guide, Release 3.3.0

undo() (tables.File method), 80
UndoRedoError, 152
UndoRedoWarning, 152
UnImplemented (class in tables), 150
Unknown (class in tables), 150
update() (tables.tableextension.Row method), 107
USE-PKGCONFIG, 16

V
values (tables.Expr attribute), 155
VLArray (class in tables), 120
VLStringAtom (class in tables), 134
VLUnicodeAtom (class in tables), 135

W
walk_groups() (tables.File method), 78
walk_nodes() (tables.File method), 79
where() (tables.Table method), 102
which_lib_version() (in module tables), 65
will_query_use_indexing() (tables.Table method), 103
writable() (tables.nodes.filenode.RAFileNode method),

162
writable() (tables.nodes.filenode.RawPyTablesIO

method), 159
writable() (tables.nodes.filenode.ROFileNode method),

160
write() (tables.nodes.filenode.RAFileNode method), 161
write() (tables.nodes.filenode.RawPyTablesIO method),

159
writelines() (tables.nodes.filenode.RAFileNode method),

162

Index 239

	I The PyTables Core Library
	II Complementary modules
	III Appendixes

