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1 Scope

The Potrace library provides:

• tracing, i.e., conversion of bitmaps to a vector representation (Bezier curves and

straight line segments).

It does not provide frontend functionality such as:

• preparation of bitmaps (e.g. reading a bitmap from a file, preparing a bitmap by

thresholding/scaling/filtering a greyscale image etc)

And it does not provide backend functionality such as:

• post-processing of the vector representation (e.g. conversion to a file format such

as PostScript or SVG, scaling + rotation, quantization etc).

2 Data representation

2.1 Bitmaps

2.1.1 Coordinate system

For Potrace, a bitmap of size w × h is embedded in a cartesian coordinate system

where each pixel takes up the space of one unit square. The pixels are positioned so

that the corners of pixels (and not their centers) lie at points with integer coordinates,

as illustrated in Figure 1. The origin of the coordinate system is at the lower left corner

of the bitmap. The four corners of the bitmaps have coordinates (0, 0), (0, h), (w, h),
and (w, 0).

Sometimes we need to refer to a specific pixel (as opposed to a point in the plane).

When we speak of “pixel [i, j]”, we mean the pixel whose corners have coordinates

(i, j), (i, j + 1), (i + 1, j + 1), (i + 1, j) in Potrace’s coordinate system. Thus, pixel

[i, j] is the pixel whose center is at coordinates (i + 0.5, j + 0.5). To avoid confusion,

we use square brackets to refer to the pixel [i, j], and round brackets to refer to the

point (i, j).
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Figure 1: The Potrace coordinate system

2.1.2 Bitmap representation

The Potrace library expects bitmaps in the following format, defined in potracelib.h:

struct potrace_bitmap_s {

int w, h; /* width and height, in pixels */

int dy; /* scanline offset in words */

potrace_word *map; /* pixel data, dy*h words */

};

typedef struct potrace_bitmap_s potrace_bitmap_t;

Here, potrace_word is an unsigned integer type defined in potracelib.h. It is

usually equal to a native machine word (i.e., 32 bits on a 32-bit architecture). In the

following explanation, we assume that the type potrace_word holds N bits.

A bitmap of dimensions w×h is divided, bottom to top, into h horizontal scanlines.

Each scanline is divided, left to right, into blocks of N pixels. Each such block of N

pixels is stored as a single potrace_word, with the leftmost pixels of the block

corresponding to the most significant bit of the word, and the rightmost pixel of the

block corresponding to the least significant bit of the word.

Pixels that are “on” (or “black” or “foreground”) are represented by bit value 1.

Pixels that are “off” (of “white” or “background”) are represented by bit value 0.

If the number of bits in a scanline is not divisible by N , then the rightmost word of

the scanline is padded on the right with zeros.

The data for scanline 0 (the bottom-most scanline) begins at map[0]. The data for

scanline 1 begins at map[dy]. The data for scanline 2 begins at map[2*dy], and so

forth. Note that dy can be either positive or negative, depending on how an application

wishes to lay out the image data in memory.

In summary, the pixel with coordinates [i, j] can be accessed by the following C

formula:

pixel(i,j) = ((map + j*dy)[i/N] & (1 << (N-1-i%N)) ? 1 : 0.
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2.1.3 Example

Figure 2 shows an example bitmap of size 36 × 12. Shaded pixels are “on” and

white pixels are “off”. Figure 3 shows a possible representation of this bitmap in the

potrace_bitmap_t data structure. Note that the data is stored in the map array in

a bottom-to-top and left-to-right fashion.

2.1.4 A remark on byte order

It is important to keep in mind that bitmaps are stored as arrays of words, not as ar-

rays of bytes. While this distinction makes no difference on big-endian architectures,

it makes a significant difference on little-endian architectures such as the Intel-based

architecture. For instance, when the integer word 0x1f80fc02 is accessed as a byte-

array on a little-endian machine, then the bytes appear in reverse order 0x02, 0xfc,

0x80, 0x1f. Therefore, special care must be taken when converting a bitmap from a

byte-based format to Potrace’s word-based format.

2.1.5 Coordinate independence

The vector data that is the output of Potrace is taken with respect to the same coordinate

system as the input bitmap, i.e., the coordinate system from Figure 1. In principle, it is

immaterial whether an application puts the coordinate origin in the bottom-left corner

or the top-left corner of an image, as long as it interprets the output coordinates in the

same way as the input coordinates.

However, a reversal of the coordinate system will upset the meaning of the words

“clockwise” and “counterclockwise” in the specification of vector images below (see

Section 2.2.5), and will also affect the meaning of Potrace’s turnpolicies (see Sec-

tion 2.3). We therefore assume, for definiteness, that the coordinate origin is in the

lower left corner. Applications that wish to follow a different convention have to com-

pensate accordingly.

2.2 Vector format

2.2.1 Points

A point (x, y) in the Euclidean plane is represented in Potrace by a value of type

potrace_dpoint_t.

struct potrace_dpoint_s {

double x, y;

};

typedef struct potrace_dpoint_s potrace_dpoint_t;

2.2.2 Segments

Curves in Potrace are composed of the following two types of segments:
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Figure 2: Sample bitmap

w = 36;

h = 12;

dy = 2;

map[22] = 0xfff0fc02; map[23] = 0x00000000;

map[20] = 0x7ff1fe02; map[21] = 0x00000000;

map[18] = 0x3ff3ff07; map[19] = 0x00000000;

map[16] = 0x1ff7ff87; map[17] = 0x00000000;

map[14] = 0x0ff7cf8f; map[15] = 0x80000000;

map[12] = 0x07f7878f; map[13] = 0x80000000;

map[10] = 0x03f7879f; map[11] = 0xc0000000;

map[8] = 0x01f7cf9f; map[9] = 0xc0000000;

map[6] = 0x00f7ffbf; map[7] = 0xe0000000;

map[4] = 0x0073ff3f; map[5] = 0xe0000000;

map[2] = 0x0031fe7f; map[3] = 0xf0000000;

map[0] = 0x0010fc7f; map[1] = 0xf0000000;

Figure 3: Sample bitmap representation
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Figure 4: (a) A Bezier curve segment. (b) A corner segment
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Figure 5: A closed curve consisting of 4 segments

• Bezier curve segments. A Bezier curve segment is given in the usual way by

a starting point a, two control points u and w, and an endpoint b, as shown in

Figure 4(a).

• Corner segments. A corner segment is given by a starting point a, a vertex v, and

an endpoint b. A corner segment is drawn as two straight lines: one from a to v,

and one from v to b, as shown in Figure 4(b).

2.2.3 Curves

A curve in Potrace is a sequence of segments, such that the endpoint of each segment

coincides with the starting point of the next one. All curves in Potrace are closed, and

therefore the endpoint of the final segment also coincides with the starting point of the

first one. Figure 5 shows an example of a curve consisting of 4 segments: 3 Bezier

curve segments and 1 corner segment. For clarity, the start- and endpoints of segments

have been marked with dots “•”.

Curves are represented as values of type potrace_curve_t, which is defined

as follows:

struct potrace_curve_s {

int n; /* number of segments */

int *tag; /* array of segment types */

potrace_dpoint_t (*c)[3]; /* array of control points. */

};

typedef struct potrace_curve_s potrace_curve_t;

Here n ≥ 1 is the number of segments in the curve. For i = 0, . . . , n− 1, tag[i]

is the type of the i-th segment, which is POTRACE_CURVETO for a Bezier curve seg-

ment and POTRACE_CORNER for a corner segment. c is an array of size n × 3 that

holds the control points of the curve segments in the following manner:

• If the i-th segment is a Bezier curve segment, thenc[i][0] = u and c[i][1] =
w are the two control points of that segment, and c[i][2] = b is its endpoint.
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Figure 6: (a) A vector image. (b) Its boundary decomposition.

• If the i-th segment is a corner segment, then c[i][0] is unused, c[i][1] = v

is the vertex of the segment, and c[i][2] = b is its endpoint.

Note that, since the starting point a of each segment coincides with the endpoint b of

the preceding segment (and the starting point a of the first segment coincides with the

endpoint b of the last segment), there is no need to store the starting points a explicitly.

Also, note that regardless of the type of segment, the endpoint of the i-th segment is

c[i][2], and the starting point of the i-th segment is c[i ? i-1 : n-1][2].

The curve from Figure 5 is therefore represented by the following data:

n = 4;

tag[0] = POTRACE_CURVETO;

c[0][0] = u0; c[0][1] = w0; c[0][2] = b0 = a1;

tag[1] = POTRACE_CURVETO;

c[1][0] = u1; c[1][1] = w1; c[1][2] = b1 = a2;

tag[2] = POTRACE_CURVETO;

c[2][0] = u2; c[2][1] = w2; c[2][2] = b2 = a3;

tag[3] = POTRACE_CORNER;

c[3][0] = unused; c[3][1] = v3; c[3][2] = b3 = a0;

2.2.4 Boundary decomposition of bitonal vector images

In Potrace, a bitonal (i.e. black-and-white) vector image, as in Figure 6(a), is decom-

posed into a collection of closed boundary curves, shown in blue and red and labeled

A–I in Figure 6(b).

We introduce some terminology. A closed curve is simple if it does not intersect

itself. Each simple closed curve, taken by itself, divides the plane into two regions,

called the inside and and the outside of the curve. If C1 and C2 are simple closed

curves, we say that C1 is contained in C2, written C1 < C2, if C1 lies entirely within

the inside of C2. For example, in Figure 6(b), the curves B–E are contained in A,

whereas F–I are not.
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In a decomposition of a vector image as in Figure 6, we say that a curve C1 is a

child of C2 if C1 < C2 and there exists no other curve C3 between C1 and C2 (i.e., no

curve C3 such that C1 < C3 < C2). In this case, we also say that C1 is a parent of C2.

Since boundary curves do not intersect, each curve has at most one parent. Two curves

are said to be siblings if they are either both parentless, or else they have a parent in

common. Note that the “child” relation naturally defines a tree structure on the set of

curves (more precisely, it defines a “forest”, since there can be more than one root).

For example, in Figure 6(b), the curve A has no parent, and has children B and E.

The curve E has no children, and the curve B has children C and D. A and F are

siblings, B and E are siblings, and C and D are siblings. The curves from Figure 6(b)

form the following forest under the “child” relation:

A F

/ \ |

B E G

/ \ |

C D H

|

I

We can assign each curve a sign by calling a curve positive if it encloses a “fore-

ground” region, and negative if it encloses a “background” region (or “hole”). For

example, in Figure 6(b), positive curves are shown in blue and negative curves in red.

Since foreground and background regions alternate, it follows that the sign of

curves also alternates, i.e., parentless curves are always positive, and all other curves

have the opposite sign of their parent. It follows that, in the tree structure, curves that

appear at even levels are positive and those that appear at odd levels are negative. In

particular, siblings share a common sign.

2.2.5 Representation of vector images

In Potrace, a vector image is represented as a linked collection of zero or more struc-

tures of type potrace_path_t, which is defined as follows:

struct potrace_path_s {

int area; /* enclosed area */

int sign; /* ’+’ or ’-’ */

potrace_curve_t curve; /* vector data */

struct potrace_path_s *next; /* list structure */

struct potrace_path_s *childlist; /* tree structure */

struct potrace_path_s *sibling; /* tree structure */

struct potrace_privpath_s *priv; /* private state */

};

typedef struct potrace_path_s potrace_path_t;
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Each such structure holds a single curve, and the structures are linked to each other

via the next, childlist, and sibling pointers.

• The sign field holds the sign of the curve (’+’ or ’-’ in ASCII).

• The curve field contains the curve’s vector data as described in Section 2.2.3.

Potrace additionally follows the convention that positive curves run counter-

clockwise and negative curves run clockwise; this facilitates rendering in en-

vironments (such as PostScript or PDF) that have a “fill” rule based on winding

number.

• The area field gives the approximate magnitude of the area enclosed by the

curve. (In fact, it is the precise integer area of the original untraced “jaggy”

curve). Some clients use this information to improve interactive rendering speeds

by ignoring very small areas in a first rendering pass. See also the description of

the turdsize parameter in Section 2.3 below.

• The priv field is used internally by Potrace, and is not accessible to applica-

tions.

• The next field is used to link all the curves of a given vector image into a linked

list. Each member points to the next one via its next field, and the last member

of the list has next==NULL. The order of the elements of this list is unspecified,

but is guaranteed to satisfy the following constraints:

(a) outer curves appear before inner ones, so if C1 < C2, then C2 always

appears sometime before C1 in the linked list, and

(b) each positive curve is immediately followed by all of its children.

These two constraints make it easy for clients to render the image by simply

processing the linked list in sequential order. Constraint (a) makes it possible to

fill each curve with solid black or white color, allowing later curves to paint over

parts of earlier ones. Constraint (b) further allows a client to fill a positive curve,

minus its negative children, in a single paint operation, leaving a “hole” for each

of the negative children.

• The childlist and sibling fields define a forest structure on the set of

curves, which can be used independently of the linked list structure. For each

curve, childlist is a pointer to its first child, or NULL if there are no children.

Also, sibling is a pointer to the next sibling, or NULL if there are no further

siblings. The relative order of siblings is unspecified. The root node of the tree

structure always coincides with the root node of the linked list structure.

An image consisting of zero curves is represented as a NULL pointer.

8



2.2.6 Intersecting curves

While in the above discussion we have assumed a set of non-intersecting curves, in

practice it can happen that the curves output by Potrace intersect slightly. Clients

should therefore carefully choose their rendering parameters (e.g., the non-zero wind-

ing number rule is preferable to the odd winding number rule) to avoid undesirable

artifacts.

2.2.7 Example

The image from Figure 6 can be represented by the pointer plist, where A–I are
structures of type potrace_path_t, as follows. We do not show the area and
curve fields.

potrace_path_t *plist = &A;

A.sign = ’+’; B.sign = ’-’; E.sign = ’-’;

A.next = &B; B.next = &E; E.next = &C;

A.childlist = &B; B.childlist = &C; E.childlist = NULL;

A.sibling = &F; B.sibling = &E; E.sibling = NULL;

C.sign = ’+’; D.sign = ’+’; F.sign = ’+’;

C.next = &D; D.next = &F; F.next = &G;

C.childlist = NULL; D.childlist = NULL; F.childlist = &G;

C.sibling = &D; D.sibling = NULL; F.sibling = NULL;

G.sign = ’-’; H.sign = ’+’; I.sign = ’-’;

G.next = &H; H.next = &I; I.next = NULL;

G.childlist = &H; H.childlist = &I; I.childlist = NULL;

G.sibling = NULL; H.sibling = NULL; I.sibling = NULL;

2.3 Tracing parameters

The tracing operation of Potrace is controlled by a small number of parameters. The

parameter structure is defined in potracelib.h as:

struct potrace_param_s {

int turdsize;

int turnpolicy;

double alphamax;

int opticurve;

double opttolerance;

potrace_progress_t progress;

};

typedef struct potrace_param_s potrace_param_t;

For most practical purposes, the default parameters give excellent results. The func-

tion potrace_param_default() (see Section 3.3) returns the set of default pa-

rameters. Applications must always start from these default parameters before chang-
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Figure 7: Despeckling with turdsize=3.

?

Figure 8: Path decomposition

ing any parameters. This will increase backward compatibility in case additional pa-

rameters are added in the future.

2.3.1 Turdsize

The turdsize parameter can be used to “despeckle” the bitmap to be traced, by

removing all curves whose enclosed area is below the given threshold. Figure 7 shows

the result of applying turdsize=3 to a bitmap. The current default for the turdsize

parameter is 2; its useful range is from 0 to infinity.

2.3.2 Turnpolicy

The turnpolicy parameter determines how to resolve ambiguities during decomposition

of bitmaps into paths. The ambiguity arises in the last situation shown in Figure 8. The

possible choices for the turnpolicy parameter are:

• POTRACE_TURNPOLICY_BLACK: prefers to connect black (foreground) com-

ponents.

• POTRACE_TURNPOLICY_WHITE: prefers to connect white (background) com-

ponents.

• POTRACE_TURNPOLICY_LEFT: always take a left turn.

• POTRACE_TURNPOLICY_RIGHT: always take a right turn.
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Figure 9: The alphamax parameter

• POTRACE_TURNPOLICY_MINORITY: prefers to connect the color (black or

white) that occurs least frequently in a local neighborhood of the current position.

• POTRACE_TURNPOLICY_MAJORITY: prefers to connect the color (black or

white) that occurs most frequently in a local neighborhood of the current posi-

tion.

• POTRACE_TURNPOLICY_RANDOM: choose pseudo-randomly.

The current default policy is POTRACE_TURNPOLICY_MINORITY, which tends

to keep visual lines connected.

2.3.3 Alphamax

The alphamax parameter is a threshold for the detection of corners. It controls the

smoothness of the traced curve, as shown in Figure 9. The current default is 1.0. The

useful range of this parameter is from 0.0 (polygon) to 1.3334 (no corners).

2.3.4 Opticurve and opttolerance

The opticurve parameter is a boolean flag that controls whether Potrace will at-

tempt to “simplify” the final curve by reducing the number of Bezier curve segments.

Opticurve=1 turns on optimization, and opticurve=0 turns it off. The current default is

on.

The opttolerance parameter defines the amount of error allowed in this sim-

plification. The current default is 0.2. Larger values tend to decrease the number of

segments, at the expense of less accuracy. The useful range is from 0 to infinity, al-

though in practice one would hardly choose values greater than 1 or so. For most

purposes, the default value is a good tradeoff between space and accuracy.

2.3.5 Progress reporting

Since tracing a large bitmap can be time consuming, Potrace has the option of reporting

progress to the calling application. This is typically used in interactive applications to

implement a progress bar. Progress reporting is controlled by the progress parame-

ter, which is a structure of type potrace_progress_t, defined as follows:
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struct potrace_progress_s {

void (*callback)(double progress, void *privdata);

void *data;

double min, max;

double epsilon;

};

typedef struct potrace_progress_s potrace_progress_t;

If callback is not NULL, then progress reporting is enabled. In this case,

callback is the address of a function to be called for progress reports, and data

is a pointer to that function’s private data. Progress reports take the form of a function

call callback(d, data), where d is a number representing the amount of relative

progress in the range min. . .max.

The parameter epsilon is a hint that tells Potrace what amount of progress the

application considers “too small to report”. Whenever convenient, Potrace will feel

free to suppress progress reports if the increment since the previous report has been

less than epsilon. As a special case, if epsilon = 0, then the maximal number of

progress reports are sent. In any case, the application should handle progress reports

very efficiently, as there may be a large number of reports.

The defaults are callback = NULL, data = NULL, min = 0.0, max = 1.0,

and epsilon = 0.

2.4 Potrace state

A Potrace state holds the result of a tracing operation. It is defined as follows:

struct potrace_state_s {

int status;

potrace_path_t *plist; /* vector data */

struct potrace_privstate_s *priv; /* private state */

};

typedef struct potrace_state_s potrace_state_t;

The fields are as follows:

• The status field is either POTRACE_STATUS_OK, to indicate that the tracing

operation was successful, or POTRACE_STATUS_INCOMPLETE, to indicate

that it was unsuccessful.

• In the event of success, plist points to the representation of the bitonal traced

vector image as described in Section 2.2.5. In the event of failure, plist points

to a data structure whose properties are undefined, except that the Potrace state

can still be freed with potrace_state_free().

• The priv field is used internally by Potrace, and is not accessible by applica-

tions.
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3 API functions

There is no global or static state in potracelib; all API functions are reentrant and

thread-safe.

3.1 potrace trace

potrace_state_t *potrace_trace(const potrace_param_t *param,

const potrace_bitmap_t *bm);

Inputs:

• bm: a bitmap (see Section 2.1).

• param: a set of tracing parameters (see Section 2.3).

Output:

• a Potrace state (see Section 2.4).

This function attempts to trace the given bitmap using the given tracing parame-

ters. In the event of success, it returns a valid Potrace state with the status field set

to POTRACE_STATUS_OK. In the event of failure, it sets errno to an error number,

and either returns NULL, or else it returns an incomplete Potrace state, which by defini-

tion has the status field set to POTRACE_STATUS_INCOMPLETE. Any Potrace state

returned by potrace_trace() (whether it is valid or invalid) can be freed using

the potrace_state_free() function below.

3.2 potrace state free

void potrace_state_free(potrace_state_t *st);

Input:

• st: a Potrace state previously returned by potrace_trace().

This function frees the memory and other resources (if any) associated with the

Potrace state.

3.3 potrace param default

potrace_param_t *potrace_param_default();

Output:

• a set of tracing parameters (see Section 2.3).

This function returns a fresh set of tracing parameters, initialized to defaults. Appli-

cations must always use this function to create an object of type potrace_param_t,

and they must always start from the default parameters before modifying any param-

eters. This will help increase backward compatibility when additional parameters are

added in the future. The parameter set returned by this function can later be freed by

potrace_param_free().
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3.4 potrace param free()

void potrace_param_free(potrace_param_t *p);

Input:

• tracing parameters previously returned by potrace_param_default().

This function frees the memory occupied by a set of tracing parameters as returned

by potrace_param_default(). Only the fields initialized by Potrace are freed,

not any fields set by the application itself (such as progress.data).

3.5 potrace version()

const char *potrace_version();

This function returns a static human-readable text string identifying this version of

potracelib.
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