PostgreSQL 12.5 Documentation

The PostgreSQL Global Development Group

PostgreSQL 12.5 Documentation
The PostgreSQL Global Development Group
Copyright © 1996-2020 The PostgreSQL Global Development Group

Legal Notice
PostgreSQL is Copyright © 1996-2020 by the PostgreSQL Global Development Group.
Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written agreement
is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE
AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED
HEREUNDER IS ON AN “ASIS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

1= = o PP XXXl
1. What 1S POSIGIrESQL? ..ttt et e e e e s XXXl
2. A Brief History of POSIGreSQLuuiiiiiiiiiiiiiee et XXXl

2.1. The Berkeley POSTGRES PrOJECEcccvvuniiiiiiiiieieiiiieeeeii et XXXl
2.2, POSIOrESOS ...t XXXl
2.3, POSIOrESQL ..ot XXXV
3. CONVENTIONS ...ttt ettt ettt ettt ettt ettt e et et e et eaar e e e ane e e eenans XXXIV
4. FUrther INfOrmMBLIONcieeii et XXXV
5. Bug Reporting GUIEIINESuuiiiiiii et XXXV
5.1 1deNtifYiNG BUGSceeveieeiiiii ettt e e XXXV
5.2, WHEL 10 REDOIT ...ttt XXXVi
5.3. Where to REPOI BUGScoveiiieiiiiiii e XXXVili
N T 1o - PP 1
L. GEtING SEAEAen ettt et 3
L1 INSEAITEIION .ottt 3
1.2. Architectural FUNDamMEeNtalScoouuuiiiiiiiie e 3
1.3. Creating @ Dal@haseccoeuuiiiiiiiii e 4
1.4, ACCESSING 8 DAANBSEcoviieiiiii e 5
2. The SQL LBNGUBGE ...cevtueieiit ettt ettt ettt e e e na e e eneans 8
2% W [i oo (8o (o o RO TSP SPPPTPR 8
A O 0] 1= o = PP 8
2.3. Creating @aNew Tableuiiii e 9
2.4. Populating a Table With ROWSccoouuiiiiiiiii e 9
25, QUEYING A TaADIE ..o 10
2.6. J0INS BEWEEN TaDIESuiiiiii e 12
2.7. AQQregate FUNCLIONSccuuuieieiiie ettt ettt e e e na e eeees 14
2.8 UPUELES ...ttt 16
2.9, DEIBLIONS ...t e et et aean 16
3. AGVANCED FEAIUMNEScevu ittt ettt e et e e enb e e eneas 18
I3 B [L oo (8 1o o EO TP PPPPTT 18
2 VT T S PR 18
3.3 FOrEIgN KEBYS ..t 18
B THANSACHIONS ...ttt ettt ettt et e e e e 19
3.5, WINAOW FUNCHIONSovueiiii et 21
3.6, INNEITEANCE ...t 24
7. CONCIUSION ..ttt ettt ettt ettt e et e e e et e e eenen s 26
[1. The SQL LBNQUAJE eeeetiee ettt ettt ettt ettt et et e et et e e e et e e e eaa e e eenens 27
A, SQL SYNEBX t.tteeeetti ettt ettt ettt e ettt ettt e e e e 35
A1, LeXiCal SHUCKUME ...ttt ettt e e e e e et e e eeees 35
4.2, ValUE EXPIESSIONSeeeeiiietieii ettt ettt ettt et e et e e e 45
4.3. CalliNg FUNCLIONS ...ttt ettt eneans 59
5. Data DEFINITION ...oeeiiieii et 63
DL TADIE BASICS ..ttt 63
5.2. DEFAUIT VAIUBS ... e 64
5.3. Generated COIUMNScoouiieiiii e et eeeans 65
B4, CONSITAINTS ...evtneeeeet ettt ettt ettt e et et et e e e e e e ennen s 66
5.5, SYStEM COIUMNS ...ttt 75
5.6. MOAIfTYiNG TaDIESceiiiiieiee e 76
BT PrIVIIEOES ..o 78
5.8. ROW SeCUurity POIICIESuuiiiiiii e 83
5.9, SCREMAS ... 90

PostgreSQL 12.5 Documentation

5.10. INNEITANCE ... et e e et 94
5.11. Table Partitioningoceuuiiiiiiiiii e ee e e e e e e e e e e e e 98
I = o (= To o I - A 112
5.13. Other Database ODJECESuuivviiiiii e e 112
5.14. Dependency TraCKingociuuieeii eanaas 113
(SR T = 1Y =T o 10 = 1 o 115
(O 1S g To [- - NP 115
S Lo = (] g o B T - L 116
(SRR D= I (] oo - v U 117
6.4. Returning Data from Modified ROWSccccoviiiiiiiie e, 117
28 8 = = 119
8 T @ = 4T PN 119
7.2. TahlE EXPIrESSIONSivviieiii e e e e e e e e e e et e e st e e e e eaneees 119
SRS = [o B I £ SRR 135
7.4. CombiNING QUETES ... ccuuiiiiiieiie et e e e e e e e e e e e et e e et e e e ean s 137
7.5, SOMING ROWS ..ot e e e e e e e e e e e e e eanaeees 138
L Y B =0 o O o P 139
T.7. VALUES LISES 1ieiiiiieiiii ettt ettt e et e et e e e b 139
7.8. W TH Queries (Common Table EXPreSSions)vvveveeeiiieiiiieeiineeiineesieeeaneens 140
T D= = T Y/ oS PP 148
T80 O N U 0= Lo Y o= 149
8.2, M ONEAY Ty DS ittt ittt et e 154
G O == ot (= g Y/ o= PR 155
8.4. BINAry Dala TYPES ..uuciiiiiii it e et e e e e e e e e e e e e e eaa s 157
R = (=l T (ST Y/ o= P 159
S = T To =T N Y/ o= P 169
A 10001 = =0 B Y/ o= 170
8.8. GEOMELNIC TYPES ..uvitiiii ettt et et e et e e e e e e e e et e e et e e et e e et eeaaeaeens 172
8.9. NEtWOrK AdOreSS TYPES .ovuiiiiieii et et e e e e e e e e e e e e e et e e et e e aanaaes 175
8.10. Bit SIHNG TYPES . uiitnieiie et e e e e e e e e e e et e e et e ea e eaes 177
8.11. TeXt SEACH TYPES o vvun it e e 178
ST 2 U1 1 T I/ o= P 181
ST Q. I 1Y/ o= ST 182
ST N S @ NI Y/ o=~ PP 184
e I N = Y PP 193
8.16. COMPOSITE TYPES .vvuiiiiieein et ettt e et e et e e e e e e e e e e st e e et e e et e e et e e aneeaenns 203
8.7, RANGE TYPES .ottt 210
8.18. DOMAIN TYPES ..uuiiiiiiiii e et e e e e e e e e e e e et e e et e et e e e e aaeeaanns 216
8.19. ObjeCt 1AdENtifier TYPES ..vuiiii i eiiie e e e e e e e ea e 216
ST 0 oo [0 1 1Y 1= TSN 218
ST I e =0 (o 0l N o1 218
1 I N 0 Tox [0 5= 0 (o @ o= = 0 220
1S I oo vz B @ o= = (] £ 220
9.2. Comparison FUNCtions and OPEratorsSocvvuieiiiieiiieeii e e e e e e e eannas 220
9.3. Mathematical Functions and OPEratorScc.ovevvrieiiiiieiii e e e e 223
9.4. String FUNCLioNS and OPEIatOrScvvueiiieeiiie e e e e e e e e e e e e eaaes 227
9.5. Binary String FUNctions and OPEratorsSccuuveiuuieeeueeeiiieeiieeeieeraineeaneeaenns 242
9.6. Bit String FUNCtions and OPEratorsccuuvevuiieiiieeiiie e e e e e e e 245
A = 1 (= g TN\ (11 o P 246
9.8. Data Type Formatting FUNCLIONSccoviiiiiiiiiii e e 263
9.9. Date/Time FUNCtions and OPEratorSccuueviiieiiiieeiii e e e e e e e eanas 271
9.10. ENum SUPPOIt FUNCLIONScvviciiiiceii e e e e e e 286
9.11. Geometric FUNCtions and OPEratorsScvvueiirnieiiieeeii e ee e e e eaannes 287
9.12. Network Address Functions and OPEratorsScceuueeeueerinierieeeiieeeineesanenns 291

PostgreSQL 12.5 Documentation

9.13. Text Search FUNCtions and OPEratorsSoeeveieiiiieeii e e e e e e e 293
.14, XML FUNCLIONS ... iiiiiiieeeii et e et e e et e e e e b e 300
9.15. JSON FUNCtions and OPEraiorsSccuuueieuneeeieeeiiieeeieeeaee e e e e e e e e e eeenaas 315
9.16. Sequence Manipulation FUNCLIONScoiuiiiiiiiiecie e e e 331
9.17. Conditional EXPrESSIONSuuiieiieiiieiiieee e e e e e e e e e e e e e e e e e eaaeees 334
9.18. Array FUNCtions and OPEralorsSccuuieiiueeiiieeeiiieeiie e e e e e e e e eaaaeeanns 337
9.19. Range FUNCLioNSs and OPEratorScvvueiiieeiieeeieeeie e et e e e e e e e et e e e eannes 340
9.20. AQQregate FUNCLIONScouu i e e e e e e aana e 342
9.21. WINAOW FUNCLIONSvuiieeiii et e e e e 350
9.22. SUDQUENY EXPrESSIONSuueiiiiiiiiieeiieeeeeeee e e e e e e e et e e e e e e e e et e e et eeaneeaes 352
9.23. Row and Array COMPAIISONSuveuueiiieeiieeeiiieeeieesteeetteeeanaeeetneestneeennaeenes 355
9.24. Set RetUrNiNg FUNCLIONSuuiiiicii e e e e e e 358
9.25. System Information Functions and OPEratorsc.uveveuieeieeeinieriineeaneeeenns 361
9.26. System AdminNistration FUNCHIONScouuiiiiiieiiiiec e ee e 379
9.27. Trigger FUNCLIONSuuiii i e e e e e e e e e e e e e e et e e e e aneees 399
9.28. Event Trigger FUNCHIONSco.viiiiici e e e e eaa s 399
9.29. Statistics INfFOrmMation FUNCLIONSuviiiiiiieiiiie e 402
O Y oL @0 0177 = o] o PP 403
FO. 1. OVEIVIBIW Leuieeiiii et et e e e e e e et e e e et e e e e st e e e e eatn e 403
B0.2, P AIONS v uitittt ettt et 404
L0 R T o o 0] o LS PSP 408
O R 1R (o] = o 412
10.5. UNI ON, CASE, and Related CONSIIUCESvvvieviiiiieeeiiiieeeciii e 413
10.6. SELECT OUPUL COIUMNSuueiiiiiieeeeiie ettt e e e e et e e e 415
T o (== SRR 416
0 O 1 1 oo (0 o IR 416
2 1 o L= G Y/ o === 417
11.3. MUItICOIUMN TNAEXES .. .ceeeviieeeeei e 419
11.4. Indexes and ORDER BYccuuuiiiiiiiieieiiiise e e et e et e eeaanns 420
11.5. Combining MUItiple INAEXEScviiiiiiee e 421
12.6. UNIQUE INAEXES ...vueeieee et e e e e e e e e e e e e e aanees 422
11.7. INAEXES ON EXPrESSIONSuiiiiieiiieeiiiee e ee e e e e e e e e e e e st e e e eaneees 422
11.8. Partial INAEXES .. .ceeeviieeiii et 423
11.9. Index-Only Scans and Covering INAEXESc.voveviieiiiieiiieceee e 426
11.10. Operator Classes and Operator FamilieSccooevvieiiiiiiiiii e, 429
11.11. Indexes and Coll@tioNSoviiieiiiiiiiiii e 430
11.12. EXxamining INAeX USAQEuuiivnieiieii e e e e e e e et eeanae e 431
12, FUIl TEXE SEAICH .o e e e aaen s 433
2 R | 1 oo (0o o IR 433
12.2. TahleS @nd INAEXES .. .cevvviieiiei et e eeeen 437
12.3. Controlling TeXt SEarchcccuiiiiiiiiie e 439
12.4. AdAItioNal FEAIUMESevuiiiiii et e eaans 447
T o T S SUPP 452
12.6. DICHONAITES ..vuieeeitiieee ettt ettt e ettt e et e e ettt e e e et e e e eatn s e e e entnneeeenes 454
12.7. Configuration EXamMPIEcouuiiiiicii e 464
12.8. Testing and Debugging Text Searchcoevviiiiiiiiiie e, 466
12.9. GIN and GIST INAEX TYPES .evvureiieiinieieeiiiieeeei et et e et eeeat e e eaee e eeaaens 471
2250 O T o 1= o ST o oo o P 471
2 O T 1] = o) PSP 475
13. ConCUITENCY CONLION .uuuiiit i e e e e e e e e e e e e e e et e e et e e ean e eanaes 476
G20 O 1 1 oo [0 1o IR 476
13.2. Transaction ISOIAtONcoevuiieiiiii e 476
T o[T o] Vo [482
13.4. Data Consistency Checks at the Application Levelcoocoeveiiiiiiiiiiiieeennnn, 488

PostgreSQL 12.5 Documentation

ST O Y= 490

13.6. LOcKing and INAEXESovvniii e e e s 490
(o 7= 0o =T T 492
14.2. USING EXPLAIL N L.ouiiiiiiiiiee st s s e e e e e et e s e e e e e eenannns 492

14.2. Statistics Used by the Plannercooiiiiiiiii e 504

14.3. Controlling the Planner with Explicit JO N ClauSeSccooevviveviiieiiineeiieeenn, 509

14.4. Populating @ Databaseuevviieiiiieiiie e e 511

14.5. NON-DUrable SEtliNGSuueveriiii e e e e e e e eees 513

ST = = RO = oS 515
15.1. How Parallel QUErY WOTKSiiiiiiiiii e 515

15.2. When Can Parallel Query Be Used?covvvviiiiiieiiiiceiiie e 516

15.3. Parallel PLanScoovviieiiii et e 517

15.4. Parallel SafEYoieeeeieeeeiiiee e 519

RIS o V7= g AN 41T g 1 = (o o PP 521
16. Installation from SOUICE COUEuuuieiiiii e 528
T S oo g Y= = o] o PP 528

16.2. REQUITEIMENES ...uuiiii e e et e e e e e e e e e et e et e e e e e et e e ean e ean s 528

16.3. GELHNG thE SOUMCE .. .cvuiii e e e e s 530

16.4. INStallation ProCeOUMEiiieei e e e et e e ea e eees 530

16.5. POSt-INStallation SELUPuueviiieii e e 544

16.6. Supported Platformsccuiiiiicie e 546

16.7. Platform-SpeCific NOES ...uuiiii e 546

17. Ingtallation from Source Code 0N WINAOWSoovveviiiiiiiiiieeciiiie e 551
17.1. Building with Visual C++ or the Microsoft Windows SDKccccceveveiinnnnns 551

18. Server Setup and OPEratioNuiiieeiiii e e e e e e e e e e e e 556
18.1. The PostgreSQL USEr ACCOUNTuuiiviiiiieeiieeee e e e e e e e e e e e eanas 556

18.2. Creating a Datahase CIUSLEYoiiiiiiii e 556

18.3. Starting the Database SEIVENccvuiiiii e 558

18.4. Managing Kernel RESOUICESccvuuiiiiiiiii et e e e e e e e e 562

18.5. Shutting DOWN the SEIVEruiiiiici e 571

18.6. Upgrading a POStgreSOQL CIUSLErccvvuiiiiieiii e eee e e e e e e e 572

18.7. Preventing Server SPOOfiNgccuuiiiiiiiiii e e e 575

18.8. ENCryption OPLiONS .. .ccvuueiiiiciiii e e e e e e e e e e e e e e eaaas 576

18.9. Secure TCP/IP Connections With SSLccviiiiiiiiiiiii e 577
18.10. Secure TCP/IP Connections with GSSAPI Encryptioncccoeevvivivinnennnnn. 581
18.11. Secure TCP/IP Connections with SSH Tunnelscoovvviviiiiiiiiiiecciieeeee, 581
18.12. Registering Event Log on WINdOWSooviiiiiiiiieiiiiecin e e e 582

19. Server CoNfIQUIAION ... ciuu i e e e e e e e e e e e e e et e e et e e e e e ranes 584
19.1. SEttiNG ParaMELErS ..vuu i e e e e e e e e e e 584

19.2. Fil@ LOCAIIONS ..uueeiiiieee ettt et e et e et e e e et e e e e e 588

19.3. Connections and AUthENtICALTIONvvveiiieiii e 589

19.4. ReSOUrce CONSUMPLIONcvvuiiiiieeii e e e e e e e e e e e e e et e e e e e e e eneeeens 595
RSNV) (Y 417 o I o o 603

RS SR =o)L= 1 o o 612

19.7. QUENY Planningcoouniiiiiiiii e 619

19.8. Error Reporting and LOGQiNGuuuevrreieiieeiieeeiieeieeeseeeeieeeaneesanaeeenneesenaes 626

19.9. RUN-TIME SEALISHICS . vvvvviieieeii et e e e 637
19.10. AULtOMALIC VACUUMING ...vvvniiiieeiieeeie e e e e e e e e e e s e et e e e e e et e eeanneeaneees 638
19.11. Client ConneCtion DEfALITSviivvieiieiii e e 640

e 2 o o Y == o 1= 0= | 650
19.13. Version and Platform Compatibilitycccooviiiiiiiiiiciii e, 651
e o T T | o 653
19.15. Presat OPtiONS ...cuuuiiii e e et e e e e e e e e e e e e et e e et e e et e e e e ean s 653
19.16. CUStOMIZEA OPLIONSiviiiiieec e e e e e aaaas 655

Vi

PostgreSQL 12.5 Documentation

20.

21.

22.

23.

24.

25.

26.

27.

19.17. DEVEIOPEr OPLIONSuuiiiiieeiii e e e e e e e e e e e e e e e e e eanaas 655
19.18. SNOIt OPLIONS .. evuueeeieieii e e e e e e e e e e e e e e e e et e e ean e een s 659
Client AULRENTICEIION e e e e 661
20.1. The pg_hba. conf File ... 661
20.2. USEN NAIME MBS .. it 669
20.3. Authentication MEthOOSuuiiiiiiiiiii e 670
20.4. Trust AULNENEICAIIONvvniiiiiii e e e s 671
20.5. Password AUtNENtICALIONiiiiiiiiei e 671
20.6. GSSAPI AULNENICALION ...ievviieieiie e e 672
20.7. SSPI AUNENEICALION ...eevviieiiei e e e e e s 674
20.8. Ident AULNENTICAIONcevveieeieiie e e e 674
20.9. Peer AULNENLICALIONciieiiieeiei e e et e e e e e eeees 675
20.10. LDAP AULhENTICAIONiiieiieeeeiis et e e e e e e e eeeens 675
20.11. RADIUS AUtNENICALION ...iivviieiiiis et e s 679
20.12. Certificate AUENICALIONiiiiiii e 680
20.13. PAM AULNENLICAION ...ciiivieeiiiii e 680
20.14. BSD AULNENLICALIONeeiivieeeeiiii et e e e e e e e 680
20.15. Authentication ProblemSuuiiiiiiiiieiiiii e 681
DataDase ROIES ... oeeiiiee e e e e 682
211, Dat@hase ROIESeiiiiiiee et 682
21.2. ROIE ALLIDULES .. .ceeivi e e 683
21.3. ROIE MEMDEISNIP . ivicii e e e e 684
21.4. Dropping ROIESiii e 686
215, DEfAUIT ROIES ...t e e 686
21.6. FUNCLION SECUMLY .vuuiiiieiieeie e e e e e e e e e e e e et e e e eaa s 688
MaNaging Dalabasescovuueiiii i 689
221, OVEIVIBIW .ttt ettt e e e et e e e et e e e e et e e e e et e e e e ettaeeeett e e e eentaeeaees 689
22.2. Creating @ Databaseccuueiiieeie i e e 689
22.3. Template Databasesuvevviieiiii e 690
22.4. Databhase CONfigUIaioncouueeiuieiiiiieiii e e e e e e e e e ea e eees 692
22.5. Destroying a Dat@haSeccvuuiiiiieii i 692
A T I o = o o = T 692
(oo 12 1o o RS OPPTTPN 695
PG T I o oz LIS o] oo o AP 695
23.2. Coll@tion SUPPOITcivieii e eie e e e e e e e e e e e e e et e e e e e eanaas 697
23.3. CharaCter SEt SUPPOIuueiiii i e e e e e e e e e e e eaes 704
Routine Database MaintenanCe TasKSoveevuinieeriiiieeeeiiiee et e et e e e e e e 711
24.1. ROULINE VACUUMING ...uuiitiieiiieeei e et e e e e e e e e e e e et e e et e e e aneesaa e e enneeennnas 711
24.2. ROULINE REINAEXING +..cvvveiitieiiii e e e e e e e e e e e e et e e et e eea e aanns 719
24.3. Log File MaINtENANCEcvvi it eeie et e et e e e e e e e e e e e e eees 719
B E o (U 0o B =S (o] 721
25.1. SOQL DUMP ettt ittt e et e e e e e et e e et a e e aae 721
25.2. File System Level Backupccovuiiiiiiiiiiecii e 724
25.3. Continuous Archiving and Point-in-Time Recovery (PITR)coovvviveviiieninns 725
High Availability, Load Balancing, and Replicationcccoocvviiiiiiiiiiin e, 738
26.1. Comparison of Different SOlUtiONScccviiiiiiiiii e 738
26.2. Log-Shipping Standby SErVEISciviiiiiiicii e 741
26.3. FIOVEN ... 751
26.4. Alternative Method for Log Shippingc.uvevvieiiiiiiiiecie e e 751
26.5. HOt SEANADY ..oovviieiiiiie e 753
Monitoring Database ACHIVITYcovuiiiiiei e e 761
27.1. Standard UNiX TOOISuuiiiiiiieeiiiie ettt e e e e e e e e e e e 761
27.2. The Statistics COHECONuuiiiiiiii e 762
27.3. VIEWING LOCKS .. ciiiii e e 797

Vii

PostgreSQL 12.5 Documentation

27.4. Progress REPOMINGuuivviieiii e e e e e e e e e e e e e e s e e et eeaneees 797

27.5. DYNAMIC TIaCiNG c.vvuuiiiieiiieie e e e e e e e e e e e e et e e et e et e e e et e e e e eeanns 803

28. MONItoring DiSK USAQEuuuiiiiiiii i e e e e e e e e eanas 814
28.1. Determining DiSK USAQE ...c.uuiiiiieiiieiiie e e e e e et e e e e e e e e e aaaeeaen 814

28.2. DIiSK FUIl FaITUME ... 815

29. Reliability and the Write-AhEad LOgoevvviiiiiiiiie e 816
P2 I (= T] 1 PSP 816
29.2. Write-Ahead Logging (WAL) ...ovuii i 818

29.3. ASynchronous COMMITccuueiiiieiiiie e e e e e e e e e e e e e e e e e eaanees 818

29.4. WAL ConfigUurationievuuieiiieiiii e e e e e e e e e e e et e e et e e e e eanas 820

2905, WAL INEEIMEIS ..ttt e e e e e e s 822

G0 I oo [Tor= I 2 3= o] o= (o KU P 824
0 0 = ¥ o o= o o PSPPI 824
G021 1= o1 o P 825

0 G A 0o) Tt £ PR 826

30.4. RESICLIONSeeeeiiiee ettt ettt et e e et e e et n e e e et r e e e aaan e e e eaaan s 826

30.5. ATChITECIUIE .. vt e e et e e eae s 827

1G0T o g (o oo 828

S = ol 1) PPN 828

30.8. Configuration SEINGSuivevueiii e e e e e e e e 828

30.9. QUICK SBLUP ... eieeiiiee ittt e e et e e e e e aaans 829

31. Just-in-Time Compilation (JIT) .ouueiinieiii e e e e e e e e e e e e e aaaees 830
31.1. What IS JIT compilation?ccuueiiiieiiiiieii e e e e e 830

3 22 V4 = o B (o N I PSPPSR 830

G G T @0 1 To (1= 1 (o] o [832

314, EXENSIDIILY ooeeeeeee e 832

G B L= s | (= o g N 1= =P 834
32.1. RUNNING the TESES ...iiiiiiii e e e e e e e e ean s 834

32.2. TESE EVAIUBLION ...ttt e et e et e e e e e e e e 838

32.3. Variant Comparison FilEScoouiiiiiiiii e 840

G A =~ £ USSP 841

32.5. Test Coverage EXaminalionccueiiiniiiiieeiiiiecii e e e e e e e e e e e e e 842

Y O 1= o 1 1= 4 == PP 843
G T o) o TR O I o Y P 848
33.1. Database Connection Control FUNCLIONSccuvviiiiiiiinieiiii e 848

33.2. CoNNECtion StAtUS FUNCLIONSvvueeiiiiieee it 862

33.3. Command EXeCUtion FUNCHIONSooveuuiiiiiiiiiieeeii e 869

33.4. Asynchronous Command ProCESSINGcuueeruieiiiieiiiieeiieeeeiieeeieeerieeaneesens 885

33.5. Retrieving Query Results ROW-bY-ROWcocoiiiiiiiiiiiiie e, 889

33.6. Canceling QUENES IN PrOGreESSuuciviiiiiii et e e e e 890

33.7. The Fast-Path INterfaceoooeviiiiiii e 891

33.8. Asynchronous NOEIFICAEIONccuuiiiiiiiie e e 892

33.9. Functions Associated with the COPY Commandovveeviviineeiiiiineeniiinnnne, 893
33.10. CONLIOl FUNCHIONS .. .ueeeiiii et e e et e e e s e e e et e e e e eat s e e e eaanneeees 897
33.11. MisCellaneouS FUNCLIONSccuuiieiiiii e e e et e et eeeae e e 899
ICTC T 2 Lo 1 Lo Y o=] o 903
3313, EVENE SYSIOIM Louiiiiiiii e 904
33.14. ENvironment VariableSuuiiiiiiiiiiiiii e 911
33.15. The Passord FIleoociiuii e 912
33.16. The Connection Service Fileoviiiiiiiiiiii e 913
33.17. LDAP Lookup of Connection Parametersccovevviiiiiiieiiie e 913
3318, SOL SUPPOIT ..ttt 914
33.19. Behavior in Threaded Programsccoceuieiiiiiiiii e 918
33.20. Building [iDpg Programsccouueeiiiiiiii e e 919

PostgreSQL 12.5 Documentation

33.21. EXAMPIE PrOQramS it 921
G/ I (o[-l @][= ox P 932
17 0 I g1 1o [0 o 1o o SN 932
34.2. Implementation FEALUIEScovviiii e e 932
34.3. CHENt INtEITACES . .ovvvvi e e s 932
34.4. SrvVer-Side FUNCLIONScccuuiieiiiie e e e e e e s 937
34.5. EXAMPIE PrOgram ... ccvui i i e e e e e e e e e e e e aaa s 938
35. ECPG - Embedded SQL iN C ...ovvvviiiiieeeieeeeii e e et a e e e et s e e e e e e e annnnanas 945
L0 N I L= o o= o P 945
35.2. Managing Database CONNECLIONSocvuueiiiieeiii e e e e e e eaa s 945
35.3. RUNNing SQL COMMANGScivieiiiieiiii e e e e e e e e e e e eanes 948
35.4. UsSiNg HOSt VariableSocvviiiii e 951
35.5. DYNAMIC SQL 1evtvtiiieeeeeiieeiiiis e e s e e e eeeatat s e s e e e e eeaaats s s e e e e aeeaaatan e aeeeaeeannnns 967
35.6. POLYPES LIbIaryuueiie i 969
35.7. USING DESCIIPLOr ATEBScvviiciiieeiii et et e e e e e e e e e e e e et e ea e eaes 983
35.8. Error Handlingcovuniiii e e e e e e e aae e 997
35.9. PreproCessor DITECHIVESuuuiiii i e e e e e e aanees 1005
35.10. Processing Embedded SQL Programscoevuveeiieeiinieiiieeeieeeieeeeieeeen, 1007
35.11. Library FUNCLIONScoviiiiii e e s 1008
35.12. Large ObJECES ...vvuiiiii e e et 1008
35.13. CH+ APPHCALIONS .. cevuiiiieeii e e e e e e e e e aans 1010
35.14. Embedded SQL COmMMAaNSccouuieiiiieiiiiieiie e ceee e e e e e e 1014
35.15. Informix Compatibility MOdEcoeviiiiiii e, 1039
LN ST g1 1= 1 1 =SSP 1055
36. The INfOrmMation SCHEMAuiiiiiii e 1058
I 3 TS v 0 1 4= 1058
KL I DT - B Y/ o =< T 1058
36.3.informati on_schema_catal og nameccc.cccoevviiniiiin e, 1059
36.4.adm ni strable role _authorizationscccoeviiiiiiiiiiinecneeen, 1059
36.5. applicabl @ rol €S .., 1059
36.6. At LT i DUL ES oo 1060
36.7. Char ACt BF _SBL S ittt e ea s 1063
36.8. check_constraint_routi Ne_USageccoeevviieiiiieiiiiieiiii e, 1064
36.9. CheCK_CONSE I ai NES it 1065
1T 0 A o o] N - L A o) 1 PP 1065
36.11.col l ati on_character_set _applicabilitycccoooiiiiiiiiinninnn. 1066
36.12. COl UM_COl UMN_USAQE ..ieviiiiii e e e 1066
36.13. COl UM_dOMBI N_USAQE ...ieviiiiiiieiiiieee e e e e e e e e e e e aaes 1066
36.14. COl UNM_OPL i ONS .iiiiiiii e e e 1067
36.15. COl UMM_Pri Vil €08S i 1067
36.16. COl UNM_UAL _USAQE ..iiiiiiiii et e e e e e e e 1068
36.17. COl UMMIS Lottt e e e e et r e e e aa e e eanens 1069
36.18. constrai Nt _COl UNM_USAQE ...uuiiivniiiiieiii e e e e 1073
36.19. constrai nt_tabl @ USAgecocceviiiiiiiiiiiii e 1074
36.20. data_type pri Vil €0€S .o 1074
36.21. dOMBI N_CONSE T Al NE'S tovuiiiiiiiii e e 1075
36.22. dOMBI N_UAL _USAQE .uiiiiiiii i e e e 1076
T2 T o] 11 U o K-S PSSP 1076
36.24. €l EIMENE L Y PES it 1079
36.25. €Nabl €A IOl €S .uiiiiiiiii i 1082
36.26. forei gn_data_wrapper _0Opti ONScooceiviiiiiiiiiiiiiie e, 1082
36.27.forei gn_dat @ W apPPEI'S it e 1082
36.28. fOrei gn_Server_OpPti ONS ..ooiiiiiiiiiii e 1083
36.29. f OF BI g SBI VI S 1ottt eiiie et e e e e e e e e e et e et e eean s 1083

PostgreSQL 12.5 Documentation

36.30.foreign_tabl e Options ..ccooiiiiii i, 1084
36.3L. forei gn_tabl €S .o 1084
36.32. KEY_COl UMN_USAQE .uiiiieiiii it e e e e e e e et e e 1085
36.33. Par AR B S ittt e 1085
36.34. referential _constrainNtsccooeiiiiiiiiii i 1088
36.35. 10l €_COl UM _grant'S ..ooeeiiiiiiiiii e e 1089
36.36. 10l € routiNe_grants ..oooiiiiiiiiii e 1089
36.37.r0l e _tabl e _grants ..o 1090
36.38. 10l € UL grant S ..oiiiiiiiiii e 1091
36.39. 10l €_USAQE_grant S .oiuviiiiiiiiii i 1091
36.40. roUt i NE_Pri Vil BOBS i 1092
T I o U T ¢ 1= PRSP 1093
36.42. SCREMAL @ .iiviviiiiiii e 1098
36,43, SEOUEINCES ouiiuiiiiiiiie et e et e e e e e e e 1098
36.44. SOl T AL UM @S ivrniiiii i 1100
36.45.sql _inmplenmentati on_info ..o, 1100
36.46. SOl | ANQUAGES ..uiiviiiiiii e 1101
36.47. SOl _PACKAGES ovviiiiii i 1101
36.48. SOl PAIt S ciiiiiiiii i 1102
36.49. SOl ST ZI N weriiii i 1102
36.50. sl _Si Zi NG _Profil es i 1103
36.51L. tabl @ CONStrai NES .o 1103
36.52. tabl € Pri Vil €S .o 1104
36.53. 1 AD] ©S .uuiiiiii 1105
36.54. T FANST OF ITB ..ottt 1105
36.55. triggered_update Col UMMS ..oociiiiiiiiiiii e 1106
TSI T A g e [0 =] =T PN 1107
36.57. Ut _Pri Vil @0ES oo 1108
36.58. USAQE _Pri Vil BOES .ot 1109
36.59. user _definNed tYPeS .o 1110
36.60. user _mappPi NQ_OPL i ONS ..oiiiiii e 1111
SN S T [y =T G 1= Y o] o N o 1 1112
36.62. Vi EBW _COl UMM _USAQE .ivvniiiii it e e e 1112
36.63. Vi EBW I OUL T NE_USAQE tovuiiiniiiiieii e et e e e e e e e e e 1113
36.64. Vi eW t abl € _USAQE .oiivviiii 1114
B0.85. Vi BWWS oeutiieiiiiiieee it e et e ettt e e e ettt aaaann 1114
A S = A= . oo =0 1 411 oo [1116
7. EXIENAING SQL ..oeeiiiiiiii e aaan 1122
37.1. How Extensibility WOrkSccooiiiiiiiiiii e 1122
37.2. The PostgreSQL TYPE SYSIEM ..ovuiiiiieiiie e e e e e e e eaaes 1122
37.3. User-Defined FUNCLIONSuiiiiiiiieeiii et eeeans 1124
37.4. User-Defined ProCeAUMESoovieeiieieiii ettt e e e eaanns 1124
37.5. Query Language (SQL) FUNCLIONSccvuniiiiiieiie e e e e e e e 1125
37.6. FUNCtion OVErloadingc.oveiiiiiiiii e 1141
37.7. Function Volatility CategOriEsc.uuiiiiiieeiieeiiiee e e e e e e e 1142
37.8. Procedural Language FUNCLIONScooovuiiiiiieiii e 1144
37.9. INternal FUNCLIONSc.uuiiiiiiii e e e e e e e eeaes 1144
37.10. C-Language FUNCLIONSciuiiieii e e e e e e e e e e e e e e e e eaeeees 1144
37.11. Function Optimization INfOrmMationccoeveiiiieiiieiiiecr e eeieens 1166
37.12. User-Defined AQQregatescuueiinieiiiieeie e e e e e e e e e e e saneens 1167
37.13. USEr-DefiNed TYPES ..vueiieiiieieiii ettt ettt e e e e e et eeeae s 1175
37.14. User-Defined OPEratorsevuueiiiieeiii e e ee s e e e e e e e et e s e e e e aneees 1179
37.15. Operator Optimization INfOrMationcccccuiieiiiieiiiieiin e e 1180
37.16. Interfacing EXtENSIONS t0 INAEXEScovviiiiciii e 1184

PostgreSQL 12.5 Documentation

37.17. Packaging Related Objects into an EXtENSIONccovvvviiiiiiieiiieec e, 1198
37.18. Extension Building INfrastruCtureccoveviiiiiii i 1206
G T I o o = PPN 1211
38.1. Overview of Trigger BENaVIOrociviiiiiii e 1211
38.2. Visibility of Data Changesucvvuiiiiiiiii e e e 1214
38.3. Writing Trigger FUNCLIONS IN Ciiiiiiic e 1214
38.4. A Complete Trigger EXamplecc.uiiiiiiiiii e e e e 1217
L T Vo A N T o (= £ 1221
39.1. Overview of Event Trigger BENAVIONcouviiviiiiiieci e 1221
39.2. Event Trigger FINiNG MalriXccouiiiiiiiiii it e e 1222
39.3. Writing Event Trigger FUNCLIONSIN Coovniviiiiiiieec e 1227
39.4. A Complete Event Trigger EXamplec.oeviiiiiiiiii e 1229
39.5. A Table Rewrite Event Trigger EXamplecooovvieiiiiiiiiiccie e 1230
40. The RUIE SYSLEIM ...t e e e e e 1232
40.1. ThE QUENY TIEE .uuiiiiieii et et e e e e e e et e et e e et e e aanaaes 1232
40.2. Views and the RUIE SYSIEMcoviiiiiiciie e 1234
40.3. MAErialiZE VIBWSceeeiii et e e e e e 1241
40.4. Rules on | NSERT, UPDATE, and DELETEccccoiiiiiiiiiieiiiiineecce e 1244
40.5. RUIES aNd PriVIIEgES .. cvvniii e 1255
40.6. Rules and Command SEALUSuuieviriiieiiiiie et r e 1257
40.7. RUIES VEISUS THOOES cuuniiiiieiiii et et et e e e e e et e e s e e e e et e et eeaaneeeens 1258
41, Procedural LanQUBOESuoiiuueeiiieeiie e et e e e e e et a e et e e e e e et e e st e e st e eataeaanneeaens 1261
41.1. Installing Procedural LanQUagEScccuueeiiiiiiieiiie e e e e e e e e 1261
42. PL/pgSQL - SQL Procedural LanQUagEcevuueiiieiiiiieiiie e et e et e e e e e e 1264
2.0, OVEIVIEW «.eevtnieeeeti e et e et s e e ettt e e ettt e e et n e e ettt e e e et s e e e ettaeeeestnaeeaees 1264
42.2. Structure of PL/PGSQL ..ueiiiiiii e 1265
A2.3. DECIArAHONS .. .ceievie ettt et e e aea 1267
O d o (=== 0] 1 1273
42.5. BASIC SEALEIMENESuieiiiii e et e et e et e e e e e et s e e e eat s e e eerenaeeeees 1273
42.6. CONLTOl SETUCLUMEScieiiii ettt e et e e et eeeeeaa e eees 1281
A O N 1o = T PP 1297
42.8. TransaCtion ManagemENtcc.ueeiuiieiiiee e e e e e e e e e e e aanas 1303
42.9. Errors ant MESSA0ESuueeeeiiieeii et e e e e e e e e e e e e e et e e e e r e aa e aaa 1304
42.10. Trigger FUNCHIONSceei i e e e e e e e e e e e e e e e aaaees 1306
42.11. PL/pgSQL under the HOOMoovuiiiiiiiciii e 1316
42.12. Tips for Developing in PL/PGSQLcvvniiiiec e 1319
42.13. Porting from Oracle PL/SQLccovuiiiiiieiii e e e 1323
43. PL/Tcl - Tcl Procedural LanQUagEuoveunieeiieiiieee e e e e et e e e e e e e e eaneeees 1334
A0, OVEIVIEW ..eevtiieeeeii e ettt e et e ettt e e ettt e e e ettt e e ettt e e e et s e e e ett e e eaestnaeeaees 1334
43.2. PL/Tcl Functions and ArQUMENEScceunieiiiieiiiieeiieceieeee e e e et e e e e eeanns 1334
43.3. Data Values in PLITCl .ooooveiie e 1336
43.4. Globa Datain PLITCl couuuiiiii i e 1337
43.5. Database AcCesS from PL/ITCl ...oviiiiiiiii e 1337
43.6. Trigger FUNCLIONS IN PLITCl ..uviiii e 1340
43.7. Event Trigger FUNCLIONS iN PLITCl c.vviiiiii e 1341
43.8. Error Handling in PLITCl ...oovniiii e 1342
43.9. Explicit SubtransaCtions in PLITClcouuiiiiiiiiiecie e 1343
43.10. Transaction ManagemMENtoeiiiiiiiiie e e e e e 1344
43.11. PL/TCl CONfigUralioncouuuieiueeiii e e e e e e e e e e e e e e e e e e e aens 1344
43.12. Tcl Procedure NAIMESuieeeiiiieeeiii et e et e et e e 1345
44, PL/Perl - Perl Procedural LangUageccceuueiiieiiiiieeiieeeiiee e e e e e e e e e eeaens 1346
44.1. PL/Perl Functions and ArgUMENLScccuuieiiieiiieeiieeeiie e e e e e e eeenns 1346
44.2. Data Values in PLIPErl ..o 1350
A4.3. BUIE-IN FUNCHIONS .ot 1351

Xi

PostgreSQL 12.5 Documentation

44.4. Globa ValUES iN PLIPENToiiiiiii e 1356

44.5. Trusted and Untrusted PL/PENuuiiiiiiiiiiiiiiieees e 1357

Y T o I = 4 B e o 1= PPN 1358
A4.7. PLIPErl EVENE TIIQOEIS . .evtneiiieeie e et e e e e e e e e e e e e e e e e et e e e e eanns 1360
44.8. PL/Perl Under the HOOiiiiiiiiiiiiiii e 1360

45, PL/Python - Python Procedural Languageoevuviiiiiiiiiiieeii e e 1363
45.1. Python 2 VS, PYthOn 3 ..o 1363

45.2. PL/PYthON FUNCHIONS ... coviiiii e e e e 1364
A5.3. DAA VAIUBSuuiiiiii et 1366

SRS 1=] oo D - - U 1371

45.5. Anonymous Code BIOCKSciiiiiiiiiicii e 1371

45.6. Trigger FUNCLIONSciiieii e e e e e e e e e eees 1372

A5.7. DAADASE ACCESS ...cevviieieiiiiee et e e ettt e e e 1373

45.8. EXplicit SUDLraNSACHIONScccuuiiiiiieiiie e e e e e e e 1376
45.9. TransaCtion ManagemENtcc.uveiuiieiii e e e e e e e e e e e aanas 1378
45.10. Utility FUNCLIONSiiiicii et e e e e e e e e e e e een 1379
45.11. Environment VariableSooiiiiiiiiiiiii e 1380

46. Server Programming INtErfacecoovui i 1382
46.1. INterface FUNCLIONScovuiieiiii e e e 1382

46.2. Interface SUPPOrt FUNCLIONSccuuiiiiieeii e e e e e e 1418

46.3. MemOory ManagemMENTovuiuiieiiiie et 1427

46.4. TransaCtion ManagemENtccuueeiiiieiii e e e e e e e e e e aanas 1437

46.5. Visibility of Data Changesc.uoviiiiiiiiiiciii e 1440

4B.6. EXAMPIES ...iiiciiii e 1440

47. Background WOTKEr PrOCESSESuuuiiiieiiiieeiii e e eese e e e e e e e e e e et e e aanaeeaneees 1444
48. LOgiCal DECOUING ...vuiitniiiiieiie e e e e e e e e e e e e e e et e e e et e e et e eeanaaees 1448
48.1. Logical Decoding EXaMPIESccuuiiiiiiiiii e 1448

48.2. Logical Decoding CONCEPLSuuivvueiiiieeiiiee it eei e e e e e e e e e e e e aes 1451

48.3. Streaming Replication Protocol Interfaceccoovvviiiiiiiiiiiiieeeen, 1452

48.4. Logical Decoding SQL INtErfateccuuviiiiiiiiieiie e 1452
48.5. System Catalogs Related to Logical Decodingoevvvveiiieiiiieiiiieiiieeainns 1452

48.6. Logical Decoding OULPUL PIUGINScovuiiiiieiiiieei e e 1453

48.7. Logical Decoding OULPUL WIHTEIScivueiiiciii e e e 1457

48.8. Synchronous Replication Support for Logical Decodingcoccvvveevvneeennnnns 1457

49. Replication Progress TraCkingeveueeiiueeeiieeiiie e e e e e e e e e e e e e s eeaneeanns 1458
VL REFEIBNCE ...t e et et e e et et e e e eaes 1459
S @ I o 4101 o 1465
N =1 | PSP 1469
ALTER AGGREGATE ...ttt et e et a e et e eeeaaa e e e eee 1470
ALTER COLLATION .ttt ettt e et e e et eeaeaan e e eenees 1472
ALTER CONVERSION ...coutiiiiiiiiiieiiiiin et e e e e e e e s e e eaaaeeeenenns 1474
ALTER DATABASE ...ttt e e e 1476
ALTER DEFAULT PRIVILEGEScoiiiiiiiiii e 1479
ALTER DOMAIN L.ttt e et e e e et e e e e eranneeeee 1483
ALTER EVENT TRIGGERcccttiiiiiiiiiieiiii e 1487
ALTER EXTENSION ...ouiiiiiiiiiiiii ettt e e et e e e et e e e eaan e eeees 1488
ALTER FOREIGN DATA WRAPPERcccuuiiiiiiiiiieiiiiie e 1492
ALTER FOREIGN TABLE ..ottt 1494
ALTER FUNCTION ..ttt e s e et e e st e e e enn e 1499
ALTER GROUP ...ttt e et e e et e e e et e e e eabe e eeees 1503
ALTER INDEX ..oiiiiiiiii ettt ettt e et e e et e e e aaa e e eeenns 1505
ALTER LANGUAGE ..ottt e 1508
ALTER LARGE OBUJECT ...vuuiiiiiiiiietiite ettt e et e et e e e e e eaannaeaennnns 1509
ALTER MATERIALIZED VIEW ...ooiiiiiiiiii et 1510

Xii

PostgreSQL 12.5 Documentation

ALTER OPERATOR ..ot 1512
ALTER OPERATOR CLASS ... 1514
ALTER OPERATOR FAMILY oo 1516
ALTER POLICY oot 1520
ALTER PROCEDUREcoouiiiiiiiii e 1522
ALTER PUBLICATION ..ot 1525
ALTER ROLE ... 1527
ALTER ROUTINE ..ot 1531
ALTER RULE ... e 1533
ALTER SCHEMA .o 1534
ALTER SEQUENCEo 1535
ALTER SERVER ..ot 1538
ALTER STATISTICS ..o 1540
ALTER SUBSCRIPTIONciiiiiiiiiiiiiii e 1541
ALTER SYSTEM .o 1543
ALTER TABLE ..o 1545
ALTER TABLESPACE ... oo 1562
ALTER TEXT SEARCH CONFIGURATIONociiiviiiiiiiiiiieieci e 1564
ALTER TEXT SEARCH DICTIONARY ...t 1566
ALTER TEXT SEARCH PARSERccooiiiiiiiiii e 1568
ALTER TEXT SEARCH TEMPLATE ... 1569
ALTER TRIGGER ...t 1570
ALTER TYPE Lo 1572
ALTER USER ..o 1576
ALTER USER MAPPING ..ot 1577
ALTER VIEW .o 1579
ANALYZE ... o 1581
BEGIN . 1584
CALL e 1586
CHECKPOINT . 1587
LS . 1588
CLUSTER e 1590
COMMENT Lo e 1593
COMMIT s 1598
COMMIT PREPAREDcccviiiiiiiiii e 1599
GO Y 1600
CREATE ACCESS METHODcccvuiiiiiiiiiiiiie e 1611
CREATE AGGREGATE ... 1613
CREATE CAST o 1621
CREATE COLLATION L.oiiiiiiiiiiiii et 1626
CREATE CONVERSIONiiiiiiiiiii e 1629
CREATE DATABASE ..o 1631
CREATE DOMAIN ..ot 1635
CREATE EVENT TRIGGERcoiiiiiiiiiiic e 1638
CREATE EXTENSION ...ooiiiiiiiiiii e 1640
CREATE FOREIGN DATA WRAPPERccoiiiiiiiii e 1643
CREATE FOREIGN TABLE ...t 1645
CREATE FUNCTION L..ouiiiiiiiii e 1650
CREATE GROUP ... oottt 1658
CREATE INDEX ..o it 1659
CREATE LANGUAGE ..o, 1667
CREATE MATERIALIZED VIEW ..ot 1670
CREATE OPERATOR ...ttt 1672
CREATE OPERATOR CLASS ..o 1675

PostgreSQL 12.5 Documentation

CREATE OPERATOR FAMILY .ot 1678
CREATE POLICY ..ttt 1679
CREATE PROCEDUREcoiiiiiiiici e 1685
CREATE PUBLICATION ..ottt 1689
CREATE ROLE ..ot 1691
CREATE RULE ..o 1696
CREATE SCHEMA ..o 1699
CREATE SEQUENCEiiiiiiiiiii et 1702
CREATE SERVER ..ot 1706
CREATE STATISTICS ... 1708
CREATE SUBSCRIPTION ..ottt 1711
CREATE TABLE ... 1714
CREATE TABLE AS ..o 1736
CREATE TABLESPACE ..o 1739
CREATE TEXT SEARCH CONFIGURATION ..o, 1741
CREATE TEXT SEARCH DICTIONARY ..ottt 1743
CREATE TEXT SEARCH PARSER ...t 1745
CREATE TEXT SEARCH TEMPLATE ... 1747
CREATE TRANSFORM ..ottt 1749
CREATE TRIGGERoiiiiiiiii e 1752
CREATE TYPE .o 1759
CREATE USER ..ot 1768
CREATE USER MAPPING ..ot 1769
CREATE VIEW .ot 1771
DEALLOCATE ..o 1776
DECLARE ..o 1777
DELETE . o 1781
DISCARD ... 1784
DO 1786
DROP ACCESS METHODccuiiiiiiiiiicii e 1788
DROP AGGREGATE ...t 1789
DROP CAST ot 1791
DROP COLLATION .ottt 1792
DROP CONVERSIONcoiiiiiiiiiiiii e 1793
DROP DATABASE ..o 1794
DROP DOMAIN .ot 1795
DROP EVENT TRIGGERcciiiiiiiiiiii e 1796
DROP EXTENSION ..ot 1797
DROP FOREIGN DATA WRAPPERcooiiii 1799
DROP FOREIGN TABLE ..o, 1800
DROP FUNCTION .ottt 1801
DROP GROUPoiiiiiiici e 1803
DROP INDEX ... it 1804
DROP LANGUAGE ... oot 1806
DROP MATERIALIZED VIEW ..o 1808
DROP OPERATOR ...ttt 1809
DROP OPERATOR CLASS ... 1811
DROP OPERATOR FAMILY .oiiiiiiiii e 1813
DROP OWNEDciiiiiiiiiiii i 1815
DROP POLICY .ttt 1817
DROP PROCEDURE ..ot 1818
DROP PUBLICATION ..ottt 1820
DROP ROLE ..ot 1821
DROP ROUTINE ...coiiiiiiiii e 1823

Xiv

PostgreSQL 12.5 Documentation

DROP RULE ...t 1824
DROP SCHEMA ... e 1825
DROP SEQUENCEciiiiiiiii e 1827
DROP SERVER ..o 1828
DROP STATISTICS ... 1829
DROP SUBSCRIPTION ..ottt 1830
DROP TABLE ... 1832
DROP TABLESPACE ..o 1833
DROP TEXT SEARCH CONFIGURATIONooiiiiiiiiiii e 1834
DROP TEXT SEARCH DICTIONARYouiiiiiiiiiiiiiie e 1835
DROP TEXT SEARCH PARSER ..ot 1836
DROP TEXT SEARCH TEMPLATE ..., 1837
DROP TRANSFORM ..ottt 1838
DROP TRIGGERouiiiiiiiiiiiii e 1840
DROP TYPE ... 1841
DROP USER ... ottt 1842
DROP USER MAPPINGooiiiiiiiii e 1843
DROP VIEW ..o 1844
ENDD 1845
EXECUTE .o 1846
EXPLAIN L 1847
FET CH 1853
GRAIN T 1857
IMPORT FOREIGN SCHEMA ... 1862
INSERT .o 1864
LISTEN o 1872
LOAD o 1874
L O CK i 1875
MOVE .o 1878
NOTIRY e 1880
PREPARE ... 1883
PREPARE TRANSACTIONcciiiiiiiiiiiii e 1886
REASSIGN OWNEDoiiiiiiiiiiiii e 1888
REFRESH MATERIALIZED VIEW ..o 1889
REINDEX ... 1891
RELEASE SAVEPOINT ..ot 1896
RE S E T e 1898
REVOKE ..o 1899
ROLLBACK o 1903
ROLLBACK PREPAREDiiiiiiiiiiiiiin e 1904
ROLLBACK TO SAVEPOINT ..ot 1905
SAVEPOINT oo 1907
SECURITY LABEL ..ooiii e 1909
SE L E T e 1912
SELECT INTO oot 1934
SE T 1936
SET CONSTRAINTS ..o 1939
SET ROLE ..o 1941
SET SESSION AUTHORIZATION ...ccviiiiiiciicceee e 1943
SET TRANSACTION L.ooiiiiiiii e 1945
SHOW e 1948
START TRANSACTION ..o 1950
TRUNGCATE oo 1951
UNLISTEN Lo 1954

XV

PostgreSQL 12.5 Documentation

UP D A T E ittt e et et e et a e r e aee 1956
VACUUM L.t e e et e e et eeeera s 1961
VALUES ...t 1965
I1. PostgreSQL Client APPlCAIONSuuiiiiiiii e e e e e e e 1968
(o1 (o | o PP 1969
(o= 1= | o PP 1972
CTEBLEUSEY ... evuete ettt ettt et et et et e et e e e et e et e et e et e e ea et e et e et e e n e e e e e aeen e 1976
AroPaD oo 1981
(01 0] 11 1984
(< of oo PRSPPI 1987
PG _DBSEDACKUD ... 1990
01007 o 1998
oo w0 0 o P 2015
oo 0 L8 T 1o T PN 2018
PO AUMPAEIL ..ot e 2031
1o TS (= |V P 2038
Lo T = o= AV L= P 2040
o To T (= w17 oo 1o NP 2044
10 (== (0] (PP P PP 2048
01 o | PN 2058
(=070 1= | o TP 2100
A= e U110 o o PPN 2104
[11. PostgreSQL Server APPlICaLiONSciuueiiiie i e e e e e e e eaa s 2109
TNIEAD e e 2110
PY_arChiVECIEANUDuiiii e 2115
[oTo e 4= S 0 1S 2117
[oTo T w0011 0] [=1 - P 2119
oo N o | 2120
[T T =5 =11 | 2126
oo (=111 o PN 2130
10 T (=S)Y/ 2134
o Lo === A (142 PP 2135
o100 oo =" [T 2139
o102z Lo L1 3o o 2148
01075 0 === PPN 2151
1051 = S 2159
RV I 1 01 =0T PP 2160
50. Overview of POStOreSQL INtErMES ... ccuuuiiiii e 2166
50.1. The Path Of @ QUETYiiiiiiii e e 2166
50.2. How Connections Are Establishedcooeviiiiiiiiiiici e 2167
50.3. ThE Parsar SEAgE ...uuivviieiii et e e e e e e e e e e eeaans 2167
50.4. The PostgreSQL RUIE SYStEMuuiiiiiiieiiiiie e 2168
50.5. Planner/OptimMizZErcouuiiiii e 2168
S O = o U (o PR 2170
Y ISV 1= 0 (IO [0 o PPN 2171
oY I @Y= qV = T PP 2171
51,2, PO _A0GE €A & ittt 2173
LY G T o Yo - 1o PP 2175
LY I N o To = 10 £ 0] PP 2176
LY I o Lo = 101 0] S o o PP 2177
BL.6. PO At trdef o 2177
BL7. PG _ At tri BUL @ (oo 2178
BL.8. PO QUL NI 0 .o 2181
51.9. pg_aut h_MBNDEIS oo 2183

XVi

PostgreSQL 12.5 Documentation

51.10.
51.11.
51.12.
51.13.
51.14.
51.15.
51.16.
51.17.
51.18.
51.19.
51.20.
51.21.
51.22.
51.23.
51.24.
51.25.
51.26.
51.27.
51.28.
51.29.
51.30.
51.31.
51.32.
51.33.
51.34.
51.35.
51.36.
51.37.
51.38.
51.39.
51.40.
51.41.
51.42.
51.43.
51.44.
51.45.
51.46.
51.47.
51.48.
51.49.
51.50.
51.51.
51.52.
51.53.
51.54.
51.55.
51.56.
51.57.
51.58.
51.59.
51.60.
51.61.
51.62.
51.63.

PO LA oottt 2183
o T o - V=X 2184
PO_COl T ati ON oo 2188
oo T oXo] = S = U o | S 2189
oo T oXo] 1Y4=T g8=X 1o o TS 2192
PO_dat @DASE ... 2192
PO _db rol @ SettinNg oo 2194
pg_defaul t _acl ... 2195
PO _AEPENA ..o 2195
PO_AESCIi PLi ON oo 2198
010 J=1 0 10 10 £ PP PP PPPP 2198
oo =AY A=Y 0 R O o o = (P 2199
oo T =1 4 7 oY o [2199
pg_foreign_data W apper ..ooociieeiiiiii e 2200
PO _FOr @i gN_SEIVEI .o 2201
pg_foreign tabl e .., 2201
oo TN 4T 1= 2202
PO I NNEI T TS i 2205
oo TN L S o G Y £ 2205
oo T = Ua o [= Yo [P 2206
PO_| @rgeobj €CT .o 2207
pg_l argeobject _nmetadataccooeeeviiiiiiiiiii 2208
oo A F=1 0 (=157 o - (ol = PP 2208
PO _OPC] @SS ittt 2208
oo [0] o 1=] =Y A o] PP 2209
PO _OPT @M L Y i 2210
pg_partitioned tableccooiiiiiii 2210
PO_PlEENPL At € (oo 2212
PO POl I CY i 2213
PO Pl OC ittt 2213
PO_PUDL i CAt i ON e 2218
Pg_publicati on_rel . 2218
010 T =1 0 o [PP PRPP 2219
pg_replicati on_ori giN e 2219
oo TN =1 T = T 2220
PO_SeCl @bl .o 2220
0o JEST =10 (1= 4 Lo = PRSPPI 2221
PO_ShAEPENA ... 2222
PY_ShAESCIi Pti ON (v 2223
Pg_shsecl abel ... 2223
PO_ St At i SEI € ciiviiiiii i 2224
PO_Stati StiC _BXE i 2226
pg_statistic_ext _datacccoooeiiiiiiiiiiiii e 2227
PO_SUDSCI I PtiON (oo 2227
PG _SUDSCription rel . 2228
PO _tabl ESPACE oo 2229
POt anST OF Mo 2229
oo T O g e [1= 2230
PO 1S CONTI gt e 2232
PO 1S _CONFI g MBP coiiiiii e 2232
PO 1S i Cl oo 2233
PO b S PaAI SO ittt 2233
PO _tS tenPlat @ oo 2234
PO Y P ittt 2234

PostgreSQL 12.5 Documentation

51.64. PG _USEI _ITAPPI NQ covniiiiiieiiii e e e e e e e e e e e e e s e s e e aan e eanaas 2241
5165, SYSIEM VIBWS ...ttt e 2241
51.66. pg_avail abl € _ext @NSi ONSoccciiiiiiiiiiii e 2242
51.67. pg_avai |l abl e_ext ensi On_Versi ONScccoeeviiiiiiiieiiieciiin e, 2243
LY S S I o To R o2 o 1 | o [P PN 2243
L G o o T o1 1 g o] g T PPN 2244
51.70. PG fil @ SEtEiNGS iiiiiiiiii e 2244
LY W o To T o | (o 1 U1 o R PP PP 2245
51.72. pg_hba fil e rul @S . 2246
Y IS A o To T T 4 Lo 120 €= PN 2246
oY S o To R o Yo =T PN 2247
Y ST o To N .- VA = 1P 2250
Y (T o To N o Lo] B o =P 2251
51.77. pg_prepared_Stat EMBNES ..o 2251
51.78. pg_prepar €d_XaCL S ..ioiiiiiiiiiiiiiie e 2252
51.79. pg_publication _tabl €Sccoooiiiiiiiii 2253
51.80.pg_replication origin_statuscccooeiiiiiiiiiiiiiiie e, 2253
51.8L.pg replicati on_SIOtS .o 2254
D182, PO T Ol B it 2255
oY I o To V1 =S PN 2256
51.84. pg_SECl @bBel S cooniii i 2257
Y IS ST oTo I =T o [UT=] o [odf =T PPN 2257
Y IS T o T TS =) A A 4 [P 2258
B51.87. PG _SNAUOW ...oiiiiiii 2261
D188, PO ST AL S ittt e 2261
B51.89. PO _St Al S BXt oo 2264
51.90. PG _tAbl S oeriiiiiii 2266
51.91. pg_timezone _abbrevs ... 2266
51.92. PG _ti MBZONE _NAIMES .iivtuiiiiiiiii e et e e e e e et e e e ean s 2267
L e o o T U =1 =] PRSP 2267
e /N o To TRV EY =1 N 01 Y 1 o L o 1T 2268
YIRS T o T VA =1 TP 2268
52. Frontend/Backend ProtOCO!iieiiiiiieiiiiie e 2270
521, OVEIVIBIW ...ttt ettt e e e e e e e et e e e e et e e e e et e e e e st e 2270
52.2. MESSAGE FIOW ...oiiiiiiiiii e e e 2272
52.3. SASL AULNENLICALIONciiviiieeieeii e e e 2285
52.4. Streaming Replication ProtoColccccuiviiiiiiiiii e, 2286
52.5. Logical Streaming Replication Protocolcccooevviiiiiiiiiineie e, 2293
52.6. MESSAgE Dala TYPES ..vuiviiiieieiei ittt ettt et 2294
52.7. MESSA0E FOIMMELS . .viivitiiiiit et e e 2295
52.8. Error and Notice Message FieldSooivviiiiiiiiiiii e 2313
52.9. Logical Replication Message FOrMaLSccuuveiiueiiiiieiiiieciieeeinee e e eaeeeae 2315
52.10. Summary of Changes since Protocol 2.0ccoeevviiiiiiiiiiiiece e, 2319
53. PostgreSQL Coding CONVENLIONSueiiuuiiiiieiiieeei e e e e e e e e e e e e et eeaneee 2321
LoYC T o4 10 = 1 o 2321
53.2. Reporting Errors Within the SErveroveviiiiiii e, 2322
53.3. Error Message StYl€ GUIAEcouiiiiiiiii e 2325
53.4. Miscellaneous Coding CONVENLIONSccvuuieiiiieiiieecii e e e e e 2329
54, Native Language SUPPOITuueiuteriieeeiee e re et e et s e e e e e e e st e e e e s e eateeenneeennns 2332
54.1. FOr the TranSlaloruieiiiiiieiiie e e e e eeees 2332
54.2. FOr the PrOgramimeruiiii e e e e e e e e e e anas 2335
55. Writing a Procedural Language Handlerccoooviiiiiiiii e 2338
56. Writing a Foreign Data WIaDPES ... covvuiiiieeiiieec et e e e e e e e e e e e eens 2341
56.1. Foreign Data Wrapper FUNCHIONScovuiiiiieiie e e e 2341

XViii

PostgreSQL 12.5 Documentation

57.

58.

59.

60.
61.

62.

63.

64.

65.

66.

67.

68.

56.2. Foreign Data Wrapper Callback ROULINEScocvviiiiiiiiii e 2341
56.3. Foreign Data Wrapper Helper FUNCLIONSccciviiiiiiiiiiccie e, 2356
56.4. Foreign Data Wrapper Query Planningcoooeiiiiiiiiiiiciie e, 2357
56.5. Row Locking in Foreign Data WIappeEr'Scvviiiiineeiiiiece e e e e e 2359
Writing a Table Sampling Methodcc.oooiiiiiiii e, 2361
57.1. Sampling Method SUpport FUNCLIONScouviiiiiieiiecc e, 2362
Writing a Custom SCan ProVideruiiiiiiiiii e 2365
58.1. Creating Custom Scan PathSccoiiiiiiiiic e, 2365
58.2. Creating Custom SCan Planscociviiiiiii e 2366
58.3. EXECULING CUSLOM SCANSuvvvieiiiieiiieeeiie e e e e e e e e e e e e e e e e e eaes 2367
GeNEtiC QUENY OPLIMIZEN .vuiei i e e e e e eees 2370
59.1. Query Handling as a Complex Optimization Problemccooiiiiieii 2370
59.2. GENELIC AlQOIItNMS ... i 2370
59.3. Genetic Query Optimization (GEQO) in POStgreSQLccevvvvevvieeiieeiieeennne, 2371
59.4. Further REAINGcovvniiiiiiii e 2372
Table Access Method Interface Definitioncooviiieiiiii e 2374
Index Access Method Interface DeEfiNitionvvviiiiiiiiiiii e 2375
61.1. Basic APl Structure for INAEXESc.uuuiiiiiiiieceie e 2375
61.2. Index Access Method FUNCLIONSooevveiiiiiiiiieci e 2377
B1.3. INAEX SCANMNING ...evvneeiieiie e e e e e e e e e e e e e e e e e e et e e et e e eaneeeaes 2383
61.4. Index Locking CoNSIAErationSoveiuiieiiiieiiiieeiie e e e e 2385
61.5. Index Uniqueness ChECKScccuiiiiiiiiie e e e e 2386
61.6. Index Cost EStimation FUNCLIONSviiiviiiieiiiii e e 2387
GENENIC WAL RECOIUSvuiiiiii et et e et e eeeat e e e ene 2390
B-TrEE INUEXES ..vn e et e e e et e s 2392
(2G50 1 1 o (8o [o 2392
63.2. Behavior of B-Tree Operator ClasseSovvuiiiiiieiiieeeii e e e e e e 2392
63.3. B-Tree SUpPOrt FUNCHIONScuuiiiiiciie e e e e e e e e 2393
63.4. IMPIEMENLALION .. .evuiiii e e e e e e e e e e e e eaans 2394
LTI I 1 070 (== PP 2395
(57 0 g1 oo (8o [o S 2395
64.2. BUIIt-iN Operator ClaSSeSu.ciuueiiiieiiii e e e e e et e e e e e e eeen 2395
S T N (=011 o 1 1) YRR 2396
64.4. IMPIEMENLBLIONuuiiiii e e e e e e e e e e e e eanns 2405
B4.5. EXAMPIES ..ovvviiiei ettt 2406
SP-GIST INAEXES ...evvvviiiieie e e ettt ettt e e e e e e e e e e e e e e e et e e e e e e e eeaernnnes 2407
L1300 g1 oo (8o o o S 2407
65.2. BUIIt-iN Operator ClasSeSu.iivueiiiieiiii e ee e e e e e e e e e e e e een 2407
L I N (=011 o 1 1 YRR 2408
65.4. IMPIEMENTALIONvuiiii e e e e e e e e e e e e e eaans 2416
B5.5. EXAMPIES ...vvviiiee ettt 2418
GIN TNOEXES vt eeee ettt e s et e e e e e e e e e e et s e e e e e e e estatnseaeeaeeennes 2419
L1200 g1 oo (8o [o S 2419
66.2. BUIIt-iN Operator ClasSeSu.evvueiiiieiiii e e e e e e e e e e e een 2419
ST R I N (=011 o 1 1 SRR 2419
66.4. IMPIEMENTALIONvuiiii e e e e e e e e e e e e eaens 2422
66.5. GIN TipS aNd TTICKS ..uuuiiiiieiii e e e e e e e aeas 2424
(Lo T g 1] = o PP 2424
B6.7. EXBMPIES ...vvviii ettt 2425
BRIN INUEXES ...vvviei ettt ettt s e e e e e e ettt s e e e e e e e aaaaa e e e eeeees 2426
L8 1 1 oo (8o o o S 2426
67.2. BUIIt-iN OPerator ClaSSeSu.iiuueiiiieiiii e ee e e e e e e e e e e e e eanaeeeen 2427
T N (=01] o 1 1 PSSP 2428
Database PhySICal SIOraQEuueviiieiiiieiii e e e e e e e e aaaas 2432

XiX

PostgreSQL 12.5 Documentation

68.1. Datahase File LayOULcceuuiiiiiieiiii e e e e e e e e ees 2432

B8.2. TOA ST ettt ettt e e 2434

68.3. FIree SPaCE M ...uiviiiiiii i 2437

68.4. VISIDIlIY MaD ..o 2437

68.5. The INitidization FOrKooiiiiiiiiiiiis e 2438

68.6. Datahase Page LayOUuLccouuieiinieiiii e e e e e e e e e 2438

69. System Catalog Declarations and Initial CONteNtSceevvvieiiiiiiiiieeiii e, 2442
69.1. System Catalog Declaration RUIESveiiiiiiiiiici e, 2442

69.2. System Catalog INitial Datal........cccvuieiiiieiiieeiiiiecie e e 2443

69.3. BKI Fil@ FOMMELuuiiiiiiiiieeeie e 2448

69.4. BKI COMIMANGSceevviieiiiiie et ettt e e e e et eeeaan s 2448
69.5. Structure of the Bootstrap BKI Filec.coeviiiiiiiiiiiiin e, 2449

69.6. BKI EXAMPIE ...uiiiiiiiie et 2450

70. How the Planner USES SEatiStCS ..vvvvuniiiiiiiieeiiii ettt eeeaens 2451
70.1. Row EStimation EXamMPIESoiiiiiiiiii e e e e e e e e e e 2451

70.2. Multivariate StatisticsS EXampPleScovviiiiiiiiiiii e 2457

70.3. Planner Statistics and SECUIMLYovvvniiiii e e 2460

R LAY o] = o [=N 2462
A. POSIOreSOQL ETOr COUESuuiiiieiii it e e e e e e et e e e e eanas 2469
ST T (T T g LTS T o] oo o 2478
B.1. Date/Time Input INtErpretationoovvviiiiiiiiii e 2478

B.2. Handling of Invalid or Ambiguous TimesStampsccccoeveviiieiiiiieiiiieci e, 2479

B.3. Date/Time K&Y WOIASiviiiiii e e e e e e e 2480

B.4. Date/Time Configuration FilEScocoii i 2481

B.5. POSIX Time Zone SPeCifiCationsuveiiiiiiii i e e eee e e e ee e 2482

B.6. HIiStory Of UNItSiiiiiiiiiii i e e aens 2484

C. SOL KEY WOIAS ... evueiiiieeii et ettt et e e e e e e e e e e e et e e et e e et e e eaneeeanees 2487
D. SQL CONfOIMMANCEiveeiiiii e e e e e e e et e e e e e e e e enaeees 2512
D.1. SUPPOIEd FEALUIES ... ccvu i eeei e e e e e e e e aens 2513

D.2. UNSUPPOIEd FEAIUIESuiiiiiiieii e e e e e e e e e e e e e e e e eanes 2530

D.3. XML Limits and Conformance to SQL/XMLcccoevviiiiiiiiiiiiciiieceeeeee, 2544

I e 1= S N o] (=< P 2548
E.L REEBSE 12.5 ..o 2548

E.2. REEBSE 12.4 ... 2553

E.3. REEBSE 12.3 .. it 2558

B4 REIEBSE 12.2 ... 2564

ED. REIEASE 12.1 ..ot 2570

E.B. REIEASE 12 ... 2574

E.7. Prior REIEASES ... 2597

F. Additional SUpplied MOAUIESuiiiiiii e 2598
F.L adminpackooeeii e 2599

F.2. @MCNECK ..t 2600

F.3. @UEN_AEIY ..o 2603

0| (o T = o) =1 o PN 2603

FLB. BIOOM Lo e 2606

ST o1 (==Y o 1 o 2610

A o 1 (==Y o £ P 2610

RS T o) =4 APPSR 2611

FiO. CUD Lo 2614
[t 0 0 | o] o PRSP 2619

Nt I o [T | PP 2651

L 2o [A6,/ P 2652

F.13. €arthdiSIaNCE ...cevvieeieii e 2653

Lt 1T = o 2655

XX

PostgreSQL 12.5 Documentation

F.A5. fUZZYSIIMAECKH ..oeeii e e 2658

Nt 0T o = PSPPI 2660
T 17 o o N 2667
S T - - Y 2669
0t L T 1= o PP 2672
2 o PP 2675
L T == PP 2676
[070 L= 1 4 o)< o P 2684
F.23. PassWOrdCNECKcciuiiiiii e e 2691
F.24. pg BUFfEICaCE .. cov e 2692
ST 00 (0! Y/ o {0 PRSP 2693

L I oo .S 0 0= 1 7= 2705
e O oo [o (= V= 1 [P P P PREN 2707
F.28. POrOWIOCKSiitccii e e e e e e e e 2708
F.29. PO_Stal SalBMBNTS ... 2709
G O 0T = =10 o = T 2716
e I oo [1 (0 [0 2720
F.32. PO VISIDHITY oo 2726
G 1 00 (0| (== {11V 2728
[R o PSPPSR 2734
G ST = o0 o | 2737
T o PP 2745
L A 1T o o T PP 2746
F.38. tADIEFUNC ... 2748

1S I [PPN 2759

[TO I (== o =0 o] oo [P 2760

FLAL, TSN _SYSIBIM TOWS L.ttt e e e e et e e e e e e en 2760

F.A2. tSM_SYSIEIM TIME c.ouiiii e e e e e e e e aens 2761

FLA3. UNBCCENT ...t e e et et e e e e e et e e e e e e nnes 2761
Y U T o 01\ o PP 2763
Fud5. XIMI2 Lo e 2765

G. Additional SUPPIIEd Programsccuuuiiiiieiii e ee e e e e e e e et e e e eens 2771
G.1. Client APPIICAIONSievi e e e e aeeeen 2771

G.2. Server APPlICALIONSiiiiicii e 2778

[R (= g = I 0= £ PP 2783
H. L CHENt INEEIFACES .. iveveiie it 2783

H.2. AdMINIStration TOOISccuuuiiiiiiiiieiiiiie e 2783

H.3. Procedural LanQUAagESuuieeuniiiiieiiieeei e e e e e e e e e e e e e eanes 2784

[I a0 =T PSP 2784

I. The Source Code REPOSITOIY ... ccuuiiiieiii e e e e e e e e e e e e e e eaanaees 2785
[.1. Getting the SOUICE VI Gitu.iiiiiciiii i 2785

B B o o100 01 - 1o PP 2786
J L DOCBOOK ...ttt 2786

B oo S P 2786

J.3. Building the DOCUMENLEEIONcovvniiiiiie e e e e e e e e 2788

J.4. Documentation AULNOIINGcoovniiiiiiii e e 2790

5. SEYIE GUITE ..cevneeiiii e et e e 2790

N 0 (o=@ I 2T S 2793
[o {0017/ 1 1 PP PPN 2794
[T o] oo r="o] /N 2801
g0 1= USRI 2803

XXi

List of Figures

59.1. Structured Diagram of a Genetic AlgOrithmooooiiiiiiiii e,
B6.1. GIN INEEIMAIS ...ttt ettt e et e e e b
B8.1. PagE LAYOULeeeiiitieie ettt ettt

XXii

List of Tables

4.1. BaCKSlash ESCAPE SEOUENCESceietieiiiti e et e et e et e et e et e et et e e e e et e e e e enaaes 38
4.2. Operator Precedence (highest t0 TOWESE)uiiiiiiiiieiiii e 44
5.1. ACL Privilege ADDreVIGtioNSoiiiiiiieeiiii et e e 81
5.2. SUMMary of ACCESS PriVIIEOESu it 82
S D - = Y o= TP PP 148
8.2, INUMENIC TYPES ..ttt ettt ettt ettt e et r e e e et e e et et e e e e eaa s 150
8.3, IMONELAIY TYPES ..ottt ettt ettt e et e 155
8.4, CAIACLES TYPES ..ot eeiiti ettt ettt ettt ettt e et e e et e ettt e et e e e e e e enaa s 155
8.5. SPECial CharaCler TYPES ..c.vuu ittt ettt ettt e e et e ettt e e et e e e e e bt e e eenaaeeees 157
8.6. BINAIY Daa TYPESvueeieitieeeett ettt e et e ettt e ettt e e et et r e e et et e e et et e e eeat e e eent e eeen 157
8.7. byt ea Literal ESCAPEI OCLELSuiiiiiiieeieii ettt e e 158
8.8. byt ea OUutput ESCAPEd OCLELScceiiiiieeiii et 159
8.9. DAE/TIME TYPES .. eetueeeiiti ettt ettt ettt ettt ettt e et e et e e e e et e e e e b e e eeaans 159
8.10. DB INPUL ...eeeeeet ettt et e et e 161
811, THME INPUL ..ttt ettt ettt ettt e et et e et e e e et e e e et e nb e e ennaas 162
8.12. TiME ZONE INPUL ...ttt ettt ettt ettt et e ettt e e e et e e e e ana e eenees 162
8.13. Special DaE/TIME INPULScevuiiiiiie ettt e e e e e e enanns 164
8.14. DAe/TIME OULPUL SEYIES ...t eeees 164
8.15. Date Order CONVENTIONSeeeetteeeitti e ettt ettt e ettt e et e e ee b e e e e et e e e eete e e eeetanaeeees 165
8.16. 1SO 8601 Interval Unit ADDIreviationSc.uuiiiiiiiiiieii e 167
8.L7. INEIVEl TNPUL ...ttt ettt e e et e e e 168
8.18. Interval Output Style EXaMPIEScoovuiiiiiiii e 169
8.19. BOOIEAN DaLA TYPE ... eeeetieeeeeti ettt ettt ettt e et e et e et e e e e e e e aene 169
8.20. GEOMELNIC TYPES .. eeeti ettt ettt ettt et e et e et e et et e e e e et e eeeaa s 172
8.21. NEIWOIK AQArESS TYPES ... eeetiieteet ettt ettt ettt e e et e et eeena s 175
8.22. Ci dr Type INPUE EXAMPIEScoeiiieiei et 176
8.23. JSON Primitive Types and Corresponding PostgreSQL TYPEScccvvvnieiiiiiiieiiiiiieeeeiiiieeees 185
8.24.] SONPAt h Variahlesiiiiii e 192
8.25.] SONPAL N ACCESSOIS ... eieeetiie ettt ettt ettt ettt e e et et e e et eeaaan s 193
8.26. ODJECE 1dENLITIEr TYPES ... eeeiei ettt 217
827, PSRUUO-TYPES ..ttt ettt 218
9.1. COMPATSON OPEIGIOIS ...eetueeeetie ettt ettt e ettt et e e e et e et e et et e et e e e e e et e e e enn e eeenans 220
9.2. COMPAISON PraEdiCaLEScuuuieiiii ettt et 221
9.3. COmMPAISON FUNCLIONS ...ttt et e eaans 223
9.4. MathematiCal OPEIALOSceeeeueeeeii ettt ettt ettt ettt et et e et e e et e e eeaans 223
9.5. MathematiCal FUNCHIONScuuuuiiiiii ettt ettt e e e e e enaans 224
9.6. RANAOM FUNCLIONSceiiiieieii ettt ettt e et e e e e e e eenanns 226
9.7. TrigONOMELNIC FUNCHIONS ... ittt sttt ettt e e ettt e e e et e e e ena e eeens 227
9.8. HyperboliC FUNCHIONSiiiiiie et 227
9.9. SQL String FUNCLiONS 8N OPEIEIOISuieiiiiieeeiii ettt e ettt e ettt e e et e eeent e e e e e eees 228
9.10. Other SING FUNCHIONSuiiiiiii e e e e 229
9.11. BUIt-IN CONVEISIONSeettieeiiii ettt ettt e ettt e ettt e e ettt e e e et e e e e et e e eeena e eeen 237
9.12. SQL Binary String FUNCtions and OPEraorsSuuueiirieieieiiiee et e e e e e e 243
9.13. Other Binary String FUNCLIONSuuuiiiiit et e et e e e eni e eees 243
9.14. Bit SINQG OPEIAIOIS «...vteieeii ettt ettt ettt e et e e et e e et et e e e eaaa s 245
9.15. Regular EXpression MatCh OPEIrEIOrScccuuuueiiiitiieeieii ettt e ettt e e et e e e et e e eeei e eeens 249
9.16. Regular EXPression ATOIMISuuu ittt ettt ettt e et e et e e e et e e e eea s 253
9.17. Regular EXpression QUANTITIENSuuuiiiiiii e 254
9.18. Regular EXPression CONSITAINTScvereu ittt ettt e e 255
9.19. Regular Expression Character-Entry ESCAPESocivvvuieiiiiiiieieiii e 256
9.20. Regular Expression Class-Shorthand ESCAPEScviirtnieiiiiiieeeiii e 257

XXiii

PostgreSQL 12.5 Documentation

9.21.
9.22.
9.23.
9.24.
9.25.
9.26.
9.27.
9.28.
9.29.
9.30.
9.31.
9.32.
9.33.
9.34.
9.35.
9.36.
9.37.
9.38.
9.39.
9.40.
9.41.
9.42.
9.43.
9.44.
9.45.
9.46.
9.47.
9.48.
9.49.
9.50.
9.51.
9.52.
9.53.
9.54.
9.55.
9.56.
9.57.
9.58.
9.59.
9.60.
9.61.
9.62.
9.63.
9.64.
9.65.
9.66.
9.67.
9.68.
9.69.
9.70.
9.71.
9.72.
9.73.
9.74.

Regular EXpression CoNStraint ESCAPESuvvuuiiinieiiieiiieee e ee e e e e e e e e e e e ean s 258
Regular EXpression Back REFErENCESccovuiiiiii e 258
ARE Embedded-Option LEErS ... couuiiii e e e e e e e e 259
FOrmatting FUNCHIONSovuiiii e e e e e e e e e e e e e eens 263
Template Patterns for Date/Time FOrmMattingcccuueeiiiieiiiiieiie e e e e e 264
Template Pattern Modifiers for Date/Time FOrmattingcocevvveviiiiiiiiieiiiiecineeeeeeeis 266
Template Patterns for NUMeric FOrmattingcc.oveviiiiiiiiiiiii e 269
Template Pattern Modifiers for Numeric FOrmattingcoooevveeiiiiiiiiieiiineeieeceieeeeeeenn, 270
oo = L T 1 o)== 270
Date/TIME OPEIBIOIS ...vueeteeeii et ettt et e e e e e e e e e e e e et e e et e e et e e e e e st e eateeeanaeeannas 272
DA€/ TiME FUNCHIONSvtiiee it e e et e e e e e e e e et e e eenanns 273
AT TIME ZONE VANTANES ..uuiiiiiieeeiiie ettt e s e e a et s e e et e e e et e e e eaan e 283
ENUM SUPPOIt FUNCLIONSciie e e e e e e e e e e e e e ea e e aanees 286
(€100 1= (ol @] 1= - 10 = 287
GEOMELTTC FUNCLIONS ...eeivi ettt e et e et e e ettt e e e et e e e e et r e e e eatn s e e e eatnnaaeees 289
Geometric Type Conversion FUNCLIONSccouuiiiiiieiiie e e e e e e e e e 289
(oo L= 0 To I oLy @ o= = o] T 291
Cidr andiNet FUNCHONSuuiiiiiii et e et eeeees 292
MACAAAT FUNCLIONS ... it e e e e e e et e e e et e e e e et eas 293
(0= Yotz Lo Lo Lot S B o W 1 o) PP 293
LS == (o A IO o= = 0] £ TP 294
SRS == T T (o PR 295
Text Search Debugging FUNCLIONScoouuiiiiieii e e e e e e e e e eaaes 299
J SON aNd | SOND OPEIAOIS . .civviiiii e e e e e e e e e e e e et e e et eeanaee 315
Additional | SOND OPEIAIOrSuuiiiiieiii e e e e e e e e eaaees 316
JSON Creation FUNCLIONSciiuiieeiiiiie et e et e e e et s e e e eat s e e e eat e e eeatn s e e aeaanaaaees 318
JSON Processing FUNCLIONSiiiiiiii e e e e e e e et e e e e e e e e aanaees 319
j sonpat h Operators and MEethOOSccoouiiiiiiii e 329
j sonpat h Filter EXpression EIEMENESoiiiiiiiiiii e e e 330
S = [0 1= g Tor Y W o 1T 332
F N = YO o= = (0] £ PRSPPI 337
F N 4 = YA U o 1 o 338
RANGE OB OIS . it iti ittt e et e 340
[T (= U o 0] 342
General-Purpose Aggregate FUNCLIONSo.uiiiiiiii e e e e e e e eaaes 342
Aggregate FUNCLIONS fOr SEAiStICSvvvuiiiiieiii e e e e 345
Ordered-Set AQQregate FUNCLIONScovuiiiii e e e e e e e e e e e e e aaneees 347
Hypothetical-Set Aggregate FUNCLIONSccovuiiiiiiiciie e 349
CTCo TN o 1 (o [@] o 1= £ 1 o o TP 349
General-Purpose Window FUNCLIONSoovuiiiiiiciii e e e e e e e e e eaae e 350
Series Generating FUNCHIONSccuuiiiiici e e e e e e e e e e et e e ea e eeas 358
Subscript Generating FUNCLIONSccuuiiiiieie e e e e e e e e eaa s 359
Session INFOrmMation FUNCHIONSuiiiiiii ittt e e 361
Access Privilege Inquiry FUNCLIONSiiiiiiiii e e e 364
= (o I =T 01 @] 1= - (o =P 367
= (o IR =T a1 W 1 Lo ORI 368
Schema Visibility Inquiry FUNCLIONScuuiiiiiiiii e e 368
System Catalog INformation FUNCHIONSccuuiiiieiii e e e e 369
INAEX COIUMN PrOPEMIES .. ovvi i e e e e e e e e e et e e e eaes 372
F g0 Lo = (0] 0= o 1= 373
Index Access Method Properti€Scuuuiiiii e e 373
Object Information and Addressing FUNCLIONSc.uviiiiieiiiiieii e 374
Comment INformation FUNCLIONSiiiiiiiieiii e 375
Transaction IDS and SNAPSNOLSccuuiiiiiiei e e e e e e e e e e eeen 376

PostgreSQL 12.5 Documentation

9.75. SNAPSNOt COMPONENESuueitieiiii ettt e et e e e e e e e e e e e e e et e e et e e et e eeta e e et eetn e rannaeanaees 376
9.76. Committed Transaction INfFOrMELTONoieiiuiieiiie e 377
9.77. CONrol Data FUNCHIONSeiiiii e ettt e et e e e et e e e et e e e eate s e e e eateaaeeenes 377
9.78. pg_control _checkpoi Nt COlUMNSiiiiiiiiiiiei e e 378
9.79. pg_control _SYSt @MCOIUMNSuuiiiiii i e e e e aaaas 378
9.80. pg_control _iNit COlUMNSccouuiiiiiiie e eaa s 378
9.81. pg_control _recovery COUMNScoooiiiiiiiiiiiie e e e e 379
9.82. Configuration Settings FUNCLIONSoiiiiiiiii e e e e 379
9.83. Server SIgnaling FUNCHIONScuuiiii e e e et eaaa e 380
9.84. Backup Control FUNCLIONSuiiiieiiii e e e e e e e e et e e e e e e e e eaaas 381
9.85. Recovery INformation FUNCLIONScouuuiiii i ee e e e e e e e e e e e e e e aen 383
9.86. Recovery Control FUNCHIONScciueeiiii e ce e e e e e e e e e e e e e e e eaaeees 384
9.87. Snapshot Synchronization FUNCHIONSc.uuiiiiiiiie e e e e e e e e e e 385
9.88. Replication SOL FUNCHIONSuuiiiiciii e e e e e e e e e e e e e e et e e aa e eens 386
9.89. Database ObJeCt SIZ€ FUNCLIONSuiiiicii e e e e e e e e e ees 390
9.90. Database Object LOoCation FUNCHIONScovuiiiiiiiiiie e ee e e e e e e e e 392
9.91. Collation Management FUNCLIONScouuuiiiiiiii e e e e e e e e e e anes 393
9.92. Partitioning INformation FUNCLIONSoiiiiiiiiiciie e e e e 393
9.93. Index MaintenanCe FUNCLIONSviiiiiiiieeiii e et e e 394
9.94. GeneriC File ACCESS FUNCLIONSccuuiiiiiiiii ettt e e e e eeaees 395
9.95. AdVISOry LOCK FUNCHIONSuiiiiiiiiieii e ce e e e et e e e e e e e e e e e e et e e et e e eaaeees 397
9.96. Table ReWrite INFOMMELIONiiiiii e e e e eeeens 401
12.1. Default Parser's TOKEN TYPES ..vuuciiieiiiiee e et e e e e e e e e et e et e et e e et e e et e e e eanaas 453
13.1. Transaction 1S0l@tion LEVEISuuiiiiiii e 477
13.2. Conflicting LOCK MOOESuuiiiiiiiiieci e e e e e e e e e e e 484
13.3. Conflicting ROW-LEVE LOCKScvuuiiiiicie e e e e e e 486
18.1. SYysStemM V IPC ParameterSvuiiiiiieei et e e e e e 562
18.2. SSL SerVEr FilE USAgEu ittt e e e e e e e e e 579
19.1. synchronous COMMIt MOGESc.uuiiiiiiiii e e e e e e 605
19.2. MeSSage SEVENTY LEVEIS ...uu i e e 631
19.3. ShOrt OptioN KEY ...ovviiiiiiii e e et e e e e e e e e e 659
P2 N B L = O A = (o =< PP 687
23.1. PoStgreSQL Charalter SBLSoiuuuiiiieiii i ee e e e e e e e e e e e et e et e et e e aaeeeeas 704
23.2. Client/Server Character Set CONVEISIONSuuieiiiiiieeiiiiiee e et e et e e et eeeain e e eainns 708
26.1. High Availability, Load Balancing, and Replication Feature MatriXcccoocvuvevinneennnnnns 740
27.1. DYNAMIC SEAISHCS VIBWS ..ouviiiiiii e e e e e e e e e e e e e e et e e ea e eees 764
27.2. Collected SEAISHCS VIBWSceeviieeiiii et e e et e et e e e e et e e e eatanaeeeees 764
27.3.pg_Stat _aCti Vi ty VIBW oo e e e 766
A - U =AY A= o A B TS v o1 o 770
27.5.pg_stat_replicati ON VIBW ..o 782
27.6. pg_stat_Wal IeCEI VEI VIBW couuiiiii i 785
27.7.pg_stat _SUDSCIiPtiON VIBW ..o e e e 786
27.8. PG St At _SSI ViBW coorniiii i 786
27.9. pg_Stat _gSSAPI VIiBW ciuuiiiii i 787
27.10. pg_Stat _arChi VEI VIBW .ouuiii it e e e e e 788
27.11. pg_Stat _BOWE it EF VIBW cooeniiii e e e e 788
27.12. pg_stat _dat abase VIEW ..o 789
27.13. pg_stat _database _confliCts VIEW .c.ciiiiiiiiii e 791
27.14. pg_stat _all _tabl @S VIEW oo 791
27.15. pg_stat _all i NAEXES VIBW c..uiiiiiiii e e e 792
27.16. pg_statio_all _tabl €S VIEBW ..o 793
27.07. pg_statio_all i NAEXES VIBW .o 794
27.18. pg_stati o_all _SeqUENCES VIBW ...ccuuiiiiiiiii e e e e 794
27.19. pg_stat _user _fUNCEi ONS VIBW ..uuiiiiiiiii e e 795

XXV

PostgreSQL 12.5 Documentation

27.20. Additional StatistiCS FUNCHIONSuuuiiiiiiieieie e e e e e e e eeees 795
27.21. Per-Backend Statistics FUNCHIONSuuiiiiiiiiice et e e e e 796
27.22. pg_stat_progress_create_ i NAeX VIBW ...cc.oieiiii i 798
27.23. CREATE INDEX PhESES ...cetuiiiiiiiiieeeiii ettt e et e et e e et s e e et e e eaaan e aasnens 799
27.24. pg_stat _progress_VAaCUUMVIBW ...ccuuiiiiiiiiii e e e e e e e et e s e e e eaneees 800
27.25. VACUUM PRESEStuiiiiiiiiie ettt e et e e et e e e et e e e et e e e e et e e e eaeneeas 801
27.26. pg_stat_progress_ClUSter VIBWcoiiiiiiii i 802
27.27. CLUSTER and VACUUM FULL PhaSESccuuiiiiiiiiieiiiii e 803
27.28. BUIlt-iN DTTace ProbESccviiiiiii et 804
27.29. Defined Types Used in Probe Parametersc.uveiiiiiiiii i 811
33.1. SSL MOE DESCIIPLIONS ... ivtieiiieeei e e et e et e e e e e e e e e e e e et e e et e e et e e s aaeeaneees 916
33.2. Libpg/Client SSL FilE@ USAQE ... cvuuiiiiiiiii ettt e e e e e e e e e e aanees 917
34.1. SQL-Oriented Large Object FUNCLIONSciuuiiiiiiicii e 937
35.1. Mapping Between PostgreSQL Data Types and C Variable TYPES ...c.vvvvvvvieviiiciiiieeiieeeenn, 954
35.2. Vadid Input Formats for PGTYPESdat € from asccoccoivviiiiiiiiiiinece e 973
35.3. Vdid Input Formats for PGTYPESdat € fnt_asSCccooeviiiiiiiiiiii e 975
35.4. Valid Input Formatsfor rdef mtdat @cooviiiiiiii i 976
35.5. Valid Input Formats for PGTYPESt i mest anp_from ascccoeveviiviiiiiiiiiiccieeeieees 977
36.1.i nformati on_schena_catal og_nanme Columnsccoeevviiiiiiieiiin e, 1059
36.2. adm ni strabl e _rol e _authorizations Columns...........cccooevvieiiiiiiiinecie e, 1059
36.3. applicabl e rol €5 COlUMNSuiiiiiiiii e 1060
36.4. At 11 DUL €S COIUMNS ...uuiiiiiii e e e e e e e 1060
36.5. charact er _Set'S COUMNSc.uiiiiiiiiii e e e e e e e e e e et e e e eeas 1064
36.6. check_constraint_routine_usage Columns...........cccoveiiiiiiiiiiiiiin e, 1064
36.7. check_constrai NtS COlUMNSiiiiiieiiii e e e e e e e e e een 1065
36.8. COl 1 @t i ONS COIUMNSuiiiiiiii e e e e e e e e e e s 1065
36.9.col l ati on_character_set_applicability Columns..........ccccoceiviiiinininnennnn. 1066
36.10. col um_col umm_uSage COIUMNSiiiieii e e e e e e e e e e 1066
36.11. col um_domai N_uSage COIUMNSc.uiiiiieiii e e e e e e ae e 1067
36.12. cOl UNMM_0Pt i ONS COIUMMNS .. .cuuiiiiiii e e e e e e e e e e e eaes 1067
36.13. col um_pri vil €ges ColUMNScccouuiiiiiiiiii e e e e 1068
36.14. col umMm_udt _USaQge COIUMNSccvuiiii e e e e e e e eaaeees 1068
36.15. COI UMMS COIUMINS ...ttt e e e e et e et e e e et e e e e eaan s 1069
36.16. constrai nt _col unm_usage ColUMNSceeiiiiiiiiieiiiieeie e 1073
36.17.constraint _tabl e _usage ColUmMNScc.oieiiiiiiiiiciie e 1074
36.18. data_type priVvileges ColumMNS.........ccooiiiiiiiiiiiiiii e 1075
36.19. domai n_constrai Nt's COlUMNScoiiiiiiiiii e e 1075
36.20. domai N_udt _USAQE COIUMNSccuuiiii e e e e e e eaaaeees 1076
36.21. dOMBI NS COIUMINS .. .ciiiiiieeiii et et e e et e e et e e e et e e e e et e e e e eaan s 1076
36.22. el emENt _t YPES COIUMNSivuiiii e e e e e e e e eaes 1080
36.23. enabl €d_r 0l €S COlUMNSuuiiiiiiii e e e e e e e e eaas 1082
36.24. forei gn_data_wrapper_opti ons ColUmMNScccuieiiiieiiiiieiiii e eee e 1082
36.25. forei gn_data_ W appers COlUMNSccociiiiiiiiiiiii e e 1082
36.26. forei gn_server_opti ons COlUMNSooiuiiiiiiiiiiii e e e e 1083
36.27.forei gn_Servers COIUMNSoiiiiii i e e e e e 1083
36.28.foreign_tabl e options ColUMNScocouiiiiiiiiiiii e 1084
36.29. forei gn_tabl €5 COlUMNScoouiiiiiiiii e 1084
36.30. key_col umm_uSage COlUMNSuiiii i e e e e e e e e e eaaaeees 1085
36.3L. par anBt €5'S COIUMNSiuu i e e e e e e e e e et e e eeaaeeaens 1085
36.32.referential _constraints ColUMNSccoevuiiiiiiiiiiii e 1088
36.33. 10l e_col um_grants COlUMNSeeiiiiiiiiiii e e e 1089
36.34.rol e _routine _grants COlUMNScccouuiiiiiiiiiii e e e e e e 1089
36.35.r0l e _tabl e grants ColUMNSoeiiiiiiiiiiiiiie e e 1090
36.36. rol e_udt _grants COlUMNScoiiiiiiiii e e e 1091

PostgreSQL 12.5 Documentation

36.37.r0l e_usage _grant s ColUMNScc.oeiiiiiiiiieiie e e e e e e eaae e 1091
36.38. routine_privileges ColUMNSooiiiiiiiiiii e e 1092
36.39. T OUL T NES COIUMNS ...oiitiiieiii e et e e et e e e et e e e et eeeeaen s 1093
36.40. SChemBt @ COIUMNSouuiiiiiii e e et e e e et e e e e aen s 1098
36.41. SEQUENCES COIUMNSuiiiiii i e e e e e e e e e e et e e eanas 1099
36.42. sl _feat ures COIUMNScouiiiiiiei e e e e e e e eaas 1100
36.43.sql _inplementation_ info ColuMNS..........coeeiiiiiiiiiiii e 1100
36.44. sql _| anguages COIUMNSuiiuiiiiiiie e e e e e e e e e e ean e eaes 1101
36.45. sl _packages COIUMNScouuiiiiiiii e e e e e e eaas 1101
36.46. SOl _PArts COIUMNSiiiiiiiii e e e e e e e eaaas 1102
36.47. Sl _Si ZI NG COIUMNSiiiiiii e e e e e e e eaans 1102
36.48.sql _si zing_profil es ColUmMNScccouuiiiiiiiiiii e 1103
36.49.tabl e _constrai NtS ColUMNScccuuiiiiiiiiie e e e 1103
36.50.tabl e privil eges ColUMNSccoocuuiiiiiiiii e e e 1104
36.51. t @bl €S COIUMNSciiiiiiiii e 1105
36.52. t ranST Or MB COIUMMS ... et e e 1106
36.53. triggered update_col ums ColUMNScoeiiiiiiiiiiii e 1106
36.54. t 11 GOEI'S COIUMMS .. .ouuiiiiiiii e e e e e e e e e et e e et e et e et e e aaeeaenas 1107
36.55. udt _pri Vil €ges COlUMNScouuiiiiiiieiie e e e e e e e e e 1109
36.56. usage_Pri Vil €ges ColUMNSoiiiiiiiiii e e e e 1109
36.57. user _defined _types COlUMNScoiiiiiiiiiii e e e e 1110
36.58. user _mappi Ng_0pPti ONS COlUMNSccouiiiiiiieii e e e e 1111
36.59. user _mBpPPIi NQGS COIUMNS e e e e e e e e e ean e eaes 1112
36.60. vi ew_col umm_usage ColUMNScouuiiiiieiiii e e e e e e e eane e 1113
36.61. vi ew _routine_usage COIUMNSceiiiiiiiiiiice e e e e e 1113
36.62. vi ew t abl e _usage ColUmNSccouuiiiiiiiiiii e e 1114
36.63. Vi €WS COIUMNS ..uuiiiiiii ettt e e e e e e e e e e e et e e e e st e e e eaanaeas 1114
37.1. Equivalent C Types for Built-in SQL TYPESccuuiiiiiieiiieiiiee e e e e e e 1148
A e B (= R = (=0 == 1185
YA o -t S 1= = o 1= SR 1185
37.4. GIST Two-Dimensional “R-treg” Strat@gieSuveivuieiiiieiiiieeiiee e e e e e 1186
37.5. SP-GIST POINE SITAEIES ...t eeeeiii ittt e e e e e e e et e e e e e e eaa s 1186
37.6. GIN AITAY SITAEJIES ...uuiiieiiii e e e e e e e e e e e e e e e e e e et e e et e et e e anneeaens 1186
37.7. BRIN MiNMaX SIalEOIES .. cvvuiiiieeiiiieiii e et e e e e e e s e e e e e e e e e e e e e e e et e e e e e eanaas 1187
37.8. B-Tree SUPPOIt FUNCLIONSciii e e e e e e e e e e e e e eanaeees 1187
37.9. Hash SUPPOIt FUNCHIONScouuiiiiie e e e e e e e e e e et e e aaneeeens 1188
37.10. GiST SUPPOIT FUNCLIONSiviiiiiiieii e e e e e e e e e e e e e e e e e eenns 1188
37.11. SP-GiST SUPPOIT FUNCHIONSevviiiiiieii e ee e e e e e e e e e e e e et e e e e e e eaanas 1188
37.12. GIN SUPPOIt FUNCLIONSivvicii eenaas 1189
37.13. BRIN SUPPOIt FUNCHIONS .. .ovuiiiiiieiiiee i ee e e e e e e e e e et e e et e e et e e et r e e aaeeaaneeeens 1189
39.1. Event Trigger Support by Command Tagocevuieiiiieiiiieeiiie e ee e e e e e e 1222
42.1. Available DIiagnoStiCS ItEMSiiiii e e e e e e e e e ee 1280
42.2. Error DIiagnOStiCS [TEIMS . ouuuiii e e e e e e et e e e e e 1295
257. Policies Applied by Command TYPEuuiiiinieiii e e 1682
258. AULOMALIC VariahlES ... 2006
259. pgbench Operators by INcreasing PreCedenCevvvvuieviii i e 2008
p2s O e |o1= o Tor a I U o 1 o 2009
511 SYStEM CalAlOOS ... vvvueiineiii et e et e e e e e e e e e e e e e e e et e e et e e et a e e e e e e e et e e e araas 2171
51.2. pg_aggregat € COlUMMScocuuiiiiiiiii e e e e e e e e e e e eaens 2173
oY G T o To T = .4 1 o] 0o 0 2175
oY I o o [=V o o B Oo 1804 2176
51.5. Pg_anPr OC COlUMMSuuiiiiiiii e e e e e e e e e e e e et e e e e e e e eaanas 2177
51.6. pg_attrdef COlUMNSiiiiiie e e 2178
51.7.pg_attribut @ COolUMNSciiiiiiii e e e e 2178

PostgreSQL 12.5 Documentation

51.8. pg_aut hi d COlUMNSiiiiiiii e e e e e e e aaaas 2182
51.9. pg_aut h_menber s ColUMNSooiiiii i 2183
Lo I (O R o Yo R o= o) A] V1 1P 2183
Lo I I O o T T o = £ =T 0 1 41T 2184
51.12. pg_col 1 ati on COIUMNScouuiiiii e e e e e e e e eaas 2188
51.13. pg_consStrai Nt COlUMNSc.uuiiiiiiii e e e e e e e e e eans 2190
51.14. pg_CONVET Si ON COIUMNSivuiiiiiieei e e e e e e e e e e e e e et eean e eaes 2192
51.15. pg_dat abase COlUMNScouuiiiiiiiii e e e e e aans 2193
51.16. pg_db role_setting ColUMNSceeiiiiiiiiiiiii e e 2194
51.17. pg_defaul t _acl ColUMNScccoiiiiiiiiii e e 2195
51.18. pg_depend COIUMNSccuuiiiii e e e e e e e e e et e e e eanas 2196
51.19. pg_descCri ption COlUMNSccouuiiiiii e e e e e e e e e e eaen 2198
Loy 2O o To =1 10 1 @] 070 1P 2198
51.21. pg_event _trigger COlUMNSoiiiiiiiiiie e e e e e e e e eaae e 2199
51.22. pg_ext €nsi 0N COIUMNScouuiiiiiei e e e e e e e e e e eans 2199
51.23. pg_foreign_data wapper ColUmMNSccooeiiiiiiiiiiiiiieeie e 2200
51.24. pg_forei gn_server ColUMNSccieiiiiiiiiii e e e e e e e e e e eaae e 2201
51.25. pg _foreign_tabl @ ColUMNScocouiiiiiiiiiii e 2202
51.26. Pg_i NAEX COIUMMNS .. .ouuiiiiiiii e e e e e e e e et e e et e et e e et e e e e eaanas 2202
51.27. pg_ i NNEri 1S COlUMNSuuiiiiieii e e e e e e e e e e e aens 2205
51.28. pg_ i Nit _Pri Vs COUMNSciiiiiii e e e e e e e e e eaas 2206
51.29. pg_| anguage COlUMNSccouuieiiieie e e e e e e e e e e e et e et e e aaneeaens 2206
51.30. pg_| ar geobj €Ct COlUMNScoouiiiiiiieiii e e e e e aes 2207
51.31. pg_l argeobj ect _netadat a ColumNSccoevuiiiiiiiiiiieeie e 2208
51.32. pg_NamESPACE COIUMNSuiiiiieii e e e e e e e e e e e e eeas 2208
51.33. PG_0PCI @SS COIUMNSciitiiii e e e e e e e e e e eaans 2209
51.34. pg_oper at Or COlUMMNSciiuuieiiieie e e e e e e e e e e e e e e e et e et eeaaneeeens 2209
51.35. pg_opfam [y COlUMNSociuiieiiiiei e e e e e aans 2210
51.36. pg_partitioned tabl € ColUMNScooiiiiiiiii e 2211
51.37. pg_pltenpl at @ ColUMNSociiiiiiii e e 2212
51.38. Pg_POI i CY COIUMNSuiiiiii i e e e e e eaaas 2213
LY G T o To N o] e T @] V0 1R 2214
51.40. pg_publicati on COlUMNSccouiiiiiiee e e e e e e e e e aes 2218
51.41. pg_publication_rel ColumnScccccooiiiiiiiiiii e e 2218
LY I o To T - Y [[T @0 1N T 410 TP 2219
51.43.pg_replication_origin ColumNSccocouiiiiiiiiiiiiiie e e 2219
51.44. PG reW i t € COIUMNSciii i e e e e e et e e e e eeaens 2220
51.45. pg_secl abel ColUMNSccouiiiiiiiiii e e eaans 2221
51.46. pg_SEQUENCE COIUMMS .. .ouuiiiiieiiiei e e e e e e e e e e e e e e et e e et e et e e aaneeeens 2221
51.47. pg_shdepend ColUMNSccuiiiiiiiiii e e e e 2222
51.48. pg_shdescri pti 0N ColUMNSoiiiiiiiiie e e e 2223
51.49. pg_shsecl abel ColumNScc.iiiiiiiiii e 2224
51.50. pg_Stati StiC COUMNSiiiiiiii i e e e e e 2224
51.51. pg_stati stiCc_ext COolUMNScoiiiiiiiiiie e e e e ea e 2226
51.52. pg_statistic_ext_data ColumnScouoiiiiiiiiiiiiiiii e 2227
51.53. pg_subscri pti on COlUMNSccoiiiiiiiii e e e 2228
51.54. pg_subscription_rel ColUmMNSc.ccciiiiiiiiiiiii e 2229
51.55. pg_t abl eSpace COlUMNSccouiiiiiiiie e e e e e e e eaes 2229
51.56. pg_transf or MCOIUMNScouuiiii e e eaas 2229
Y YA o To TR S g e [o 1= @] ¥ 11 1P 2230
51.58. pg tS _Confi g COUMNSuiiiiiii i e eans 2232
51.59. pg ts_confi g _mBP COlUMNSc.uiiiiiiiiiie e e e e e e ea e 2232
51.60. PG tS_di Ct COIUMNSciiiiiii e e e e e e e e eaens 2233
51.61. pg tS_parsSer COIUMNSccouuiiii e e e e e e e e eaas 2233

XXVii

PostgreSQL 12.5 Documentation

51.62. pg_ts tenpl at @ COolUMNSccoouiiiiiiiiii e e e e e e e e e e 2234
LY IS o To T 00 YA o 1T @] 01 1P 2234
LY IS Y/0 VA o Tt =T Fo] YA ©Co o L= PP 2240
51.65. pg_user _mappi NG COIUMNSoiiiii e e ae 2241
B51.66. SYSEIM VIBIWS ...ieeiiieeeiii ettt et e et e e et e e e e e et e e e et e e e e et e e e e st 2242
51.67. pg_avai |l abl e_ext ensi ons ColUMNSccoeviiiiiiiiiiiie e 2243
51.68. pg_avai | abl e_extensi on_versi ons ColumNScccoeevuviiiiiieiiieeciiieeineeeenne, 2243
51.69. pg_CONFi g COIUMNS ...t e e e e e e eaaas 2244
51.70. PG _CUISOI'S COIUMNSiiiiiii e e e e e e e e e e e e et e et e e et eeaaeeaens 2244
51.71. pg fil e settings ColUMNScooiiiiiiiiiiiiii e e e e ea e 2245
LY 07 o To e | e 10] o @0 1N T 410 TP 2245
51.73. pg_hba file rul s ColumNSccooeiiiiiiiiii e 2246
51.74. pg_i NAEXES COIUMNSiitiiii e e e e e e e e et e e e e e e e eaens 2247
51.75. PG | OCKS COlUMNS .. .cuuiiiiiiii e e e e e et e et e e e e aanas 2247
51.76. pg_MBAt Vi WS COIUMMS .. .ouuiiiiiieii e e e e e e e e e e e e e et e et e e aaneeeens 2250
51.77. Pg_POI i Ci €S COlUMNSouuiiiiieii e e e e e e e e e e e e eens 2251
51.78. pg_prepared_stat ement s ColUMNScocuiiiiiiiiiiiieiie e e 2252
51.79. pg_prepared _Xact s ColUMNSccuoeiiiiiiiiii e e e e e e aa e 2252
51.80. pg_publication_tabl es ColumMNScooiiiiiiiiiii e 2253
51.8l.pg_replication _origin_status ColUmNS.........cccooveiiiiiiiiieiiiieeiin e, 2253
51.82. pg_replication_slots ColUMNScoiiiiiiiiiiieiie e 2254
51.83. PG _F 0l €S COlUMNS .. .cuuiiiiiiii e e e e e e e e e e e e et e e et e e e e e e eanas 2255
51.84. PG T Ul €S COIUMNSouuiiiiicii e e e e e e e e e e e e e et e et e e e e eaanas 2256
51.85. pg_secl abel s COlUMNScoouiiiiiiii e e 2257
51.86. pPg_SeqUENCES COIUMNSuuiiiiiiii i e e e e e e e e et e ean e eeas 2258
51.87. pg_SettiNGS COIUMNSuuiiiiiieii e e e e e e e e e e e e e e e e eens 2258
51.88. pg_Shadow COIUMNSouuiiiiii e e e e eaaas 2261
51.89. PG ST AL'S COIUMNS .. .cuuiiiiiiii e e e e e e e e et e et e e e e aenas 2262
51.90. pg_stats_ext COIUMNScouuiiiiiiiii e e e e e e e eaas 2264
51.91. pg_tabl €S COIUMNScouiiii e e eaaas 2266
51.92. pg_ti mezone_abbrevs ColUMNSccccuiiiiiiiiiii e e 2266
51.93. pg_ti mezone _Names COlUMMNScccouuiiiiiieiii e e e e e e e e 2267
LY e o To T Y =1 @] 10 10 P 2267
51.95. pg_user _nmappPi NGS COlUMNS ... e e e e e e e e e e eaaaeees 2268
51.96. PG Vi EWS COIUMNS .. .cuuiiiiiiiii e ee e e e e e e e e e e e e et e e et e e st e e et e e aaneeaanns 2268
64.1. BUilt-iN GIST OPErator ClaSSESuueiiteiiieeiiiieeiie et e e et e e e e et e e e et e et e e e e st 2395
65.1. BUilt-in SP-GIST Operator ClaSSsESucvuuuiiiiieiiiiieii e e e e e e e s e et e et e e e aens 2407
66.1. BUIlt-iN GIN OPErator ClaSSESccuuiiiiieiiie et ieee e e e e e e e e e e e e e e et e e e eanaeeeen 2419
67.1. BUilt-in BRIN Operator ClasseScvuuiiiiieiii e e e e e e e e e e e e e e e e st eeaneeeaes 2427
67.2. Function and Support Numbers for Minmax Operator Classescovvvvveivieiinieviineennnnns 2429
67.3. Function and Support Numbers for Inclusion Operator ClassesSoovevvveviiieviieeinnnennn, 2429
68.1. ConteNtS OF PCDATA ... it ettt et e et e e e e eeenns 2432
B8.2. PAOE LAYOULuiieiiiii et 2438
68.3. PageHeaderData LayOULccuueiiiniiiiii e e e e e e e e e e e et e e e e e e eaa s 2439
68.4. HeapTupleHeaderData LayOULcoceunieiiieiii e e e e e e e e e e aanas 2440
A.L POSIOreSQL ErrOr COUESuuiiiteiii e e e et e e e e e e e e e e e et e e et e e e e eanns 2469
230 Vo g 11 I = 0 1P 2480
B.2. Day Of the WEeK NAIMESoiiiiiiiiii e e e e 2480
B.3. Date/Time Field MOGIfIErS ...ooeviieieii e eees 2481
C.L. SOL KEY WOIASiiiieiieiii et e e e e e e e e e e e e e et e e et e e et e et e e et e eeanaas 2487
[- Yo [o o= U Qi U 1 o 2599
F.2. Cube External REPrESENTAiONScvvvuieiieeiiiee et e e e e e e e e e e e s e et e e aaeeaanns 2614
G T W oL@ o= = o] T 2615
F.d. CUDE FUNCLIONS ... i e e e et e e e et e e e et e e e e aaa s 2616

PostgreSQL 12.5 Documentation

F.5. Cube-Based Earthdistance FUNCLIONSccovvuiiiiiiiii e 2654
F.6. Point-Based EarthdiStance OPEratorscouvueiiieiiiiieii e e e e e e e e e e e e e eens 2655
O 1 T=) o T @ o= = o) £ TS 2661
F.8. NSt Or @ FUNCHIONS ..ceviiiiei e e e e e e e s 2662
F.O. i ntarray FUNCHONSccouiiii e e e e e e e e e e e et e e eanaeees 2669
[(ORI oL = L = | VA @ o= = o) = S 2670
L Y T 7 = T Y/ o 1= 2672
[2 I o I ¥ o o LSRR 2673
T I O =TT @ o= = () £ 2678
[O N T W T 1o = PP 2679
F.15. pg_buffercache Columnscooiiiiiiiii e 2692
F.16. Supported Algorithms fOr Cry Pt () covevieiii e e e e 2694
F.17. Iteration Counts fOr CrYPE () covvieiiiiiii i e e s 2695
F.18. Hash AlQOrithm SPEEOSciiici e e 2696
F.19. Summary of Functionality with and without OpenSSLcccoieiiiiiiiin e 2703
F.20. pgr oW 0cks OUtPUL COIUMNSccvuiiiiici e e e e e eaas 2708
F.21. pg_stat_statements COlUMNScoooiiiiiiiiii e e 2710
F.22. pgstatt upl @ OUtPUt COIUMNSc.uuiiiicii e e e e e eees 2716
F.23. pgstatt upl e_appr ox Output COlUMNSuiiiiiiiiiieiie e e e e 2720
F.24. PO t FgMEUNCHONS . .couiiiiici e e e e e e e et e et e e e e e eees 2721
F.25. POt I OMOPEIEIONS ... vttt aas 2722
F.26. seg External REPreSENtalioNSccuuiiiiiieiiiieeii et ee e e e e e e e e e e e e e e e e eanaas 2735
F.27. Examples of Valid SEQ INPULcoouniiiiiii e e e e eaaas 2735
F.28. SEO GiST OPEIAIONS . evvuuiiitieiitetee et e et e et e e st e e et e e et e e et e e et e et e e st e e st e eetnaeeanaenes 2736
[e IS = oot | I 0 Tox) Y 2744
F.30. t @bl €f UNC FUNCHIONScoviiiiiii e e e s 2749
F.31. CONNECE DY PalramMEterSciiiiiiiei e e e e e e et e e e eaneees 2756
F.32. FUNCtions fOr UUID GENEIAHONccvuvieeiiiiieee et e e e et e e 2764
F.33. Functions Returning UUID CONSLANESccuueiiiieiiieeiieciieeeiee et ee e e e eai e e e eanes 2764
[7 A g 1 PP 2766
F.35. xpat h_t abl @ ParameterSccouiiiii e e e 2767
H.1. Externally Maintained Client INterfacesc..ooviiiiiii i 2783
H.2. Externally Maintained Procedural LanQUagEScc.uveiunieiiiieeiiieeiiieeieeeee e e e e 2784
K.1. POStgreSQL LimitaliOnScccuueiiiieiiiieiiii e e e e e e e e e e e e e s e e et e et e e st e e aaneeeens 2793

XXX

List of Examples

8.1. USING the CharaCter TYPES ... ittt ettt e e et e e et e e e ert e e eena e eees 156
8.2. USINg the DOOI €8N TYPE ...t 170
8.3. USING the Bit SIHNG TYPES .. ettt ittt ettt et e e e e et e e eebe e eeees 178
9.1. XSLT Stylesheet for Converting SQL/XML Output to HTMLoooiiviiiiiiiiiiiciieccie, 314
10.1. Factorial Operator TYPe RESOIULIONuuuiiiiiiieeieiie ettt 406
10.2. String Concatenation Operator Type RESOIULIONcoivviiiiiiiiieicii e 406
10.3. Absolute-Vaue and Negation Operator Type ReSOIULIONcccvuuiieiiiiiiiiiiiiieece e 406
10.4. Array Inclusion Operator TYPe RESOIULIONuuiiiiiiiiiiiiie et 407
10.5. Custom Operator 0N @ DOMaIN TYPEuneiiiiiiee it e et eei e 408
10.6. Rounding Function Argument TYpe RESOIULIONoeiiiiiieiiiiii e 410
10.7. Variadic FUNCtION RESOIULIONciiiitceeii ettt 410
10.8. Substring FUNCtion TYPEe RESOIULIONuuiiiiiiiieieii et 411
10.9. char act er Storage TYPE CONVEISIONcccuuuiieiiiiieeeiii e ettt e et e et e e et eeenaaes 413
10.10. Type Resolution with Underspecified Typesin aUnioncocviiveiiiiniiiiiineeeiie, 414
10.11. Type Resolution in @ SIMPIe UNIONooiiuiiiiiii e 414
10.12. Type Resolution in @ Transposed UNIONccoeuueiiriieeeiiie et eeein e e e eeii e 414
10.13. Type Resolution in @ Nested UNIONuiiiiiiiieiiiiie e e e 414
11.1. Setting up a Partial Index to Exclude Common ValUESuuvieiiiiiieiiiiiieecei e 423
11.2. Setting up a Partial Index to Exclude Uninteresting Valuescoevviieiiiiiiieiiiiiieeceie 424
11.3. Setting up a Partial UNique INOEXccouuuiiiiieie et 425
11.4. Do Not Use Partial Indexes as a Substitute for Partitioningccooovevveiiineiiiiinneeiininnnn. 425
20.1. Example pg_hba. CONf ENtrEScoouuiiiiiiii e 667
20.2. An Example pg_i dent . conf File ... 670
33.1. libpg EXample Program Li oottt 921
33.2. 1ibpg EXampPle Program 2uioeiiii e 923
33.3. 1ibpg EXample Program 3oo.u e 927
34.1. Large Objects with libpg Example Program ... 938
35.1. EXample SQLDA PrOQIaMieiitieieeiiie ettt ettt et e et e e et e e e e eaaanns 994
35.2. ECPG Program Accessing Large ODJECESuuiiiiiiiiiiii e 1009
41.1. Manual Installation of PLIPENTcoouuiiii e 1262
42.1. Quoting Values in DYNamiC QUENTESuiiiiiriieiiiii et e e et e et eeei e e e 1278
42.2. Exceptions With UPDATE/I NSERTiiiiiiieiii ettt 1294
42.3. A PL/PGSQL Trigger FUNCHIONuiiiiiii ettt e 1308
42.4. A PL/pgSQL Trigger Function for AUitingcooeviiieiiiiiiiei e 1309
42.5. A PL/pgSQL View Trigger Function for AUditinguviiiiiiniiiiiiiniccei e, 1310
42.6. A PL/pgSQL Trigger Function for Maintaining a Summary Tableccccoooveviiiiierennnn, 1311
42.7. Auditing with Transition Tablescooeuiiiiiii e 1314
42.8. A PL/pgSQL Event Trigger FUNCLIONccuuuiiiiiiiieiiii et 1315
42.9. Porting a Simple Function from PL/SQL t0 PL/PISQLuiiiiiiieeiiiie e 1324
42.10. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL 1325
42.11. Porting a Procedure With String Manipulation and OUT Parameters from PL/SQL to PL/

01015 TSP RSOPPPPRPIN 1327
42.12. Porting a Procedure from PL/SQL t0 PL/PGSQLcviviiieiiiiieeeei et 1328
F.1. Create a Foreign Table for POStgreSQL CSV LOGSccvvvunieiiiiiieeiiiiie e 2657

XXXI

Preface

Thisbook isthe official documentation of PostgreSQL. It has been written by the PostgreSQL developers
and other volunteers in parallel to the development of the PostgreSQL software. It describes al the
functionality that the current version of PostgreSQL officialy supports.

To make the large amount of information about PostgreSQL manageable, this book has been organized
in several parts. Each part is targeted at a different class of users, or at users in different stages of their
PostgreSQL experience:

Part | isan informal introduction for new users.

Part Il documents the SQL query language environment, including data types and functions, as well as
user-level performance tuning. Every PostgreSQL user should read this.

Part 111 describes the installation and administration of the server. Everyone who runs a PostgreSQL
server, beit for private use or for others, should read this part.

Part IV describes the programming interfaces for PostgreSQL client programs.

Part V containsinformation for advanced users about the extensibility capabilities of the server. Topics
include user-defined data types and functions.

Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

Part VII contains assorted information that might be of use to PostgreSQL devel opers.

1. What Is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2%, developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database systems
much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of the
SQL standard and offers many modern features:

complex queries

foreign keys

triggers

updatable views

transactional integrity
multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

data types
functions

operators
aggregate functions

1 https://dsf berkeley.edu/postgres. html

XXXii

https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html

Preface

* index methods
 procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free of
charge for any purpose, beit private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over two decades of
development behind it, PostgreSQL is now the most advanced open-source database available anywhere.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial concepts for the
system were presented in [ston86], and the definition of the initial data model appeared in [rowe87]. The
design of the rule system at that time was described in [ston87a]. The rationale and architecture of the
storage manager were detailed in [ston87b].

POSTGRES has undergone several major releases since then. The first “demoware” system became
operationa in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
[ston904], was released to a few externa users in June 1989. In response to a critique of the first rule
system ([ston89]), the rule system was redesigned ([ston90b]), and Version 2 was released in June 1990
with the new rule system. Version 3 appeared in 1991 and added support for multiple storage managers,
an improved query executor, and a rewritten rule system. For the most part, subsequent releases until
Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: afinancial dataanalysissystem, ajet engine performance monitoring package, an asteroid tracking
database, a medical information database, and several geographic information systems. POSTGRES has
also been used as an educational tool at severa universities. Finaly, Illustra Information Technologies
(later merged into Informix?, which is now owned by 1BM3) picked up the code and commercialized it.
In late }992, POSTGRES became the primary data manager for the Sequoia 2000 scientific computing
project”.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have been
devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES project
officially ended with Version 4.2.

2.2. Postgres9s

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a hew
name, Postgres95 was subsequently rel eased to the web to find its own way in the world as an open-source
descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the Wisconsin

2 https://www.ibm.com/anal ytics/informix
8 https://www.ibm.com/
4 http://meteora.ucsd.edu/s2k/s2k_home.html

XXXl

https://www.ibm.com/analytics/informix
https://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html
http://meteora.ucsd.edu/s2k/s2k_home.html
https://www.ibm.com/analytics/informix
https://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

» The query language PostQUEL was replaced with SQL (implemented in the server). (Interface library
libpq was named after PostQUEL .) Subqueries were not supported until PostgreSQL (see below), but
they could be imitated in Postgres95 with user-defined SQL functions. Aggregate functions were re-
implemented. Support for the GROUP BY query clause was also added.

A new program (psql) was provided for interactive SQL queries, which used GNU Readline. Thislargely
superseded the old monitor program.

» A new front-end library, | i bpgt cl , supported Tcl-based clients. A sample shell, pgt cl sh, provided
new Tcl commands to interface Tcl programs with the Postgreso5 server.

» The large-object interface was overhauled. The inversion large objects were the only mechanism for
storing large objects. (Theinversion file system was removed.)

» Theinstance-level rule system was removed. Rules were till available as rewrite rules.

A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed with
the source code

* GNU make (instead of BSD make) was used for the build. Also, Postgreso5 could be compiled with an
unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the origina POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres’ (now rarely in al capital letters) because of
tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing problems
in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capabilities,
although work continuesin all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

The following conventions are used in the synopsis of a command: brackets ([and]) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, asis usual in Tcl.) Braces
({ and}) and vertical lines (|) indicate that you must choose one aternative. Dots (. . .) mean that the
preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands are
preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should

XXXIV

Preface

not be interpreted too narrowly; this book does not have fixed presumptions about system administration
procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL :

Wiki
The PostgreSQL wiki® contains the project's FAQ® (Frequently Asked Questions) list, TODO' ligt,
and detailed information about many more topics.

Web Site

The PostgreSQL web site® carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with other
users, and to contact the developers. Consult the PostgreSQL web site for details.

Y ourself!

PostgreSQL isan open-source project. Assuch, it dependson the user community for ongoing support.
As you begin to use PostgreSQL, you will rely on others for help, either through the documentation
or through the mailing lists. Consider contributing your knowledge back. Read the mailing lists and
answer questions. If you learn something which is not in the documentation, writeit up and contribute
it. If you add featuresto the code, contribute them.

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part of
PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone's advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a newer
version to seeif the bug happensthere. Or we might decide that the bug cannot be fixed before some major
rewrite we might be planning is done. Or perhapsit is simply too hard and there are more important things
on the agenda. If you need help immediately, consider obtaining acommercial support contract.

5.1. Identifying Bugs

Beforeyou report abug, pleaseread and re-read the documentation to verify that you can really do whatever
itisyou aretrying. If it is not clear from the documentation whether you can do something or not, please

S https://wiki.postgresql .org

6 https://wiki.postgresqgl.org/wiki/Frequently_Asked_Questions
! https://wiki.postgresqgl .org/wiki/Todo

8 https://www.postgresqgl.org

XXXV

https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org
https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org

Preface

report that too; it is a bug in the documentation. If it turns out that a program does something different
from what the documentation says, that is a bug. That might include, but is not limited to, the following
circumstances:

» A program terminates with a fatal signal or an operating system error message that would point to a
prablem in the program. (A counterexample might be a*“disk full” message, since you have to fix that
yourself.)

* A program produces the wrong output for any given input.
» A program refuses to accept valid input (as defined in the documentation).

» A program accepts invalid input without a notice or error message. But keep in mind that your idea of
invalid input might be our idea of an extension or compatibility with traditional practice.

 PostgreSQL failsto compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of the
mailing listsfor help in tuning your applications. Failing to comply to the SQL standard is not necessarily
abug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to seeif your bug is already known. If you
cannot decode the information on the TODO list, report your problem. The least we can do is make the
TODO list clearer.

5.2. What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do not
speculate what you think went wrong, what “it seemed to do”, or which part of the program has a fault.
If you are not familiar with the implementation you would probably guess wrong and not help us a hit.
And even if you are, educated explanations are a great supplement to but no substitute for facts. If we are
going to fix the bug we still have to see it happen for ourselves first. Reporting the bare factsisrelatively
straightforward (you can probably copy and paste them from the screen) but al too often important details
are left out because someone thought it does not matter or the report would be understood anyway.

The following items should be contained in every bug report:

» The exact sequence of steps from program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in abare SELECT statement without the preceding CREATE
TABLE and | NSERT statements, if the output should depend on the data in the tables. We do not have
the time to reverse-engineer your database schema, and if we are supposed to make up our own data
we would probably miss the problem.

Thebest format for atest casefor SQL-related problemsisafilethat can be runthrough the psgl frontend
that shows the problem. (Be sure to not have anythinginyour ~/ . psql r ¢ start-up file.) An easy way
to create thisfileisto use pg_dump to dump out the table declarations and data needed to set the scene,
then add the problem query. Y ou are encouraged to minimize the size of your example, but thisis not
absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the offending
queries. We will probably not set up a web server to reproduce your problem. In any case remember
to provide the exact input files; do not guess that the problem happens for “large files’ or “midsize
databases’, etc. since thisinformation is too inexact to be of use.

XXXVi

Preface

» The output you got. Please do not say that it “didn't work” or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash or
otherwise obvious it might not happen on our platform. The easiest thing is to copy the output from
theterminal, if possible.

Note

If you are reporting an error message, please obtain the most verbose form of the message. In
psal, say \ set VERBOSI TY ver bose beforehand. If you are extracting the message from
the server log, set the run-time parameter log_error_verbosity to ver bose so that all details
are logged.

Note

In case of fatal errors, the error message reported by the client might not contain al the
information available. Please also look at the log output of the database server. If you do not
keep your server'slog output, this would be a good time to start doing so.

» The output you expected is very important to state. If you just write “This command gives me that
output.” or “Thisisnot what | expected.”, we might run it ourselves, scan the output, and think it looks
OK andisexactly what we expected. We should not haveto spend thetimeto decode the exact semantics
behind your commands. Especially refrain from merely saying that “ Thisis not what SQL says/Oracle
does.” Digging out the correct behavior from SQL is not afun undertaking, nor do we all know how all
the other relational databases out there behave. (If your problem is a program crash, you can obviously
omit thisitem.)

» Any command line options and other start-up options, including any relevant environment variables or
configuration files that you changed from the default. Again, please provide exact information. If you
are using a prepackaged distribution that starts the database server at boot time, you should try to find
out how that is done.

» Anything you did at al differently from the installation instructions.

» The PostgreSQL version. You can run the command SELECT ver si on(); to find out the version
of the server you are connected to. Most executable programs also support a- - ver si on option; at
least post gres --versionandpsql --versi on shouldwork. If the function or the options
do not exist then your version is more than old enough to warrant an upgrade. If you run a prepackaged
version, such as RPMs, say so, including any subversion the package might have. If you are talking
about a Git snapshot, mention that, including the commit hash.

If your version is older than 12.5 we will amost certainly tell you to upgrade. There are many bug fixes
and improvements in each new release, so it is quite possible that a bug you have encountered in an
older release of PostgreSQL has already been fixed. We can only provide limited support for sitesusing
older rel eases of PostgreSQL ; if you require more than we can provide, consider acquiring acommercial
support contract.

» Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not
assume everyone knows what exactly “Debian” contains or that everyone runs on x86_64. If you have

XXXVii

Preface

installation problems then information about the toolchain on your machine (compiler, make, and so
on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your input
files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an article’
that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. Thiswill
probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still havetime
to find and share your work-around. Also, once again, do not waste your time guessing why the bug exists.
We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is called
“PostgreSQL", sometimes “Postgres’ for short. If you are specifically talking about the backend process,
mention that, do not just say “PostgreSQL crashes’. A crash of asingle backend processis quite different
from crash of the parent “postgres’ process; please don't say “the server crashed” when you mean asingle
backend process went down, nor vice versa. Also, client programs such as the interactive frontend “ psgl”
are completely separate from the backend. Please try to be specific about whether the problem is on the
client or server side.

5.3. Where to Report Bugs

In general, send bug reports to the bug report mailing list at
<pgsql - bugs@i st s. post gresqgl . or g>. You are requested to use a descriptive subject for your
email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project's web site™®. Entering a bug
report thisway causesit to be mailed tothe<pgsql - bugs@i st s. post gr esql . or g> mailinglist.

If your bug report has security implications and you'd prefer that it not become immediately visible
in public archives, don't send it to pgsql - bugs. Security issues can be reported privately to
<security@ostgresql.org>.

Do not send bug reports to any of the user maling lists, such as
<pgsql -sqgl @i sts. postgresql . org> or
<pgsql -general @i sts. postgresqgl.org>. These mailing lists are for answering user
guestions, and their subscribers normally do not wish to receive bug reports. More importantly, they are
unlikely to fix them.

Also, please do not send reports to the developers mailing list
<pgsql - hackers@i sts. post gresql . org>. This list is for discussing the development of
PostgreSQL, and it would be nice if we could keep the bug reports separate. We might choose to take up
adiscussion about your bug report on pgsqgl - hacker s, if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing list
<pgsql -docs@i st s. post gresqgl . or g>. Please be specific about what part of the documentation
you are unhappy with.

If your bug is a portability problem on a non-supported platform, send mall to
<pgsql - hackers@i st s. post gresql . or g>, sowe (and you) can work on porting PostgreSQL
to your platform.

° https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
10 https:/iwww. postgresal.org/

XXXViii

https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/
https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/

Preface

Note

Due to the unfortunate amount of spam going around, all of the above lists will be moderated
unless you are subscribed. That means there will be some delay before the email is delivered. If
you wish to subscribe to the lists, please visit https://lists.postgresql.org/ for instructions.

XXXIX

https://lists.postgresql.org/

Part I. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple introduction to
PostgreSQL, relational database concepts, and the SQL language to those who are new to any one of these aspects. We
only assume some general knowledge about how to use computers. No particular Unix or programming experienceis
required. Thispartismainly intended to give you some hands-on experience with important aspects of the PostgreSQL
system. It makes no attempt to be a complete or thorough treatment of the topicsit covers.

After you have worked through this tutorial you might want to move on to reading Part |1 to gain a more formal
knowledge of the SQL language, or Part IV for information about devel oping applications for PostgreSQL . Those who
set up and manage their own server should also read Part 111.

Table of Contents

L. GEIING SEAMEAeeeeeii e ettt ettt eaaas 3
0 T 1 = = = 1o o 3
1.2. Architectural FUNDamENtalScouiiniii e 3
1.3. Creating @ Dalahaseccouuuieiiii e 4
1.4, ACCESSING 8 DAIANASEvuiieeiiei e 5
2. The SQL LBNGUBGEetun ettt ettt e ettt et e e e e et e e e eab e e eenenas 8
b2 I 1 11 oo U o 1) o [N 8
A O 04 /= o = PP 8
2.3. Creating @ NEW Table ..oo.unii e 9
2.4. Populating @ Table With ROWScoouiiiiiiii et 9
2.5, QUENYING A TADIE ...eeee e 10
2.6. J0INS BEIWEEN TAIESiviitiiiii it 12
2.7. AQOregate FUNCLIONSccutiieieiti ettt ettt et ettt e e et e et e e e et e e eenans 14
2.8 UPUELES ...ttt 16
R B L= = (0] 16
3. AGVANCED FEAIUIMNES .. ouitieeit et e e e e e e e e e et e e e e e ens 18
G 3 O 1 oo U o 11 o [18
I VA= VP 18
3.3 FOrEIgN KBYS ..ttt ettt aee 18
I I =01 o o1 19
3.5, WINAOW FUNCLIONScviiitii ettt e e e e e e e aees 21
IS T 101015 41 7= ot PP 24
G I o g Tox 11 Lo o T 26

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is already
installed at your site, either because it was included in your operating system distribution or because
the system administrator already installed it. If that is the case, you should obtain information from the
operating system documentation or your system administrator about how to access PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your
experimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user; no superuser (root) accessis required.

If you are installing PostgreSQL yourself, then refer to Chapter 16 for instructions on installation, and
return to this guide when the installation is complete. Be sure to follow closely the section about setting
up the appropriate environment variables.

If your site administrator has not set thingsup in the default way, you might have some morework to do. For
example, if the database server machineisaremote machine, you will need to set the PGHOST environment
variable to the name of the database server machine. The environment variable PGPORT might also have
to be set. The bottom lineisthis: if you try to start an application program and it complains that it cannot
connect to the database, you should consult your site administrator or, if that is you, the documentation
to make sure that your environment is properly set up. If you did not understand the preceding paragraph
then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding how
the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL usesaclient/server model. A PostgreSQL session consistsof thefollowing
cooperating processes (programs):

» A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program is
caled post gres.

» The user's client (frontend) application that wants to perform database operations. Client applications
can bevery diversein nature: aclient could be atext-oriented tool, agraphical application, aweb server
that accesses the database to display web pages, or a specialized database maintenance tool. Some client
applications are supplied with the PostgreSQL distribution; most are developed by users.

Asistypical of client/server applications, the client and the server can be on different hosts. In that case
they communicate over a TCP/IP network connection. Y ou should keep thisin mind, because the files that
can be accessed on aclient machine might not be accessible (or might only be accessible using a different
file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve thisit starts
(“forks’) a new process for each connection. From that point on, the client and the new server process
communicate without intervention by the original post gr es process. Thus, the master server processis
always running, waiting for client connections, whereas client and associated server processes come and
go. (All of thisis of courseinvisible to the user. We only mention it here for completeness.)

Getting Started

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. In that case you can omit this
step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:

$ createdb nydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:

creat edb: command not found

then PostgreSQL was not installed properly. Either it was not installed at al or your shell's search path
was not set to includeit. Try calling the command with an absol ute path instead:

$ /usr/local/pgsql/bin/createdb nmydb

The path at your site might be different. Contact your site administrator or check the instalation
instructions to correct the situation.

Another response could be this:

creat edb: could not connect to database postgres: could not connect to
server: No such file or directory

I's the server running locally and accepting

connections on Unix domain socket "/tnp/.s.PGSQ.5432"?

This means that the server was not started, or it was not started where cr eat edb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:

createdb: could not connect to database postgres: FATAL: role "joe"
does not exi st

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you arethe administrator, see Chapter 21 for help creating accounts. Y ou will need to become
the operating system user under which PostgreSQL was installed (usually post gr es) to create the first
user account. It could also be that you were assigned a PostgreSQL user name that is different from your
operating system user name; in that case you need to use the - U switch or set the PGUSER environment
variable to specify your PostgreSQL user name.

Getting Started

If you have a user account but it does not have the privileges required to create a database, you will see
the following:

creat edb: database creation failed: ERROR permnission denied to
create dat abase

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your site
administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the purposes
of thistutorial under the user account that you started the server as. 1

Y ou can also create databases with other names. PostgreSQL allows you to create any number of databases
at agiven site. Database names must have an alphabetic first character and are limited to 63 bytesin length.
A convenient choice is to create a database with the same name as your current user name. Many tools
assume that database name as the default, so it can save you some typing. To create that database, simply

type:

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database ny db, you can destroy it using the following command:

$ dropdb nydb

(For this command, the database name does not default to the user account name. You aways need to
specify it.) Thisaction physically removes all files associated with the database and cannot be undone, so

this should only be done with a great deal of forethought.

More about cr eat edb and dr opdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can accessit by:

* Running the PostgreSQL interactive terminal program, called psgl, which alows you to interactively
enter, edit, and execute SQL commands.

» Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC support
to create and manipul ate a database. These possibilities are not covered in this tutorial.

» Writing a custom application, using one of the several available language bindings. These possibilities
are discussed further in Part V.

Y ou probably want to start up psql to try the examplesin thistutorial. It can be activated for the nydb
database by typing the command:

$ psql nydb

Lasan explanation for why thisworks: PostgreSQL user names are separate from operating system user accounts. When you connect to a database,
you can choose what PostgreSQL user hame to connect as; if you don't, it will default to the same name as your current operating system account.
Asit happens, there will always be aPostgreSQL user account that has the same name as the operating system user that started the server, and it also
happens that that user always has permission to create databases. Instead of logging in as that user you can also specify the - U option everywhere
to select a PostgreSQL user name to connect as.

Getting Started

If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using cr eat edb.

Inpsql , you will be greeted with the following message:

psqgl (12.5)
Type "hel p* for help.

mydb=>

Thelast line could also be:

nydb=#

That would mean you are a database superuser, which is most likely the case if you installed the
PostgreSQL instance yourself. Being a superuser means that you are not subject to access controls. For
the purposes of this tutorial that is not important.

If you encounter problems starting psql then go back to the previous section. The diagnostics of
creat edb and psql aresimilar, and if the former worked the latter should work as well.

Thelast line printed out by psql isthe prompt, and it indicatesthat psql islisteningto you and that you
can type SQL queriesinto awork space maintained by psql . Try out these commands:

nmydb=> SELECT version();
version

PostgreSQ. 12.5 on x86_64-pc-1inux-gnu, conpiled by gcc (Debian
4.9.2-10) 4.9.2, 64-bit
(1 row)

nmydb=> SELECT current_date;
dat e

2016- 01- 07
(1 row)

nmydb=> SELECT 2 + 2;
?col um?

(1 row

The psql program has a number of internal commands that are not SQL commands. They begin with
the backdlash character, “\ ”. For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

nydb=> \ h

To get out of psql , type:

Getting Started

nydb=> \q

and psql will quit and return you to your command shell. (For more internal commands, type\ ? at the
psql prompt.) Thefull capabilitiesof psqgl are documented in psql. In thistutorial wewill not use these
features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. Thistutorial is only
intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous books
have been written on SQL, including [melt93] and [date97]. Y ou should be aware that some PostgreSQL
language features are extensions to the standard.

In the examplesthat follow, we assume that you have created a database named ny db, as described in the
previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory sr c/
tutorial /. (Binary distributions of PostgreSQL might not compile thesefiles.) To use thosefiles, first
change to that directory and run make:

$cd..../src/tutorial
$ nake

This creates the scripts and compiles the C files containing user-defined functions and types. Then, to start
the tutorial, do the following:

$cd..../tutorial
$ psqgl -s nydb

nydb=> \i basi cs. sql

The\i command reads in commands from the specified file. psql 's- s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section are
inthefilebasi cs. sql .

2.2. Concepts

PostgreSQL is a relational database management system (RDBMS). That means it is a system for
managing data stored in relations. Relation is essentially a mathematical term for table. The notion of
storing data in tables is so commonplace today that it might seem inherently obvious, but there are a
number of other ways of organizing databases. Files and directories on Unix-like operating systems form
an example of ahierarchical database. A more modern development is the object-oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named columns,
and each column is of aspecific datatype. Whereas columns have afixed order in each row, it isimportant
to remember that SQL does not guarantee the order of the rowswithin the table in any way (although they
can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL server
instance constitutes a database cluster.

The SQL Language

2.3. Creating a New Table

Y ou can create a new table by specifying the table name, along with al column names and their types:

CREATE TABLE weat her (

city var char (80),

temp_lo int, -- low tenperature
t enp_hi int, -- high tenperature
prcp real, -- precipitation
dat e dat e

)

Y ou can enter thisintopsql withthelinebreaks. psql will recognizethat the command isnot terminated
until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you can
type the command aligned differently than above, or even all on one line. Two dashes (“- -) introduce
comments. Whatever follows them isignored up to the end of the line. SQL is case insensitive about key
words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

var char (80) specifiesadatatypethat can store arbitrary character strings up to 80 charactersin length.
i nt isthe normal integer type. r eal isatype for storing single precision floating-point numbers. dat e
should be self-explanatory. (Y es, the column of typedat e isalso named dat e. Thismight be convenient
or confusing — you choose.)

PostgreSQL supports the standard SQL types i nt, smal lint, real, doubl e precision,
char (N),varchar (N),dat e,ti me,ti mest anp,andi nt er val , aswell asother types of general
utility and arich set of geometric types. PostgreSQL can be customized with an arbitrary number of user-
defined data types. Consequently, type names are not key words in the syntax, except where required to
support special cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
nane var char (80),
| ocation poi nt

);
Thepoi nt typeisan example of a PostgreSQL -specific data type.
Finally, it should be mentioned that if you don't need a table any longer or want to recreate it differently

you can remove it using the following command:

DROP TABLE t abl enane;

2.4. Populating a Table With Rows

The | NSERT statement is used to popul ate a table with rows:

| NSERT | NTO weat her VALUES (' San Francisco', 46, 50, 0.25,
'1994-11-27");

The SQL Language

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by singlequotes(*), asintheexample. Thedat e typeisactually quiteflexible
in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

Thepoi nt type requires a coordinate pair as input, as shown here:

I NSERT I NTO cities VALUES (' San Francisco', '(-194.0, 53.0)');

The syntax used so far requires you to remember the order of the columns. An aternative syntax allows
you to list the columns explicitly:

| NSERT | NTO weat her (city, tenp_lo, tenp_hi, prcp, date)

VALUES (' San Francisco', 43, 57, 0.0, '1994-11-29");
Y ou canlist thecolumnsin adifferent order if you wish or even omit somecolumns, e.g., if the precipitation
is unknown:
| NSERT | NTO weat her (date, city, tenp_hi, tenp_|lo)

VALUES (' 1994-11-29', 'Hayward', 54, 37);
Many developers consider explicitly listing the columns better style than relying on the order implicitly.
Please enter al the commands shown above so you have some data to work with in the following sections.

Y ou could also have used COPY to load large amounts of data from flat-text files. Thisis usually faster
because the COPY command is optimized for this application while allowing lessflexibility than | NSERT.
An example would be:

COPY weat her FROM '/ hone/ user/weat her.txt';
where the file name for the source file must be available on the machine running the backend process, not

the client, since the backend process reads thefile directly. Y ou can read more about the COPY command
in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the part
that lists the tables from which to retrieve the data), and an optional qualification (the part that specifies
any restrictions). For example, to retrieve all the rows of table weat her , type:

SELECT * FROM weat her;

Here* isashorthand for “all columns’. * So the same result would be had with:

SELECT city, tenmp_lo, tenp_hi, prcp, date FROM weat her;

1 While SELECT * is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column to the table
would change the results.

10

The SQL Language

The output should be:

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T T T L I
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 43 | 57 | 0 | 1994-11-29
Haywar d | 37 | 54 | | 1994-11-29
(3 rows)

Y ou can write expressions, not just simple column references, in the select list. For example, you can do:

SELECT city, (tenp_hi+tenp |o)/2 AS tenp_avg, date FROM weat her;

This should give:

city | tenmp_avg | dat e
_______________ o
San Franci sco | 48 | 1994-11-27
San Franci sco | 50 | 1994-11-29
Haywar d | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The AS clauseis optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression is
true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification. For
example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weat her
WHERE city = 'San Franci sco' AND prcp > 0.0;

Result:

city | temp_lo | tenp_hi | prcp | dat e
--------------- T LT T T gy
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
(1 row

Y ou can request that the results of a query be returned in sorted order:

SELECT * FROM weat her
ORDER BY city;

city | temp_lo | tenp_hi | prcp | date
--------------- T LT T T ppeppp
Haywar d | 37 | 54 | | 1994-11-29
San Franci sco | 43 | 57 | 0 | 1994-11-29
San Franci sco | 46 | 50 | 0.25 | 1994-11-27

11

The SQL Language

In this example, the sort order isn't fully specified, and so you might get the San Francisco rows in either
order. But you'd always get the results shown above if you do:

SELECT * FROM weat her
ORDER BY city, tenp_lo;

Y ou can request that duplicate rows be removed from the result of a query:

SELECT DI STINCT city
FROM weat her ;

Haywar d
San Franci sco
(2 rows)

Here again, the result row ordering might vary. Y ou can ensure consistent results by using DI STI NCT
and ORDER BY together: 2

SELECT DI STINCT city
FROM weat her
ORDER BY city;

2.6. Joins Between Tables

Thusfar, our queries have only accessed one table at atime. Queries can access multiple tables at once, or
access the same table in such away that multiple rows of the table are being processed at the sametime. A
guery that accesses multiple rows of the same or different tables at onetimeis called ajoin query. Asan
example, say you wish to list al the weather records together with the location of the associated city. To
do that, we need to compare theci t y column of each row of theweat her table with the nane column
of al rowsintheci ti es table, and select the pairs of rows where these values match.

Note

Thisis only a conceptual model. The join is usually performed in a more efficient manner than
actually comparing each possible pair of rows, but thisisinvisible to the user.

This would be accomplished by the following query:

SELECT *
FROM weat her, cities
WHERE city = nane;

2 In some database systems, including older versions of PostgreSQL, the implementation of DI STI NCT automatically orders the rows and so
ORDER BY is unnecessary. But thisis not required by the SQL standard, and current PostgreSQL does not guarantee that DI STI NCT causes the
rows to be ordered.

12

The SQL Language

city | temp_lo | tenp_hi | prcp | dat e | nane
| location

San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco
| (-194,53)

San Franci sco | 43 | 57 | 0 | 1994-11-29 | San Francisco
| (-194,53)

(2 rows)

Observe two things about the result set:

» Thereisnoresult row for the city of Hayward. Thisisbecausethereisno matchingentry intheci ti es
table for Hayward, so the join ignores the unmatched rowsin the weat her table. We will see shortly
how this can be fixed.

» There are two columns containing the city name. Thisis correct because the lists of columns from the
weat her and ci ti es tables are concatenated. In practice this is undesirable, though, so you will
probably want to list the output columns explicitly rather than using * :

SELECT city, tenp_lo, tenp_hi, prcp, date, location
FROM weat her, cities
WHERE city = nane;

Exercises Attempt to determine the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong to. If
there were duplicate column names in the two tables you'd need to qualify the column names to show
which one you meant, asin:

SELECT weather.city, weather.tenp_ | o, weather.tenp_hi,
weat her. prcp, weather.date, cities.location
FROM weat her, cities
WHERE cities.name = weather.city;

It iswidely considered good style to qualify all column namesin ajoin query, so that the query won't fail
if aduplicate column nameis later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT *
FROM weat her I NNER JO N cities ON (weather.city = cities.nane);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do is
to scan theweat her table and for each row to find the matching ci t i es row(s). If no matching row is
found we want some “empty values’ to be substituted for theci t i es table'scolumns. Thiskind of query
iscalled an outer join. (The joins we have seen so far are inner joins.) The command looks like this:

SELECT *

13

The SQL Language

FROM weat her LEFT QUTER JO N cities ON (weather.city
cities.nane);

city | temp_lo | tenp_hi | prcp | dat e | nane

| location
--------------- T LT T gy
o e e e e oo - - T ——

Haywar d | 37 | 54 | | 1994-11-29 |

|

San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco
| (-194,53)

San Franci sco | 43 | 57 | 0 | 1994-11-29 | San Francisco
| (-194,53)
(3 rows)

This query is called aleft outer join because the table mentioned on the left of the join operator will have
each of itsrowsin the output at |east once, whereas the table on the right will only have those rows output
that match some row of the left table. When outputting a |eft-table row for which there is no right-table
match, empty (null) values are substituted for the right-table columns.

Exercises Thereare aso right outer joins and full outer joins. Try to find out what those do.

We can also join atable against itself. Thisis called aself join. As an example, suppose we wish to find
all the weather records that are in the temperature range of other weather records. So we need to compare
thet enp_l o andt enp_hi columns of each weat her row tothet enp_| o andt enp_hi columns
of al other weat her rows. We can do this with the following query:

SELECT WL.city, WL.tenp_lo AS Iow, WL.tenmp_hi AS hi gh,
W2.city, W.tenmp_lo AS |ow, W2.tenp_hi AS high
FROM weat her WL, weather W2
VWHERE WL.tenp_ o < W2.tenmp_l o
AND WL. tenp_hi > W2.tenp_hi;

city | Tow | high | city | lTow | high
--------------- B T LT Epepep
San Francisco | 43 | 57 | San Francisco | 46 | 50
Haywar d | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the wesather table as WL and W2 to be able to distinguish the left and right side of
thejoin. You can aso use these kinds of aliasesin other queriesto save some typing, €.9.:

SELECT *
FROM weat her w, cities ¢
WHERE w. city = c.nang;

Y ou will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to compute
thecount , sum avg (average), max (maximum) and m n (minimum) over a set of rows.

14

The SQL Language

As an example, we can find the highest low-temperature reading anywhere with:

SELECT nax(tenp_l 0) FROM weat her;

If we wanted to know what city (or cities) that reading occurred in, we might try:

SELECT city FROM weat her WHERE tenp_| o = max(tenp_l 0); VRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation; so
obviously it has to be evaluated before aggregate functions are computed.) However, asis often the case
the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weat her
WHERE tenp | o = (SELECT nmax(tenp_l| o) FROM weat her);

San Franci sco

(1 row

ThisisOK becausethe subquery isanindependent computation that computesits own aggregate separately
from what is happening in the outer query.

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the
maximum low temperature observed in each city with:

SELECT city, max(tenp_l o)
FROM weat her
GROUP BY city;

city | max
_______________ B
Haywar d | 37
San Francisco | 46
(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows matching
that city. We can filter these grouped rows using HAVI NG

SELECT city, max(tenp_| o)
FROM weat her
GROUP BY city
HAVI NG max(tenp_l o) < 40;

15

The SQL Language

city | max
_________ Fe e - - -
Hayward | 37
(1 row

which gives us the same results for only the cities that have all t enp_| o values below 40. Finaly, if we
only care about cities whose names begin with “S”, we might do:

SELECT city, max(tenp_| o)
FROM weat her
WHERE city LIKE ' S% - -
GROUP BY city
HAVI NG max(tenp_l 0) < 40;

The LI KE operator does pattern matching and is explained in Section 9.7.

It isimportant to understand the interaction between aggregates and SQL's WHERE and HAVI NG clauses.
Thefundamental difference between WHERE and HAVI NGisthis: WHERE selectsinput rows before groups
and aggregates are computed (thus, it controls which rows go into the aggregate computation), whereas
HAVI NG selects group rows after groups and aggregates are computed. Thus, the WHERE clause must not
contain aggregate functions; it makes no sense to try to use an aggregate to determine which rows will
be inputs to the aggregates. On the other hand, the HAVI NG clause always contains aggregate functions.
(Strictly speaking, you are allowed to write a HAVI NG clause that doesn't use aggregates, but it's seldom
useful. The same condition could be used more efficiently at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVI NG, because we avoid doing the grouping and
aggregate calculations for al rows that fail the WHERE check.

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. Y ou can correct the data as follows:

UPDATE weat her
SET tenp_hi = tenmp_hi - 2, tenp lo =tenmp lo - 2
WHERE date > ' 1994-11-28';

Look at the new state of the data:

SELECT * FROM weat her;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 41 | 55 | 0 | 1994-11-29
Haywar d | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

16

The SQL Language

Rows can be removed from atable using the DELETE command. Suppose you are no longer interested in
the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weat her WHERE city = ' Hayward';

All weather records belonging to Hayward are removed.

SELECT * FROM weat her;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T L e
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 41 | 55 | 0 | 1994-11-29
(2 rows)

One should be wary of statements of the form

DELETE FROM t abl enane;

Without aqualification, DELETE will remove all rows from the given table, leaving it empty. The system
will not request confirmation before doing this!

17

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL. We will now discuss some more advanced features of SQL that simplify management and
prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examplesfound in Chapter 2 to change or improve them, so it will be
useful to have read that chapter. Some examples from this chapter can also be found inadvanced. sql
inthetutorial directory. Thisfile also contains some sample datato load, which isnot repeated here. (Refer
to Section 2.1 for how to use thefile.)

3.2. Views

Refer back to the queriesin Section 2.6. Suppose the combined listing of weather records and city location
is of particular interest to your application, but you do not want to type the query each time you need
it. You can create a view over the query, which gives a name to the query that you can refer to like an
ordinary table:

CREATE VI EW nyvi ew AS
SELECT city, tenp_lo, tenp_hi, prcp, date, |ocation
FROM weat her, cities
WHERE city = nane;

SELECT * FROM nyvi ew,

Making liberal use of viewsisakey aspect of good SQL database design. Views allow you to encapsul ate
the details of the structure of your tables, which might change as your application evolves, behind
consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is not
uncommon.

3.3. Foreign Keys

Recall the weat her and ci ti es tables from Chapter 2. Consider the following problem: Y ou want
to make sure that no one can insert rows in the weat her table that do not have a matching entry in
theci t i es table. Thisis called maintaining the referential integrity of your data. In simplistic database
systems thiswould be implemented (if at al) by first looking at theci t i es tableto check if amatching
record exists, and then inserting or rejecting the new weat her records. This approach has a number of
problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
city varchar (80) primary key,
| ocation point

)

18

Advanced Features

CREATE TABLE weat her (

city varchar (80) references cities(city),
temp_lo int,

t enmp_hi int,

prcp real,

dat e dat e

)

Now try inserting an invalid record:
| NSERT | NTO weat her VALUES (' Berkeley', 45, 53, 0.0, '1994-11-28');

ERROR: insert or update on table "weather" violates foreign key
constraint "weather_city_fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this ssimple
exampleinthistutorial, but just refer you to Chapter 5 for moreinformation. Making correct use of foreign
keys will definitely improve the quality of your database applications, so you are strongly encouraged to
learn about them.

3.4. Transactions

Transactions are afundamental concept of all database systems. The essential point of atransaction isthat
it bundles multiple steps into a single, al-or-nothing operation. The intermediate states between the steps
are not visible to other concurrent transactions, and if some failure occurs that prevents the transaction
from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well as
total deposit balances for branches. Suppose that we want to record a payment of $100.00 from Alice's
account to Bob's account. Simplifying outrageously, the SQL commands for this might look like:

UPDATE accounts SET bal ance bal ance - 100. 00
VWHERE nanme = 'Alice';
UPDATE branches SET bal ance = bal ance - 100. 00
VWHERE nane = (SELECT branch_name FROM accounts WHERE narne
"Alice');
UPDATE accounts SET bal ance = bal ance + 100. 00
VWHERE nanme = ' Bob';
UPDATE branches SET bal ance = bal ance + 100. 00
VWHERE nane = (SELECT branch_name FROM accounts WHERE narne

' Bob') ;

The details of these commands are not important here; the important point isthat there are several separate
updates involved to accomplish this rather simple operation. Our bank's officers will want to be assured
that either all these updates happen, or none of them happen. It would certainly not do for a system failure
to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice long remain a happy
customer if she was debited without Bob being credited. We need aguaranteethat if something goeswrong
partway through the operation, none of the steps executed so far will take effect. Grouping the updates
into a transaction gives us this guarantee. A transaction is said to be atomic: from the point of view of
other transactions, it either happens completely or not at al.

19

Advanced Features

We also want a guarantee that once atransaction is completed and acknowledged by the database system,
it has indeed been permanently recorded and won't be lost even if a crash ensues shortly thereafter. For
example, if we are recording a cash withdrawal by Bob, we do not want any chance that the debit to
his account will disappear in a crash just after he walks out the bank door. A transactional database
guarantees that all the updates made by atransaction are logged in permanent storage (i.e., on disk) before
the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic updates:
when multiple transactions are running concurrently, each one should not be able to see the incomplete
changes made by others. For example, if onetransaction isbusy totalling all the branch balances, it would
not do for it to include the debit from Alice's branch but not the credit to Bob's branch, nor vice versa. So
transactions must be all-or-nothing not only in terms of their permanent effect on the database, but alsoin
termsof their visibility asthey happen. The updates made so far by an open transaction areinvisibleto other
transactions until the transaction completes, whereupon all the updates become visible simultaneously.

In PostgreSQL, atransaction is set up by surrounding the SQL commands of the transaction with BEG N
and COMM T commands. So our banking transaction would actually look like:

BEG N;

UPDATE accounts SET bal ance = bal ance - 100. 00
VWHERE nanme = 'Alice';

-- etc etc

COW T;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice's balance went negative), we can issue the command ROLLBACK instead of COVM T, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within atransaction. If you do not issue
a BEG N command, then each individual statement has an implicit BEG N and (if successful) COWM T
wrapped around it. A group of statements surrounded by BEA N and COVMM T is sometimes called a
transaction block.

Note

Some client libraries issue BEG N and COMM T commands automatically, so that you might get
the effect of transaction blocks without asking. Check the documentation for the interface you are
using.

It's possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPO NT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction's database changes between defining the savepoint and rolling back
to it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it severa times.
Conversely, if you are sure you won't need to roll back to a particular savepoint again, it can be released,
so the system can free some resources. Keep in mind that either releasing or rolling back to a savepoint
will automatically release all savepoints that were defined after it.

All thisis happening within the transaction block, so none of it isvisible to other database sessions. When
and if you commit the transaction block, the committed actions become visible as a unit to other sessions,
while the rolled-back actions never become visible at all.

20

Advanced Features

Remembering the bank database, suppose we debit $100.00 from Alice'saccount, and credit Bob's account,
only to find later that we should have credited Wally's account. We could do it using savepoints like this:

BEG N,

UPDATE accounts SET bal ance
WHERE nane = 'Alice';

SAVEPO NT ny_savepoi nt;

UPDATE accounts SET bal ance
VWHERE nane = ' Bob';

-- oops ... forget that and use Wally's account

ROLLBACK TO ny_savepoi nt;

UPDATE accounts SET bal ance = bal ance + 100. 00
VWHERE nane = 'Vally';

COW T,

bal ance - 100. 00

bal ance + 100. 00

Thisexampleis, of course, oversimplified, but there'salot of control possiblein atransaction block through
the use of savepoints. Moreover, ROLLBACK TOisthe only way to regain control of atransaction block
that was put in aborted state by the system due to an error, short of rolling it back completely and starting

again.
3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function.
However, window functions do not cause rows to become grouped into a single output row like non-
window aggregate calls would. Instead, the rows retain their separate identities. Behind the scenes, the
window function is able to access more than just the current row of the query resullt.

Here is an example that shows how to compare each employee's salary with the average salary in his or
her department:

SELECT depnane, enpno, salary, avg(salary) OVER (PARTI TI ON BY depnane)
FROM enpsal ary;

depnane | enpno | salary | avg
----------- T fE Ry
devel op | 11 | 5200 | 5020. 0000000000000000
devel op | 7| 4200 | 5020.0000000000000000
devel op | 9 | 4500 | 5020. 0000000000000000
devel op | 8 | 6000 | 5020. 0000000000000000
devel op | 10 | 5200 | 5020. 0000000000000000
personnel | 5| 3500 | 3700. 0000000000000000
personnel | 2| 3900 | 3700. 0000000000000000
sal es | 3 4800 | 4866.6666666666666667
sal es | 1] 5000 | 4866.6666666666666667
sal es | 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table enpsal ary, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows that
have the same depnane value asthe current row. (This actually is the same function as the non-window

21

Advanced Features

avg aggregate, but the OVER clause causes it to be treated as a window function and computed across
the window frame.)

A window function call always contains an OVER clause directly following the window function's name
and argument(s). This is what syntactically distinguishes it from a normal function or non-window
aggregate. The OVER clause determines exactly how the rows of the query are split up for processing by the
window function. The PARTI TI ON BY clause within OVER divides the rows into groups, or partitions,
that share the same values of the PARTI TI ON BY expression(s). For each row, the window function is
computed across the rows that fall into the same partition as the current row.

Y ou can also control the order in which rows are processed by window functions using ORDER BY within
OVER. (The window ORDER BY does not even have to match the order in which the rows are output.)
Hereisan example:

SELECT depnane, enpno, salary,
rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC)
FROM enpsal ary;

depname | enpno | salary | rank
----------- S
devel op | 8 | 6000 | 1
devel op | 10 | 5200 | 2
devel op | 11 | 5200 | 2
devel op | 9 | 4500 | 4
devel op | 7 | 4200 | 5
per sonnel | 2| 3900 | 1
per sonnel | 5] 3500 | 2
sal es | 1| 5000 | 1
sal es | 4 | 4800 | 2
sal es | 3| 4800 | 2
(10 rows)

As shown here, the r ank function produces a numerical rank for each distinct ORDER BY value in
the current row's partition, using the order defined by the ORDER BY clause. r ank needs no explicit
parameter, because its behavior is entirely determined by the OVER clause.

The rows considered by awindow function are those of the “virtual table” produced by the query's FROM
clause as filtered by its WHERE, GROUP BY, and HAVI NG clauses if any. For example, a row removed
because it does not meet the WHERE condition is not seen by any window function. A query can contain
multiple window functions that slice up the data in different ways using different OVER clauses, but they
all act on the same collection of rows defined by this virtual table.

We aready saw that ORDER BY can be omitted if the ordering of rowsis not important. It isalso possible
to omit PARTI TI ON BY, in which case there is asingle partition containing all rows.

There is another important concept associated with window functions: for each row, thereis a set of rows
within its partition called its window frame. Some window functions act only on the rows of the window
frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame consists of
all rows from the start of the partition up through the current row, plus any following rows that are equal
to the current row according to the ORDER BY clause. When ORDER BY is omitted the default frame
consists of all rowsin the partition. ! Hereisan exampleusing sum

! There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

22

Advanced Features

SELECT sal ary, sun{salary) OVER () FROM enpsal ary;

salary | sum

________ Fom e a - -
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100

(10 rows)

Above, since thereis no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTI TI ON BY isthe whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get very
different results:

SELECT sal ary, sun{salary) OVER (ORDER BY sal ary) FROM enpsal ary;

salary | sum

________ i,
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100

(10 rows)

Here the sum is taken from the first (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They
are forbidden elsewhere, such as in GROUP BY, HAVI NG and WHERE clauses. This is because they
logically execute after the processing of those clauses. Also, window functions execute after non-window
aggregate functions. This means it is valid to include an aggregate function call in the arguments of a
window function, but not vice versa.

If thereis aneed to filter or group rows after the window calculations are performed, you can use a sub-
select. For example:

SELECT depnane, enpno, salary, enroll_date
FROM

23

Advanced Features

(SELECT depnane, enpno, salary, enroll _date,
rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC,
enpno) AS pos
FROM enpsal ary
) AS ss
WHERE pos < 3;

The above query only shows the rows from the inner query having r ank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but thisis duplicative and error-prone if the same windowing behavior is wanted for several
functions. Instead, each windowing behavior can be named in a W NDOWclause and then referenced in
OVER. For example;

SELECT sun{sal ary) OVER w, avg(salary) OVER w
FROM enpsal ary
W NDOW w AS (PARTI TI ON BY depnanme ORDER BY sal ary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.21, Section 7.2.5, and the
SELECT reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let'screatetwo tables: A tableci t i es andatablecapi t al s. Naturaly, capitalsare also cities, so you
want some way to show the capitals implicitly when you list al cities. If you're really clever you might
invent some scheme like this:

CREATE TABLE capitals (

nane t ext,

popul ati on real,

el evation int, -- (in ft)
state char (2)

)

CREATE TABLE non_capitals (

nane t ext,
popul ati on real,
el evation int -- (in ft)

)

CREATE VIEWcities AS
SELECT nane, popul ation, elevation FROM capitals
UNI ON
SELECT nane, popul ation, el evation FROM non_capitals;

Thisworks OK asfar asquerying goes, but it getsugly when you need to update several rows, for onething.

A better solution isthis:

CREATE TABLE cities (

24

Advanced Features

name t ext,
popul ati on real,
el evation int -- (in ft)

);

CREATE TABLE capitals (
state char (2) UNI QUE NOT NULL
) INHERI TS (cities);

In this case, arow of capi t al s inherits al columns (namne, popul ati on, and el evati on) from
its parent, ci ti es. The type of the column nane ist ext, a native PostgreSQL type for variable
length character strings. The capi t al s table has an additional column, st at e, which shows its state
abbreviation. In PostgreSQL, atable can inherit from zero or more other tables.

For example, the following query finds the names of al cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT nane, el evation
FROM ci ti es
VWHERE el evati on > 500;

which returns;

nane | elevation
___________ e e e e e m - -
Las Vegas | 2174
Mari posa | 1953
Madi son | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
elevation over 500 feet:

SELECT nane, el evation
FROM ONLY cities
VWHERE el evati on > 500;

nane | elevation
___________ .
Las Vegas | 2174
Mari posa | 1953
(2 rows)

Herethe ONLY beforeci t i es indicatesthat the query should berun over only theci t i es table, and not
tablesbelow ci t i es intheinheritance hierarchy. Many of the commandsthat we have already discussed
— SELECT, UPDATE, and DELETE — support this ONLY notation.

Note

Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.10 for more detail.

25

Advanced Features

3.7. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site? for links to more
resources.

2 https://www.postgresqgl.org

26

https://www.postgresql.org
https://www.postgresql.org

Part Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL . We start with describing the general syntax of SQL,
then explain how to create the structures to hold data, how to populate the database, and how to query it. The middle
part lists the available data types and functions for use in SQL commands. The rest treats several aspects that are
important for tuning a database for optimal performance.

Theinformationin this part isarranged so that anovice user can follow it start to end to gain afull understanding of the
topicswithout having to refer forward too many times. The chapters areintended to be self-contained, so that advanced
users can read the chaptersindividually asthey choose. The information in this part is presented in anarrative fashion
in topical units. Readers looking for a complete description of a particular command should see Part V1.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands. Readers that
are unfamiliar with these issues are encouraged to read Part | first. SQL commands are typically entered using the
PostgreSQL interactive terminal psgl, but other programs that have similar functionality can be used as well.

Table of Contents

A, SQL SYINEBX vttt ettt ettt et e et e et e et et et e et e e et e e e 35
A1, LEXIiCal SIUCKUME ...ttt ettt ettt e e e e e enees 35
4.1.1. Identifiers and K&y WOITSuiiiiiiiiieiiii e 35
.02, CONSLANTSoeeeeeeie ettt et ettt 37
4.01.3. OPEIELOIS ...ttt ettt ettt ettt et 42
4.1.4. SPECial CharaCLEN'S ceeiii ettt e e eees 42
.05, COMMEBNES ... eeee ettt ettt e r e e e e e e e e e e en s 43
4.1.6. OPErator PrECEOBNCEceiitiieeiii et 43

4.2, VElUE EXPIESSIONSceiitiieeieii ettt ettt e ettt e et e et e et e et e e e aba s 45
4.2.1. ColUMN REFEIENCES ...ttt et 45
4.2.2. POSItiONal PalraMELErSuuiiiiiiieieei ettt e 46
A.2.3. SUDSCIIPES .. eevteeeeei ettt ettt et 46
424, Field SEIECHON ...ueiiiii e 47
4.2.5. OPErator INVOCELIONSccevuneiiitieee et e ettt et e e e et eeeeneaeeees 47
4.2.6. FUNCHON CallS ...t 47
4.2.7. AQOregate EXPIrESSIONSccuuueiiiiiieieiti ettt ettt ettt e et e e e e 48
4.2.8. WIindow FUNCHION CallSiiiiiiiiiiii e 50
4.2.9. TYPE CaSS .eviiiiieii et 53
4.2.10. Collation EXPreESSIONSoceevrieeiiiti ettt ettt e e e e e eeeans 54
4.2.11. SCAlAr SUDQUENTESceeeieeeeeii ettt ettt ettt e e e e enaens 55
4.2.12. Array CONSITUCLOIScevieitiiierie ettt et e e e e e ea e eees 55
4.2.13. ROW CONSITUCTONSevteeeieiete ettt sttt et e e e e 57
4.2.14. Expression Evaluation RUIESccooiiiiiiiiiii e 58

4.3, CalliNg FUNCLIONSeeeit ettt ettt et e e e e e e enan s 59
4.3.1. Using POSItional NOELIONccvvveieiiiiiieeeeeii et 60
4.3.2. UsiNg NamMed NOLATONccuvuiiiiiiie e 61
4.3.3. USING MiXEA NOLALTONevuieiiiiieeiiiii ettt e een e e e 61

5. Dal@ DEFINITION ..ottt et 63
DL TADIE BASICS .ottt 63
5.2, DEFAUIT VAIUBS ...ttt 64
5.3. Generated COIUMINScoouuiiiiiii ettt et e e e e e 65
B, CONSITAINTS ...ttt ettt ettt e et e et et e et et e et et e e e ena s 66
5.4.1. CheCk CONSITAINTScevuieiiiiie ettt ettt e e e e e e e 66
5.4.2. NO-NUII CONSIFAINES ...eeveieieiii et e e 69
5.4.3. UNIQUE CONSIFEINES ...e.veueieeii ettt ettt ettt e e e 70
B5AA, PHIMEANY KEYS ...ttt e e 71
545, FOrEIgN KEYS ...ttt 72
5.4.6. EXCIUSION CONSITAINTScovtieieiit et e ettt et e et e e e et e e e ene e eeees 74

5.5, SYStEM COIUMMNS ...t et e e 75
5.6. MOAITYING TADIES ...t 76
5.6.1. AddING @ COIUMN ...oiviiiiiiii e 76
5.6.2. ReEMOVING @ COIUMN ...couuiiiiiiii ettt eeans 77
5.6.3. AddING @ CONSIFAINTceevtieeiiiis ettt e e e e et e e e e e eeees 77
5.6.4. RemMOVING @ CONSITAINTccuviiiiiiii e 77
5.6.5. Changing a Column's Default Valuec.oiviiiiiiiiiiiii e 78
5.6.6. Changing a Column's Daa TYPEuueieuunieiiiiiee ittt 78
5.6.7. Renaming @ COIUMIN ... coiiiiiiiiii e 78
5.6.8. RENAMING @ TADIEciiiiiiiiiii e 78

BT PrIVIIEOES ..o 78
5.8. ROW SeCUNtY POIICIES ...oeuuieiiii e 83
5.9, SCREMAS ... 90

28

The SQL Language

5.9.1. Creating @ SCheMAc.uiiiiic e 90
5.9.2. The PUDIIC SChEMEooiiiiiiec e 91
5.9.3. The Schema Search Pathccoooiiiiiiiiiiiii e 91
5.9.4. Schemas and PrivVilEgEScoiuniiii i 93
5.9.5. The System Catalog SChEMAcovuiiiiiiieii e 93
5.0.6. USAQE PallerNSiviiiiii e 94
5.9.7. POMaDIITY ..vviiiiiiieee e 94

oI O T 1=) = Lo PP 94
oI L0 B O Y= (=3P 98

5.11. Table Partitioningiiueeiii i e e e e e e e e e 98
DAL L. OVEIVIBIW ettt e et e e e et e e e et e e e e et e e e e et e e e e eran s 98
5.11.2. Declarative Partitioningccccouiiiiiiiiiiii e 99
5.11.3. Implementation Using INNeritanCeccooeviiiiiii i 104
5.11.4. Partition PrUniNgc.uoeiuiiiiii e e e e e e e e e e et eeaaaeeaes 109
5.11.5. Partitioning and Constraint EXCIUSIONc.veviiieiiiniiiii e 110
5.11.6. Declarative Partitioning Best PractiCescccoveveiiiiiiiiiiiieccie e 111

I o (= o o B I - PP 112
5.13. Other Database ODJECEScvvieiii e e e e e aens 112
5.14. DePendeNnCy TraCKiNgccuuueiiueiiiiie e e e e e e e e e e e e e e e e e e et e e e eanaeeeen 113
SR T = 1Y =T o 10 = 1 o PN 115
L 1= e (] aTo [D - - Y 115
LS UL = (] oo D = U 116
SRR D= 1 (] oo I - - P 117
6.4. Returning Data from Modified ROWScccuiiiiiiiiiii e 117
2 8 = 1= PN 119
8 T @ = 4T T ORI 119
A - o L=l (0 == Lo 119
7.2.1. ThE FROMCIBUSE ...cceviiiiiiie ettt ettt ettt e et e e e e 120
7.2.2. THE WHERE ClaUSEvvuieiiiiii ettt sttt e et e e e ean s 129
7.2.3. The GROUP BY and HAVI NG ClIaUSEScccvvuiiiiiiieeeiiiie e ee e 130
7.2.4. GROUPI NG SETS, CUBE, and ROLLUPiiiiiiiiieiiieece e 132
7.2.5. Window FUNCEION PrOCESSINGcovuiiiiiieiiieeie e e e e e e e e 135

SRS = 1 o I £ U UPPPTSPPR 135
7.3. 1. SEECE-LISt [TOMS oot e 135
7.3.2. COlUMN LADEIS ...t e e eaans 136
7.3.3. Dl STINCT ettt e e et e e et s e e e et e e e eeaaaeeeees 136

7.4. ComMBINING QUETES .. ccvuiiiiiie e et e e e e e e e e e e e e e e e et e e et e et e e aaneeeens 137
S o 1T 0T = 0 Y 138
T6. LIM T @8N0 OFFSET ..oiiiiiiiiie ettt e e e e et e e e as 139
TV A/ I S I I £ PP 139
7.8. W TH Queries (Common Table EXPreSSiONS)cc.uueeeiieiiiieriiieeiiieeiieeeeineesieeeaneens 140
7.8.1L SELECT iNW TH oo a s 140
7.8.2. Data-Modifying Statements in W TH ..., 145

S T D= = T Y/ o PRSPPI 148
S0 N[0 0= o Y == 149
e I 1 011 o = Y/ o PP 150
8.1.2. Arbitrary Precision NUMDBEISccoiiiiiiiiii e 150
8.1.3. Floating-POINt TYPES .ovun i e e e 152

ST S g Y/ o= PP 153

S I o g 1< = Y 1Y o< T PRSP 154
TG I O == o (= G Y/ o= PP 155
S = T g A T v T IV o 1= 157
8.4.1. byt €a HEX FOIMELcouiiiiiieii e e e e 158
8.4.2. byt €a ESCApe FOIMAL ...c.uuiiiiiiii e e e e 158

29

The SQL Language

R = =l T (ST Y/ 0= P 159
8.5.1. Date/TImME INPULeveniiiiiii e e e e e e e e e e e e e e e aaneees 161
8.5.2. DAE/TIME OULPULueeeeiiiieeeeeie e et e e e et e et e e et e e e et eeeeren e 164
8.5.3. TIME ZONES ...ttt e et e e et e e e eaa e aaee 165
8.5.4. INterval INPULoiieiii e e 167
8.5.5. INLEIVE OULPULueiiiitiee it e e e e e e e aa e e eannns 169

LS = ToTo =T N Y/ o= PN 169

A 1000 = =0 I Y/ o= 170
8.7.1. Declaration of Enumerated TYPES .. .cvuuiviueiiii e e e e 170
2 @ (o[1 o P 171
B.7.3. TYPE SAFELY eevviieiiii et 171
8.7.4. Implementation DELailScccuuiiiiiii e 172

R €= o 0 4= (o Y 1P 172
B.8. L. POIMES ...ttt e ettt e e a e aae 173
88,2, LINES ettt 173
8.8.3. LiNE SEOMENLSiviiiiii e e e 173
8814 BOXES ..t eiiiii e ettt ettt e et e a et a e aaaes 174
B85, PalNS ..ot 174
8.8.6. POIYQONS .. .ciiiiii i 174
S O] (o =~ PP 174

e I N\ = Y Yo (o (1= S Y o= 175
S35 R T 1= PSPPSR 175
SIS o o | S USRS 175
SR A I 1= VT o3 o | PSPPI 176
S I 1= U= Vo o | USSP 176
8.9.5. IMACATAN 8 ..ouiiiiiii e e e e 177

O TN S (1o T I3 - 177

B.11. TeEXt SEACH TYPES v it 178
S 00 I O T = VT o3 A o PP PTRPTUPT 178
S I 2 A=Y o [U 1= PRSP 180

ST 2 U1 1 R I/ o= PR 181

ST Q. I 1Y/ o= PP 182
8.13.1. Creating XML ValUBSoeiiiiiiieiiiii ettt e e e 182
8.13.2. ENcoding Handlingccouuiiiiiiiii i 183
8.13.3. ACCESSING XML ValUESuiiiiiciii et 184

ST N S O NI Y/ o=~ PP 184
8.14.1. JSON Input and OULPUE SYNEAXuevvvnieiiieeiiieeie e e e e e e e e e e eens 185
8.14.2. Designing JSON DOCUMENES .. .c.uuivieieineeiieeeieeeie e et eeeie e e e e sineesaneeennnas 186
8.14.3.] sonb Containment and EXIStENCEuovviiiiiii e 187
8.14.4. | SOND INAEXING ...evvneiii e e e e e e e aaa s 189
8.1A.5. TraNSFOMIS ... ettt ettt e et e et e e 191
8.14.6. JSONPAEN TYPE . eveiii e 192

o I N = Y PPN 193
8.15.1. Declaration Of Array TYPES ...cuvuiiiiieiiieeei et e e e e e e e e e e eaneees 193
8.15.2. Array ValUE INPULcovniiii e e e e e e e 194
8.15.3. ACCESSING ATTAYS ..ueetneeiineeei e eie ettt e et e e e e e et e e e et e e et e e et e e et e eaneeaens 196
8.15.4. MOAITYING ATTAYS ..vuieiiieii et e e e e e e e e e e e e e e e e eanaeees 198
8.15.5. SEaArChING IN ATTAYS coouniiiii et e e e e e e eaeas 201
8.15.6. Array Input and OULPUL SYNEEXccvvneviieiiiieeiii e eee e e e e e e e eaenas 202

8.16. COMPOSITE TYPES .vvuiiiueiiieeit ettt e et e e et e et e e et e e et eeaa e e et e e et e e et esttaeesnneaannaes 203
8.16.1. Declaration of COmMPOSItE TYPES ...cvvureiiiieiiieeiii e e e e e e e e anas 203
8.16.2. Constructing CompoSite VAUEScccuuiiiiiieiiiieiii e e 204
8.16.3. AcCeSSING COMPOSIEE TYPES ...vvvneiiiiieiiieeeiie et e et e e eteeeae e e e e et e e eaaesanees 205
8.16.4. Modifying COmMPOSITE TYPES ...cvvuniiiiieiii e e e e e e e e e eaa s 206

30

The SQL Language

8.16.5. Using Composite TYPes iN QUENIESc.ueiiieiiiieeiiiee e e e e e e eaaes 206
8.16.6. Composite Type Input and OULPUE SYNEAXccvvnveirneeiiieiiiieeie e e e e e 209

S I A m = g Te T Y/ o PP 210
8.17.1. BUIIt-iN RANGE TYPES ..ncevuieiiieeii e e et e e e e et e et e e e e aanas 210
8.17.2. EXAMPIES .. ettt 210
8.17.3. Inclusive and EXCIUSIVE BOUNGSuiveiiiiiiieiiiiineeiiiiine et e et e i 211
8.17.4. Infinite (Unbounded) RaNGESocvvuiiiiii e 211
8.17.5. RaNge INPUL/OULPULovvniiiieeii e e e e e e e e e e e aes 211
8.17.6. CoNSIIUCtING RANGESuviiiii it e e e e e e e e e ees 212
8.17.7. DISCrete RANGE TYPES . ovvniiiiieei et et e e e e e et e e e e e e e e e et e e et e een s 213
8.17.8. Defining New RaNGE TYPES ... cvvuiiiiii et e e e e e e e e e 213
B.17.9. INAEXING ...uniiieii e e 214
8.17.10. CONStraiNtS 0N RANGESuiiviieiiieiieee e ee e e e e e e e e e et eeaaaeeaes 215

ST T I T4 F= T T 1Y o1~ PN 216
8.19. ObJECt 1AENLITIEr TYPES .uuuiiii i e e e et e eaaaees 216
LSO oo [1 1 1Y o= TP 218
ST I s = (o 0l 1N o1 218
9. FUNCLIONS @NO OPEIAIOIS .. .iuvieeiieeii et e e e e e e e e e e e e e e e e e et e e et e e et e e st e eeaneeannaees 220
1o I oo o= @ o= = (] £ PP 220
9.2. Comparison FUNCtions and OPEIaLOrScvvvuieeiieeiiieeiiie e e e e e e et e e e eaeeeens 220
9.3. Mathematical FUNCtioNS and OPEratorSc.uvvieuneeiiiieiiii e e e e eeens 223
9.4. String FUNCLioNS and OPEIAtOrSuuiieueeeiieiieee e et e e e e e e e e e e e eeaen 227
LS T o T g 112 1 TP TPPTRPPTRN 240

9.5. Binary String FUNctions and OPEratorsSoveeuuieiiieiiineeiiieeeiie e e e s e eaieesaneeees 242
9.6. Bit String FUNCLiONS and OPEratorScvvvuiiiiieiiieeeeeeie e e e e e e e e e eaanns 245
A = (= g TN\ = (11 o P 246
O.7. 1. LEKE oot aaaan 246
9.7.2. SIM LAR TORegular EXPreSSIONScvvueiiiieiiieeiieeeiieeaieeeseessineesaneeenns 247
9.7.3. POSIX RegQUIAr EXPIESSIONS ... ccvuiiiiieiiieeiiieeeiieeeie e e e et e e eae e st e e e eannas 249

9.8. Data Type Formatting FUNCLIONScovuiiiiiiiii e e 263
9.9. Date/Time FUNCLioNS and OPEratorSccuuuiiiiiieiieeeii e e e e e e e e e e e e e e eeees 271
9.9.1. EXTRACT, dat € _Part .ociciiiiiiiieiiii e e e e e aanas 277

e 72 - L A =T A ¥ [o o 282
9.9.3. AT TIME ZONE ...ttt ettt e et e e et e eenens 283
9.9.4, CUITENt DA/ TIME ..uuuiiiii et e e e e ae e 284
9.9.5. Delaying EXECULION .. .c.uuiiiii i e e e e e e e e e et e e et e eea e eeas 285

9.10. ENUM SUPPOIt FUNCLIONSiitiiii e e e e e e e e e e e e e e e e eaens 286
9.11. Geometric FUNCiONS and OPEIAtOrSccvuueiiieeiiieeiiie e ee e e e e e e e e eanes 287
9.12. Network Address FUNCtions and OPEratorsc.uuevvuieiiieeiieeeii e e e e e eaneens 291
9.13. Text Search FUNCtIONS aNd OPEIELOrScuvuiiireeiieeeieeeiie e e e e e e e e e e eaaeens 293
.14, XML FUNCLIONS ... iiiiiiiee ettt e e e e e et e e e et e e e e et e e e e eaa s 300
9.14.1. Producing XML CONENEccuuiiiiiiii e i e eee e e e s e e e e e e e e eaaaeees 300
9.14.2. XML PradiCates ...ocvuuieeiiii ettt e et e s 305
9.14.3. ProcessiNg XML ...uuuiiiiiiiieee et 306
9.14.4. Mapping TableS t0 XMLccouiiiiii e 311

9.15. JSON FUNCLiONS aNd OPEIELOrSccvvueirieiiiieeeieeeiee e e e e e e e e e e et e et e e eeennns 315
9.15.1. Processing and Creating JSON Dafal........ccuovvivnieiiineiiiieeiiieeeiieeeee e e e 315
9.15.2. The SQL/JSON Path LanQUAGEccvvuurieiiiiieeeeiiieee e e et e et e e 325

9.16. Sequence Manipulation FUNCLIONScciuuiiiiiii e e 331
9.17. Conditional EXPIrESSIONS ... ccuuuiiiiieiiiieeiii e e e et e e e e e e e e e e e e e e e et e e et eeanas 334
0.17. 0. CASE ...ttt aae 334
9.17.2. COALESCE ... ciiiiiieiiiii ettt e et e e et e e e et e e e eatn e eaees 336

S e U I USRI 336
9.17.4. GREATEST @nd LEAST ...uiiiiiii ettt 337

31

The SQL Language

9.18. Array FUNCIONS and OPEIratOrSuveunieiiiieiiieeeiee e e e e e e e e et e e st e e s e e eeanaees 337
9.19. Range FUNCLiONS aNd OPEraiOrSvvuneiiiieiieeeie e e e e e e e e e e e e e e et e e eeaneenes 340
9.20. AQQregate FUNCLIONSc.uuiiii e e e e e e e e e e e eaes 342
9.21. WINAOW FUNCHIONSvuieiiiiiiee et e e e et e e e e e e e et e e e e 350
0.22. SUDQUETY EXPrESSIONSuiiiieiiiieiii et e e e e e e e e e e s e et e e et e e st s e s s e e st eeaaneeannaees 352
S T o S Y S TSP 352
S L N O SPPPITN 352
L2 T\ | T\ ST 353
9.22.4. ANY/ISONEouiiiiiiiiie ettt ettt e e e et e e e et a s 354
0.22.5. ALL ottt et e aaae 354
9.22.6. SINGIE-ROW COMPAITSONcvviiiiiieeiiee e e e e e e e e e ean s 355

9.23. Row and Array COMPANISONScuuuieiiiereieerttieeeteeeteesteeeseesanaeeaneestneesrneesraaees 355
1S 22 35 I N USRI 355

L2 B @ | T\ P 355
9.23.3. ANY/SONE (BITAY) +otevvtnereenunieteetinaeeeetiteeeeti e eesteaeeesteaeeesseaeeessneeernnns 356
S I = - Y) PSP 356
9.23.5. Row Constructor COMPAIiSONueviuueeeinieiiiiereieeesineesieesteessnaeeaneannnaaes 356
9.23.6. Composite TYPe COMPANISONuuverneieinieeieeeiieeeaeeeseeeeneeeaee s e eanaeeanaees 357

9.24. Set RetUrNiNg FUNCHIONSuuiiiiicii e e e e e e e e e e e e aaaas 358
9.25. System Information FUNCtions and OPEratorsovevueeiiiieiiiieeiii e e e e eaneeenes 361
9.26. System AdmIiNiStration FUNCLIONSccuuiiinieiiiiee e e e e e e e e 379
9.26.1. Configuration Settings FUNCLIONSiiiiiieiiiieiie e e e 379
9.26.2. Server SIgnaling FUNCLIONSovviiiiiie e e e e 380
9.26.3. Backup Control FUNCLIONSiiiiiiiiiccie e e e e e e 381
9.26.4. Recovery Control FUNCLONSocvviiiiii e e e 383
9.26.5. Snapshot Synchronization FUNCLIONSccuveiiiieiiie e, 385
9.26.6. RePlIcation FUNCLIONScouviiiiiiciiece e e e e e e e 386
9.26.7. Database Object Management FUNCLIONSoveiveeiiieiiiieeie e e e eanne 390
9.26.8. Index MantenanCe FUNCLIONSoiviiuiiieeiiii e e et e e e e eeeii e aees 394
9.26.9. Generic File ACCESS FUNCLIONSuuiiiiiiieciii e 394
9.26.10. AdViSOry LOCK FUNCLIONScovuiiiiicii e e e e e 397

LS A I T o = gl o o 3 399
9.28. Event Trigger FUNCLIONSouuiiiiiii e e e e e e e e e e e e e aen 399
9.28.1. Capturing Changes at Command ENndcccocoviiiiiiniiiiiicii e, 399
9.28.2. Processing Objects Dropped by a DDL Commandcccocevvveiiiieiiineeeinnnn. 400
9.28.3. Handling a Table ReWrite EVENtcouviiiiiiii e 401

9.29. Statistics INfOrmation FUNCLIONSiiiiiiiieiiiii e e e e e e 402
9.29.1. INSPECLING MCV LiStS ..uiiiiiiiiiieiii e e e e e 402

O Y/ oL 00177 = T o P 403
O @ = 4T PP 403
O @ o< - o= TP 404
L0 A o o] o L PSP 408
O R 0 IS (o] - o = 412
10.5. UNI ON, CASE, and Related CONSITUCESueviviiieiiiiiieeeeiie e e e 413
10.6. SELECT OULPUL COIUMNS ...vuueeiiiiiee ettt e e e et e e et e e e et e e e e ennas 415
T o (== PSSP 416
0 O oo [o PP 416
R 1 o L= G Y/ o === PP 417
11.3. MUILICOIUMN INAEXES ...eeeve ettt e e et e et e e e et s e e eeaeaeeaes 419
11.4. Indexes and ORDER BY ...iiiuiiiiiiiiieiiiii ettt e e e et e e e e e s 420
11.5. Combining MUItiple INAEXESciiiiieiiieci e 421
12.6. UNIQUE INAEXESiciiieiiiie et e e e e e e e e e e e et e e et e e e eanaes 422
11.7. INAEXES ON EXPIrESSIONSivvieiiiieii e e e e e e e e e e e e e e e e et e e et e e aan s 422
11.8. Partial INOEXES .. .ceeviiieeeeii ettt e et e e et e e et e e e et e e e eaanaeaaes 423

32

The SQL Language

11.9. Index-Only Scans and Covering INAEXEScouuiiviiiiiii e 426
11.10. Operator Classes and Operator Famili€Sooevviiiiiiiiiiii e 429
11.11. Indexes and COlAIONSuiiiiiii e e s 430
11.12. EXxamining INAEX USAgEuuciviniiii e e e e e et e et e e e e aaans 431
I S 1= G = o o PSP 433
2 O 1 oo [0 o I PP 433
12.1.1. What 1S @ DOCUMENE? ...vuiieeiiii et e e e e e e e et e e e e e eeees 434
12.1.2. Basic Text MatChingooiiuiiiiiiiii e 435
25t IR T @) o T 1N = T 3 437

12.2. TAhleS @A INOEXESeevveieieii et e et e e et e e eaens 437
12.2.1. Searching @ Table ...ocvuie e 437
12.2.2. Creating INAEXESvvvueii et e e e e e e e e e aeas 438

12.3. Controlling TEXt SEAICHiiiii i e e e 439
12.3.1. ParSiNg DOCUMENESuiiiiiiii e e e e e e e e e e e e et e e e e e e eeens 439
12.3.2. ParSiNG QUETIES .. .cvuiiiii e e et e e e e e e e e e e e e e e e e e aneees 440
12.3.3. Ranking Search RESUILSociuiiii i e 443
12.3.4. Highlighting RESUILS ... ccvviiiiii e e 445

12,4, AdAItioNal FEALUMEScevvieeiii ettt e e e e e 447
12.4.1. Manipulating DOCUMENESuuiiiiiieiiii e e e e e e e e e e e e 47
12.4.2. Manipulating QUENIESciuu it e e e e e e e aa s 448
12.4.3. Triggers for Automatic UPdatesccevuveiiiiiiiieiiie e e e e 450
12.4.4. Gathering DOCUMENE SEALISHCS ..ovvuvvinieii e eee e e e e e e 452

T T = 452
12.6. DICHONAITES ...ueieeeii ettt e ettt e e e et r e e e et s e e e e st e e e et neeeseaneeennen 454
12.6.1. SEOP WOIAS .. .ccvuiiiii et e et e e e e e e e e e e e e et e e st e e e e aaeees 455
12.6.2. SIMPIE DICHIONAIY .vvniiiiieiii e e e e e e e e e e aanas 456
12.6.3. SYNONYM DICHONGIY ...cvvuiiiiiieii et et e e e e e e e e e e e e e e aa e aan s 457
12.6.4. TheSaUruS DIiCHIONAIYcvvuniiiiiiiii e e e e e e e e eaa s 459
12.6.5. ISPEI DICHONAIY ...cvvniiiiieiie e e e e eaaas 461
12.6.6. SNOWDEIl DICHIONAIYcvvnciiieee e e e e e e aeas 464

12.7. Configuration EXAMPIEccuuiiiieiiie e e e e e e e 464
12.8. Testing and Debugging Text Searchcovvviii i, 466
12.8.1. Configuration TESHNGcvvueiiieiiii e e e e e e e e eaaes 466
T = = i oo 469
R IC T B T Tox 04 = VA = (oo [470

12.9. GIN and GiST INAEX TYPES c.vvvvvrunieieeeiieiiiiies s e e e eeeeeta s e e e e e eaeatae e e e e e eaeaareannns 471
200 O T o 1= o [o] oo P 471
2 O R T 1] = o PP 475
G @0 o1l = 0 [0y o 1 () 476
30 1 oo [0 1 o PP 476
13.2. TransaCtion I1SOIAHONcccuviiieiii e e s 476
13.2.1. Read Commiitted ISOlation LEVElcuvviiiiiiiiiiiiii e 477
13.2.2. Repeatable Read 1S0lation LEVEccoiiiiiiiiiiie e 479
13.2.3. Serializable [S0lation LEVE!ccevvviiieiiii i 480

T T (o[T I T 482
13.3.1. TADIE-LEVE LOCKS ...evuneiiiiiie ittt 482
13.3.2. ROW-LEVEI LOCKS ...euuiiiiiiiiee ettt e et e e 485
13.3.3. Page-Level LOCKSciiiiiii e e 486

R T T o oo 486
13.3.5. AQVISONY LOCKS ..uuiiiiiiii e e e e e e e e aaas 487

13.4. Data Consistency Checks at the Application Levelcccooeviiiiiiiiiiiiicees 488
13.4.1. Enforcing Consistency with Serializable Transactionsccooeevvveeinnnn. 488
13.4.2. Enforcing Consistency with Explicit Blocking LOckSccccovviiiiiiiinnennnnn. 489

ST O Y= SRR 490

33

The SQL Language

13.6. LOCKINg @nd INAEXESivviiii et e e e e e e e e ees 490
o (o0 1= 0 o= T T = 492
I I U = o T I A P 492
I T o Y Y I AV 27 T P 492
14.2.2. EXPLAI N ANALYZEooviiiiie et e e e eea e e aaaanenas 498
R O £ PSPPI 503

14.2. Statistics Used by the Planneroooiiiiiiiiii e 504
14.2.1. SINgIE-ColUMN SEALISHCS . .ovvueiiieiiii e e e e e e eaaes 504
A 1= 00 (= IS 1 P 505

14.3. Controlling the Planner with Explicit JO N ClIaUSESccccvvviiiiieiiii e, 509
14.4. Populating @ Databaseiiviiiiiii e 511
14.4.1. Disable AULOCOMIMITvuuiiiiiiieee e e et e e e e e e et e e e eate e e eeee 511
A U L Y @ @ P 511
14.4.3. REMOVE INAEXES ...eevviiiieiie et e e et e e 511
14.4.4. Remove Foreign Key CONSITaiNtScocvueeiiiiiiiieiiieerieeeiiee e esieeeaneeaens 512
14.4.5. Increase mai Nt enance_WOr K _MBmM......ccoooiiiiiiiii i 512
14.4.6. Increase MAX_Wal _Si Z€ ..viiiiiiiii i 512
14.4.7. Disable WAL Archival and Streaming Replicationccccoeviviiieiinnennnnn. 512
14.4.8. RUN ANALYZE AFtEIWardScccvvviiiiiiiiieeeeeeeeiiiie e e e e e eeeeiin e s e e e e eeaannnnn s 513
14.4.9. Some Notes about PO AUMP ..o.vuiiiiii e e e e e e e e ees 513

14.5. NON-DUrable SElINGSvuieeeiiiiieie e e e e e e e e e e e e aa s 513
ST = = O = oS 515
15.1. How Parallel QUENY WOTKSoiiiiiiii i e e 515
15.2. When Can Parallel Query BE USEO?cvvviiiiiieiiiieeiiee e 516
15.3. Parallel Planscccoiiiiiiiiis st a e 517
15.3.1. Parallel SCaNSccuvvuiiiieeiiieiie et e e e e 517
15.3.2. Parallel JOINScovvviiiiei et 517
15.3.3. Parallel AQOregationooivuiiiiiieii e 518
15.3.4. Parallel APPENGcoviiiii e 518
15.3.5. Parallel Plan TIPS ...ccuuuiieiiiiii et e e e e e e e e 519

15.4. Parallel SafEYoieeeiiieeiii et aaaa 519
15.4.1. Parallel Labeling for Functions and AQQregatescoovevvieiiiieiiineeeieeninnnns 519

Chapter 4. SQL Syntax

This chapter describesthe syntax of SQL. It formsthe foundation for understanding the following chapters
which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it contains
several rules and concepts that are implemented inconsistently among SQL databases or that are specific
to PostgreSQL.

4.1. Lexical Structure

4.1.1.

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,
terminated by a semicolon (“;”). The end of the input stream also terminates a command. Which tokens
are valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, aliteral (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not beif thereisno
ambiguity (which is generally only the case if a specia character is adjacent to some other token type).

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
| NSERT | NTO MY_TABLE VALUES (3, 'hi there');

Thisisasequence of three commands, one per line (although thisis not required; more than one command
can be on aline, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a“SELECT”, an“UPDATE”", and an “INSERT” command. But for instance the UPDATE
command always requires a SET token to appear in a certain position, and this particular variation of
| NSERT also requires a VALUES in order to be complete. The precise syntax rules for each command
are described in Part VI.

Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that
is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are examples of
identifiers. They identify names of tables, columns, or other database objects, depending on the command
they are used in. Therefore they are sometimes simply called “names’. Key words and identifiers have
the same lexical structure, meaning that one cannot know whether atoken is an identifier or a key word
without knowing the language. A complete list of key words can be found in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks and
non-Latin letters) or an underscore (). Subsequent charactersin an identifier or key word can be |etters,
underscores, digits (0-9), or dollar signs ($). Notethat dollar signsare not allowed in identifiers according
to the letter of the SQL standard, so their use might render applications less portable. The SQL standard

35

SQL Syntax

will not define a key word that contains digits or starts or ends with an underscore, so identifiers of this
form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written in
commands, but they will be truncated. By default, NAMEDATAL ENis 64 so the maximum identifier length
is63 bytes. If thislimit is problematic, it can be raised by changing the NAMEDATAL EN constantin sr ¢/
i ncl ude/ pg_confi g_nmanual . h.

Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;
can equivalently be written as:
uPDaTE ny_TabLE SeT a = 5;

A convention often used isto write key words in upper case and namesin lower case, e.g.:

UPDATE ny_table SET a = 5;

Thereisasecond kind of identifier: the delimited identifier or quoted identifier. It isformed by enclosing
an arbitrary sequence of characters in double-quotes (). A delimited identifier is aways an identifier,
never akey word. So " sel ect " could be used to refer to a column or table named “ select”, whereas an
unquoted sel ect would be taken as a key word and would therefore provoke a parse error when used
where atable or column name is expected. The example can be written with quoted identifierslike this:

UPDATE "ny_tabl e" SET "a" = b5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
guote, write two double quotes.) Thisallows constructing table or column names that would otherwise not
be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiersallowsincluding escaped Unicode charactersidentified by their code points.
Thisvariant startswith U& (upper or lower case U followed by ampersand) immediately before the opening
double quote, without any spacesin between, for example U&" f 00" . (Note that this creates an ambiguity
with the operator &. Use spaces around the operator to avoid this problem.) Inside the quotes, Unicode
characters can be specified in escaped form by writing a backslash followed by the four-digit hexadecimal
code point number or aternatively abacks ash followed by aplus sign followed by asix-digit hexadecimal
code point number. For example, the identifier " dat a" could be written as

U&" d\ 0061t \ +000061"

Thefollowing less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&"\ 0441\ 043B\ 043E\ 043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

36

SQL Syntax

4.1.2.

U&'d! 0061t ! +000061" UESCAPE '!'

The escape character can be any single character other than a hexadecimal digit, the plus sign, asingle
guote, adouble quote, or awhitespace character. Note that the escape character iswritten in single quotes,
not double quotes.

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code pointsin the ASCII range (up to\ 007F) can be specified. Both the 4-digit and the 6-
digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points larger
than U+FFFF, although the availability of the 6-digit form technically makesthis unnecessary. (Surrogate
pairs are not stored directly, but combined into a single code point that isthen encoded in UTF-8.)

Quoting an identifier also makes it case-sensitive, whereas ungquoted names are always folded to lower
case. For example, the identifiers FOO, f 00, and " f 00" are considered the same by PostgreSQL, but
"Foo" and" FOO' aredifferent from thesethree and each other. (Thefolding of unquoted namesto lower
case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names should be
folded to upper case. Thus, f 0o should be equivalent to " FOO' not " f 00" according to the standard. If
you want to write portabl e applications you are advised to always quote aparticular name or never quoteit.)

Constants

There are three kinds of implicitly-typed constants in PostgreSQL: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL isan arbitrary sequence of characters bounded by single quotes (*), for example
"This is a string'.Toincludeasingle-quote character within astring constant, write two adjacent
singlequotes, e.g.,' Di anne' ' s hor se' . Notethat thisisnot the same as adouble-quote character ().

Two string constants that are only separated by whitespace with at least one newline are concatenated and
effectively treated asif the string had been written as one constant. For example:

SELECT ' f o0’

" bar';

isequivalent to:

SELECT ' f oobar' ;

but:

SELECT ' f o0’ " bar'

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

4.1.2.2. String Constants with C-Style Escapes

37

SQL Syntax

PostgreSQL also accepts“ escape” string constants, which are an extension to the SQL standard. An escape
string constant is specified by writing the letter E (upper or lower case) just before the opening single
guote, e.g., E' f 0o' . (When continuing an escape string constant across lines, write E only before the
first opening quote.) Within an escape string, a backslash character (\) begins a C-like backslash escape
seguence, in which the combination of backslash and following character(s) represent aspecial bytevalue,
asshown in Table 4.1.

Table 4.1. Backslash Escape Sequences

Backslash Escape Sequence I nterpretation

\'b backspace

\ f form feed

\n newline

\r carriage return

\ t tab

\o,\00,\000(0=0-7) octal byte value

\ xh,\xhh(h=0-9,A-F) hexadecimal byte value

\ uxxxx, \ IXXXXXXXX (X =0-9,A -F) 16 or 32-hit hexadecimal Unicode character value

Any other character following a backslash is taken literally. Thus, to include a backslash character, write
two backslashes (\ \). Also, asingle quote can be included in an escape string by writing\ ' , in addition
to the normal way of ' ' .

It isyour responsibility that the byte sequences you create, especially when using the octal or hexadecimal
escapes, composevalid charactersinthe server character set encoding. When the server encodingisUTF-8,
then the Unicode escapes or the aternative Unicode escape syntax, explained in Section 4.1.2.3, should
be used instead. (The aternative would be doing the UTF-8 encoding by hand and writing out the bytes,
which would be very cumbersome.)

The Unicode escape syntax works fully only when the server encoding is UTF8. When other server
encodings are used, only code pointsin the ASCII range (upto\ u007F) can be specified. Both the 4-digit
and the 8-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points
larger than U+FFFF, although the availability of the 8-digit form technically makes this unnecessary.
(When surrogate pairs are used when the server encoding is UTF8, they are first combined into a single
code point that is then encoded in UTF-8.)

Caution

If the configuration parameter standard_conforming_stringsis of f , then PostgreSQL recognizes
backslash escapesin both regular and escape string constants. However, as of PostgreSQL 9.1, the
default ison, meaning that backslash escapes are recognized only in escape string constants. This
behavior is more standards-compliant, but might break applications which rely on the historical
behavior, where backslash escapes were always recognized. As a workaround, you can set this
parameter to of f , but it is better to migrate away from using backslash escapes. If you need to use
abackslash escape to represent a specia character, write the string constant with an E.

In addition to standard_conform ng_strings, the configuration parameters
escape_string_warning and backslash_quote govern treatment of backslashes in string constants.

38

SQL Syntax

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL al so supportsanother type of escape syntax for stringsthat allows specifying arbitrary Unicode
characters by code point. A Unicode escape string constant starts with U& (upper or lower case letter
U followed by ampersand) immediately before the opening quote, without any spaces in between, for
example U&' f 00" . (Note that this creates an ambiguity with the operator & Use spaces around the
operator to avoid this problem.) Inside the quotes, Unicode characters can be specified in escaped form by
writing abackslash followed by the four-digit hexadecimal code point number or aternatively abackslash
followed by a plus sign followed by a six-digit hexadecimal code point number. For example, the string
' dat a' could bewritten as

U&' d\ 0061t \ +000061'

Thefollowing less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&' \ 0441\ 043B\ 043E\ 043D

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U& d! 0061t! +000061'" UESCAPE '!'

The escape character can be any single character other than a hexadecimal digit, the plus sign, asingle
guote, a double quote, or a whitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code pointsin the ASCII range (up to\ 007F) can be specified. Both the 4-digit and the 6-
digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points larger
than U+FFFF, athough the availability of the 6-digit form technically makes this unnecessary. (When
surrogate pairs are used when the server encoding is UTF8, they are first combined into asingle code point
that is then encoded in UTF-8.)

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard_conforming_stringsisturned on. Thisisbecause otherwise this syntax could confuse clients that
parse the SQL statements to the point that it could lead to SQL injections and similar security issues. If
the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, write it twice.

4.1.2.4. Dollar-Quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those must
be doubled. To alow more readable queries in such situations, PostgreSQL provides another way, called
“dollar quoting”, to write string constants. A dollar-quoted string constant consists of a dollar sign ($),
an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence of characters that
makes up the string content, adollar sign, the same tag that began this dollar quote, and a dollar sign. For
example, here are two different ways to specify the string “ Dianne's horse” using dollar quoting:

39

SQL Syntax

$$Di anne' s horse$$
$SonmeTag$Di anne' s hor se$SoneTag$

Noticethat inside thedollar-quoted string, single quotes can be used without needing to be escaped. Indeed,
no characters inside a dollar-quoted string are ever escaped: the string content is always written literally.
Backslashes are not special, and neither are dollar signs, unless they are part of a sequence matching the

opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level. This
is most commonly used in writing function definitions. For example:

$f uncti on$
BEG N
RETURN ($1 ~ q[\t\r\n\v\i\]g);
END;
$f uncti on$

Here, the sequence q[\ t\ r\ n\ vi\] q represents adollar-quoted literal string [\ t\ rAn\ vi\],
which will be recognized when the function body is executed by PostgreSQL . But since the sequence does
not match the outer dollar quoting delimiter $f unct i on$, it is just some more characters within the
constant so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that it
cannot contain adollar sign. Tags are case sensitive, so $t ag$St ri ng cont ent $t ag$ iscorrect, but
$TAGHSt ri ng cont ent $t ag$ isnot.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often amore convenient way to write complicated
string literals than the standard-compliant single quote syntax. It is particularly useful when representing
string constants inside other constants, as is often needed in procedural function definitions. With single-
guote syntax, each backslash in the above example would have to be written as four backslashes, which
would be reduced to two backslashesin parsing the original string constant, and then to one when theinner
string constant is re-parsed during function execution.

4.1.2.5. Bit-String Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately before
the opening quote (no intervening whitespace), e.g., B 1001' . The only characters allowed within bit-
string constantsare 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading X (upper or
lower case), e.g., X' 1FF' . Thisnotation is equivalent to a bit-string constant with four binary digits for
each hexadecimal digit.

Both forms of bit-string constant can be continued across linesin the same way asregular string constants.
Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants

Numeric constants are accepted in these genera forms:

40

SQL Syntax

digits
digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits

wheredi gi t s isone or more decimal digits (0 through 9). At least one digit must be before or after the
decimal point, if oneis used. At least one digit must follow the exponent marker (e), if one is present.
There cannot be any spaces or other characters embedded in the constant. Note that any leading plus or
minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

42

35

4.

.001

5e2
1.925e-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
typei nt eger if itsvaluefitsintypei nt eger (32 bits); otherwiseit ispresumed to betypebi gi nt if
itsvaluefitsin type bi gi nt (64 bits); otherwiseit is taken to be type numrer i ¢. Constants that contain
decimal points and/or exponents are always initially presumed to be type numer i c.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most casesthe constant will be automatically coerced to the most appropriate type depending
on context. When necessary, you can force a numeric value to be interpreted as a specific data type by
casting it. For example, you can force a numeric value to be treated astyper eal (f | oat 4) by writing:

REAL '1.23" -- string style
1.23:: REAL -- PostgreSQL (historical) style

These are actually just specia cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type 'string'
"string' ::type
CAST ('string' AS type)

The string constant's text is passed to the input conversion routine for thetype called t ype. The result is
a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to the
type the constant must be (for example, when it is assigned directly to a table column), in which case it
isautomatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify atype coercion using a function-like syntax:

41

SQL Syntax

4.1.3.

4.1.4.

typenane ('string')
but not al type names can be used in this way; see Section 4.2.9 for details.

The: :, CAST(), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, thet ype ' stri ng’
syntax can only be used to specify the type of asimple literal constant. Another restriction on thet ype
"string' syntax isthat it does not work for array types; use: : or CAST() to specify the type of an
array constant.

The CAST() syntax conformsto SQL. Thet ype ' string' syntax isageneralization of the standard:
SQL specifies this syntax only for a few data types, but PostgreSQL allows it for all types. The syntax
with: : ishistorical PostgreSQL usage, asis the function-call syntax.

Operators

An operator name is a sequence of up to NAVMEDATAL EN-1 (63 by default) characters from the following
list:

bR <>z~ @HW%NE | ?

There are afew restrictions on operator names, however:

e -- and/* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

* A multiple-character operator name cannot end in + or -, unless the name also contains at least one
of these characters:

~1@#%N& | ?

For example, @ isan allowed operator name, but * - isnot. Thisrestriction allows PostgreSQL to parse
SQL -compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usualy need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a left unary operator named
@ you cannot write X* @Y; you must write X* @Y to ensure that PostgreSQL reads it as two operator
names not one.

Special Characters

Some charactersthat are not alphanumeric have aspecial meaning that is different from being an operator.
Details on the usage can be found at the location where the respective syntax element is described. This
section only exists to advise the existence and summarize the purposes of these characters.

» A dollar sign ($) followed by digitsis used to represent a positional parameter in the body of afunction
definition or a prepared statement. In other contexts the dollar sign can be part of an identifier or a
dollar-quoted string constant.

» Parentheses(()) have their usual meaning to group expressions and enforce precedence. In some cases
parentheses are required as part of the fixed syntax of a particular SQL command.

» Brackets ([]) are used to select the elements of an array. See Section 8.15 for more information on
arrays.

42

SQL Syntax

4.1.5.

4.1.6.

e Commas (,) are used in some syntactical constructs to separate the elements of alist.

» Thesemicolon (;) terminates an SQL command. It cannot appear anywhere within acommand, except
within a string constant or quoted identifier.

* Thecolon (:) isused to select “slices’ from arrays. (See Section 8.15.) In certain SQL dialects (such
as Embedded SQL), the colon is used to prefix variable names.

» Theasterisk (*) isused in some contextsto denote all thefields of atable row or compositevalue. It also
has a special meaning when used as the argument of an aggregate function, namely that the aggregate
does not require any explicit parameter.

» Theperiod (.) isused in numeric constants, and to separate schema, table, and column names.

Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of the
ling, e.g.:
-- This is a standard SQ. conment

Alternatively, C-style block comments can be used:

/[* multiline coment
* with nesting: /* nested block coment */
*/

where the comment beginswith/ * and extends to the matching occurrence of */ . These block comments
nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks of code
that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

Operator Precedence

Table 4.2 shows the precedence and associativity of the operators in PostgreSQL. Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is hard-
wired into the parser.

Y ou will sometimes need to add parentheses when using combinations of binary and unary operators. For
instance:
SELECT 5! - 6;

will be parsed as:

SELECT 5! (- 6);

because the parser has no idea— until it istoo late — that ! is defined as a postfix operator, not an infix
one. To get the desired behavior in this case, you must write:

43

SQL Syntax

SELECT (5 !) - 6;

Thisisthe price one pays for extensibility.

Table 4.2. Operator Precedence (highest to lowest)

Operator/Element Associativity Description
| eft table/column name separator
| eft PostgreSQL -style typecast
[1] | eft array element selection
+ - right unary plus, unary minus
n | eft exponentiation
*| % | eft multiplication, division, modulo
+ - | eft addition, subtraction
(any other operator) | eft all other native and user-defined
operators
BETWEEN IN LIKE ILIKE range containment, set
SI'M LAR membership, string matching
<>=<=>=<> comparison operators
I ST SNULL NOTNULL IS TRUE, IS FALSE IS
NULL, I S DI STINCT FROM
etc
NOT right logical negation
AND | eft logical conjunction
R | eft logical digunction

Note that the operator precedence rules also apply to user-defined operators that have the same names as
the built-in operators mentioned above. For example, if you define a“+" operator for some custom data
type it will have the same precedence as the built-in “+" operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for examplein:

SELECT 3 OPERATOR(pg_catal og. +) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4.2 for “any other
operator”. Thisistrue no matter which specific operator appears inside OPERATOR() .

Note

PostgreSQL versions before 9.5 used dightly different operator precedence rules. In particular,
<= >= and <> used to be treated as generic operators; | S tests used to have higher priority; and
NOT BETWEEN and related constructs acted inconsistently, being taken in some cases as having
the precedence of NOT rather than BETVEEEN. These rules were changed for better compliance
with the SQL standard and to reduce confusion from inconsistent treatment of logically equivalent
constructs. In most cases, these changes will result in no behaviora change, or perhaps in “no
such operator” failures which can be resolved by adding parentheses. However there are corner
cases in which a query might change behavior without any parsing error being reported. If you

44

SQL Syntax

are concerned about whether these changes have silently broken something, you can test your
application with the configuration parameter operator_precedence warning turned on to seeif any
warnings are logged.

4.2. Value Expressions

4.2.1.

Vaue expressions are used in avariety of contexts, such asin the target list of the SELECT command, as
new columnvaluesinl NSERT or UPDATE, or in search conditionsin anumber of commands. Theresult of
avalueexpressionissometimescalled ascalar, to distinguish it from the result of atable expression (which
is atable). Vaue expressions are therefore also called scalar expressions (or even simply expressions).
The expression syntax alows the calculation of values from primitive parts using arithmetic, logical, set,
and other operations.

A value expression is one of the following:

* A constant or literal value

* A column reference

» A positional parameter reference, in the body of afunction definition or prepared statement

A subscripted expression

» A field selection expression

» An operator invocation

» A function call

» An aggregate expression

» A window function call

* A typecast

* A collation expression

* A scalar subquery

* An array constructor

* A row constructor

» Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do not
follow any general syntax rules. These generally have the semantics of a function or operator and are

explained in the appropriate location in Chapter 9. An exampleisthel S NULL clause.

We have aready discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

Column References

45

SQL Syntax

4.2.2.

4.2.3.

A column can be referenced in the form:

correl ati on. col umnane

correl ati on isthe name of atable (possibly qualified with a schema name), or an dias for a table
defined by means of a FROMclause. The correlation name and separating dot can be omitted if the column
name is unique across all the tables being used in the current query. (See also Chapter 7.)

Positional Parameters

A positional parameter referenceisused toindicate avaluethat is supplied externally to an SQL statement.
Parametersare used in SQL function definitionsand in prepared queries. Some client libraries also support
specifying data values separately from the SQL command string, in which case parameters are used to
refer to the out-of-line data values. The form of a parameter referenceis:

$nunber

For example, consider the definition of afunction, dept , as:

CREATE FUNCTI ON dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the $1 references the value of the first function argument whenever the function is invoked.

Subscripts

If an expression yields avalue of an array type, then a specific element of the array value can be extracted
by writing
expressi on[subscri pt]

or multiple adjacent elements (an “array slice”) can be extracted by writing

expressi on[| ower _subscri pt: upper_subscri pt]

(Here, the brackets[] are meant to appear literally.) Each subscri pt isitself an expression, which
will be rounded to the nearest integer value.

In general the array expr essi on must be parenthesized, but the parentheses can be omitted when the
expression to be subscripted is just a column reference or positional parameter. Also, multiple subscripts
can be concatenated when the original array is multidimensional. For example:

nmyt abl e. arraycol umJ 4]

nmyt abl e. two_d_col umm[17] [34]
$1[10: 42]

(arrayfunction(a, b))[42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

46

SQL Syntax

4.2.4.

4.2.5.

4.2.6.

Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression. fiel dnane

In general the row expr essi on must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

nmyt abl e. mycol um
$1. somecol um
(rowfunction(a,b)).col3

(Thus, a qualified column reference is actualy just a specia case of the field selection syntax.) An
important specia case is extracting afield from atable column that is of a composite type:

(compositecol).sonefield
(mmyt abl e. conmposi tecol). sonefield

The parentheses are required here to show that conposi t ecol isacolumn name not a table name, or
that myt abl e is atable name not a schema name in the second case.

You can ask for al fields of acomposite value by writing . *:

(conpositecol).*

This notation behaves differently depending on context; see Section 8.16.5 for details.

Operator Invocations

There are three possible syntaxes for an operator invocation:

expr essi on oper at or expr essi on (binary infix operator)
oper at or expr essi on (unary prefix operator)
expr essi on oper at or (unary postfix operator)

where the oper at or token follows the syntax rules of Section 4.1.3, or is one of the key words AND,
OR, and NOT, or isa qualified operator name in the form:
OPERATOR(schenm. oper at or nane)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

Function Calls

The syntax for afunction call isthe name of afunction (possibly qualified with a schemaname), followed
by its argument list enclosed in parentheses:

47

SQL Syntax

4.2.7.

function_nane ([expression [, expression ...]])

For example, the following computes the square root of 2;

sqrt(2)
The list of built-in functionsisin Chapter 9. Other functions can be added by the user.

When issuing queries in a database where some users mistrust other users, observe security precautions
from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

Note

A function that takes a single argument of composite type can optionaly be called using field-
selection syntax, and conversely field selection can be written in functional style. That is, the
notationscol (tabl e) andt abl e. col areinterchangeable. Thisbehaviorisnot SQL-standard
but is provided in PostgreSQL because it allows use of functions to emulate “computed fields’.
For more information see Section 8.16.5.

Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected by a
guery. An aggregate function reduces multiple inputs to a single output value, such as the sum or average
of the inputs. The syntax of an aggregate expression is one of the following:

aggregate _nane (expression [, ...] [order_by clause]) [FILTER
(WHERE filter_clause)]

aggregate _nane (ALL expression [, ...] [order_by clause])

[FILTER (WHERE filter_clause)]

aggregate_nane (DI STINCT expression [, ...] [order_by clause])

[FILTER (WHERE filter_clause)]
aggregate_name (*) [FILTER (WHERE filter_clause)]
aggregate nane ([expression [, ... 1]) WTH N GROUP
(order_by clause) [FILTER (WHERE filter_clause)]

whereaggr egat e_narme isapreviously defined aggregate (possibly qualified with aschemaname) and
expr essi on isany value expression that does not itself contain an aggregate expression or a window
function call. The optional or der _by_cl ause andfi |l t er _cl ause are described below.

Thefirst form of aggregate expression invokes the aggregate once for each input row. The second formis
the same asthefirst, since ALL isthe default. The third form invokes the aggregate once for each distinct
value of the expression (or distinct set of values, for multiple expressions) found in the input rows. The
fourth form invokes the aggregate once for each input row; since no particular input value is specified,
it is generally only useful for the count (*) aggregate function. The last form is used with ordered-set
aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s) yield
null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in aggregates.

48

SQL Syntax

For example, count (*) yieldsthe total number of input rows; count (f 1) yieldsthe number of input
rowsinwhichf 1 isnon-null, sincecount ignoresnulls;andcount (di sti nct f1) yieldsthenumber
of distinct non-null valuesof f 1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases
this does not matter; for example, ni n produces the same result no matter what order it receives
the inputs in. However, some aggregate functions (such as array_agg and stri ng_agg) produce
results that depend on the ordering of the input rows. When using such an aggregate, the optional
order by _cl ause can be used to specify the desired ordering. The or der _by_cl ause has the
same syntax asfor aquery-level ORDER BY clause, asdescribed in Section 7.5, except that its expressions
are aways just expressions and cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROM t abl e;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after all
the aggregate arguments. For example, write this:

SELECT string agg(a, ',' ORDER BY a) FROMtabl e;
not this:
SELECT string agg(a ORDER BY a, ',') FROMtable; -- incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with two
ORDER BY keys (the second one being rather useless sinceit's a constant).

If DI STI NCT is specified in addition to an or der _by_cl ause, then all the ORDER BY expressions
must match regular arguments of the aggregate; that is, you cannot sort on an expression that isnot included
inthe DI STI NCT list.

Note

The ahility to specify both DI STI NCT and ORDER BY in an aggregate function is a PostgreSQL
extension.

Placing ORDER BY within the aggregate's regular argument list, as described so far, is used when ordering
the input rows for general-purpose and statistical aggregates, for which ordering is optional. There is
a subclass of aggregate functions called ordered-set aggregates for which an or der _by_cl ause is
required, usually because the aggregate's computation isonly sensiblein terms of a specific ordering of its
input rows. Typical examples of ordered-set aggregates include rank and percentile calculations. For an
ordered-set aggregate, the or der _by cl ause iswritteninside W THIN GROUP (.. .), asshown
inthefinal syntax alternative above. The expressionsintheor der by cl ause are evaluated once per
input row just like regular aggregate arguments, sorted as per the or der _by _cl ause's requirements,
and fed to the aggregate function as input arguments. (Thisis unlike the case for anon-W THI N GROUP
order by cl ause, which is not treated as argument(s) to the aggregate function.) The argument
expressions preceding W THI N GROUP, if any, are called direct arguments to distinguish them from
the aggregated argumentslisted intheor der _by_cl ause. Unlikeregular aggregate arguments, direct
arguments are evaluated only once per aggregate call, not once per input row. This means that they can
contain variables only if those variables are grouped by GROUP BY; this restriction is the same as if the
direct arguments were not inside an aggregate expression at all. Direct arguments are typically used for

49

SQL Syntax

4.2.8.

things like percentile fractions, which only make sense as a single value per aggregation calculation. The
direct argument list can be empty; in this case, write just () not (*) . (PostgreSQL will actually accept
either spelling, but only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is:

SELECT percentile_cont(0.5) WTH N GROUP (ORDER BY incone) FROM
househol ds;
percentil e_cont

which obtains the 50th percentile, or median, value of the i ncome column from table househol ds.
Here, 0. 5 isadirect argument; it would make no sense for the percentile fraction to be a value varying
across rows.

If FI LTER s specified, then only the input rows for which thefi | t er _cl ause evaluatesto true are
fed to the aggregate function; other rows are discarded. For example:

SELECT

count (*) AS unfiltered,

count (*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered

(1 row

The predefined aggregate functions are described in Section 9.20. Other aggregate functions can be added
by the user.

An aggregate expression can only appear in the result list or HAVI NG clause of a SELECT command.
It is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before the
results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.22), the aggregate
isnormally evaluated over the rows of the subquery. But an exception occurs if the aggregate's arguments
(and filter_cl ause if any) contain only outer-level variables: the aggregate then belongs to the
nearest such outer level, and is evaluated over the rows of that query. The aggregate expression asawhole
is then an outer reference for the subquery it appears in, and acts as a constant over any one evaluation
of that subquery. The restriction about appearing only in the result list or HAVI NG clause applies with
respect to the query level that the aggregate belongs to.

Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of the
rows selected by a query. Unlike non-window aggregate calls, thisis not tied to grouping of the selected
rows into a single output row — each row remains separate in the query output. However the window
function has accessto al the rows that would be part of the current row's group according to the grouping
specification (PARTI TI ON BY list) of the window function call. The syntax of a window function call
is one of the following:

50

SQL Syntax

function_nane ([expression [, expression ...]]) [FILTER
(WHERE filter_clause)] OVER wi ndow_nane
function_nane ([expression [, expression ...]]) [FILTER

(WHERE filter_clause)] OVER (wi ndow definition)
function_nane (*) [FILTER (WHERE filter_cl ause)]
OVER wi ndow_nane
function_nane (*) [FILTER (WHERE filter_clause)] OVER
(wi ndow definition)

wherewi ndow_def i ni ti on hasthe syntax

[existing_w ndow nane]

[PARTITION BY expression [, ...]]

[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST
| LAST} 1 [, ...11]

[frane_cl ause]

The optiona f r ame_cl ause can be one of

{ RANGE | RON5 | GROUPS } frane_start [frame_exclusion]
{ RANGE | ROAS | GROUPS } BETVEEN frane_start AND frane_end
[frane_exclusion]

wheref rame_start andf r ame_end can be one of

UNBOUNDED PRECEDI NG
of f set PRECEDI NG
CURRENT ROW

of fset FOLLOW NG
UNBOUNDED FOLLOW NG

andf r ame_excl usi on can be one of

EXCLUDE CURRENT ROW
EXCLUDE GRCUP
EXCLUDE TI ES
EXCLUDE NO OTHERS

Here, expr essi on represents any value expression that does not itself contain window function calls.

wi ndow_nare is areference to a named window specification defined in the query's W NDOWclause.
Alternatively, afull wi ndow_def i ni ti on can be given within parentheses, using the same syntax as
for defining anamed window in the W NDOWclause; see the SELECT reference page for details. It'sworth
pointing out that OVER wnarme is not exactly equivalent to OVER (wnanme ...); thelatter implies
copying and modifying the window definition, and will berejected if the referenced window specification
includes aframe clause.

The PARTI TI ON BY clause groups the rows of the query into partitions, which are processed separately
by the window function. PARTI TI ON BY works similarly to a query-level GROUP BY clause, except
that its expressions are always just expressions and cannot be output-column names or numbers. Without
PARTI Tl ON BY, all rows produced by the query are treated as a single partition. The ORDER BY clause
determines the order in which the rows of a partition are processed by the window function. It works

51

SQL Syntax

similarly to a query-level ORDER BY clause, but likewise cannot use output-column names or numbers.
Without ORDER BY, rows are processed in an unspecified order.

Thefranme_cl ause specifies the set of rows constituting the window frame, which is a subset of the
current partition, for those window functions that act on the frame instead of the whole partition. The set
of rows in the frame can vary depending on which row is the current row. The frame can be specified in
RANGE, ROWS or GROUPS mode; in each case, it runsfromtheframe_st art tothefrane_end. If
franme_end is omitted, the end defaults to CURRENT ROW

A frane_start of UNBOUNDED PRECEDI NG means that the frame starts with the first row of the
partition, and similarly af r ame_end of UNBOUNDED FOLLOW NG means that the frame ends with
the last row of the partition.

In RANGE or GROUPS mode, af r ane_st art of CURRENT ROWmeansthe frame startswith the current
row's first peer row (arow that the window's ORDER BY clause sorts as equivalent to the current row),
while af ranme_end of CURRENT ROWmMmeans the frame ends with the current row's last peer row. In
ROWS mode, CURRENT ROWSsimply means the current row.

In the of f set PRECEDI NG and of f set FOLLOW NG frame options, the of f set must be an
expression not containing any variables, aggregate functions, or window functions. The meaning of the
of f set depends on the frame mode:

* In ROAE mode, the of f set must yield anon-null, non-negative integer, and the option means that the
frame starts or ends the specified number of rows before or after the current row.

* InGROUPS mode, the of f set again must yield anon-null, non-negative integer, and the option means
that the frame starts or ends the specified number of peer groups before or after the current row's peer
group, where apeer group is a set of rowsthat are equivalent in the ORDER BY ordering. (There must
be an ORDER BY clause in the window definition to use GROUPS mode.)

* In RANGE mode, these options require that the ORDER BY clause specify exactly one column. The
of f set specifies the maximum difference between the value of that column in the current row and
its value in preceding or following rows of the frame. The data type of the of f set expression varies
depending on the data type of the ordering column. For numeric ordering columnsit istypically of the
same type as the ordering column, but for datetime ordering columnsitisani nt er val . For example,
if the ordering columnisof typedat e ort i nest anp, one could write RANGE BETWEEN ' 1 day'
PRECEDI NG AND ' 10 days' FOLLOW NG Theof f set isstill required to be non-null and non-
negative, though the meaning of “non-negative” depends on its data type.

In any case, the distance to the end of the frame is limited by the distance to the end of the partition, so
that for rows near the partition ends the frame might contain fewer rows than el sewhere.

Notice that in both ROAS and GROUPS mode, 0 PRECEDI NGand 0 FOLLOW NG are equivalent to
CURRENT ROW This normally holds in RANGE mode as well, for an appropriate data-type-specific
meaning of “zero”.

Thef r ame_excl usi on option allows rows around the current row to be excluded from the frame, even
if they would be included according to the frame start and frame end options. EXCLUDE CURRENT ROW
excludes the current row from the frame. EXCLUDE GROUP excludes the current row and its ordering
peers from the frame. EXCLUDE TI ES excludes any peers of the current row from the frame, but not
the current row itself. EXCLUDE NO OTHERS simply specifies explicitly the default behavior of not
excluding the current row or its peers.

The default framing option is RANGE UNBOUNDED PRECEDI NG, which is the same as RANGE
BETVEEN UNBOUNDED PRECEDI NG AND CURRENT ROW With ORDER BY, this sets the frame
to be all rows from the partition start up through the current row's last ORDER BY peer. Without ORDER

52

SQL Syntax

4.2.9.

BY, this means all rows of the partition are included in the window frame, since all rows become peers
of the current row.

Restrictions are that f rane_st art cannot be UNBOUNDED FOLLOW NG, frane_end cannot be
UNBOUNDED PRECEDI NG, and the f r ane_end choice cannot appear earlier in the above list of
frame_start andfrane_end optionsthanthef rane_st art choice does— for example RANGE
BETVWEEN CURRENT ROW AND of fset PRECEDI NGis not alowed. But, for example, ROAS
BETWEEN 7 PRECEDI NG AND 8 PRECEDI NGisallowed, eventhough it would never select any rows.

If FI LTER is specified, then only the input rows for whichthefi | t er _cl ause evaluates to true are
fed to the window function; other rows are discarded. Only window functions that are aggregates accept
aFl LTER clause.

The built-in window functions are described in Table 9.60. Other window functions can be added by the
user. Also, any built-in or user-defined general-purpose or statistical aggregate can be used as a window
function. (Ordered-set and hypothetical-set aggregates cannot presently be used as window functions.)

The syntaxes using * are used for calling parameter-less aggregate functions as window functions, for
examplecount (*) OVER (PARTITION BY x ORDER BY y). Theasterisk (*) is customarily
not used for window-specific functions. Window-specific functions do not allow DI STI NCT or ORDER
BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5, Section 9.21, and Section 7.2.5.

Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression::type

The CAST syntax conforms to SQL ; the syntax with : : ishistorical PostgreSQL usage.

When acast is applied to avalue expression of aknown type, it represents arun-time type conversion. The
cast will succeed only if a suitable type conversion operation has been defined. Notice that thisis subtly
different from the use of casts with constants, as shownin Section 4.1.2.7. A cast applied to an unadorned
string literal representstheinitial assignment of atypeto aliteral constant value, and so it will succeed for
any type (if the contents of the string literal are acceptable input syntax for the data type).

An explicit type cast can usually be omitted if there is no ambiguity asto the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply a
type cast in such cases. However, automatic casting is only done for casts that are marked “OK to apply
implicitly” inthe system catal ogs. Other casts must beinvoked with explicit casting syntax. Thisrestriction
isintended to prevent surprising conversions from being applied silently.

It is also possible to specify atype cast using a function-like syntax:

typenane (expression)

However, this only works for types whose names are also valid as function names. For example, doubl e
pr eci si on cannot be used this way, but the equivalent f | oat 8 can. Also, the namesi nt er val ,

53

SQL Syntax

time,andti mest anp can only be used in this fashion if they are double-quoted, because of syntactic
conflicts. Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably
be avoided.

Note

The function-like syntax isin fact just afunction call. When one of the two standard cast syntaxes
is used to do arun-time conversion, it will internally invoke a registered function to perform the
conversion. By convention, these conversion functions have the same name as their output type,
and thus the “function-like syntax” is nothing more than a direct invocation of the underlying
conversion function. Obvioudly, this is not something that a portable application should rely on.
For further details see CREATE CAST.

4.2.10. Collation Expressions

The COLLATE clause overridesthe collation of an expression. It isappended to the expressionit appliesto:

expr COLLATE collation

where col | ati on is a possibly schema-qualified identifier. The COLLATE clause binds tighter than
operators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved in the expression, or it defaults to the default collation of the database if no column isinvolved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause,
for example:

SELECT a, b, ¢ FROMtbl WHERE ... ORDER BY a COLLATE "C';

and overriding the collation of afunction or operator call that has local e-sensitive results, for example:

SELECT * FROM tbl WHERE a > 'foo' COLLATE "C';

Notethat in thelatter case the COLLATE clauseis attached to an input argument of the operator we wish to
affect. It doesn't matter which argument of the operator or function call the COLLATE clauseis attached to,
becausethe collation that isapplied by the operator or function isderived by considering al arguments, and
an explicit COLLATE clause will override the collations of all other arguments. (Attaching non-matching
COLLATE clauses to more than one argument, however, is an error. For more details see Section 23.2.)
Thus, this gives the same result as the previous example:

SELECT * FROM tbl WHERE a COLLATE "C' > 'foo';

But thisisan error:

SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C';

54

SQL Syntax

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable data
typebool ean.

4.2.11. Scalar Subqueries

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and the
single returned value is used in the surrounding value expression. It is an error to use a query that returns
more than one row or more than one column as a scalar subquery. (But if, during a particular execution,
the subquery returns no rows, there is no error; the scalar result is taken to be null.) The subquery can
refer to variables from the surrounding query, which will act as constants during any one evaluation of the
subquery. See also Section 9.22 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT nane, (SELECT max(pop) FROM cities WHERE cities.state =
st at es. nane)
FROM st at es;

4.2.12. Array Constructors

An array constructor is an expression that builds an array value using values for its member elements. A
simple array constructor consists of the key word ARRAY, a left square bracket [, alist of expressions
(separated by commas) for the array element values, and finally aright square bracket] . For example:

SELECT ARRAY[1, 2, 3+4];
array

By default, the array element type is the common type of the member expressions, determined using the
samerulesasfor UNI ONor CASE constructs (see Section 10.5). Y ou can override thisby explicitly casting
the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];
array

This has the same effect as casting each expression to the array element type individualy. For more on
casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. Intheinner constructors, the key
word ARRAY can be omitted. For example, these produce the same resullt:

SELECT ARRAY[ARRAY[1, 2], ARRAY[3, 4]];
array

55

SQL Syntax

{{1,2},{3,4}}
(1 row

SELECT ARRAY[[1,2],[3,4]];
array

{{1,2},{3,4}}
(1 row

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce sub-
arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates automatically
to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr(f1 int[], f2 int[]);
| NSERT | NTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]]);

SELECT ARRAY[f1, f2, '{{9,10},{11,12}} ::int[]] FROMarr
array

{{{1,2},{3,4}},{{5,6},{7, 8} ,{{9,10},{11,12}}}
(1 row

You can construct an empty array, but since it's impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer[];
array

{}
(1 row

It is also possible to construct an array from the results of a subquery. In this form, the array constructor
iswritten with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For example:

SELECT ARRAY(SELECT oi d FROM pg_proc WHERE pronanme LIKE 'bytea%);
array

{2011, 1954, 1948, 1952, 1951, 1244, 1950, 2005, 1949, 1953, 2006, 31, 2412, 2413}
(1 row)

SELECT ARRAY(SELECT ARRAY[i, i*2] FROM generate series(1,5) AS a(i));
array

{{1,2},{2,4},{3,6},{4,8},{5,10}}
(1 row

The subquery must return a single column. If the subquery's output column is of a non-array type, the
resulting one-dimensional array will have an element for each row in the subquery result, with an element

56

SQL Syntax

type matching that of the subquery's output column. If the subquery's output column is of an array type,
the result will be an array of the same type but one higher dimension; in this case al the subquery rows
must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARRAY aways begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) using values
for its member fields. A row constructor consists of the key word ROW a left parenthesis, zero or more
expressions (separated by commas) for the row field values, and finally aright parenthesis. For example:

SELECT RON1,2.5,'this is a test');
The key word ROWis optional when there is more than one expression in the list.
A row constructor can include the syntax r owal ue. *, which will be expanded to alist of the elements

of the row value, just as occurs when the . * syntax is used at the top level of a SELECT list (see
Section 8.16.5). For example, if tablet has columnsf 1 and f 2, these are the same;

SELECT ROW(t.*, 42) FROMt;
SELECT ROWt.f1, t.f2, 42) FROMt;

Note

Before PostgreSQL 8.2, the . * syntax was not expanded in row constructors, so that writing
ROWNt.*, 42) created atwo-field row whose first field was another row value. The new
behavior is usually more useful. If you need the old behavior of nested row values, write the inner
row value without . *, for instance RONt, 42).

By default, the value created by a ROWNexpression is of an anonymous record type. If necessary, it can be
cast to anamed composite type— either the row type of atable, or acomposite type created with CREATE
TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE nytable(fl1 int, f2 float, f3 text);

CREATE FUNCTI ON get f 1(nmytabl e) RETURNS int AS ' SELECT $1.f1' LANGUAGE
SQL;

-- No cast needed since only one getfl() exists
SELECT getf1(RON1,2.5,'this is a test'));
getfl

CREATE TYPE nyrowype AS (f1 int, f2 text, f3 nuneric);

57

SQL Syntax

CREATE FUNCTI ON get f 1(myr owt ype) RETURNS int AS ' SELECT $1.f1'
LANGUAGE SQL;

-- Now we need a cast to indicate which function to call:
SELECT getf1(RON1,2.5,'this is a test'));
ERROR: function getfl(record) is not unique

SELECT getf1(RON1,2.5,'this is a test')::mytable);
getfl

SELECT getf1(CAST(ROW11,'this is a test',2.5) AS nyrowtype));
getfl

11
(1 row

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two row
valuesortestarow withI S NULL or I S NOT NULL, for example:

SELECT RON1,2.5,'this is a test') = RON1, 3, 'not the sane');
SELECT RONtable.*) IS NULL FROM table; -- detect all-null rows

For more detail see Section 9.23. Row constructors can also be used in connection with subqueries, as
discussed in Section 9.22.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressionsis not defined. In particular, theinputs of an operator or function
are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR sonefunc();

then somef unc() would (probably) not be called at all. The same would be the case if one wrote:

SELECT sonefunc() OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found in
some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVI NG clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(AND/OR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws of
Boolean algebra.

58

SQL Syntax

When it is essential to force evaluation order, a CASE construct (see Section 9.17) can be used. For
example, thisis an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But thisis safe:
SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE fal se END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done when
necessary. (In this particular example, it would be better to sidestep the problem by writingy > 1. 5*x
instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is that
it does not prevent early evaluation of constant subexpressions. As described in Section 37.7, functions
and operators marked | MMUTABLE can be evaluated when the query is planned rather than when it is
executed. Thus for example

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROMt ab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant
subexpression, even if every row inthetablehasx > 0 so that the ELSE arm would never be entered
at run time.

While that particular example might seem silly, related cases that don't obviously involve constants can
occur in queries executed within functions, since the values of function arguments and local variables
can be inserted into queries as constants for planning purposes. Within PL/pgSQL functions, for example,
using an | F-THEN-EL SE statement to protect a risky computation is much safer than just nesting it in a
CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate expression
contained within it, because aggregate expressions are computed before other expressions in a SELECT
list or HAVI NGclause are considered. For example, the following query can cause a division-by-zero error
despite seemingly having protected against it:

SELECT CASE WHEN mi n(enpl oyees) > 0
THEN avg(expenses / enpl oyees)
END
FROM depart ment s;

Them n() andavg() aggregates are computed concurrently over all the input rows, so if any row has
enpl oyees equal to zero, the division-by-zero error will occur before there is any opportunity to test
the result of mi n() . Instead, use a WHERE or FI LTER clause to prevent problematic input rows from
reaching an aggregate function in the first place.

4.3. Calling Functions

PostgreSQL allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functionsthat have alarge number of parameters, sinceit
makes the associations between parameters and actual arguments more explicit and reliable. In positional
notation, a function call is written with its argument values in the same order as they are defined in the
function declaration. In named notation, the arguments are matched to the function parameters by name

59

SQL Syntax

4.3.1.

and can be written in any order. For each notation, also consider the effect of function argument types,
documented in Section 10.3.

In either notation, parameters that have default values given in the function declaration need not be written
inthecall at all. But thisis particularly useful in named notation, since any combination of parameters can
be omitted; while in positional notation parameters can only be omitted from right to left.

PostgreSQL also supports mixed notation, which combines positional and named notation. In this case,
positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function
definition:

CREATE FUNCTI ON concat | ower _or _upper(a text, b text, uppercase
bool ean DEFAULT fal se)
RETURNS t ext
AS
$$
SELECT CASE
WHEN $3 THEN UPPER($1 || ' ' || $2)
ELSE LONER(S$1 || " " || $2)
END;
$$
LANGUAGE SQL | MMUTABLE STRI CT;

Function concat _| ower _or _upper has two mandatory parameters, a and b. Additionally there is
one optional parameter upper case which defaultstof al se. Thea and b inputs will be concatenated,
and forced to either upper or lower case depending on the upper case parameter. The remaining details
of thisfunction definition are not important here (see Chapter 37 for more information).

Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL. An
exampleis:

SELECT concat | ower _or_upper('Hello', "Wrld, true);
concat _| ower _or _upper

HELLO WORLD
(1 row)

All arguments are specified in order. The result is upper case since upper case is specified ast r ue.
Another exampleis:

SELECT concat | ower _or_upper (' Hello', '"Wrld');
concat _| ower _or _upper

hello world

(1 row

Here, the upper case parameter is omitted, so it receivesits default value of f al se, resulting in lower
case output. In positional notation, arguments can be omitted from right to left solong asthey have defaults.

60

SQL Syntax

4.3.2.

4.3.3.

Using Named Notation

In named notation, each argument's nameis specified using => to separateit from the argument expression.
For example:

SELECT concat | ower _or_upper(a => "Hello', b => "Wrld);
concat _| ower _or _upper

hello world

(1 row

Again, the argument upper case was omitted so it isset to f al se implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat | ower_or_upper(a => "Hello', b => "Wrld', uppercase =>
true);
concat _| ower _or _upper

HELLO WORLD
(1 row)

SELECT concat _| ower _or_upper(a => "Hell o', uppercase => true, b =>
"Wrld');
concat _| ower _or _upper

HELLO WORLD
(1 row)

An older syntax based on ":=" is supported for backward compatibility:

SELECT concat | ower _or_upper(a := "Hello', uppercase :=true, b :=
"World');
concat _| ower _or _upper
HELLO WORLD

(1 row

Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat _| ower _or_upper('Hello', 'Wrld', uppercase => true);
concat _| ower _or _upper

HELLO WORLD
(1 row)

In the above query, the arguments a and b are specified positionally, while upper case is specified
by name. In this example, that adds little except documentation. With a more complex function having

61

SQL Syntax

numerous parameters that have default values, named or mixed notation can save a great deal of writing
and reduce chances for error.

Note

Named and mixed call notations currently cannot be used when calling an aggregate function (but
they do work when an aggregate function is used as a window function).

62

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one's data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what datais stored in the tables.
Subsequently, we discuss how tables can be organized into schemas, and how privileges can be assigned
to tables. Finally, we will briefly look at other features that affect the data storage, such as inheritance,
table partitioning, views, functions, and triggers.

5.1. Table Basics

A tablein arelational database is much like atable on paper: It consists of rows and columns. The number
and order of the columns is fixed, and each column has a name. The number of rows is variable — it
reflects how much datais stored at a given moment. SQL does not make any guarantees about the order
of the rows in atable. When atable is read, the rows will appear in an unspecified order, unless sorting
isexplicitly requested. Thisis covered in Chapter 7. Furthermore, SQL does not assign unique identifiers
to rows, so it is possible to have several completely identical rows in atable. This is a consequence of
the mathematical model that underlies SQL but is usualy not desirable. Later in this chapter we will see
how to deal with thisissue.

Each column has a data type. The data type constrains the set of possible values that can be assigned to a
column and assigns semantics to the data stored in the column so that it can be used for computations. For
instance, a column declared to be of a numerical type will not accept arbitrary text strings, and the data
stored in such a column can be used for mathematical computations. By contrast, a column declared to be
of a character string type will accept amost any kind of data but it does not lend itself to mathematical
calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also define
their own data types. Most built-in data types have obvious names and semantics, so we defer a detailed
explanation to Chapter 8. Some of the frequently used data types are i nt eger for whole numbers,
numer i ¢ for possibly fractional numbers, t ext for character strings, dat e for dates, t i ne for time-
of-day values, and t i nest anp for values containing both date and time.

To create atable, you use the aptly named CREATE TABLE command. In this command you specify at
least a name for the new table, the names of the columns and the data type of each column. For example:

CREATE TABLE ny_first_table (
first_colum text,
second_col um i nt eger

)

This creates a table named ny_first_tabl e with two columns. The first column is named
first_col um and hasadatatype of t ext ; the second column has the name second_col um and
thetypei nt eger . The table and column names follow the identifier syntax explained in Section 4.1.1.
The type names are usually also identifiers, but there are some exceptions. Note that the column list is
comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your tables
and columns that convey what kind of datathey store. So let's ook at a more realistic example:

63

Data Definition

CREATE TABLE products (
product _no i nteger,
name text,
price nunmeric

)

(Thenurer i c type can store fractional components, as would be typical of monetary amounts.)

Tip

When you create many interrelated tables it is wise to choose a consistent naming pattern for the
tablesand columns. For instance, thereisachoice of using singular or plural nounsfor table names,
both of which are favored by some theorist or other.

Thereisalimit on how many columns a table can contain. Depending on the column types, it is between
250 and 1600. However, defining a table with anywhere near this many columns is highly unusua and
often a questionable design.

If you no longer need atable, you can remove it using the DROP TABLE command. For example:

DROP TABLE mny _first _table;
DROP TABLE products;

Attempting to drop atable that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the script
works whether or not the table exists. (If you like, you can use the DROP TABLE | F EXI STS variant
to avoid the error messages, but thisis not standard SQL.)

If you need to modify atable that already exists, see Section 5.6 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of
this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified for
some of the columns, those columnswill befilled with their respective default values. A datamanipulation
command can al so request explicitly that acolumn be set to its default value, without having to know what
that valueis. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In atable definition, default values are listed after the column data type. For example:
CREATE TABLE products (

product _no i nteger,
name text,

Data Definition

price numeric DEFAULT 9. 99
)

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for at i mest anp column to have a default of
CURRENT _TI MESTAMP, so that it gets set to the time of row insertion. Another common example is
generating a“serial number” for each row. In PostgreSQL thisistypically done by something like:

CREATE TABLE products (
product no i nteger DEFAULT nextval (' products_product _no_seq'),

)

where the next val () function supplies successive values from a sequence object (see Section 9.16).
This arrangement is sufficiently common that there's a specia shorthand for it:

CREATE TABLE products (
product _no SERI AL,

)
The SERI AL shorthand is discussed further in Section 8.1.4.

5.3. Generated Columns

A generated column is a special column that is always computed from other columns. Thus, it is for
columnswhat aview isfor tables. There are two kinds of generated columns: stored and virtual. A stored
generated column is computed when it is written (inserted or updated) and occupies storage asif it werea
normal column. A virtual generated column occupies no storage and is computed when it isread. Thus, a
virtual generated columnissimilar to aview and astored generated columnissimilar toamaterialized view
(except that it is always updated automatically). PostgreSQL currently implements only stored generated
columns.

Tocreate agenerated column, usethe GENERATED ALWAYS AS clausein CREATE TABLE, for example:

CREATE TABLE peopl e (

hei ght _cm nureri c,
hei ght _i n numeri ¢ GENERATED ALWAYS AS (height_cm/ 2.54) STORED
)

The keyword STORED must be specified to choose the stored kind of generated column. See CREATE
TABLE for more details.

A generated column cannot be written to directly. In | NSERT or UPDATE commands, a value cannot be
specified for agenerated column, but the keyword DEFAULT may be specified.

Consider the differences between a column with a default and a generated column. The column default is
evaluated once when therow isfirst inserted if no other value was provided; agenerated column is updated
whenever the row changes and cannot be overridden. A column default may not refer to other columns of
the table; a generation expression would normally do so. A column default can use volatile functions, for
exampler andon{) or functionsreferring to the current time; thisis not allowed for generated columns.

65

Data Definition

Several restrictions apply to the definition of generated columns and tables involving generated columns:

» The generation expression can only use immutable functions and cannot use subqueries or reference
anything other than the current row in any way.

» A generation expression cannot reference another generated column.
A generation expression cannot reference a system column, except t abl eoi d.
A generated column cannot have a column default or an identity definition.

* A generated column cannot be part of a partition key.

Foreign tables can have generated columns. See CREATE FOREIGN TABLE for details.

For inheritance:

« If aparent column is a generated column, a child column must also be a generated column using the
same expression. In the definition of the child column, leave off the GENERATED clause, as it will
be copied from the parent.

« In case of multiple inheritance, if one parent column is a generated column, then all parent columns
must be generated columns and with the same expression.

« |f aparent columnisnot agenerated column, achild column may be defined to be agenerated column
or not.

Additional considerations apply to the use of generated columns.

» Generated columns maintain access privileges separately from their underlying base columns. So, it
is possible to arrange it so that a particular role can read from a generated column but not from the
underlying base columns.

» Generated columns are, conceptually, updated after BEFORE triggers have run. Therefore, changes
made to base columns in a BEFORE trigger will be reflected in generated columns. But conversely, it
is not allowed to access generated columns in BEFORE triggers.

5.4. Constraints

5.4.1.

Datatypesare away to limit the kind of datathat can be stored in atable. For many applications, however,
the constraint they provideistoo coarse. For example, acolumn containing aproduct price should probably
only accept positive values. But thereis no standard datatype that accepts only positive numbers. Another
issueisthat you might want to constrain column datawith respect to other columns or rows. For example,
in atable containing product information, there should be only one row for each product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as much
control over the datain your tables as you wish. If a user attempts to store datain a column that would
violate aconstraint, an error israised. Thisapplieseven if the value came from the default value definition.

Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in a certain
column must satisfy a Boolean (truth-value) expression. For instance, to require positive product prices,
you could use:

66

Data Definition

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric CHECK (price > 0)

)

Asyou see, the constraint definition comes after the data type, just like default value definitions. Default
values and constraints can be listed in any order. A check constraint consists of the key word CHECK
followed by an expression in parentheses. The check constraint expression should involve the column thus
constrained, otherwise the constraint would not make too much sense.

Y ou can also give the constraint a separate name. This clarifies error messages and allows you to refer to
the constraint when you need to change it. The syntax is:

CREATE TABLE products (
product _no i nteger,
name text,
price numeri c CONSTRAI NT positive_price CHECK (price > 0)

)

So, to specify a named constraint, use the key word CONSTRAI NT followed by an identifier followed by
the constraint definition. (If you don't specify a constraint name in this way, the system chooses a name
for you.)

A check constraint can also refer to several columns. Say you store aregular price and adiscounted price,
and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric CHECK (price > 0),
di scounted_price nunmeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to
a particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible, since a column constraint is supposed
to refer to only the column it is attached to. (PostgreSQL doesn't enforce that rule, but you should follow
it if you want your table definitions to work with other database systems.) The above example could also
be written as:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,

67

Data Definition

CHECK (price > 0),

di scounted_price nuneric,

CHECK (di scounted_price > 0),
CHECK (price > discounted_price)

or even:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric CHECK (price > 0),
di scounted_price numeric,
CHECK (di scounted price > 0 AND price > discounted price)

)
It's amatter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (

product _no i nteger,

name text,

price nuneric,

CHECK (price > 0),

di scounted_price numeric,

CHECK (di scounted_price > 0),

CONSTRAI NT val i d_di scount CHECK (price > discounted _price)
);

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the null
value. Since most expressions will evaluate to the null value if any operand is null, they will not prevent
null valuesin the constrained columns. To ensure that a column does not contain null values, the not-null
constraint described in the next section can be used.

Note

PostgreSQL does not support CHECK constraints that reference table data other than the new or
updated row being checked. While a CHECK constraint that violates this rule may appear to work
in simple tests, it cannot guarantee that the database will not reach a state in which the constraint
condition is false (due to subsequent changes of the other row(s) involved). This would cause a
database dump and reload to fail. The reload could fail even when the complete database state
is consistent with the constraint, due to rows not being loaded in an order that will satisfy the
constraint. If possible, use UNI QUE, EXCLUDE, or FOREI GN KEY constraints to express cross-
row and cross-table restrictions.

If what you desire is a one-time check against other rows at row insertion, rather than a
continuously-maintained consistency guarantee, a custom trigger can be used to implement that.
(This approach avoids the dump/rel oad problem because pg_dump does not reinstall triggers until
after reloading data, so that the check will not be enforced during a dump/reload.)

68

Data Definition

Note

PostgreSQL assumes that CHECK constraints conditions are immutable, that is, they will always
give the same result for the same input row. This assumption is what justifies examining CHECK
constraints only when rows are inserted or updated, and not at other times. (The warning above
about not referencing other table dataisreally aspecia case of thisrestriction.)

An example of acommon way to break this assumption isto reference a user-defined functionina
CHECK expression, and then change the behavior of that function. PostgreSQL does not disallow
that, but it will not noticeif there are rowsin the table that now violate the CHECK constraint. That
would cause a subsequent database dump and reload to fail. The recommended way to handle such
achangeisto drop the constraint (using ALTER TABLE), adjust the function definition, and re-
add the constraint, thereby rechecking it against all table rows.

5.4.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product _no i nteger NOT NULL,
name text NOT NULL,
price nuneric

)

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating acheck constraint CHECK (col unm_nane |'S NOT NULL) , butin PostgreSQL
creating an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit
names to not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (
product _no i nteger NOT NULL,
name text NOT NULL,
price numeric NOT NULL CHECK (price > 0)

)
The order doesn't matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column must
be null, which would surely be useless. Instead, this simply selects the default behavior that the column
might be null. The NULL constraint is not present in the SQL standard and should not be used in portable
applications. (It was only added to PostgreSQL to be compatible with some other database systems.) Some
users, however, like it because it makes it easy to toggle the constraint in a script file. For example, you
could start with:

CREATE TABLE products (
product _no integer NULL,
name text NULL,
price nunmeric NULL

69

Data Definition

5.4.3.

)

and then insert the NOT key word where desired.

Tip

In most database designs the majority of columns should be marked not null.

Unique Constraints

Unique constraints ensure that the data contained in a column, or a group of columns, is unique among
all therowsin thetable. The syntax is:

CREATE TABLE products (
product _no i nteger UN QUE,
name text,
price nuneric

)

when written as a column constraint, and:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,

UNI QUE (product_no)

)
when written as a table constraint.
To define aunique constraint for agroup of columns, write it as atable constraint with the column names

separated by commas:

CREATE TABLE exanpl e (

a i nteger,
b integer,
c integer,

UNI QUE (a, c¢)
)

This specifies that the combination of values in the indicated columns is unique across the whole table,
though any one of the columns need not be (and ordinarily isn't) unique.

Y ou can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product _no i nteger CONSTRAI NT rust_be_different UN QUE,
name text,
price numeric

70

Data Definition

5.4.4.

)

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A unigqueness restriction covering only some rows cannot be written as a
unique constraint, but it is possible to enforce such arestriction by creating a unique partial index.

In general, aunique constraint is violated if there is more than one row in the table where the values of al
of the columns included in the constraint are equal. However, two null values are never considered equal
in this comparison. That means even in the presence of a unique constraint it is possible to store duplicate
rows that contain a null value in at least one of the constrained columns. This behavior conforms to the
SQL standard, but we have heard that other SQL databases might not follow this rule. So be careful when
developing applications that are intended to be portable.

Primary Keys

A primary key constraint indicates that a column, or group of columns, can be used as a unique identifier
for rowsin thetable. This requires that the values be both unique and not null. So, the following two table
definitions accept the same data:

CREATE TABLE products (
product _no i nteger UN QUE NOT NULL,
name text,
price nuneric

)

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nunmeric

)

Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE exampl e (

a integer,
b integer,
c integer,

PRI MARY KEY (a, c)
)

Adding aprimary key will automatically create a unique B-tree index on the column or group of columns
listed in the primary key, and will force the column(s) to be marked NOT NULL.

A table can have at most one primary key. (There can be any number of unique and not-null constraints,
which are functionally almost the same thing, but only one can beidentified asthe primary key.) Relational
database theory dictatesthat every table must have aprimary key. Thisruleisnot enforced by PostgreSQL,
but it is usually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a GUI
application that allows modifying row values probably needs to know the primary key of atable to be
able to identify rows uniquely. There are also various ways in which the database system makes use of a

71

Data Definition

5.4.5.

primary key if one has been declared; for example, the primary key defines the default target column(s)
for foreign keysreferencing its table.

Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product no integer PRI MARY KEY,
name text,
price nunmeric

)

L et's al so assume you have atable storing orders of those products. We want to ensure that the orderstable
only contains orders of products that actually exist. So we define a foreign key constraint in the orders
table that references the products table:

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products (product_no),
qgquantity integer

)

Now it is impossible to create orders with non-NULL pr oduct _no entries that do not appear in the
products table.

We say that in this situation the orderstable isthe referencing table and the productstable is the referenced
table. Similarly, there are referencing and referenced columns.

Y ou can a'so shorten the above command to:

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product no i nteger REFERENCES products,
guantity integer

)

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be written
in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (
a i nteger PRI MARY KEY,
b integer,
c integer,

72

Data Definition

FOREI GN KEY (b, c) REFERENCES ot her_table (cl, c2)
)

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

Y ou can assign your own name for aforeign key constraint, in the usual way.

A table can have more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to allow
one order to contain possibly many products (which the structure above did not allow). You could use
thistable structure:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price numeric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order _itenms (
product _no i nteger REFERENCES products,
order _id integer REFERENCES orders,
guantity integer,
PRI MARY KEY (product_no, order_id)

)

Notice that the primary key overlaps with the foreign keysin the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what if
aproduct is removed after an order is created that references it? SQL allows you to handle that as well.
Intuitively, we have afew options:

 Disalow deleting areferenced product
» Delete the orders aswell
e Something else?

To illustrate this, let's implement the following policy on the many-to-many relationship example above:
when someone wants to remove a product that is still referenced by an order (viaor der _i t ens), we
disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nuneric

)

CREATE TABLE orders (

73

Data Definition

5.4.6.

order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order _itenms (
product _no i nteger REFERENCES products ON DELETE RESTRI CT,
order _id integer REFERENCES orders ON DELETE CASCADE,
guantity integer,
PRI MARY KEY (product_no, order_id)

)

Restricting and cascading deletes are the two most common options. RESTRI CT prevents deletion of
a referenced row. NO ACTI ON means that if any referencing rows still exist when the constraint is
checked, an error is raised; this is the default behavior if you do not specify anything. (The essential
difference between these two choices is that NO ACTI ON allows the check to be deferred until later in
the transaction, whereas RESTRI CT does not.) CASCADE specifiesthat when areferenced row is deleted,
row(s) referencing it should be automatically deleted as well. There are two other options: SET NULL
and SET DEFAULT. These cause the referencing column(s) in the referencing row(s) to be set to nulls or
their default values, respectively, when the referenced row is deleted. Note that these do not excuse you
from observing any constraints. For example, if an action specifies SET DEFAULT but the default value
would not satisfy the foreign key constraint, the operation will fail.

Analogous to ON DELETE thereis also ON UPDATE which is invoked when a referenced column is
changed (updated). The possible actions are the same. In this case, CASCADE means that the updated
values of the referenced column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing columns
arenull. If MATCH FULL isadded to the foreign key declaration, areferencing row escapes satisfying the
constraint only if all its referencing columns are null (so a mix of null and non-null values is guaranteed
to fail aMATCH FULL constraint). If you don't want referencing rows to be able to avoid satisfying the
foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint. This
means that the referenced columns always have an index (the one underlying the primary key or unique
constraint); so checks on whether a referencing row has a match will be efficient. Since a DELETE of a
row from the referenced table or an UPDATE of areferenced column will require a scan of the referencing
tablefor rows matching the old value, it is often agood ideato index the referencing columnstoo. Because
thisis not aways needed, and there are many choices available on how to index, declaration of aforeign
key constraint does not automatically create an index on the referencing columns.

More information about updating and deleting dataisin Chapter 6. Also see the description of foreign key
constraint syntax in the reference documentation for CREATE TABLE.

Exclusion Constraints

Exclusion constraints ensure that if any two rows are compared on the specified columns or expressions
using the specified operators, at least one of these operator comparisons will return false or null. The
syntax is:

CREATE TABLE circles (
c circle,
EXCLUDE USI NG gist (c WTH &&)

)

74

Data Definition

Seealso CREATE TABLE ... CONSTRAI NT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the constraint
declaration.

5.5. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these names
cannot be used as names of user-defined columns. (Note that these restrictions are separate from whether
the nameisakey word or not; quoting aname will not allow you to escape these restrictions.) Y ou do not
really need to be concerned about these columns; just know they exist.

t abl eoi d

The OID of the table containing this row. This column is particularly handy for queries that select
from inheritance hierarchies (see Section 5.10), since without it, it's difficult to tell which individual
table a row came from. The t abl eoi d can be joined against the oi d column of pg_cl ass to
obtain the table name.

Xm n

The identity (transaction ID) of the inserting transaction for this row version. (A row version is an
individual state of arow; each update of arow creates a new row version for the same logical row.)

cmn
The command identifier (starting at zero) within the inserting transaction.
Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It is
possiblefor this column to be nonzeroin avisiblerow version. That usually indicatesthat the deleting
transaction hasn't committed yet, or that an attempted deletion was rolled back.

cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although thect i d can be used to
locate the row version very quickly, arow'sct i d will changeif it is updated or moved by VACUUM
FULL. Therefore ct i d is useless as a long-term row identifier. A primary key should be used to
identify logical rows.

Transaction identifiers are also 32-hit quantities. In along-lived database it is possible for transaction I1Ds
to wrap around. Thisis not afatal problem given appropriate maintenance procedures; see Chapter 24 for
details. It is unwise, however, to depend on the uniqueness of transaction 1Ds over the long term (more
than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 2% (4 billion) SQL commands
within a single transaction. In practice this limit is not a problem — note that the limit is on the number
of SQL commands, not the number of rows processed. Also, only commands that actually modify the
database contents will consume a command identifier.

75

Data Definition

5.6. Modifying Tables

5.6.1.

When you create a table and you redlize that you made a mistake, or the requirements of the application
change, you can drop the table and create it again. But thisis not a convenient option if the table is already
filled with data, or if thetableisreferenced by other database objects (for instance aforeign key constraint).
Therefore PostgreSQL provides afamily of commands to make modificationsto existing tables. Note that
thisis conceptually distinct from altering the data contained in the table: here we are interested in altering
the definition, or structure, of the table.

You can:

» Add columns

* Remove columns

» Add constraints

» Remove congtraints

» Change default values
 Change column data types
* Rename columns

* Renametables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

Adding a Column

To add a column, use acommand like:

ALTER TABLE products ADD COLUWN description text;

Thenew columnisinitially filled with whatever default valueisgiven (null if you don't specify aDEFAULT
clause).

Tip

From PostgreSQL 11, adding a column with a constant default value no longer means that each
row of the table needs to be updated when the ALTER TABLE statement is executed. Instead,
the default value will be returned the next time the row is accessed, and applied when the table is
rewritten, making the ALTER TABLE very fast even on large tables.

However, if the default valueisvolatile (e.g., cl ock_ti mest anp()) each row will need to be
updated with the value calculated at thetime ALTER TABLE is executed. To avoid a potentially
lengthy update operation, particularly if you intend tofill the column with mostly nondefault values
anyway, it may be preferable to add the column with no default, insert the correct values using
UPDATE, and then add any desired default as described below.

Y ou can a so define constraints on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMWN description text CHECK (description <>
)

76

Data Definition

5.6.2.

5.6.3.

5.6.4.

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints later (see below) after you've filled in the new column correctly.

Removing a Column

To remove a column, use acommand like:

ALTER TABLE products DROP COLUWN descri ption;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will not
silently drop that constraint. Y ou can authorize dropping everything that depends on the column by adding
CASCADE:

ALTER TABLE products DROP COLUWN descri ption CASCADE;

See Section 5.14 for a description of the general mechanism behind this.

Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> '');

ALTER TABLE products ADD CONSTRAI NT some_nanme UNI QUE (product_no);

ALTER TABLE products ADD FOREI GN KEY (product_group_i d) REFERENCES
pr oduct _gr oups;

To add a not-null constraint, which cannot be written as atable constraint, use this syntax:

ALTER TABLE products ALTER COLUWN product _no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can be
added.

Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that's easy. Otherwise the
system assigned a generated name, which you need to find out. The psgl command\ d t abl enane can
be helpful here; other interfaces might also provide away to inspect table details. Then the command is:

ALTER TABLE products DROP CONSTRAI NT sone_nane;

(If you are dealing with a generated constraint name like $2, don't forget that you'll need to double-quote
it to makeit avalid identifier.)

As with dropping a column, you need to add CASCADE if you want to drop a constraint that something
else depends on. An exampleisthat aforeign key constraint depends on aunique or primary key constraint
on the referenced column(s).

Thisworks the same for all constraint types except not-null constraints. To drop a not null constraint use:

77

Data Definition

5.6.5.

5.6.6.

5.6.7.

5.6.8.

ALTER TABLE products ALTER COLUWN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

Changing a Column's Default Value

To set anew default for a column, use acommand like:

ALTER TABLE products ALTER COLUWN price SET DEFAULT 7.77;

Note that this doesn't affect any existing rows in the table, it just changes the default for future | NSERT
commands.

To remove any default value, use:

ALTER TABLE products ALTER COLUWN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop a
default where one hadn't been defined, because the default isimplicitly the null value.

Changing a Column's Data Type

To convert acolumn to a different data type, use acommand like:

ALTER TABLE products ALTER COLUWN price TYPE nureric(10, 2);

Thiswill succeed only if each existing entry in the column can be converted to the new type by an implicit
cast. If amore complex conversion is needed, you can add a USI NG clause that specifies how to compute
the new values from the old.

PostgreSQL will attempt to convert the column's default value (if any) to the new type, as well as any
constraints that involve the column. But these conversions might fail, or might produce surprising results.
It's often best to drop any constraints on the column before atering its type, and then add back suitably
modified constraints afterwards.

Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUWN product _no TO product nunber;

Renaming a Table

To rename atable:

ALTER TABLE products RENAVE TO iterns;

5.7. Privileges

78

Data Definition

When an object iscreated, it isassigned an owner. The owner isnormally therolethat executed the creation
statement. For most kinds of objects, theinitial stateisthat only the owner (or asuperuser) can do anything
with the object. To allow other rolesto useit, privileges must be granted.

There are different kinds of privileges: SELECT, | NSERT, UPDATE, DELETE, TRUNCATE,
REFERENCES, TRl GGER, CREATE, CONNECT, TEMPCORARY, EXECUTE, and USAGE. The privileges
applicableto aparticular object vary depending on the object'stype (table, function, etc). More detail about
the meanings of these privileges appears below. The following sections and chapters will aso show you
how these privileges are used.

Theright to modify or destroy an object is always the privilege of the owner only.

An object can be assigned to anew owner with an ALTER command of the appropriate kind for the object,
for example

ALTER TABLE t abl e_nane OANER TO new_owner;

Superusers can aways do this; ordinary roles can only do it if they are both the current owner of the object
(or amember of the owning role) and a member of the new owning role.

To assign privileges, the GRANT command is used. For example, if j oe is an existing role, and
account s isan existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO j oe;
Writing ALL in place of a specific privilege grants al privileges that are relevant for the object type.

The specia “role’ name PUBLI C can be used to grant a privilege to every role on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database — for
details see Chapter 21.

To revoke aprivilege, use the fittingly named REVOKE command:

REVOKE ALL ON accounts FROM PUBLI C;

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVCKE, etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to revoke
their own ordinary privileges, for example to make a table read-only for themselves aswell as others.

Ordinarily, only the object's owner (or a superuser) can grant or revoke privileges on an object. However,
itispossibleto grant aprivilege “with grant option”, which givesthe recipient theright to grant it in turn to
others. If the grant option is subsequently revoked then all who received the privilege from that recipient
(directly or through a chain of grants) will lose the privilege. For details see the GRANT and REVOKE
reference pages.

The available privileges are:
SELECT

Allows SELECT from any column, or specific column(s), of atable, view, materialized view, or other
table-like object. Also allows use of COPY TO. This privilege is aso needed to reference existing
columnvaluesin UPDATE or DELETE. For sequences, thisprivilegealso allowsuseof thecur r val
function. For large objects, this privilege allows the object to be read.

79

Data Definition

| NSERT

Allows INSERT of anew row into atable, view, etc. Can be granted on specific column(s), in which
case only those columns may be assigned to in the | NSERT command (other columns will therefore
receive default values). Also allows use of COPY FROM.

UPDATE

Allows UPDATE of any column, or specific column(s), of a table, view, etc. (In practice, any
nontrivial UPDATE command will require SELECT privilege as well, since it must reference
table columns to determine which rows to update, and/or to compute new values for columns.)
SELECT ... FOR UPDATE and SELECT ... FOR SHARE aso require this privilege on at
least one column, in addition to the SELECT privilege. For sequences, this privilege alows use of
thenext val and set val functions. For large objects, this privilege allows writing or truncating
the object.

DELETE

Allows DELETE of arow from atable, view, etc. (In practice, any nontrivial DELETE command will
require SELECT privilege as well, since it must reference table columns to determine which rows
to delete.)

TRUNCATE
Allows TRUNCATE on atable, view, etc.
REFERENCES
Allows creation of aforeign key constraint referencing atable, or specific column(s) of atable.
TRI GGER
Allows creation of atrigger on atable, view, etc.
CREATE
For databases, allows new schemas and publications to be created within the database.

For schemas, alows new objects to be created within the schema. To rename an existing object, you
must own the object and have this privilege for the containing schema.

For tablespaces, alows tables, indexes, and temporary files to be created within the tablespace, and
allows databases to be created that have the tablespace astheir default tablespace. (Note that revoking
this privilege will not alter the placement of existing objects.)

CONNECT

Allows the grantee to connect to the database. This privilege is checked at connection startup (in
addition to checking any restrictionsimposed by pg_hba. conf).

TEMPORARY
Allows temporary tablesto be created while using the database.
EXECUTE

Allows calling afunction or procedure, including use of any operatorsthat are implemented on top of
the function. Thisisthe only type of privilege that is applicable to functions and procedures.

80

Data Definition

USAGE

For procedural languages, alows use of the language for the creation of functions in that language.
Thisisthe only type of privilege that is applicable to procedural languages.

For schemas, allows access to objects contained in the schema (assuming that the objects own
privilege requirements are also met). Essentialy this allows the grantee to “look up” objects within
the schema. Without this permission, it is still possible to see the object names, e.g., by querying
system catalogs. Also, after revoking this permission, existing sessions might have statements that
have previously performed thislookup, so thisisnot acompletely secure way to prevent object access.

For sequences, allows use of thecur r val and next val functions.

For types and domains, allows use of the type or domain in the creation of tables, functions, and other
schema objects. (Note that this privilege does not control al “usage” of the type, such asvalues of the
type appearing in queries. It only prevents objects from being created that depend on the type. The
main purpose of this privilege is controlling which users can create dependencies on a type, which
could prevent the owner from changing the type later.)

For foreign-data wrappers, allows creation of new servers using the foreign-data wrapper.

For foreign servers, allows creation of foreign tables using the server. Grantees may also create, alter,
or drop their own user mappings associated with that server.

The privileges required by other commands are listed on the reference page of the respective command.

PostgreSQL grants privileges on sometypes of objectsto PUBLI Chby default when the objects are created.
No privilegesaregranted to PUBL | Cby default on tables, table columns, sequences, foreign datawrappers,
foreign servers, large objects, schemas, or tablespaces. For other types of objects, the default privileges
granted to PUBLI C are as follows: CONNECT and TEMPORARY (create temporary tables) privileges for
databases, EXECUTE privilege for functions and procedures; and USAGE privilege for languages and data
types (including domains). The object owner can, of course, REVOKE both default and expressly granted
privileges. (For maximum security, issue the REVOKE in the same transaction that creates the object; then
there is no window in which another user can use the object.) Also, these default privilege settings can be
overridden using the ALTER DEFAULT PRIVILEGES command.

Table 5.1 showsthe one-letter abbreviationsthat are used for these privilege typesin ACL (Access Control

List) values. You will see these lettersin the output of the psgl commands listed below, or when looking
at ACL columns of system catalogs.

Table5.1. ACL Privilege Abbreviations

Privilege Abbreviation Applicable Object Types

SELECT r (“read”) LARGE OBJECT, SEQUENCE,
TABLE (and table-like objects),
table column

| NSERT a (“append”) TABLE, table column

UPDATE w (“write”) LARGE OBJECT, SEQUENCE,
TABLE, table column

DELETE d TABLE

TRUNCATE D TABLE

REFERENCES X TABLE, table column

TRI GGER t TABLE

81

Data Definition

Privilege Abbreviation Applicable Object Types

CREATE C DATABASE, SCHEMA,
TABLESPACE

CONNECT c DATABASE

TEMPORARY T DATABASE

EXECUTE X FUNCTI ON, PROCEDURE

USAGE U DOMAI N, FOREI GN DATA
WRAPPER, FOREI GN SERVER,
LANGUAGE, SCHEMA,
SEQUENCE, TYPE

Table 5.2 summarizes the privileges available for each type of SQL object, using the abbreviations shown
above. It also shows the psgl command that can be used to examine privilege settings for each object type.

Table5.2. Summary of Access Privileges

Object Type All Privileges Default PUBLI C|psgl Command
Privileges

DATABASE CTc Tc \

DOVAI N U U \ dD+

FUNCTI ON or| X X \ df +

PROCEDURE

FOREI GN DATA(U none \ dew+

VRAPPER

FOREI GN SERVER U none \ des+

LANGUAGE U U \dL+

LARGE OBJECT rw none

SCHENMA ucC none \dn+

SEQUENCE rwJ none \dp

TABLE (and table-likelar wdDxt none \dp

objects)

Table column ar wx none \dp

TABLESPACE C none \ db+

TYPE U U \dT+

The privileges that have been granted for a particular object are displayed asalist of acl i t ementries,
where each acl i t emdescribes the permissions of one grantee that have been granted by a particular
grantor. For example, cal vi n=r *w hobbes specifiesthat therolecal vi n hasthe privilege SELECT
(r) with grant option (*) as well as the non-grantable privilege UPDATE (W), both granted by the role
hobbes. If cal vi n aso has some privileges on the same object granted by a different grantor, those
would appear as aseparateacl i t ementry. An empty granteefieldinanacl i t emstandsfor PUBLI C.

As an example, suppose that user mi r i amcreates table nyt abl e and does:

GRANT SELECT ON nytabl e TO PUBLI C,

GRANT SELECT, UPDATE,

| NSERT ON nytable TO admi n;

82

Data Definition

GRANT SELECT (col 1), UPDATE (col1) ON nytable TO miriamrw,

Then psgl's\ dp command would show:

=> \dp nytable
Access privil eges

Schema | Nane | Type | Access privil eges | Col um
privil eges | Policies
-------- T T T I TRy SR
e RS
public | nmytable | table | mirianmFarwdDxt/mriamt| col 1:

+|

| | | =r/mriam +| mriam.rw=rw

mriam |

| | | admi n=arw/ mriam |
|
(1 row

If the “ Access privileges’ column is empty for a given object, it means the object has default privileges
(that is, its privileges entry in the relevant system catalog is null). Default privileges always include all
privileges for the owner, and can include some privileges for PUBLI C depending on the object type,
as explained above. The first GRANT or REVOKE on an object will instantiate the default privileges
(producing, for example, m r i amrar wdDxt / mi r i an) and then modify them per the specified request.
Similarly, entries are shown in “Column privileges’ only for columns with nondefault privileges. (Note:
for this purpose, “default privileges’ always means the built-in default privileges for the object’s type.
An object whose privileges have been affected by an ALTER DEFAULT PRI VI LEGES command will
always be shown with an explicit privilege entry that includes the effects of the ALTER.)

Notice that the owner's implicit grant options are not marked in the access privileges display. A * will
appear only when grant options have been explicitly granted to someone.

5.8. Row Security Policies

In addition to the SQL -standard privilege system available through GRANT, tables can have row security
policiesthat restrict, on aper-user basis, which rows can be returned by normal queriesor inserted, updated,
or deleted by data modification commands. This feature is also known as Row-Level Security. By defaullt,
tables do not have any palicies, so that if a user has access privileges to a table according to the SQL
privilege system, all rows within it are equally available for querying or updating.

When row security is enabled on atable (with ALTER TABLE ... ENABLE ROW LEVEL SECURITY),
all normal access to the table for selecting rows or modifying rows must be allowed by a row security
policy. (However, the table's owner istypically not subject to row security policies.) If no policy existsfor
the table, a default-deny policy is used, meaning that no rows are visible or can be modified. Operations
that apply to the whole table, such as TRUNCATE and REFERENCES, are not subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified to
apply to ALL commands, or to SELECT, | NSERT, UPDATE, or DELETE. Multiple roles can be assigned
to agiven poalicy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to apolicy, an expressionisrequired that returns
aBooleanresult. Thisexpression will be evaluated for each row prior to any conditionsor functionscoming
fromtheuser'squery. (Theonly exceptionstothisrulearel eakpr oof functions, which are guaranteed to
not leak information; the optimizer may choose to apply such functions ahead of the row-security check.)

83

Data Definition

Rows for which the expression does not return t r ue will not be processed. Separate expressions may be
specified to provide independent control over the rows which are visible and the rows which are allowed
to be modified. Policy expressions are run as part of the query and with the privileges of the user running
the query, although security-definer functions can be used to access data not available to the calling user.

Superusers and roles with the BYPASSRLS attribute always bypass the row security system when
accessing atable. Table owners normally bypass row security aswell, though atable owner can choose to
be subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to atable, is aways the privilege of the
table owner only.

Policiesare created using the CREATE POLICY command, altered usingthe ALTER POLICY command,
and dropped using the DROP POLICY command. To enable and disable row security for a given table,
use the ALTER TABLE command.

Each policy has a name and multiple policies can be defined for atable. As policies are table-specific,
each policy for atable must have a unique name. Different tables may have policies with the same name.

When multiple policies apply to agiven query, they are combined using either OR (for permissive policies,
which are the default) or using AND (for restrictive policies). Thisis similar to the rule that a given role
has the privileges of al roles that they are a member of. Permissive vs. restrictive policies are discussed
further below.

As asimple example, here is how to create a policy on theaccount relation to allow only members of
the manager s role to access rows, and only rows of their accounts:

CREATE TABLE accounts (nmanager text, company text, contact_emil
text);

ALTER TABLE accounts ENABLE ROW LEVEL SECURITY,

CREATE POLI CY account _managers ON accounts TO managers
USI NG (manager = current_user);

The policy above implicitly providesa W TH CHECK clause identical to its USI NG clause, so that the
constraint applies both to rows selected by a command (so a manager cannot SELECT, UPDATE, or
DELETE existing rows belonging to a different manager) and to rows modified by a command (so rows
belonging to a different manager cannot be created vial NSERT or UPDATE).

If noroleis specified, or the special user name PUBLI Cis used, then the policy appliesto all users onthe
system. To alow all usersto access only their own row in auser s table, asimple policy can be used:

CREATE PCLI CY user _policy ON users
USI NG (user_name = current_user);

Thisworks similarly to the previous example.
To use adifferent policy for rowsthat are being added to the table compared to those rowsthat are visible,

multiple policies can be combined. This pair of policies would allow al users to view all rows in the
user s table, but only modify their own:

CREATE POLI CY user_sel _policy ON users

84

Data Definition

FOR SELECT
USI NG (true);

CREATE PCLI CY user _nmod_policy ON users
USI NG (user_nanme = current_user);

In a SELECT command, these two policies are combined using OR, with the net effect being that all rows
can be selected. In other command types, only the second policy applies, so that the effects are the same
as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does not
remove any policies that are defined on the table; they are simply ignored. Then all rows in the table are
visible and modifiable, subject to the standard SQL privileges system.

Below isalarger example of how thisfeature can be used in production environments. The tablepasswd
emulates a Unix password file:

-- Sinmple passwd-file based exampl e
CREATE TABLE passwd (

user _nane text UNI QUE NOT NULL,
pwhash t ext,
ui d int PRI MARY KEY,
gid int NOT NULL,
real nane text NOT NULL,
hone_phone t ext,
extra_info t ext,
home_dir text NOT NULL,
shel | text NOT NULL
)
CREATE RCLE admin; -- Admi nistrator
CREATE RCLE bob; -- Normal user
CREATE ROLE alice; -- Normal user

-- Popul ate the table
| NSERT | NTO passwd VALUES

("admin', ' xxx',0,0," Admn',"'111-222-3333" ,null,"/root','/bin/dash');
| NSERT | NTO passwd VALUES

("bob',"'xxx"',1,1,"Bob',"' 123-456-7890', null,"'/honme/bob',"'/bin/zsh');
| NSERT | NTO passwd VALUES

("alice',"xxx",2,1," Alice','098-765-4321" ,null,"/home/alice','/bin/
zsh');

-- Be sure to enable row | evel security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;

-- Create policies

-- Adm nistrator can see all rows and add any rows

CREATE PCLI CY admin_all ON passwd TO admin USING (true) WTH CHECK
(true);

-- Nornmal users can view all rows

CREATE POLI CY al | _vi ew ON passwd FOR SELECT USI NG (true);

-- Normal users can update their own records, but

-- limt which shells a normal user is allowed to set

CREATE PCLI CY user _nmod ON passwd FOR UPDATE

85

Data Definition

USI NG (current _user = user_nane)
W TH CHECK (
current _user = user_nanme AND
shell IN ('/bin/bash',"/bin/sh','/bin/dash','/bin/zsh',"'/bin/
tcsh')

)

-- Allow admin all normal rights
GRANT SELECT, | NSERT, UPDATE, DELETE ON passwd TO admi n;
-- Users only get select access on public col ums
GRANT SELECT
(user _name, uid, gid, real _name, home_phone, extra_info, hone_dir,
shel 1)
ON passwd TO public;
-- Allow users to update certain col ums
GRANT UPDATE
(pwhash, real name, home_phone, extra_info, shell)
ON passwd TO public;

As with any security settings, it's important to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

-- admin can view all rows and fields
post gres=> set role admn;

SET
post gres=> t abl e passwd;
user_nane | pwhash | uid | gid | real _name | home_phone
extra_info | home_dir | shel
----------- T T T I ppup R
o m e o - - o m e e e oo - T ——
adm n | xxx | 0 | 0| Admin | 111-222-3333
| /root | /bin/dash
bob | xxx | 1] 1| Bob | 123-456-7890
| /hone/ bob | /bin/zsh
alice | xxx | 2| 1| Aice | 098-765-4321
| /hone/alice | /bin/zsh
(3 rows)

-- Test what Alice is able to do

postgres=> set role alice;

SET

post gres=> t abl e passwd;

ERROR: permi ssion denied for relation passwd

post gres=> sel ect

user _nane, real _name, home_phone, extra_i nfo, hone_dir, shell from passwd;

user_nane | real _name | honme_phone | extra_info | hone_dir |
shel |
----------- Ty
.

adm n | Admin | 111-222-3333 | | /root | /
bi n/ dash

bob | Bob | 123-456-7890 | | /home/ bob | /
bi n/ zsh

86

Data Definition

alice | Alice | 098-765-4321 | | /hone/alice | /
bi n/ zsh

(3 rows)

post gr es=> update passwd set user_nane = 'joe';

ERROR: permi ssion denied for relation passwd
-- Alice is allowed to change her own real nanme, but no others

post gr es=> update passwd set real _nane = 'Alice Doe';

UPDATE 1

post gr es=> update passwd set real _nane = 'John Doe' where user_nane =
"admin';

UPDATE 0

post gr es=> update passwd set shell = '/bin/xx";

ERROR: new row vi ol ates WTH CHECK OPTION for "passwd”

post gres=> del ete from passwd;

ERROR: permi ssion denied for relation passwd

postgres=> insert into passwd (user_nane) values ('xxx');

ERROR: permi ssion denied for relation passwd

-- Alice can change her own password; RLS silently prevents updating
ot her rows

post gr es=> update passwd set pwhash = 'abc’;

UPDATE 1

All of the policies constructed thusfar have been permissive policies, meaning that when multiple policies
are applied they are combined using the “OR” Boolean operator. While permissive policies can be
constructed to only allow access to rows in the intended cases, it can be simpler to combine permissive
policies with restrictive policies (which the records must pass and which are combined using the “AND”
Boolean operator). Building on the example above, we add arestrictive policy to require the administrator
to be connected over alocal Unix socket to access the records of the passwd table:

CREATE PCLI CY admi n_Il ocal _only ON passwd AS RESTRI CTI VE TO admi n
USI NG (pg_catal og.inet_client_addr() IS NULL);

We can then see that an administrator connecting over a network will not see any records, due to the
restrictive policy:

=> SELECT current _user;
current _user

=> sel ect inet_client_addr();
i net _client_addr

127.0.0.1
(1 row

=> SELECT current _user;
current _user

87

Data Definition

=> TABLE passwd;
user_nane | pwhash | uid | gid | real _name | hone_phone | extra_info
| home_dir | shell

=> UPDATE passwd set pwhash = NULL;
UPDATE 0

Referential integrity checks, such asunique or primary key constraints and foreign key references, always
bypass row security to ensure that data integrity is maintained. Care must be taken when devel oping
schemas and row level policies to avoid “covert channel” leaks of information through such referential
integrity checks.

In some contextsit isimportant to be sure that row security is not being applied. For example, when taking
abackup, it could be disastrous if row security silently caused some rows to be omitted from the backup.
In such a situation, you can set the row_security configuration parameter to of f . This does not in itself
bypass row security; what it does is throw an error if any query's results would get filtered by a policy.
The reason for the error can then be investigated and fixed.

In the examples above, the policy expressions consider only the current values in the row to be accessed
or updated. Thisisthe simplest and best-performing case; when possible, it's best to design row security
applications to work this way. If it is necessary to consult other rows or other tables to make a policy
decision, that can be accomplished using sub-SELECTS, or functionsthat contain SELECTS, in the policy
expressions. Be aware however that such accesses can create race conditions that could allow information
leskage if care is not taken. As an example, consider the following table design:

-- definition of privilege groups
CREATE TABLE groups (group_id int PRI MARY KEY,
group_name text NOT NULL);

I NSERT | NTO gr oups VALUES

(1, "low),
(2, 'medium),
(5, "high");
GRANT ALL ON groups TO alice; -- alice is the admi nistrator

GRANT SELECT ON groups TO public;

-- definition of users' privilege |levels
CREATE TABLE users (user_nane text PRI MARY KEY,
group_id int NOT NULL REFERENCES groups);

| NSERT | NTO users VALUES
("alice', 5),
(" bob', 2),
("mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

-- table holding the information to be protected

88

Data Definition

CREATE TABLE information (info text,
group_id int NOT NULL REFERENCES groups);

I NSERT | NTO i nf or mati on VALUES
('barely secret', 1),
("slightly secret', 2),
("very secret', 5);

ALTER TABLE i nformati on ENABLE ROW LEVEL SECURI TY;

-- a row shoul d be visible to/updatable by users whose security
group_id is
-- greater than or equal to the row s group_id
CREATE PCLICY fp_s ONinformation FOR SELECT

USI NG (group_id <= (SELECT group_id FROM users WHERE user_nane =
current _user));
CREATE POLI CY fp_u ON information FOR UPDATE

USI NG (group_id <= (SELECT group_id FROM users WHERE user _nane
current _user));

-- we rely only on RLS to protect the information table
GRANT ALL ON i nformation TO public;

Now suppose that al i ce wishesto change the “dlightly secret” information, but decides that nal | ory
should not be trusted with the new content of that row, so she does:

BEG N;

UPDATE users SET group_id =

UPDATE i nformati on SET info
2,

COW T,

1 WHERE user_nane = "mallory';
= 'secret fromnmallory' WHERE group_id =

That looks safe; there is no window wherein mal | or y should be able to see the “secret from mallory”
string. However, there isarace condition here. If mal | or y is concurrently doing, say,

SELECT * FROM i nformati on WHERE group_id = 2 FOR UPDATE;

and her transaction isin READ COVM TTED mode, it is possible for her to see “secret from mallory”.
That happensif her transaction reachesthei nf or nat i on row just after al i ce'sdoes. It blockswaiting
for al i ce's transaction to commit, then fetches the updated row contents thanks to the FOR UPDATE
clause. However, it does not fetch an updated row for the implicit SELECT from user s, because that
sub-SELECT did not have FOR UPDATE; instead the user s row is read with the snapshot taken at the
start of the query. Therefore, the policy expression tests the old value of mal | or y's privilege level and
allows her to see the updated row.

There are several ways around this problem. One simple answer isto use SELECT ... FOR SHARE
in sub-SELECTSs in row security policies. However, that requires granting UPDATE privilege on the
referenced table (hereuser s) to the affected users, which might be undesirable. (But another row security
policy could be applied to prevent them from actually exercising that privilege; or the sub-SELECT
could be embedded into a security definer function.) Also, heavy concurrent use of row share locks on
the referenced table could pose a performance problem, especially if updates of it are frequent. Another
solution, practical if updates of the referenced table are infrequent, is to take an exclusive lock on the
referenced table when updating it, so that no concurrent transactions could be examining old row values.

89

Data Definition

Or one could just wait for al concurrent transactions to end after committing an update of the referenced
table and before making changes that rely on the new security situation.

For additional details see CREATE POLICY and ALTER TABLE.

5.9. Schemas

5.9.1.

A PostgreSQL database cluster contains one or more named databases. Roles and afew other object types
are shared across the entire cluster. A client connection to the server can only access data in a single
database, the one specified in the connection request.

Note

Users of a cluster do not necessarily have the privilege to access every database in the cluster.
Sharing of role names means that there cannot be different roles named, say, j oe intwo databases
in the same cluster; but the system can be configured to allow j oe access to only some of the
databases.

A database contains one or more named schemas, which in turn contain tables. Schemas al so contain other
kinds of named objects, including data types, functions, and operators. The same object name can be used
in different schemas without conflict; for example, both schenal and myschena can contain tables
named myt abl e. Unlike databases, schemas are not rigidly separated: a user can access objects in any
of the schemas in the database they are connected to, if they have privileges to do so.

There are several reasons why one might want to use schemas:
» To alow many usersto use one database without interfering with each other.
» To organize database objectsinto logical groups to make them more manageable.

 Third-party applications can be put into separate schemas so they do not collide with the names of other
objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be nested.

Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice. For
example:

CREATE SCHEMA nyschens;

To create or access objects in a schema, write a qualified name consisting of the schema name and table
name separated by adot:

schemn. t abl e

This works anywhere a table name is expected, including the table modification commands and the data
access commands discussed in the following chapters. (For brevity we will speak of tables only, but the
same ideas apply to other kinds of named objects, such as types and functions.)

90

Data Definition

5.9.2.

5.9.3.

Actually, the even more general syntax

dat abase. schenn. t abl e

can be used too, but at present thisisjust for pro forma compliance with the SQL standard. If you write a
database name, it must be the same as the database you are connected to.

So to create atable in the new schema, use:

CREATE TABLE mnyschema. nytabl e (

)

To drop aschemalif it's empty (all objectsin it have been dropped), use:

DROP SCHEMA nyschens;

To drop a schemaincluding al contained objects, use:

DROP SCHEMA nyschena CASCADE;
See Section 5.14 for a description of the general mechanism behind this,

Often you will want to create a schema owned by someone else (since thisis one of the ways to restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schema_nanme AUTHORI ZATI ON user _nane;

Y ou can even omit the schema name, in which case the schema name will be the same as the user name.
See Section 5.9.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

The Public Schema

In the previous sections we created tables without specifying any schema names. By default such tables
(and other objects) are automatically put into aschemanamed “public”’. Every new database contains such
a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:
CREATE TABLE public. products (...);

The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of just

91

Data Definition

the table name. The system determines which table is meant by following a search path, which is alist
of schemas to look in. The first matching table in the search path is taken to be the one wanted. If there
is no match in the search path, an error is reported, even if matching table names exist in other schemas
in the database.

The ahility to create like-named objects in different schemas complicates writing a query that references
precisely the same objects every time. It also opens up the potential for users to change the behavior of
other users queries, maliciously or accidentally. Due to the prevalence of unqualified names in queries
and their use in PostgreSQL internals, adding a schema to sear ch_pat h effectively trusts all users
having CREATE privilege on that schema. When you run an ordinary query, amalicious user ableto create
objects in a schema of your search path can take control and execute arbitrary SQL functions as though
you executed them.

Thefirst schema named in the search path is called the current schema. Aside from being the first schema
searched, it is also the schemain which new tables will be created if the CREATE TABLE command does
not specify a schema name.

To show the current search path, use the following command:

SHOW sear ch_pat h;

In the default setup this returns:

search_path

"$user", public

The first element specifies that a schema with the same name as the current user is to be searched. If no
such schema exists, the entry is ignored. The second element refers to the public schema that we have
seen aready.

The first schema in the search path that exists is the default location for creating new objects. That is
the reason that by default objects are created in the public schema. When objects are referenced in any
other context without schema qualification (table modification, data modification, or query commands)
the search path is traversed until a matching object is found. Therefore, in the default configuration, any
unqualified access again can only refer to the public schema.

To put our new schemain the path, we use:

SET search_path TO nyschens, publi c;

(We omit the $user here because we have no immediate need for it.) And then we can access the table
without schema qualification:

DROP TABLE nyt abl e;

Also, since nyschena isthefirst element in the path, new objects would by default be created in it.

We could also have written:

92

Data Definition

5.9.4.

5.9.5.

SET search_path TO nyschens;

Then we no longer have accessto the public schemawithout explicit qualification. Thereisnothing special
about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.25 for other ways to manipulate the schema search path.

The search path worksin the same way for data type names, function names, and operator names asit does
for table names. Data type and function names can be qualified in exactly the same way as table names. If
you need to write a qualified operator name in an expression, thereis a special provision: you must write

OPERATOR(schenma. oper at or)

Thisis needed to avoid syntactic ambiguity. An exampleis:

SELECT 3 OPERATOR(pg_catal og. +) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so ugly
asthat.

Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To alow that, the owner of the
schema must grant the USAGE privilege on the schema. To allow users to make use of the objects in the
schema, additional privileges might need to be granted, as appropriate for the object.

A user can also beallowed to create objectsin someone el se's schema. To allow that, the CREATE privilege
on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE privileges on
the schemapubl i c. Thisalowsall usersthat are able to connect to a given database to create objectsin
itspubl i ¢ schema. Some usage patterns call for revoking that privilege:

REVCKE CREATE ON SCHEMA public FROM PUBLI C

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second senseit isakey word, hence the different capitalization; recall the guidelinesfrom
Section 4.1.1.)

The System Catalog Schema

Inadditionto publ i ¢ and user-created schemas, each database containsapg_cat al og schema, which
containsthe system tables and all the built-in datatypes, functions, and operators. pg_cat al og isaways
effectively part of the search path. If it is not named explicitly in the path then it is implicitly searched
before searching the path's schemas. This ensures that built-in names will always be findable. However,
you can explicitly place pg_cat al og at the end of your search path if you prefer to have user-defined
names override built-in names.

Since system table names begin with pg_, it isbest to avoid such names to ensure that you won't suffer a
conflict if somefuture version defines asystem table named the same asyour table. (With the default search
path, an unqualified reference to your table name would then be resolved as the system table instead.)
System tables will continue to follow the convention of having names beginning with pg_, so that they
will not conflict with unqualified user-table names so long as users avoid the pg_ prefix.

93

Data Definition

5.9.6.

5.9.7.

Usage Patterns

Schemas can be used to organize your data in many ways. A secure schema usage pattern prevents
untrusted users from changing the behavior of other users' queries. When a database does not use a secure
schema usage pattern, users wishing to securely query that database would take protective action at the
beginning of each session. Specifically, they would begin each session by setting sear ch_pat h to the
empty string or otherwise removing non-superuser-writable schemas from sear ch_pat h. Thereare a
few usage patterns easily supported by the default configuration:

» Constrain ordinary users to user-private schemas. To implement this, issue REVOKE CREATE ON
SCHEMA publ i ¢ FROM PUBLI C, and create aschemafor each user with the same name asthat user.
Recall that the default search path starts with $user , which resolves to the user name. Therefore, if
each user has a separate schema, they accesstheir own schemas by default. After adopting thispatternin
a database where untrusted users had aready logged in, consider auditing the public schemafor objects
named like objects in schema pg_cat al og. This pattern is a secure schema usage pattern unless an
untrusted user is the database owner or holds the CREATEROLE privilege, in which case no secure
schema usage pattern exists.

* Remove the public schema from the default search path, by modifying post gr esql . conf or by
issuing ALTER ROLE ALL SET search_path = "$user". Everyone retains the ability to
create objectsin the public schema, but only qualified nameswill choose those objects. While qualified
table references are fine, calls to functions in the public schema will be unsafe or unreliable. If you
create functions or extensions in the public schema, use the first pattern instead. Otherwise, like the
first pattern, this is secure unless an untrusted user is the database owner or holds the CREATEROLE

privilege.

» Keep the default. All users access the public schema implicitly. This simulates the situation where
schemas are not availableat all, giving asmooth transition from the non-schema-aware world. However,
thisis never asecure pattern. It is acceptable only when the database has asingle user or afew mutually-
trusting users.

For any pattern, to install shared applications (tablesto be used by everyone, additional functions provided
by third parties, etc.), put them into separate schemas. Remember to grant appropriate privileges to allow
the other users to access them. Users can then refer to these additional objects by qualifying the names
with a schema name, or they can put the additional schemas into their search path, as they choose.

Portability

Inthe SQL standard, the notion of objectsin the same schemabeing owned by different usersdoesnot exist.
Moreover, someimplementations do not allow you to create schemasthat have a different name than their
owner. Infact, the concepts of schemaand user are nearly equivalent in a database system that implements
only the basic schema support specified in the standard. Therefore, many users consider qualified names
toreally consist of user _nane. t abl e_nane. Thisis how PostgreSQL will effectively behave if you
create a per-user schemafor every user.

Also, there is no concept of apubl i ¢ schemain the SQL standard. For maximum conformance to the
standard, you should not use the publ i ¢ schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems, then
maximum portability would be achieved by not using schemas at all.

5.10. Inheritance

94

Data Definition

PostgreSQL implements table inheritance, which can be a useful tool for database designers. (SQL:1999
and later define atypeinheritance feature, which differsin many respectsfrom thefeatures described here.)

Let's start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular state.
This can be done by creating two tables, one for state capitals and one for cities that are not capitals.
However, what happens when we want to ask for data about a city, regardless of whether it is a capital
or not? The inheritance feature can help to resolve this problem. We define the capi t al s table so that
itinheritsfromci ti es:

CREATE TABLE cities (

name t ext,
popul ati on fl oat,
el evation i nt -- in feet

)

CREATE TABLE capitals (
state char (2)
) INHERI TS (cities);

Inthiscase, thecapi t al s tableinherits all the columns of its parent table, ci t i es. State capitals also
have an extracolumn, st at e, that showstheir state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of atable or al rows of atable plus al of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of al cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT nane, el evation
FROM cities
VWHERE el evati on > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

nane | elevation
___________ .
Las Vegas | 2174
Mari posa | 1953
Madi son | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
elevation over 500 feet:

SELECT nane, el evation
FROM ONLY cities
VWHERE el evati on > 500;

nane | elevation

95

Data Definition

Mari posa | 1953

Here the ONLY keyword indicates that the query should apply only to ci t i es, and not any tables below
ci t i es intheinheritance hierarchy. Many of the commands that we have already discussed — SELECT,
UPDATE and DELETE — support the ONLY keyword.

Y ou can also writethetable namewith atrailing * to explicitly specify that descendant tables are included:

SELECT nane, el evation
FROM ci ti es*
VWHERE el evati on > 500;

Writing * isnot necessary, since thisbehavior isawaysthe default. However, this syntax is still supported
for compatibility with older releases where the default could be changed.

In some cases you might wish to know which table a particular row originated from. There is a system
column called t abl eoi d in each table which can tell you the originating table:

SELECT c.tabl eoid, c.nane, c.elevation
FROM cities c
VWHERE c. el evati on > 500;

which returns;

tabl eoid | name | elevation
__________ e
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madi son | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing ajoin with
pg_cl ass you can see the actual table names:

SELECT p.rel nane, c.nane, c.elevation
FROM cities ¢, pg _class p
WHERE c. el evati on > 500 AND c.tableoid = p.oid;

which returns:

rel name | name | elevation
__________ e
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madi son | 845

Another way to get the same effect is to use ther egcl ass alias type, which will print the table OID
symbolicaly:

SELECT c. tabl eoi d: : regcl ass, c.nane, c.elevation
FROM cities ¢
WHERE c. el evati on > 500;

96

Data Definition

Inheritance does not automatically propagate data from | NSERT or COPY commands to other tables in
the inheritance hierarchy. In our example, the following | NSERT statement will fail:

I NSERT I NTO cities (name, popul ation, elevation, state)
VALUES (' Al bany', NULL, NULL, 'NY');

We might hope that the data would somehow be routed to the capi t al s table, but this does not happen:
| NSERT alwaysinsertsinto exactly the table specified. In some casesit ispossibleto redirect theinsertion
using arule (see Chapter 40). However that does not help for the above case because theci t i es table
does not contain the column st at e, and so the command will be rejected before the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its children,
unless explicitly specified otherwise with NO | NHERI T clauses. Other types of constraints (unique,
primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns defined
by the parent tables. Any columns declared in the child table's definition are added to these. If the same
column name appears in multiple parent tables, or in both a parent table and the child's definition, then
these columnsare“merged” so that thereisonly one such columninthe child table. To be merged, columns
must have the same datatypes, else an error israised. |nheritable check constraints and not-null constraints
are merged in asimilar fashion. Thus, for example, a merged column will be marked not-null if any one
of the column definitions it came from is marked not-null. Check constraints are merged if they have the
same name, and the merge will fail if their conditions are different.

Table inheritance is typically established when the child table is created, using the | NHERI TS clause of
the CREATE TABLE statement. Alternatively, atable which is already defined in a compatible way can
have anew parent relationship added, using thel NHERI T variant of ALTER TABLE. To do thisthe new
child table must already include columns with the same names and types as the columns of the parent. It
must also include check constraints with the same names and check expressions as those of the parent.
Similarly an inheritance link can be removed from a child using the NO | NHERI T variant of ALTER
TABLE. Dynamically adding and removing inheritance links like this can be useful when the inheritance
relationship is being used for table partitioning (see Section 5.11).

One convenient way to create a compatible table that will later be made a new child isto use the LI KE
clausein CREATE TABLE. This creates a new table with the same columns as the source table. If there
are any CHECK constraints defined on the source table, the | NCLUDI NG CONSTRAI NTS option to
LI KE should be specified, as the new child must have constraints matching the parent to be considered
compatible.

A parent table cannot be dropped while any of itschildren remain. Neither can columnsor check constraints
of child tables be dropped or altered if they are inherited from any parent tables. If you wish to remove a
table and all of its descendants, one easy way is to drop the parent table with the CASCADE option (see
Section 5.14).

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columnsthat are depended on by other tablesis only possible when
using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging and
rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example, granting
UPDATE permission on the ci t i es table implies permission to update rows in the capi t al s table
as well, when they are accessed through ci t i es. This preserves the appearance that the data is (also)
in the parent table. But the capi t al s table could not be updated directly without an additional grant.
Two exceptions to this rule are TRUNCATE and LOCK TABLE, where permissions on the child tables

97

Data Definition

are always checked, whether they are processed directly or recursively via those commands performed
on the parent table.

Inasimilar way, the parent table's row security policies (see Section 5.8) are applied to rows coming from
child tables during an inherited query. A child tabl€e's policies, if any, are applied only when it isthe table
explicitly named in the query; and in that case, any policies attached to its parent(s) are ignored.

Foreign tables (see Section 5.12) can also be part of inheritance hierarchies, either as parent or child tables,
just as regular tables can be. If aforeign table is part of an inheritance hierarchy then any operations not
supported by the foreign table are not supported on the whole hierarchy either.

5.10.1. Caveats

5.11.

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used
for data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE, most
variants of ALTER TABLE, but not | NSERT or ALTER TABLE ... RENANME) typically default
to including child tables and support the ONLY notation to exclude them. Commands that do database
maintenance and tuning (e.g., REI NDEX, VACUUM) typically only work onindividual, physical tables and
do not support recursing over inheritance hierarchies. The respective behavior of each individual command
is documented in its reference page (SQL Commands).

A seriouslimitation of theinheritance featureisthat indexes (including unique constraints) and foreign key
constraints only apply to singletables, not to their inheritance children. Thisistrue on both the referencing
and referenced sides of aforeign key constraint. Thus, in the terms of the above example:

» If wedeclaredci t i es.nane tobe UNI QUE or aPRI MARY KEY, thiswould not stopthecapi t al s
table from having rows with names duplicating rows in ci ti es. And those duplicate rows would
by default show up in queries from ci t i es. In fact, by default capi t al s would have no unique
constraint at all, and so could contain multiple rows with the same name. You could add a unique
constraint to capi t al s, but thiswould not prevent duplication comparedtoci ti es.

» Similarly, if we were to specify that ci t i es.name REFERENCES some other table, this constraint
would not automatically propagate to capi t al s. In this case you could work around it by manually
adding the same REFERENCES constraint to capi t al s.

 Specifying that another table's column REFERENCES ci ti es(nane) would allow the other table
to contain city names, but not capital names. There is no good workaround for this case.

Some functionality not implemented for inheritance hierarchies is implemented for declarative
partitioning. Considerable careis needed in deciding whether partitioning with legacy inheritanceis useful
for your application.

Table Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement
partitioning as part of your database design.

5.11.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partitioning
can provide several benefits:

e Query performance can be improved dramatically in certain situations, particularly when most of
the heavily accessed rows of the table are in a single partition or a small number of partitions. The

98

Data Definition

partitioning substitutes for leading columns of indexes, reducing index size and making it more likely
that the heavily-used parts of the indexes fit in memory.

» When queries or updates access a large percentage of a single partition, performance can be improved
by taking advantage of sequential scan of that partition instead of using an index and random access
reads scattered across the whole table.

» Bulk loads and deletes can be accomplished by adding or removing partitions, if that requirement is
planned into the partitioning design. Doing ALTER TABLE DETACH PARTI TI ON or dropping
an individual partition using DROP TABLE is far faster than a bulk operation. These commands also
entirely avoid the VACUUMoverhead caused by abulk DELETE.

» Seldom-used data can be migrated to cheaper and slower storage media.

The benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which atable will benefit from partitioning depends on the application, although arule of thumb
isthat the size of the table should exceed the physical memory of the database server.

PostgreSQL offers built-in support for the following forms of partitioning:
Range Partitioning

The table is partitioned into “ranges’ defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example, one might partition by date
ranges, or by ranges of identifiers for particular business objects.

List Partitioning
Thetableis partitioned by explicitly listing which key values appear in each partition.
Hash Partitioning

The table is partitioned by specifying a modulus and a remainder for each partition. Each partition
will hold the rows for which the hash value of the partition key divided by the specified modulus will
produce the specified remainder.

If your application needs to use other forms of partitioning not listed above, aternative methods such as
inheritance and UNI ON ALL views can be used instead. Such methods offer flexibility but do not have
some of the performance benefits of built-in declarative partitioning.

5.11.2. Declarative Partitioning

PostgreSQL offers a way to specify how to divide a table into pieces called partitions. The table that is
divided isreferred to as apartitioned table. The specification consists of the partitioning method and alist
of columns or expressions to be used as the partition key.

All rows inserted into a partitioned table will be routed to one of the partitions based on the value of
the partition key. Each partition has a subset of the data defined by its partition bounds. The currently
supported partitioning methods are range, list, and hash.

Partitions may themselves be defined as partitioned tables, using what is called sub-partitioning. Partitions
may have their own indexes, constraints and default values, distinct from those of other partitions. See
CREATE TABLE for more details on creating partitioned tables and partitions.

It is not possible to turn a regular table into a partitioned table or vice versa. However, it is possible to
add aregular or partitioned table containing data as a partition of a partitioned table, or remove a partition

99

Data Definition

from a partitioned table turning it into a standalone table; see ALTER TABLE to learn more about the
ATTACH PARTI Tl ONand DETACH PARTI Tl ON sub-commands.

Individual partitions are linked to the partitioned table with inheritance behind-the-scenes; however, it
is not possible to use some of the generic features of inheritance (discussed below) with declaratively
partitioned tables or their partitions. For example, a partition cannot have any parents other than the
partitioned table it is a partition of, nor can a regular table inherit from a partitioned table making the
latter its parent. That means partitioned tables and their partitions do not participate in inheritance with
regular tables. Since a partition hierarchy consisting of the partitioned table and its partitions is still an
inheritance hierarchy, all the normal rules of inheritance apply as described in Section 5.10 with some
exceptions, most notably:

e Both CHECK and NOT NULL constraints of a partitioned table are always inherited by all its partitions.
CHECK constraints that are marked NO | NHERI T are not allowed to be created on partitioned tables.

» Using ONLY to add or drop aconstraint on only the partitioned table is supported aslong asthere are no
partitions. Once partitions exist, using ONLY will result in an error as adding or dropping constraints on
only the partitioned table, when partitions exist, is not supported. Instead, constraints on the partitions
themselves can be added and (if they are not present in the parent table) dropped.

» Asapartitioned table does not have any datadirectly, attemptsto use TRUNCATE ONLY on apartitioned
table will always return an error.

* Partitions cannot have columns that are not present in the parent. It is not possible to specify columns
when creating partitionswith CREATE TABLE, nor isit possible to add columnsto partitions after-the-
fact using ALTER TABLE. Tables may be added as a partition with ALTER TABLE ... ATTACH
PARTI TI ONonly if their columns exactly match the parent.

* You cannot drop the NOT NULL constraint on a partition's column if the constraint is present in the
parent table.

Partitions can aso be foreign tables, although they have some limitations that normal tables do not; see
CREATE FOREIGN TABLE for more information.

Updating the partition key of a row might cause it to be moved into a different partition where this row
satisfies the partition bounds.

5.11.2.1. Example

Suppose we are constructing a database for a large ice cream company. The company measures peak
temperatures every day aswell asice cream sales in each region. Conceptually, we want atable like:

CREATE TABLE measur enent (

city_ id int not null,
| ogdat e date not null,
peakt enmp int,

uni t sal es i nt

)

We know that most querieswill accessjust the last week's, month's or quarter's data, since the main use of
thistable will beto prepare online reports for management. To reduce the amount of old data that needsto
be stored, we decide to only keep the most recent 3 years worth of data. At the beginning of each month
we will remove the oldest month's data. In this situation we can use partitioning to help us meet al of our
different requirements for the measurementstable.

100

Data Definition

To use declarative partitioning in this case, use the following steps:

1. Create measur enent table as a partitioned table by specifying the PARTI TI ON BY clause, which
includes the partitioning method (RANGE in this case) and the list of column(s) to use as the partition

key.

CREATE TABLE neasur enent (

city id int not null,
| ogdat e date not null,
peakt enp int,

uni t sal es i nt

) PARTI TI ON BY RANCE (| ogdate);

Y ou may decide to use multiple columnsin the partition key for range partitioning, if desired. Of course,
thiswill often result in alarger number of partitions, each of whichisindividually smaller. On the other
hand, using fewer columns may lead to a coarser-grained partitioning criteria with smaller number of
partitions. A query accessing the partitioned table will have to scan fewer partitions if the conditions
involve some or al of these columns. For example, consider a table range partitioned using columns
I ast nanme andfi r st nane (in that order) asthe partition key.

2. Create partitions. Each partition's definition must specify the bounds that correspond to the partitioning
method and partition key of the parent. Note that specifying bounds such that the new partition's values
will overlap with those in one or more existing partitions will cause an error. Inserting data into the
parent table that does not map to one of the existing partitions will cause an error; an appropriate
partition must be added manually.

Partitions thus created are in every way normal PostgreSQL tables (or, possibly, foreign tables). It is
possible to specify atablespace and storage parameters for each partition separately.

It is not necessary to create table constraints describing partition boundary condition for partitions.
Instead, partition constraints are generated implicitly from the partition bound specification whenever
thereis need to refer to them.

CREATE TABLE neasurenment _y2006nD2 PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2006-02-01") TO (' 2006-03-01");

CREATE TABLE neasurenment _y2006nD3 PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2006-03-01") TO (' 2006-04-01");

CREATE TABLE neasurenment _y2007ml1l PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2007-11-01") TO ('2007-12-01");

CREATE TABLE neasurenment _y2007ml2 PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2007-12-01') TO ('2008-01-01")
TABLESPACE f astt abl espace;

CREATE TABLE neasurenment _y2008nD1 PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2008-01-01') TO ('2008-02-01")
WTH (paral l el _workers = 4)
TABLESPACE f astt abl espace;

To implement sub-partitioning, specify the PARTI TI ON BY clause in the commands used to create
individual partitions, for example:

101

Data Definition

CREATE TABLE neasurenment _y2006nD2 PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2006-02-01') TO (' 2006-03-01")
PARTI TI ON BY RANGE (peaktenp);

After creating partitions of nmeasur enment y2006n02, any data inserted into neasur enment
that is mapped to neasurenment y2006n02 (or data that is directly inserted into
nmeasur enent _y2006nm02, provided it satisfiesits partition constraint) will be further redirected to
one of its partitions based on the peakt enp column. The partition key specified may overlap with
the parent's partition key, although care should be taken when specifying the bounds of a sub-partition
such that the set of data it accepts constitutes a subset of what the partition's own bounds allows; the
system does not try to check whether that's really the case.

3. Create an index on the key column(s), as well as any other indexes you might want, on the partitioned
table. (The key index is not strictly necessary, but in most scenarios it is helpful.) This automatically
creates one index on each partition, and any partitions you create or attach later will also contain the
index.

CREATE | NDEX ON neasurenent (| ogdate);
4. Ensure that the enable partition pruning configuration parameter is not disabled in
post gresql . conf . If itis, querieswill not be optimized as desired.

In the above example we would be creating a new partition each month, so it might be wise to write a
script that generates the required DDL automatically.

5.11.2.2. Partition Maintenance

Normally the set of partitions established when initially defining the table is not intended to remain static.
It iscommon to want to remove old partitions of dataand periodically add new partitionsfor new data. One
of the most important advantages of partitioning is precisely that it allows this otherwise painful task to
be executed nearly instantaneously by manipulating the partition structure, rather than physically moving
large amounts of data around.

The simplest option for removing old datais to drop the partition that is no longer necessary:

DROP TABLE neasurenent _y2006n02;

This can very quickly delete millions of records becauseit doesn't haveto individually delete every record.
Note however that the above command requirestaking an ACCESS EXCLUSI VE lock on the parent table.

Another option that isoften preferableisto remove the partition from the partitioned table but retain access
toitasatableinitsown right:

ALTER TABLE neasur enment DETACH PARTI TI ON nmeasur enent _y2006nD2;

This allows further operations to be performed on the data before it is dropped. For example, thisis often
auseful time to back up the data using COPY, pg_dump, or similar tools. It might also be a useful timeto
aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add anew partition to handle new data. We can create an empty partition inthe partitioned
tablejust as the origina partitions were created above:

CREATE TABLE neasurenent _y2008nmD2 PARTI TI ON OF neasur enment

102

Data Definition

FOR VALUES FROM (' 2008-02-01") TO ('2008-03-01")
TABLESPACE f astt abl espace;

As an alternative, it is sometimes more convenient to create the new table outside the partition structure,
and make it a proper partition later. This allows the data to be loaded, checked, and transformed prior to
it appearing in the partitioned table:

CREATE TABLE neasur enent _y2008n02
(LI KE measur enent | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS)
TABLESPACE f astt abl espace;

ALTER TABLE neasur enent _y2008nD2 ADD CONSTRAI NT y2008n0D2
CHECK (| ogdate >= DATE '2008-02-01' AND | ogdate < DATE
' 2008- 03-01");

\ copy neasurenent _y2008n02 from ' measurenent _y2008nD2'
-- possibly sonme other data preparation work

ALTER TABLE neasurenent ATTACH PARTI TI ON nmeasur enent _y2008nm02
FOR VALUES FROM (' 2008-02-01") TO ('2008-03-01");

Before running the ATTACH PARTI TI ON command, it is recommended to create a CHECK constraint
on the table to be attached matching the desired partition constraint. That way, the system will be able to
skip the scan to validate the implicit partition constraint. Without the CHECK constraint, the table will be
scanned to validate the partition constraint while holding an ACCESS EXCLUSI VE lock on that partition
and a SHARE UPDATE EXCLUSI VE lock on the parent table. It may be desired to drop the redundant
CHECK constraint after ATTACH PARTI TI ONisfinished.

Asexplained above, it is possible to create indexes on partitioned tables and they are applied automatically
to the entire hierarchy. Thisis very convenient, as not only the existing partitions will become indexed,
but also any partitions that are created in the future will. One limitation is that it's not possible to use the
CONCURRENTLY qualifier when creating such a partitioned index. To overcome long lock times, it is
possibleto use CREATE | NDEX ON ONLY the partitioned table; such an index is marked invalid, and the
partitions do not get the index applied automatically. The indexes on partitions can be created separately
using CONCURRENTLY, and later attached to theindex on the parent using ALTER | NDEX .. ATTACH
PARTI Tl ON. Once indexes for all partitions are attached to the parent index, the parent index is marked
valid automatically. Example:

CREATE | NDEX neasur enent _usls_idx ON ONLY neasurenent (unitsales);

CREATE | NDEX neasur enent _usls_200602_i dx
ON neasur enment _y2006n02 (unitsal es);
ALTER | NDEX neasur enent _usl s_i dx
ATTACH PARTI TI ON neasur enent _usl s _200602_i dx;

This technique can be used with UNI QUE and PRI MARY KEY constraints too; the indexes are created
implicitly when the constraint is created. Example:

ALTER TABLE ONLY measurenent ADD UNI QUE (city_id, |ogdate);

ALTER TABLE mneasur enent _y2006n02 ADD UNIQUE (city_id, |ogdate);
ALTER | NDEX measurenent _city_id_| ogdate_key

103

Data Definition

5.11.2.3.

ATTACH PARTI TI ON nmeasur enent _y2006n02_city_id_| ogdat e_key;

Limitations

The following limitations apply to partitioned tables:

5.11.3.

Thereis no way to create an exclusion constraint spanning all partitions; it is only possible to constrain
each leaf partition individually.

Unique constraints (and hence primary keys) on partitioned tables must include all the partition key
columns. This limitation exists because PostgreSQL can only enforce uniqueness in each partition
individually.

BEFORE ROWtriggers, if necessary, must be defined on individual partitions, not the partitioned table.

Mixing temporary and permanent relations in the same partition tree is not allowed. Hence, if the
partitioned tableis permanent, so must beits partitionsand likewiseif the partitioned tableistemporary.
When using temporary relations, all members of the partition tree have to be from the same session.

Implementation Using Inheritance

While the built-in declarative partitioning is suitable for most common use cases, there are some
circumstances where amore flexible approach may be useful. Partitioning can be implemented using table
inheritance, which allows for several features not supported by declarative partitioning, such as:

5.11.3.1.

For declarative partitioning, partitions must have exactly the same set of columns as the partitioned
table, whereas with table inheritance, child tables may have extra columns not present in the parent.

Table inheritance allows for multiple inheritance.

Declarative partitioning only supportsrange, list and hash partitioning, whereastable inheritance allows
data to be divided in a manner of the user's choosing. (Note, however, that if constraint exclusion is
unable to prune child tables effectively, query performance might be poor.)

Some operations require a stronger lock when using declarative partitioning than when using table
inheritance. For example, removing a partition from a partitioned table requires taking an ACCESS
EXCLUSI VE lock on the parent table, whereas a SHARE UPDATE EXCLUSI VE lock is enough in
the case of regular inheritance.

Example

We use the non-partitioned measur enent table above. To implement partitioning using inheritance, use
the following steps:

1

Create the “master” table, from which all of the “child” tables will inherit. This table will contain no
data. Do not define any check constraints on this table, unless you intend them to be applied equally
to all child tables. There is no point in defining any indexes or unique constraints on it, either. For our
example, the master table isthe measur enent table as originally defined.

. Create several “child” tablesthat each inherit from the master table. Normally, these tables will not add

any columnsto the set inherited from the master. Just as with declarative partitioning, these tables are
in every way normal PostgreSQL tables (or foreign tables).

CREATE TABLE neasur enent y2006n02 () |NHERI TS (neasurenent);
CREATE TABLE neasur enent y2006n03 () | NHERI TS (neasurenent);

104

Data Definition

CREATE TABLE measur enent _y2007nill () INHERI TS (rmeasurenent);
CREATE TABLE measur enent _y2007nil2 () |INHERI TS (neasurenent);
CREATE TABLE measur enent _y2008n01 () INHERI TS (rneasurenent);

3. Add non-overlapping table constraints to the child tables to define the allowed key valuesin each.

Typical examples would be:

CHECK (x = 1)

CHECK (county IN ('Oxfordshire', 'Buckinghanmshire',
"Warwi ckshire'))

CHECK (outletID >= 100 AND outletlID < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different child tables. A common mistake is to set up range constraints like:

CHECK (outletl D BETWEEN 100 AND 200)
CHECK (outletl D BETWEEN 200 AND 300)

Thisiswrong sinceit is not clear which child table the key value 200 belongsin.

It would be better to instead create child tables as follows:

CREATE TABLE measur enent _y2006n02 (

CHECK (| ogdate >= DATE '2006-02-01' AND | ogdate < DATE
' 2006- 03-01')
) INHERI TS (neasurenent);

CREATE TABLE rmeasur enent _y2006n03 (

CHECK (| ogdate >= DATE '2006-03-01' AND | ogdate < DATE
' 2006- 04-01')
) INHERI TS (neasurenent);

CREATE TABLE neasurement _y2007nll (
CHECK (| ogdate >= DATE '2007-11-01' AND | ogdate < DATE
'2007-12-01')
) INHERI TS (neasurenent);

CREATE TABLE neasur ement _y2007nl2 (

CHECK (| ogdate >= DATE '2007-12-01' AND | ogdate < DATE
'2008-01-01')
) INHERI TS (rneasurenent);

CREATE TABLE measur enent _y2008n01 (
CHECK (| ogdate >= DATE '2008-01-01' AND | ogdate < DATE
' 2008- 02-01')
) INHERI TS (rneasurenent);
4. For each child table, create anindex on the key column(s), aswell as any other indexes you might want.

CREATE | NDEX neasur enent _y2006n02_| ogdat e ON neasur enment _y2006n02
(1 ogdate);

105

Data Definition

CREATE | NDEX measur enent _y2006n03_| ogdat e ON neasur enment _y2006n03

(1 ogdate);

CREATE | NDEX measur enent _y2007nl1_| ogdat e ON neasur enment _y2007nl1l
(1 ogdate);

CREATE | NDEX measur enent _y2007nl2_| ogdat e ON neasur enment _y2007ni2
(1 ogdate);

CREATE | NDEX measur enent _y2008n01_| ogdat e ON neasur enment _y2008n01
(1 ogdate);

. Wewant our applicationto beableto say | NSERT | NTO neasur enent ... andhavethedatabe

redirected into the appropriate child table. We can arrange that by attaching asuitabletrigger function to
the master table. If datawill be added only to the latest child, we can use avery ssimpletrigger function:

CREATE OR REPLACE FUNCTI ON neasurenent i nsert _trigger()

RETURNS TRI GGER AS $3%

BEG N
I NSERT | NTO neasur enent _y2008n01 VALUES (NEW *);
RETURN NULL;

END;

$$

LANGUAGE pl pgsdl ;

After creating the function, we create atrigger which calls the trigger function:

CREATE TRI GCGER i nsert _neasurenent _tri gger
BEFORE | NSERT ON measur enment
FOR EACH ROW EXECUTE FUNCTI ON nmeasurement _i nsert _trigger();

We must redefine the trigger function each month so that it always pointsto the current child table. The
trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the child table into which the
row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTI ON nmeasurement _i nsert _trigger()
RETURNS TRI GGER AS $$
BEG N
IF (NEWI ogdate >= DATE ' 2006- 02- 01" AND
NEW | ogdat e < DATE ' 2006-03-01') THEN
| NSERT | NTO nmeasur enent _y2006nm02 VALUES (NEW *);
ELSIF (NEW | ogdat e >= DATE ' 2006-03-01' AND
NEW | ogdat e < DATE ' 2006-04-01') THEN
| NSERT | NTO nmeasur enent _y2006nm03 VALUES (NEW *);

ELSIF (NEW | ogdat e >= DATE ' 2008-01-01' AND
NEW | ogdat e < DATE ' 2008-02-01') THEN
| NSERT | NTO nmeasur enent _y2008nmD1 VALUES (NEW *);
ELSE
RAI SE EXCEPTION 'Date out of range. Fix the
measurenent _insert_trigger() function!';
END | F;
RETURN NULL;
END;

106

Data Definition

$$
LANGUAGE pl pgsdl ;

The trigger definition is the same as before. Note that each | F test must exactly match the CHECK
constraint for its child table.

While this function is more complex than the single-month case, it doesn't need to be updated as often,
since branches can be added in advance of being needed.

Note

In practice, it might be best to check the newest child first, if most inserts go into that child. For
simplicity, we have shown the trigger's tests in the same order asin other parts of this example.

A different approach to redirecting inserts into the appropriate child table is to set up rules, instead of
atrigger, on the master table. For example:

CREATE RULE neasurenent _insert_y2006nD2 AS
ON I NSERT TO measur enment WHERE

(logdate >= DATE '2006-02-01'" AND | ogdate < DATE ' 2006-03-01"')
DO | NSTEAD

| NSERT | NTO neasur enment _y2006n02 VALUES (NEW *);

CREATE RULE neasurenent _insert_y2008nD1 AS
ON I NSERT TO measur enment WHERE

(logdate >= DATE '2008-01-01'" AND | ogdate < DATE '2008-02-01"')
DO | NSTEAD

| NSERT | NTO neasur enment _y2008n01 VALUES (NEW *);

A rule hassignificantly more overhead than atrigger, but the overhead is paid once per query rather than
once per row, so this method might be advantageous for bulk-insert situations. In most cases, however,
the trigger method will offer better performance.

Be aware that COPY ignores rules. If you want to use COPY to insert data, you'll need to copy into
the correct child table rather than directly into the master. COPY does fire triggers, so you can use it
normally if you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set of
rules doesn't cover the insertion date; the datawill silently go into the master table instead.

6. Ensurethat the constraint_exclusion configuration parameter isnot disabled in post gr esql . conf;
otherwise child tables may be accessed unnecessarily.

Aswe can see, acomplex table hierarchy could require asubstantial amount of DDL. Inthe above example
we would be creating a new child table each month, so it might be wise to write a script that generates
the required DDL automatically.

5.11.3.2. Maintenance for Inheritance Partitioning

To remove old data quickly, simply drop the child table that is no longer necessary:

DROP TABLE neasurenent _y2006n02;

107

Data Definition

To remove the child table from the inheritance hierarchy table but retain accessto it asatablein itsown
right:

ALTER TABLE neasur enment _y2006nD2 NO | NHERI T nmeasur enent ;

To add anew child table to handle new data, create an empty child tablejust asthe original children were
created above:

CREATE TABLE neasur enent _y2008n02 (

CHECK (| ogdate >= DATE ' 2008-02-01' AND | ogdate < DATE
' 2008-03-01')
) I NHERI TS (nmeasurenent);

Alternatively, one may want to create and populate the new child table before adding it to the table
hierarchy. This could allow data to be loaded, checked, and transformed before being made visible to
gueries on the parent table.

CREATE TABLE neasur ement _y2008nmD2
(LI KE nmeasurenment | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS) ;

ALTER TABLE neasur enent _y2008nD2 ADD CONSTRAI NT y2008n0D2
CHECK (| ogdate >= DATE ' 2008-02-01' AND | ogdate < DATE

' 2008-03-01");

\ copy neasurenent _y2008n02 from ' measurenment _y2008nD2'

-- possibly sonme other data preparation work

ALTER TABLE neasur enment _y2008nD2 | NHERI T measur enent ;

5.11.3.3. Caveats

The following caveats apply to partitioning implemented using inheritance:

» Thereisno automatic way to verify that all of the CHECK constraints are mutually exclusive. It is safer
to create code that generates child tables and creates and/or modifies associated objects than to write
each by hand.

* Indexes and foreign key constraints apply to single tables and not to their inheritance children, hence
they have some caveats to be aware of.

» The schemes shown here assume that the values of arow's key column(s) never change, or at least do
not change enough to require it to move to another partition. An UPDATE that attempts to do that will
fail because of the CHECK constraints. If you need to handle such cases, you can put suitable update
triggers on the child tables, but it makes management of the structure much more complicated.

* If you are using manual VACUUMor ANAL YZE commands, don't forget that you need to run them on
each child table individually. A command like:

ANALYZE neasur ement ;
will only process the master table.

* | NSERT statements with ON CONFLI CT clauses are unlikely to work as expected, as the ON
CONFLI CT action is only taken in case of unique violations on the specified target relation, not its
child relations.

108

Data Definition

 Triggersor ruleswill be needed to routerowsto thedesired child table, unlessthe applicationisexplicitly
aware of the partitioning scheme. Triggers may be complicated to write, and will be much slower than
the tuple routing performed internally by declarative partitioning.

5.11.4. Partition Pruning

Partition pruning is a query optimization technique that improves performance for declaratively
partitioned tables. As an example:

SET enabl e_partition_pruning = on; -- the default
SELECT count (*) FROM neasur enent WHERE | ogdate >= DATE ' 2008-01-01';

Without partition pruning, the above query would scan each of the partitions of themeasur enment table.
With partition pruning enabled, the planner will examine the definition of each partition and prove that the
partition need not be scanned because it could not contain any rows meeting the query's WHERE clause.
When the planner can prove this, it excludes (prunes) the partition from the query plan.

By using the EXPLAIN command and the enable_partition_pruning configuration parameter, it's possible
to show the difference between a plan for which partitions have been pruned and one for which they have
not. A typical unoptimized plan for this type of table setup is:

SET enabl e_partition_pruning = off;
EXPLAI N SELECT count (*) FROM neasur enent WHERE | ogdat e >= DATE
' 2008-01-01';
QUERY PLAN
Aggregate (cost=188.76..188.77 rows=1 w dt h=8)
-> Append (cost=0.00..181.05 rows=3085 wi dt h=0)
-> Seq Scan on neasurenent_ y2006n0D2 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_ y2006n03 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

-> Seq Scan on neasurenent y2007nll (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_ y2007nl2 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent y2008nD1 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

Some or al of the partitions might useindex scans instead of full-table sequential scans, but the point here
is that there is no need to scan the older partitions at all to answer this query. When we enable partition
pruning, we get a significantly cheaper plan that will deliver the same answer:

SET enabl e_partition_pruning = on;
EXPLAI N SELECT count (*) FROM nmeasur enent WHERE | ogdat e >= DATE
' 2008-01-01';

109

Data Definition

QUERY PLAN
Aggregate (cost=37.75..37.76 rows=1 wi dt h=8)
-> Seq Scan on neasurenent_y2008n01 (cost=0.00..33.12 rows=617
wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

Note that partition pruning is driven only by the constraints defined implicitly by the partition keys, not
by the presence of indexes. Thereforeit isn't necessary to define indexes on the key columns. Whether an
index needs to be created for a given partition depends on whether you expect that queries that scan the
partition will generally scan alarge part of the partition or just a small part. Anindex will be helpful in
the latter case but not the former.

Partition pruning can be performed not only during the planning of a given query, but also during its
execution. Thisis useful asit can alow more partitions to be pruned when clauses contain expressions
whose values are not known at query planning time, for example, parameters defined in a PREPARE
statement, using a value obtained from a subquery, or using a parameterized value on the inner side of a
nested loop join. Partition pruning during execution can be performed at any of the following times:

» During initiaization of the query plan. Partition pruning can be performed here for parameter values
which are known during the initialization phase of execution. Partitions which are pruned during this
stage will not show up in the query's EXPLAI N or EXPLAI N ANALYZE. It is possible to determine
the number of partitions which were removed during this phase by observing the “ Subplans Removed”
property in the EXPLAI N output.

» During actual execution of the query plan. Partition pruning may also be performed here to remove
partitions using values which are only known during actual query execution. This includes values from
subqueries and values from execution-time parameters such as those from parameterized nested loop
joins. Since the value of these parameters may change many times during the execution of the query,
partition pruning is performed whenever one of the execution parameters being used by partition pruning
changes. Determining if partitions were pruned during this phase requires careful inspection of the
| oops property inthe EXPLAI N ANAL YZE output. Subplans corresponding to different partitionsmay
have different values for it depending on how many times each of them was pruned during execution.
Some may be shown as(never execut ed) if they were pruned every time.

Partition pruning can be disabled using the enable _partition_pruning setting.

Note

Execution-time partition pruning currently only occursfor the Append and Mer geAppend node
types. It isnot yet implemented for the Modi f y Tabl e node type, but that islikely to be changed
in afuture release of PostgreSQL.

5.11.5. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique similar to partition pruning. While it is primarily
used for partitioning implemented using the legacy inheritance method, it can be used for other purposes,
including with declarative partitioning.

Constraint exclusionworksinavery similar way to partition pruning, except that it uses each table's CHECK
constraints— which givesit its name — whereas partition pruning uses the tabl €'s partition bounds, which
exist only in the case of declarative partitioning. Another difference is that constraint exclusion is only
applied at plan time; there is no attempt to remove partitions at execution time.

110

Data Definition

The fact that constraint exclusion uses CHECK constraints, which makes it slow compared to partition
pruning, can sometimes be used as an advantage: because constraints can be defined even on declaratively-
partitioned tables, in addition to their internal partition bounds, constraint exclusion may be able to elide
additional partitions from the query plan.

The default (and recommended) setting of constraint_exclusion isneither on nor of f , but an intermediate
setting called par ti ti on, which causes the technique to be applied only to queriesthat are likely to be
working oninheritance partitioned tables. The on setting causesthe planner to examine CHECK constraints
in al queries, even ssimple ones that are unlikely to benefit.

The following caveats apply to constraint exclusion:

» Constraint exclusion isonly applied during query planning, unlike partition pruning, which can also be
applied during query execution.

» Congtraint exclusion only works when the query's WHERE clause contains constants (or externally
supplied parameters). For example, a comparison against a non-immutable function such as
CURRENT _TI MESTAMP cannot be optimized, since the planner cannot know which child table the
function's value might fall into at run time.

» Keep the partitioning constraints simple, else the planner may not be able to prove that child tables
might not need to be visited. Use simple equality conditions for list partitioning, or simple range tests
for range partitioning, asillustrated in the preceding examples. A good rule of thumb isthat partitioning
constraints should contain only comparisons of the partitioning column(s) to constants using B-tree-
indexable operators, because only B-tree-indexable column(s) are allowed in the partition key.

» All constraints on al children of the parent table are examined during constraint exclusion, so large
numbers of children are likely to increase query planning time considerably. So the legacy inheritance
based partitioning will work well with up to perhaps a hundred child tables; don't try to use many
thousands of children.

5.11.6. Declarative Partitioning Best Practices

The choice of how to partition a table should be made carefully as the performance of query planning and
execution can be negatively affected by poor design.

One of the most critical design decisionswill be the column or columns by which you partition your data.
Often the best choice will be to partition by the column or set of columns which most commonly appear in
WHERE clauses of queries being executed on the partitioned table. WHERE clause items that match and are
compatible with the partition key can be used to prune unneeded partitions. However, you may be forced
into making other decisions by requirements for the PRI MARY KEY or a UNI QUE constraint. Removal
of unwanted data is also afactor to consider when planning your partitioning strategy. An entire partition
can be detached fairly quickly, so it may be beneficial to design the partition strategy in such away that
all datato be removed at onceislocated in asingle partition.

Choosing the target number of partitions that the table should be divided into is also a critical decision to
make. Not having enough partitions may mean that indexes remain too large and that datalocality remains
poor which could result in low cache hit ratios. However, dividing the table into too many partitions
can also cause issues. Too many partitions can mean longer query planning times and higher memory
consumption during both query planning and execution. When choosing how to partition your table, it's
also important to consider what changes may occur in the future. For example, if you choose to have one
partition per customer and you currently have asmall number of large customers, consider theimplications
if in several yearsyou instead find yourself with alarge number of small customers. In this case, it may be
better to choose to partition by HASH and choose a reasonable number of partitions rather than trying to

111

Data Definition

5.12

5.13

partition by LI ST and hoping that the number of customers does not increase beyond what it is practical
to partition the data by.

Sub-partitioning can be useful to further divide partitions that are expected to become larger than other
partitions, although excessive sub-partitioning can easily lead to large numbers of partitions and can cause
the same problems mentioned in the preceding paragraph.

Itisalsoimportant to consider the overhead of partitioning during query planning and execution. The query
planner is generaly able to handle partition hierarchies with up to a few thousand partitions fairly well,
provided that typical queriesallow the query planner to prune all but asmall number of partitions. Planning
times become longer and memory consumption becomes higher when more partitions remain after the
planner performs partition pruning. This is particularly true for the UPDATE and DELETE commands.
Another reason to be concerned about having a large number of partitions is that the server's memory
consumption may grow significantly over aperiod of time, especially if many sessionstouch large numbers
of partitions. That's because each partition requires its metadata to be loaded into the local memory of
each session that touchesiit.

With data warehouse type workloads, it can make sense to use a larger number of partitions than with
an OL TP type workload. Generally, in data warehouses, query planning time is less of a concern as the
majority of processing time is spent during query execution. With either of these two types of workload,
it isimportant to make the right decisions early, as re-partitioning large quantities of data can be painfully
slow. Simulations of the intended workload are often beneficial for optimizing the partitioning strategy.
Never assume that more partitions are better than fewer partitions and vice-versa.

Foreign Data

PostgreSQL implements portions of the SQL/MED specification, allowing you to access data that resides
outside PostgreSQL using regular SQL queries. Such data is referred to as foreign data. (Note that this
usage is not to be confused with foreign keys, which are atype of constraint within the database.)

Foreign datais accessed with help from aforeign data wrapper. A foreign datawrapper isalibrary that can
communicate with an external datasource, hiding the details of connecting to the data source and obtaining
datafromit. There are someforeign datawrappersavailableascont r i b modules; see Appendix F. Other
kinds of foreign data wrappers might be found asthird party products. If none of the existing foreign data
wrappers suit your needs, you can write your own; see Chapter 56.

To access foreign data, you need to create a foreign server object, which defines how to connect to a
particular external data source according to the set of options used by its supporting foreign data wrapper.
Then you need to create one or more foreign tables, which define the structure of theremote data. A foreign
table can be used in queries just like a normal table, but aforeign table has no storage in the PostgreSQL
server. Whenever it is used, PostgreSQL asks the foreign data wrapper to fetch data from the external
source, or transmit data to the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can be
provided by a user mapping, which can provide additional data such as user names and passwords based
on the current PostgreSQL role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER, CREATE
USER MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

Other Database Objects

Tables are the central objectsin arelationa database structure, because they hold your data. But they are
not the only objects that exist in a database. Many other kinds of objects can be created to make the use

112

Data Definition

5.14

and management of the data more efficient or convenient. They are not discussed in this chapter, but we
giveyou alist here so that you are aware of what is possible:

* Views

Functions, procedures, and operators
» Datatypes and domains
 Triggers and rewrite rules

Detailed information on these topics appearsin Part V.

Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints, views,
triggers, functions, etc. you implicitly create a net of dependencies between the objects. For instance, a
table with aforeign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objectsthat other objects still depend on. For example, attempting to drop the products table we considered
in Section 5.4.5, with the orders table depending on it, would result in an error message like this:

DROP TABLE products;

ERROR: cannot drop table products because other objects depend on it
DETAIL: constraint orders_product_no_fkey on table orders depends on
tabl e products

HI NT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objectswill be removed, aswill any objectsthat depend on them, recursively. In this
case, it doesn't remove the orderstable, it only removes the foreign key constraint. It stops there because
nothing depends on the foreign key constraint. (If you want to check what DROP ... CASCADE will
do, run DROP without CASCADE and read the DETAI L output.)

Almost all DROP commands in PostgreSQL support specifying CASCADE. Of course, the nature of the
possible dependencies varies with the type of the object. You can also write RESTRI CT instead of
CASCADE to get the default behavior, which isto prevent dropping objects that any other objects depend
on.

Note

According to the SQL standard, specifying either RESTRI CT or CASCADE isrequired in a DROP
command. No database system actually enforces that rule, but whether the default behavior is
RESTRI CT or CASCADE varies across systems.

113

Data Definition

If aDROP command lists multiple objects, CASCADE is only required when there are dependencies outside
the specified group. For example, when saying DROP TABLE t abl, t ab2 theexistence of aforeign
key referencing t ab1 fromt ab2 would not mean that CASCADE is needed to succeed.

For user-defined functions, PostgreSQL tracks dependencies associated with afunction'sexternally-visible
properties, such as its argument and result types, but not dependencies that could only be known by
examining the function body. As an example, consider this situation:

CREATE TYPE rai nbow AS ENUM ('red', 'orange', 'vyellow,
‘green', 'blue', 'purple');

CREATE TABLE ny_col ors (col or rai nbow, note text);

CREATE FUNCTI ON get _col or_note (rai nbow) RETURNS text AS
' SELECT note FROM ny_col ors WHERE col or = $1'
LANGUAGE SQ@.;

(See Section 37.5 for an explanation of SQL-language functions.) PostgreSQL will be aware that the
get _col or _not e function depends on the r ai nbow type: dropping the type would force dropping
the function, because its argument type would no longer be defined. But PostgreSQL will not consider
get _col or _not e todepend onthemny_col or s table, and so will not drop the function if the tableis
dropped. While there are disadvantages to this approach, there are also benefits. The functionis still valid
in some sense if the table is missing, though executing it would cause an error; creating anew table of the
same name would allow the function to work again.

114

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it istime
to fill the tables with data. This chapter covers how to insert, update, and delete table data. The chapter
after thiswill finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When atable is created, it contains no data. The first thing to do before a database can be of much use
isto insert data. Data is conceptually inserted one row at atime. Of course you can aso insert more than
one row, but there is no way to insert less than one row. Even if you know only some column values, a
complete row must be created.

To create anew row, usethe INSERT command. The command requiresthe table name and column val ues.
For example, consider the products table from Chapter 5:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric

)

An example command to insert arow would be:

I NSERT | NTO products VALUES (1, 'Cheese', 9.99);

The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columnsin the table. To avoid
thisyou can aso list the columns explicitly. For example, both of the following commands have the same
effect as the one above:

I NSERT | NTO products (product_no, nanme, price) VALUES (1, 'Cheese',
9.99);

| NSERT | NTO products (nane, price, product_no) VALUES (' Cheese', 9.99,
1);

Many users consider it good practice to always list the column names.
If you don't have values for al the columns, you can omit some of them. In that case, the columns will

be filled with their default values. For example:

| NSERT | NTO products (product_no, name) VALUES (1, ' Cheese');
| NSERT | NTO products VALUES (1, 'Cheese');

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as are
given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

115

Data Manipulation

| NSERT | NTO products (product_no, name, price) VALUES (1, 'Cheese',
DEFAULT) ;
| NSERT | NTO products DEFAULT VALUES;

Y ou can insert multiple rows in a single command:

| NSERT | NTO products (product_no, nane, price) VALUES
(1, 'Cheese', 9.99),
(2, 'Bread, 1.99),
(3, "MIk', 2.99);

It isalso possible to insert the result of a query (which might be no rows, one row, or many rows):

I NSERT | NTO products (product_no, name, price)
SELECT product_no, nane, price FROM new products
WHERE r el ease_date = 'today';

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip

When inserting a lot of data at the same time, consider using the COPY command. It is not as
flexibleasthe INSERT command, but ismore efficient. Refer to Section 14.4 for moreinformation
on improving bulk loading performance.

6.2. Updating Data

Themodification of datathat isalready inthe databaseisreferred to asupdating. Y ou can updateindividual
rows, all the rows in atable, or a subset of al rows. Each column can be updated separately; the other
columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Thereforeit is
not always possible to directly specify which row to update. Instead, you specify which conditions a row
must meet in order to be updated. Only if you have a primary key in the table (independent of whether
you declared it or not) can you reliably address individual rows by choosing a condition that matches the
primary key. Graphical database access toolsrely on thisfact to allow you to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that does
not match any rows.

116

Data Manipulation

Let'slook at that command in detail. First is the key word UPDATE followed by the table name. Asusual,
the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key word SET
followed by the column name, an equal sign, and the new column value. The new column value can be
any scalar expression, not just a constant. For example, if you want to raise the price of all products by
10% you could use:

UPDATE products SET price = price * 1.10;

As you see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present, only
those rows that match the WHERE condition are updated. Note that the equals sign in the SET clauseisan
assignment while the one in the WHERE clause is a comparison, but this does not create any ambiguity. Of
course, the WHERE condition does not have to be an equality test. Many other operators are available (see
Chapter 9). But the expression needs to evaluate to a Boolean resullt.

Y ou can update more than one column in an UPDATE command by listing more than one assignment in
the SET clause. For example:

UPDATE nytable SET a =5, b =3, ¢ =1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add datato tables and how to change data. What remainsisto discuss how
to remove data that is no longer needed. Just as adding data is only possible in whole rows, you can only
remove entire rows from atable. In the previous section we explained that SQL does not provide a way
to directly address individual rows. Therefore, removing rows can only be done by specifying conditions
that the rows to be removed have to match. If you have a primary key in the table then you can specify
the exact row. But you can also remove groups of rows matching a condition, or you can remove all rows
in the table at once.

Y ou use the DEL ETE command to remove rows; the syntax isvery similar to the UPDATE command. For
instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

If you simply write:

DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data from Modified Rows

Sometimesit is useful to obtain datafrom modified rows while they are being manipulated. The | NSERT,
UPDATE, and DELETE commands all have an optional RETURNI NG clause that supports this. Use of
RETURNI NG avoids performing an extra database query to collect the data, and is especially valuable
when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNI NG clause are the same as a SELECT command's output list (see
Section 7.3). It can contain column names of the command's target table, or value expressions using those
columns. A common shorthand is RETURNI NG *, which selects all columns of the target table in order.

117

Data Manipulation

Inan| NSERT, thedataavailableto RETURNI NGistherow asit wasinserted. Thisisnot souseful intrivial
inserts, since it would just repeat the data provided by the client. But it can be very handy when relying
on computed default values. For example, when using aser i al column to provide unique identifiers,
RETURNI NG can return the ID assigned to a new row:

CREATE TABLE users (firstnane text, lastnane text, id serial prinmary
key);

I NSERT | NTO users (firstnane, |astnane) VALUES ('Joe', 'Cool"')
RETURNI NG i d;

The RETURNI NG clause isaso very useful with| NSERT ... SELECT.

In an UPDATE, the data available to RETURNI NGis the new content of the modified row. For example:

UPDATE products SET price = price * 1.10
WHERE price <= 99.99
RETURNI NG nane, price AS new price;

In a DELETE, the data available to RETURNI NGis the content of the deleted row. For example:

DELETE FROM product s
WHERE obsol eti on_date = 'today’
RETURNI NG *;

If there are triggers (Chapter 38) on the target table, the data available to RETURNI NG is the row as
modified by the triggers. Thus, inspecting columns computed by triggersis another common use-case for
RETURNI NG,

118

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL the
SELECT command is used to specify queries. The general syntax of the SELECT command is

[WTH with_queries] SELECT select |ist FROMtabl e_expression
[sort _specification]

Thefollowing sections describe the detail s of the select list, the table expression, and the sort specification.
W TH queries are treated last since they are an advanced feature.

A simple kind of query has the form:

SELECT * FROM t abl el;

Assuming that thereisatable called t abl el, this command would retrieve al rows and all user-defined
columnsfromt abl el. (The method of retrieval depends on the client application. For example, the psgl
program will display an ASClI-art table on the screen, while client libraries will offer functionsto extract
individual values from the query result.) The select list specification * means all columns that the table
expression happens to provide. A select list can also select a subset of the available columns or make
calculations using the columns. For example, if t abl e1 has columns named a, b, and ¢ (and perhaps
others) you can make the following query:

SELECT a, b + ¢ FROM t abl el;
(assuming that b and ¢ are of anumerical datatype). See Section 7.3 for more details.

FROM t abl el isasimplekind of table expression: it reads just one table. In general, table expressions
can be complex constructs of basetables, joins, and subqueries. But you can also omit the table expression
entirely and use the SELECT command as a calculator:

SELECT 3 * 4;
Thisis more useful if the expressions in the select list return varying results. For example, you could call

afunction this way:

SELECT random();

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROM clause that is optionally
followed by WHERE, GROUP BY, and HAVI NG clauses. Trivial table expressions smply refer to atable
on disk, a so-called base table, but more complex expressions can be used to modify or combine base
tablesin various ways.

119

Queries

The optional WHERE, GROUP BY, and HAVI NG clauses in the table expression specify a pipeline of
successive transformations performed on the table derived in the FROMclause. All these transformations
produce avirtual table that provides the rows that are passed to the select list to compute the output rows
of the query.

7.2.1. The FROMClause

The FROMClause derives atable from one or more other tables given in acomma-separated table reference
list.

FROM tabl e_reference [, table reference [, ...]]

A tablereference can be atable name (possibly schema-qualified), or aderived table such asasubquery, a
JA N construct, or complex combinations of these. If more than one table reference islisted in the FROM
clause, the tables are cross-joined (that is, the Cartesian product of their rows is formed; see below). The
result of the FROMIist is an intermediate virtua table that can then be subject to transformations by the
WHERE, GROUP BY, and HAVI NG clauses and isfinally the result of the overall table expression.

When atable reference names atabl e that isthe parent of atableinheritance hierarchy, the table reference
produces rows of not only that table but all of its descendant tables, unless the key word ONLY precedes
the table name. However, the reference produces only the columns that appear in the named table — any
columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write* after the table name to explicitly specify
that descendant tables are included. Thereis no real reason to use this syntax any more, because searching
descendant tablesis now alwaysthe default behavior. However, it issupported for compatibility with older
releases.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (rea or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of ajoined table is

Tl join_type T2 [join_condition]

Joins of all types can be chained together, or nested: either or both T1 and T2 can be joined tables.
Parentheses can be used around JO N clauses to control the join order. In the absence of parentheses,
JOA N clauses nest |eft-to-right.

Join Types

Crossjoin

Tl CROSS JAON T2

For every possible combination of rows from T1 and T2 (i.e., a Cartesian product), the joined table
will contain arow consisting of all columnsin T1 followed by all columnsin T2. If the tables have
N and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JO N T2 isequivadentto FROM T1 INNER JON T2 ON TRUE (see
below). Itisalso equivalent to FROM T1, T2.

120

Queries

Note

This latter equivalence does not hold exactly when more than two tables appear, because
JA Nbinds moretightly than comma. For example FROM T1 CROSS JO N T2 | NNER
JO N T3 ON conditionisnotthesameasFROM T1, T2 INNER JO N T3 ON
condi ti on becausethecondi ti on canreference T1 in the first case but not the second.

Qualified joins

TL { [INNER] | { LEFT | RIGHT | FULL } [OQUTER] } JON T2

ON bool ean_expressi on

TL { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JO N T2 USI NG
(join colum list)

T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OQUTER] } JON T2

The words | NNER and OQUTER are optional in al forms. | NNER is the default; LEFT, Rl GHT, and
FULL imply an outer join.

The join condition is specified in the ON or USI NG clause, or implicitly by the word NATURAL.
The join condition determines which rows from the two source tables are considered to “match”, as
explained in detail below.

The possible types of qualified join are;
I NNER JO N

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OQUTER JO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, ajoined row is added with null values in columns of T2. Thus, the joined
table aways has at least one row for each row in T1.

Rl GHT QUTER JO N

First, aninner join is performed. Then, for each row in T2 that does not satisfy the join condition
with any row in T1, ajoined row isadded with null valuesin columns of T1. Thisisthe converse
of aleft join: the result table will always have arow for each row in T2,

FULL OQUTER JO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, ajoined row is added with null valuesin columns of T2. Also, for each row
of T2 that does not satisfy the join condition with any row in T1, ajoined row with null values
in the columns of T1 is added.

The ON clause is the most general kind of join condition: it takes a Boolean value expression of the
same kind asis used in a WHERE clause. A pair of rows from T1 and T2 match if the ON expression
evaluates to true.

The USI NG clause is a shorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated list

121

Queries

of the shared column names and forms a join condition that includes an equality comparison for each
one. For example, joining T1 and T2 with USI NG (a, b) producesthejoinconditionON T1. a
= T2.a AND Tl.b = T2.b.

Furthermore, the output of JO N USI NGsuppresses redundant columns: thereisno need to print both
of the matched columns, since they must have equal values. While JO N ON produces all columns
from T1 followed by all columns from T2, JO N USI NG produces one output column for each of
the listed column pairs (in the listed order), followed by any remaining columns from T1, followed
by any remaining columns from T2.

Finally, NATURAL is a shorthand form of USI NG it forms a USI NGlist consisting of all column
names that appear in both input tables. Aswith USI NG, these columns appear only once in the output
table. If there are no common column names, NATURAL JO NbehaveslikeJO N ... ON TRUE,
producing a cross-product join.

Note

USI NGis reasonably safe from column changes in the joined relations since only the listed
columns are combined. NATURAL is considerably more risky since any schema changes to
either relation that cause a new matching column name to be present will cause the join to
combine that new column as well.

To put this together, assume we have tablest 1:

_____ N,
1] a
2| b
3] ¢

andt 2

then we get the following results for the various joins;

=> SELECT * FROMt1l CROSS JO N t 2;
num| name | num| val ue

+
I
I
I
I
I
I
I

122

Queries

31 ¢ | 31 yyy
3] c | 5| zzz
(9 rows)

=> SELECT * FROMt1 INNER JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
31 ¢ | 31 yyy

(2 rows)

=> SELECT * FROMt1 INNER JO N t2 USING (num;
num | nanme | val ue

_____ Fmm e e e e e - - -
1| a | xxx
31 ¢ | yyy

(2 rows)

=> SELECT * FROM t1 NATURAL | NNER JO N t 2;
num | nanme | val ue

_____ Fmm e e e e e - - -
1| a | xxx
31 ¢ | yyy

(2 rows)

=> SELECT * FROMt1 LEFT JON t2 ON t1. num = t2. num
num| name | num| val ue

yyy

=> SELECT * FROMt1 LEFT JO N t2 USI NG (nun;

=> SELECT * FROMt1l RIGHT JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
31 ¢ | 31 yyy

| | 51| zzz
(3 rows)

=> SELECT * FROMt1 FULL JON t2 ON t1. num = t2. num
num| name | num| val ue

123

Queries

3| ¢ | 3| yyy
| | 5| zzz

(4 rows)

T