Blame SOURCES/00192-Fix-missing-documentation-for-some-keywords.patch

ae2451
diff --git a/Doc/tools/sphinxext/pyspecific.py b/Doc/tools/sphinxext/pyspecific.py
ae2451
--- a/Doc/tools/sphinxext/pyspecific.py
ae2451
+++ b/Doc/tools/sphinxext/pyspecific.py
ae2451
@@ -184,11 +184,11 @@
ae2451
     'bltin-null-object', 'bltin-type-objects', 'booleans',
ae2451
     'break', 'callable-types', 'calls', 'class', 'comparisons', 'compound',
ae2451
     'context-managers', 'continue', 'conversions', 'customization', 'debugger',
ae2451
-    'del', 'dict', 'dynamic-features', 'else', 'exceptions', 'execmodel',
ae2451
+    'del', 'dict', 'dynamic-features', 'else', 'exceptions', 'exec', 'execmodel',
ae2451
     'exprlists', 'floating', 'for', 'formatstrings', 'function', 'global',
ae2451
     'id-classes', 'identifiers', 'if', 'imaginary', 'import', 'in', 'integers',
ae2451
     'lambda', 'lists', 'naming', 'numbers', 'numeric-types',
ae2451
-    'objects', 'operator-summary', 'pass', 'power', 'raise', 'return',
ae2451
+    'objects', 'operator-summary', 'pass', 'power', 'print', 'raise', 'return',
ae2451
     'sequence-types', 'shifting', 'slicings', 'specialattrs', 'specialnames',
ae2451
     'string-methods', 'strings', 'subscriptions', 'truth', 'try', 'types',
ae2451
     'typesfunctions', 'typesmapping', 'typesmethods', 'typesmodules',
ae2451
diff -up Python-2.7.5/Lib/pydoc_data/topics.py.orig Python-2.7.5/Lib/pydoc_data/topics.py
ae2451
--- Python-2.7.5/Lib/pydoc_data/topics.py.orig	2014-01-14 12:29:32.511756259 +0100
ae2451
+++ Python-2.7.5/Lib/pydoc_data/topics.py	2014-01-14 12:29:40.396795516 +0100
ae2451
@@ -29,11 +29,12 @@ topics = {'assert': '\nThe ``assert`` st
ae2451
  'dynamic-features': '\nInteraction with dynamic features\n*********************************\n\nThere are several cases where Python statements are illegal when used\nin conjunction with nested scopes that contain free variables.\n\nIf a variable is referenced in an enclosing scope, it is illegal to\ndelete the name.  An error will be reported at compile time.\n\nIf the wild card form of import --- ``import *`` --- is used in a\nfunction and the function contains or is a nested block with free\nvariables, the compiler will raise a ``SyntaxError``.\n\nIf ``exec`` is used in a function and the function contains or is a\nnested block with free variables, the compiler will raise a\n``SyntaxError`` unless the exec explicitly specifies the local\nnamespace for the ``exec``.  (In other words, ``exec obj`` would be\nillegal, but ``exec obj in ns`` would be legal.)\n\nThe ``eval()``, ``execfile()``, and ``input()`` functions and the\n``exec`` statement do not have access to the full environment for\nresolving names.  Names may be resolved in the local and global\nnamespaces of the caller.  Free variables are not resolved in the\nnearest enclosing namespace, but in the global namespace. [1] The\n``exec`` statement and the ``eval()`` and ``execfile()`` functions\nhave optional arguments to override the global and local namespace.\nIf only one namespace is specified, it is used for both.\n',
ae2451
  'else': '\nThe ``if`` statement\n********************\n\nThe ``if`` statement is used for conditional execution:\n\n   if_stmt ::= "if" expression ":" suite\n               ( "elif" expression ":" suite )*\n               ["else" ":" suite]\n\nIt selects exactly one of the suites by evaluating the expressions one\nby one until one is found to be true (see section *Boolean operations*\nfor the definition of true and false); then that suite is executed\n(and no other part of the ``if`` statement is executed or evaluated).\nIf all expressions are false, the suite of the ``else`` clause, if\npresent, is executed.\n',
ae2451
  'exceptions': '\nExceptions\n**********\n\nExceptions are a means of breaking out of the normal flow of control\nof a code block in order to handle errors or other exceptional\nconditions.  An exception is *raised* at the point where the error is\ndetected; it may be *handled* by the surrounding code block or by any\ncode block that directly or indirectly invoked the code block where\nthe error occurred.\n\nThe Python interpreter raises an exception when it detects a run-time\nerror (such as division by zero).  A Python program can also\nexplicitly raise an exception with the ``raise`` statement. Exception\nhandlers are specified with the ``try`` ... ``except`` statement.  The\n``finally`` clause of such a statement can be used to specify cleanup\ncode which does not handle the exception, but is executed whether an\nexception occurred or not in the preceding code.\n\nPython uses the "termination" model of error handling: an exception\nhandler can find out what happened and continue execution at an outer\nlevel, but it cannot repair the cause of the error and retry the\nfailing operation (except by re-entering the offending piece of code\nfrom the top).\n\nWhen an exception is not handled at all, the interpreter terminates\nexecution of the program, or returns to its interactive main loop.  In\neither case, it prints a stack backtrace, except when the exception is\n``SystemExit``.\n\nExceptions are identified by class instances.  The ``except`` clause\nis selected depending on the class of the instance: it must reference\nthe class of the instance or a base class thereof.  The instance can\nbe received by the handler and can carry additional information about\nthe exceptional condition.\n\nExceptions can also be identified by strings, in which case the\n``except`` clause is selected by object identity.  An arbitrary value\ncan be raised along with the identifying string which can be passed to\nthe handler.\n\nNote: Messages to exceptions are not part of the Python API.  Their\n  contents may change from one version of Python to the next without\n  warning and should not be relied on by code which will run under\n  multiple versions of the interpreter.\n\nSee also the description of the ``try`` statement in section *The try\nstatement* and ``raise`` statement in section *The raise statement*.\n\n-[ Footnotes ]-\n\n[1] This limitation occurs because the code that is executed by these\n    operations is not available at the time the module is compiled.\n',
ae2451
+'exec': '\nThe ``exec`` statement\n**********************\n\n   exec_stmt ::= "exec" or_expr ["in" expression ["," expression]]\n\nThis statement supports dynamic execution of Python code.  The first\nexpression should evaluate to either a Unicode string, a *Latin-1*\nencoded string, an open file object, a code object, or a tuple.  If it\nis a string, the string is parsed as a suite of Python statements\nwhich is then executed (unless a syntax error occurs). [1] If it is an\nopen file, the file is parsed until EOF and executed. If it is a code\nobject, it is simply executed.  For the interpretation of a tuple, see\nbelow.  In all cases, the code that\'s executed is expected to be valid\nas file input (see section *File input*).  Be aware that the\n``return`` and ``yield`` statements may not be used outside of\nfunction definitions even within the context of code passed to the\n``exec`` statement.\n\nIn all cases, if the optional parts are omitted, the code is executed\nin the current scope.  If only the first expression after ``in`` is\nspecified, it should be a dictionary, which will be used for both the\nglobal and the local variables.  If two expressions are given, they\nare used for the global and local variables, respectively. If\nprovided, *locals* can be any mapping object. Remember that at module\nlevel, globals and locals are the same dictionary. If two separate\nobjects are given as *globals* and *locals*, the code will be executed\nas if it were embedded in a class definition.\n\nThe first expression may also be a tuple of length 2 or 3.  In this\ncase, the optional parts must be omitted.  The form ``exec(expr,\nglobals)`` is equivalent to ``exec expr in globals``, while the form\n``exec(expr, globals, locals)`` is equivalent to ``exec expr in\nglobals, locals``.  The tuple form of ``exec`` provides compatibility\nwith Python 3, where ``exec`` is a function rather than a statement.\n\nChanged in version 2.4: Formerly, *locals* was required to be a\ndictionary.\n\nAs a side effect, an implementation may insert additional keys into\nthe dictionaries given besides those corresponding to variable names\nset by the executed code.  For example, the current implementation may\nadd a reference to the dictionary of the built-in module\n``__builtin__`` under the key ``__builtins__`` (!).\n\n**Programmer\'s hints:** dynamic evaluation of expressions is supported\nby the built-in function ``eval()``.  The built-in functions\n``globals()`` and ``locals()`` return the current global and local\ndictionary, respectively, which may be useful to pass around for use\nby ``exec``.\n\n-[ Footnotes ]-\n\n[1] Note that the parser only accepts the Unix-style end of line\n    convention. If you are reading the code from a file, make sure to\n    use *universal newlines* mode to convert Windows or Mac-style\n    newlines.\n',
ae2451
  'execmodel': '\nExecution model\n***************\n\n\nNaming and binding\n==================\n\n*Names* refer to objects.  Names are introduced by name binding\noperations. Each occurrence of a name in the program text refers to\nthe *binding* of that name established in the innermost function block\ncontaining the use.\n\nA *block* is a piece of Python program text that is executed as a\nunit. The following are blocks: a module, a function body, and a class\ndefinition. Each command typed interactively is a block.  A script\nfile (a file given as standard input to the interpreter or specified\non the interpreter command line the first argument) is a code block.\nA script command (a command specified on the interpreter command line\nwith the \'**-c**\' option) is a code block.  The file read by the\nbuilt-in function ``execfile()`` is a code block.  The string argument\npassed to the built-in function ``eval()`` and to the ``exec``\nstatement is a code block. The expression read and evaluated by the\nbuilt-in function ``input()`` is a code block.\n\nA code block is executed in an *execution frame*.  A frame contains\nsome administrative information (used for debugging) and determines\nwhere and how execution continues after the code block\'s execution has\ncompleted.\n\nA *scope* defines the visibility of a name within a block.  If a local\nvariable is defined in a block, its scope includes that block.  If the\ndefinition occurs in a function block, the scope extends to any blocks\ncontained within the defining one, unless a contained block introduces\na different binding for the name.  The scope of names defined in a\nclass block is limited to the class block; it does not extend to the\ncode blocks of methods -- this includes generator expressions since\nthey are implemented using a function scope.  This means that the\nfollowing will fail:\n\n   class A:\n       a = 42\n       b = list(a + i for i in range(10))\n\nWhen a name is used in a code block, it is resolved using the nearest\nenclosing scope.  The set of all such scopes visible to a code block\nis called the block\'s *environment*.\n\nIf a name is bound in a block, it is a local variable of that block.\nIf a name is bound at the module level, it is a global variable.  (The\nvariables of the module code block are local and global.)  If a\nvariable is used in a code block but not defined there, it is a *free\nvariable*.\n\nWhen a name is not found at all, a ``NameError`` exception is raised.\nIf the name refers to a local variable that has not been bound, a\n``UnboundLocalError`` exception is raised.  ``UnboundLocalError`` is a\nsubclass of ``NameError``.\n\nThe following constructs bind names: formal parameters to functions,\n``import`` statements, class and function definitions (these bind the\nclass or function name in the defining block), and targets that are\nidentifiers if occurring in an assignment, ``for`` loop header, in the\nsecond position of an ``except`` clause header or after ``as`` in a\n``with`` statement.  The ``import`` statement of the form ``from ...\nimport *`` binds all names defined in the imported module, except\nthose beginning with an underscore.  This form may only be used at the\nmodule level.\n\nA target occurring in a ``del`` statement is also considered bound for\nthis purpose (though the actual semantics are to unbind the name).  It\nis illegal to unbind a name that is referenced by an enclosing scope;\nthe compiler will report a ``SyntaxError``.\n\nEach assignment or import statement occurs within a block defined by a\nclass or function definition or at the module level (the top-level\ncode block).\n\nIf a name binding operation occurs anywhere within a code block, all\nuses of the name within the block are treated as references to the\ncurrent block.  This can lead to errors when a name is used within a\nblock before it is bound. This rule is subtle.  Python lacks\ndeclarations and allows name binding operations to occur anywhere\nwithin a code block.  The local variables of a code block can be\ndetermined by scanning the entire text of the block for name binding\noperations.\n\nIf the global statement occurs within a block, all uses of the name\nspecified in the statement refer to the binding of that name in the\ntop-level namespace. Names are resolved in the top-level namespace by\nsearching the global namespace, i.e. the namespace of the module\ncontaining the code block, and the builtins namespace, the namespace\nof the module ``__builtin__``.  The global namespace is searched\nfirst.  If the name is not found there, the builtins namespace is\nsearched.  The global statement must precede all uses of the name.\n\nThe builtins namespace associated with the execution of a code block\nis actually found by looking up the name ``__builtins__`` in its\nglobal namespace; this should be a dictionary or a module (in the\nlatter case the module\'s dictionary is used).  By default, when in the\n``__main__`` module, ``__builtins__`` is the built-in module\n``__builtin__`` (note: no \'s\'); when in any other module,\n``__builtins__`` is an alias for the dictionary of the ``__builtin__``\nmodule itself.  ``__builtins__`` can be set to a user-created\ndictionary to create a weak form of restricted execution.\n\n**CPython implementation detail:** Users should not touch\n``__builtins__``; it is strictly an implementation detail.  Users\nwanting to override values in the builtins namespace should ``import``\nthe ``__builtin__`` (no \'s\') module and modify its attributes\nappropriately.\n\nThe namespace for a module is automatically created the first time a\nmodule is imported.  The main module for a script is always called\n``__main__``.\n\nThe ``global`` statement has the same scope as a name binding\noperation in the same block.  If the nearest enclosing scope for a\nfree variable contains a global statement, the free variable is\ntreated as a global.\n\nA class definition is an executable statement that may use and define\nnames. These references follow the normal rules for name resolution.\nThe namespace of the class definition becomes the attribute dictionary\nof the class.  Names defined at the class scope are not visible in\nmethods.\n\n\nInteraction with dynamic features\n---------------------------------\n\nThere are several cases where Python statements are illegal when used\nin conjunction with nested scopes that contain free variables.\n\nIf a variable is referenced in an enclosing scope, it is illegal to\ndelete the name.  An error will be reported at compile time.\n\nIf the wild card form of import --- ``import *`` --- is used in a\nfunction and the function contains or is a nested block with free\nvariables, the compiler will raise a ``SyntaxError``.\n\nIf ``exec`` is used in a function and the function contains or is a\nnested block with free variables, the compiler will raise a\n``SyntaxError`` unless the exec explicitly specifies the local\nnamespace for the ``exec``.  (In other words, ``exec obj`` would be\nillegal, but ``exec obj in ns`` would be legal.)\n\nThe ``eval()``, ``execfile()``, and ``input()`` functions and the\n``exec`` statement do not have access to the full environment for\nresolving names.  Names may be resolved in the local and global\nnamespaces of the caller.  Free variables are not resolved in the\nnearest enclosing namespace, but in the global namespace. [1] The\n``exec`` statement and the ``eval()`` and ``execfile()`` functions\nhave optional arguments to override the global and local namespace.\nIf only one namespace is specified, it is used for both.\n\n\nExceptions\n==========\n\nExceptions are a means of breaking out of the normal flow of control\nof a code block in order to handle errors or other exceptional\nconditions.  An exception is *raised* at the point where the error is\ndetected; it may be *handled* by the surrounding code block or by any\ncode block that directly or indirectly invoked the code block where\nthe error occurred.\n\nThe Python interpreter raises an exception when it detects a run-time\nerror (such as division by zero).  A Python program can also\nexplicitly raise an exception with the ``raise`` statement. Exception\nhandlers are specified with the ``try`` ... ``except`` statement.  The\n``finally`` clause of such a statement can be used to specify cleanup\ncode which does not handle the exception, but is executed whether an\nexception occurred or not in the preceding code.\n\nPython uses the "termination" model of error handling: an exception\nhandler can find out what happened and continue execution at an outer\nlevel, but it cannot repair the cause of the error and retry the\nfailing operation (except by re-entering the offending piece of code\nfrom the top).\n\nWhen an exception is not handled at all, the interpreter terminates\nexecution of the program, or returns to its interactive main loop.  In\neither case, it prints a stack backtrace, except when the exception is\n``SystemExit``.\n\nExceptions are identified by class instances.  The ``except`` clause\nis selected depending on the class of the instance: it must reference\nthe class of the instance or a base class thereof.  The instance can\nbe received by the handler and can carry additional information about\nthe exceptional condition.\n\nExceptions can also be identified by strings, in which case the\n``except`` clause is selected by object identity.  An arbitrary value\ncan be raised along with the identifying string which can be passed to\nthe handler.\n\nNote: Messages to exceptions are not part of the Python API.  Their\n  contents may change from one version of Python to the next without\n  warning and should not be relied on by code which will run under\n  multiple versions of the interpreter.\n\nSee also the description of the ``try`` statement in section *The try\nstatement* and ``raise`` statement in section *The raise statement*.\n\n-[ Footnotes ]-\n\n[1] This limitation occurs because the code that is executed by these\n    operations is not available at the time the module is compiled.\n',
ae2451
  'exprlists': '\nExpression lists\n****************\n\n   expression_list ::= expression ( "," expression )* [","]\n\nAn expression list containing at least one comma yields a tuple.  The\nlength of the tuple is the number of expressions in the list.  The\nexpressions are evaluated from left to right.\n\nThe trailing comma is required only to create a single tuple (a.k.a. a\n*singleton*); it is optional in all other cases.  A single expression\nwithout a trailing comma doesn\'t create a tuple, but rather yields the\nvalue of that expression. (To create an empty tuple, use an empty pair\nof parentheses: ``()``.)\n',
ae2451
  'floating': '\nFloating point literals\n***********************\n\nFloating point literals are described by the following lexical\ndefinitions:\n\n   floatnumber   ::= pointfloat | exponentfloat\n   pointfloat    ::= [intpart] fraction | intpart "."\n   exponentfloat ::= (intpart | pointfloat) exponent\n   intpart       ::= digit+\n   fraction      ::= "." digit+\n   exponent      ::= ("e" | "E") ["+" | "-"] digit+\n\nNote that the integer and exponent parts of floating point numbers can\nlook like octal integers, but are interpreted using radix 10.  For\nexample, ``077e010`` is legal, and denotes the same number as\n``77e10``. The allowed range of floating point literals is\nimplementation-dependent. Some examples of floating point literals:\n\n   3.14    10.    .001    1e100    3.14e-10    0e0\n\nNote that numeric literals do not include a sign; a phrase like ``-1``\nis actually an expression composed of the unary operator ``-`` and the\nliteral ``1``.\n',
ae2451
  'for': '\nThe ``for`` statement\n*********************\n\nThe ``for`` statement is used to iterate over the elements of a\nsequence (such as a string, tuple or list) or other iterable object:\n\n   for_stmt ::= "for" target_list "in" expression_list ":" suite\n                ["else" ":" suite]\n\nThe expression list is evaluated once; it should yield an iterable\nobject.  An iterator is created for the result of the\n``expression_list``.  The suite is then executed once for each item\nprovided by the iterator, in the order of ascending indices.  Each\nitem in turn is assigned to the target list using the standard rules\nfor assignments, and then the suite is executed.  When the items are\nexhausted (which is immediately when the sequence is empty), the suite\nin the ``else`` clause, if present, is executed, and the loop\nterminates.\n\nA ``break`` statement executed in the first suite terminates the loop\nwithout executing the ``else`` clause\'s suite.  A ``continue``\nstatement executed in the first suite skips the rest of the suite and\ncontinues with the next item, or with the ``else`` clause if there was\nno next item.\n\nThe suite may assign to the variable(s) in the target list; this does\nnot affect the next item assigned to it.\n\nThe target list is not deleted when the loop is finished, but if the\nsequence is empty, it will not have been assigned to at all by the\nloop.  Hint: the built-in function ``range()`` returns a sequence of\nintegers suitable to emulate the effect of Pascal\'s ``for i := a to b\ndo``; e.g., ``range(3)`` returns the list ``[0, 1, 2]``.\n\nNote: There is a subtlety when the sequence is being modified by the loop\n  (this can only occur for mutable sequences, i.e. lists). An internal\n  counter is used to keep track of which item is used next, and this\n  is incremented on each iteration.  When this counter has reached the\n  length of the sequence the loop terminates.  This means that if the\n  suite deletes the current (or a previous) item from the sequence,\n  the next item will be skipped (since it gets the index of the\n  current item which has already been treated).  Likewise, if the\n  suite inserts an item in the sequence before the current item, the\n  current item will be treated again the next time through the loop.\n  This can lead to nasty bugs that can be avoided by making a\n  temporary copy using a slice of the whole sequence, e.g.,\n\n     for x in a[:]:\n         if x < 0: a.remove(x)\n',
ae2451
- 'formatstrings': '\nFormat String Syntax\n********************\n\nThe ``str.format()`` method and the ``Formatter`` class share the same\nsyntax for format strings (although in the case of ``Formatter``,\nsubclasses can define their own format string syntax).\n\nFormat strings contain "replacement fields" surrounded by curly braces\n``{}``. Anything that is not contained in braces is considered literal\ntext, which is copied unchanged to the output.  If you need to include\na brace character in the literal text, it can be escaped by doubling:\n``{{`` and ``}}``.\n\nThe grammar for a replacement field is as follows:\n\n      replacement_field ::= "{" [field_name] ["!" conversion] [":" format_spec] "}"\n      field_name        ::= arg_name ("." attribute_name | "[" element_index "]")*\n      arg_name          ::= [identifier | integer]\n      attribute_name    ::= identifier\n      element_index     ::= integer | index_string\n      index_string      ::= <any source character except "]"> +\n      conversion        ::= "r" | "s"\n      format_spec       ::= <described in the next section>\n\nIn less formal terms, the replacement field can start with a\n*field_name* that specifies the object whose value is to be formatted\nand inserted into the output instead of the replacement field. The\n*field_name* is optionally followed by a  *conversion* field, which is\npreceded by an exclamation point ``\'!\'``, and a *format_spec*, which\nis preceded by a colon ``\':\'``.  These specify a non-default format\nfor the replacement value.\n\nSee also the *Format Specification Mini-Language* section.\n\nThe *field_name* itself begins with an *arg_name* that is either a\nnumber or a keyword.  If it\'s a number, it refers to a positional\nargument, and if it\'s a keyword, it refers to a named keyword\nargument.  If the numerical arg_names in a format string are 0, 1, 2,\n... in sequence, they can all be omitted (not just some) and the\nnumbers 0, 1, 2, ... will be automatically inserted in that order.\nBecause *arg_name* is not quote-delimited, it is not possible to\nspecify arbitrary dictionary keys (e.g., the strings ``\'10\'`` or\n``\':-]\'``) within a format string. The *arg_name* can be followed by\nany number of index or attribute expressions. An expression of the\nform ``\'.name\'`` selects the named attribute using ``getattr()``,\nwhile an expression of the form ``\'[index]\'`` does an index lookup\nusing ``__getitem__()``.\n\nChanged in version 2.7: The positional argument specifiers can be\nomitted, so ``\'{} {}\'`` is equivalent to ``\'{0} {1}\'``.\n\nSome simple format string examples:\n\n   "First, thou shalt count to {0}" # References first positional argument\n   "Bring me a {}"                  # Implicitly references the first positional argument\n   "From {} to {}"                  # Same as "From {0} to {1}"\n   "My quest is {name}"             # References keyword argument \'name\'\n   "Weight in tons {0.weight}"      # \'weight\' attribute of first positional arg\n   "Units destroyed: {players[0]}"  # First element of keyword argument \'players\'.\n\nThe *conversion* field causes a type coercion before formatting.\nNormally, the job of formatting a value is done by the\n``__format__()`` method of the value itself.  However, in some cases\nit is desirable to force a type to be formatted as a string,\noverriding its own definition of formatting.  By converting the value\nto a string before calling ``__format__()``, the normal formatting\nlogic is bypassed.\n\nTwo conversion flags are currently supported: ``\'!s\'`` which calls\n``str()`` on the value, and ``\'!r\'`` which calls ``repr()``.\n\nSome examples:\n\n   "Harold\'s a clever {0!s}"        # Calls str() on the argument first\n   "Bring out the holy {name!r}"    # Calls repr() on the argument first\n\nThe *format_spec* field contains a specification of how the value\nshould be presented, including such details as field width, alignment,\npadding, decimal precision and so on.  Each value type can define its\nown "formatting mini-language" or interpretation of the *format_spec*.\n\nMost built-in types support a common formatting mini-language, which\nis described in the next section.\n\nA *format_spec* field can also include nested replacement fields\nwithin it. These nested replacement fields can contain only a field\nname; conversion flags and format specifications are not allowed.  The\nreplacement fields within the format_spec are substituted before the\n*format_spec* string is interpreted. This allows the formatting of a\nvalue to be dynamically specified.\n\nSee the *Format examples* section for some examples.\n\n\nFormat Specification Mini-Language\n==================================\n\n"Format specifications" are used within replacement fields contained\nwithin a format string to define how individual values are presented\n(see *Format String Syntax*).  They can also be passed directly to the\nbuilt-in ``format()`` function.  Each formattable type may define how\nthe format specification is to be interpreted.\n\nMost built-in types implement the following options for format\nspecifications, although some of the formatting options are only\nsupported by the numeric types.\n\nA general convention is that an empty format string (``""``) produces\nthe same result as if you had called ``str()`` on the value. A non-\nempty format string typically modifies the result.\n\nThe general form of a *standard format specifier* is:\n\n   format_spec ::= [[fill]align][sign][#][0][width][,][.precision][type]\n   fill        ::= \n   align       ::= "<" | ">" | "=" | "^"\n   sign        ::= "+" | "-" | " "\n   width       ::= integer\n   precision   ::= integer\n   type        ::= "b" | "c" | "d" | "e" | "E" | "f" | "F" | "g" | "G" | "n" | "o" | "s" | "x" | "X" | "%"\n\nThe *fill* character can be any character other than \'{\' or \'}\'.  The\npresence of a fill character is signaled by the character following\nit, which must be one of the alignment options.  If the second\ncharacter of *format_spec* is not a valid alignment option, then it is\nassumed that both the fill character and the alignment option are\nabsent.\n\nThe meaning of the various alignment options is as follows:\n\n   +-----------+------------------------------------------------------------+\n   | Option    | Meaning                                                    |\n   +===========+============================================================+\n   | ``\'<\'``   | Forces the field to be left-aligned within the available   |\n   |           | space (this is the default for most objects).              |\n   +-----------+------------------------------------------------------------+\n   | ``\'>\'``   | Forces the field to be right-aligned within the available  |\n   |           | space (this is the default for numbers).                   |\n   +-----------+------------------------------------------------------------+\n   | ``\'=\'``   | Forces the padding to be placed after the sign (if any)    |\n   |           | but before the digits.  This is used for printing fields   |\n   |           | in the form \'+000000120\'. This alignment option is only    |\n   |           | valid for numeric types.                                   |\n   +-----------+------------------------------------------------------------+\n   | ``\'^\'``   | Forces the field to be centered within the available       |\n   |           | space.                                                     |\n   +-----------+------------------------------------------------------------+\n\nNote that unless a minimum field width is defined, the field width\nwill always be the same size as the data to fill it, so that the\nalignment option has no meaning in this case.\n\nThe *sign* option is only valid for number types, and can be one of\nthe following:\n\n   +-----------+------------------------------------------------------------+\n   | Option    | Meaning                                                    |\n   +===========+============================================================+\n   | ``\'+\'``   | indicates that a sign should be used for both positive as  |\n   |           | well as negative numbers.                                  |\n   +-----------+------------------------------------------------------------+\n   | ``\'-\'``   | indicates that a sign should be used only for negative     |\n   |           | numbers (this is the default behavior).                    |\n   +-----------+------------------------------------------------------------+\n   | space     | indicates that a leading space should be used on positive  |\n   |           | numbers, and a minus sign on negative numbers.             |\n   +-----------+------------------------------------------------------------+\n\nThe ``\'#\'`` option is only valid for integers, and only for binary,\noctal, or hexadecimal output.  If present, it specifies that the\noutput will be prefixed by ``\'0b\'``, ``\'0o\'``, or ``\'0x\'``,\nrespectively.\n\nThe ``\',\'`` option signals the use of a comma for a thousands\nseparator. For a locale aware separator, use the ``\'n\'`` integer\npresentation type instead.\n\nChanged in version 2.7: Added the ``\',\'`` option (see also **PEP\n378**).\n\n*width* is a decimal integer defining the minimum field width.  If not\nspecified, then the field width will be determined by the content.\n\nPreceding the *width* field by a zero (``\'0\'``) character enables\nsign-aware zero-padding for numeric types.  This is equivalent to a\n*fill* character of ``\'0\'`` with an *alignment* type of ``\'=\'``.\n\nThe *precision* is a decimal number indicating how many digits should\nbe displayed after the decimal point for a floating point value\nformatted with ``\'f\'`` and ``\'F\'``, or before and after the decimal\npoint for a floating point value formatted with ``\'g\'`` or ``\'G\'``.\nFor non-number types the field indicates the maximum field size - in\nother words, how many characters will be used from the field content.\nThe *precision* is not allowed for integer values.\n\nFinally, the *type* determines how the data should be presented.\n\nThe available string presentation types are:\n\n   +-----------+------------------------------------------------------------+\n   | Type      | Meaning                                                    |\n   +===========+============================================================+\n   | ``\'s\'``   | String format. This is the default type for strings and    |\n   |           | may be omitted.                                            |\n   +-----------+------------------------------------------------------------+\n   | None      | The same as ``\'s\'``.                                       |\n   +-----------+------------------------------------------------------------+\n\nThe available integer presentation types are:\n\n   +-----------+------------------------------------------------------------+\n   | Type      | Meaning                                                    |\n   +===========+============================================================+\n   | ``\'b\'``   | Binary format. Outputs the number in base 2.               |\n   +-----------+------------------------------------------------------------+\n   | ``\'c\'``   | Character. Converts the integer to the corresponding       |\n   |           | unicode character before printing.                         |\n   +-----------+------------------------------------------------------------+\n   | ``\'d\'``   | Decimal Integer. Outputs the number in base 10.            |\n   +-----------+------------------------------------------------------------+\n   | ``\'o\'``   | Octal format. Outputs the number in base 8.                |\n   +-----------+------------------------------------------------------------+\n   | ``\'x\'``   | Hex format. Outputs the number in base 16, using lower-    |\n   |           | case letters for the digits above 9.                       |\n   +-----------+------------------------------------------------------------+\n   | ``\'X\'``   | Hex format. Outputs the number in base 16, using upper-    |\n   |           | case letters for the digits above 9.                       |\n   +-----------+------------------------------------------------------------+\n   | ``\'n\'``   | Number. This is the same as ``\'d\'``, except that it uses   |\n   |           | the current locale setting to insert the appropriate       |\n   |           | number separator characters.                               |\n   +-----------+------------------------------------------------------------+\n   | None      | The same as ``\'d\'``.                                       |\n   +-----------+------------------------------------------------------------+\n\nIn addition to the above presentation types, integers can be formatted\nwith the floating point presentation types listed below (except\n``\'n\'`` and None). When doing so, ``float()`` is used to convert the\ninteger to a floating point number before formatting.\n\nThe available presentation types for floating point and decimal values\nare:\n\n   +-----------+------------------------------------------------------------+\n   | Type      | Meaning                                                    |\n   +===========+============================================================+\n   | ``\'e\'``   | Exponent notation. Prints the number in scientific         |\n   |           | notation using the letter \'e\' to indicate the exponent.    |\n   |           | The default precision is ``6``.                            |\n   +-----------+------------------------------------------------------------+\n   | ``\'E\'``   | Exponent notation. Same as ``\'e\'`` except it uses an upper |\n   |           | case \'E\' as the separator character.                       |\n   +-----------+------------------------------------------------------------+\n   | ``\'f\'``   | Fixed point. Displays the number as a fixed-point number.  |\n   |           | The default precision is ``6``.                            |\n   +-----------+------------------------------------------------------------+\n   | ``\'F\'``   | Fixed point. Same as ``\'f\'``.                              |\n   +-----------+------------------------------------------------------------+\n   | ``\'g\'``   | General format.  For a given precision ``p >= 1``, this    |\n   |           | rounds the number to ``p`` significant digits and then     |\n   |           | formats the result in either fixed-point format or in      |\n   |           | scientific notation, depending on its magnitude.  The      |\n   |           | precise rules are as follows: suppose that the result      |\n   |           | formatted with presentation type ``\'e\'`` and precision     |\n   |           | ``p-1`` would have exponent ``exp``.  Then if ``-4 <= exp  |\n   |           | < p``, the number is formatted with presentation type      |\n   |           | ``\'f\'`` and precision ``p-1-exp``. Otherwise, the number   |\n   |           | is formatted with presentation type ``\'e\'`` and precision  |\n   |           | ``p-1``. In both cases insignificant trailing zeros are    |\n   |           | removed from the significand, and the decimal point is     |\n   |           | also removed if there are no remaining digits following    |\n   |           | it.  Positive and negative infinity, positive and negative |\n   |           | zero, and nans, are formatted as ``inf``, ``-inf``, ``0``, |\n   |           | ``-0`` and ``nan`` respectively, regardless of the         |\n   |           | precision.  A precision of ``0`` is treated as equivalent  |\n   |           | to a precision of ``1``.  The default precision is ``6``.  |\n   +-----------+------------------------------------------------------------+\n   | ``\'G\'``   | General format. Same as ``\'g\'`` except switches to ``\'E\'`` |\n   |           | if the number gets too large. The representations of       |\n   |           | infinity and NaN are uppercased, too.                      |\n   +-----------+------------------------------------------------------------+\n   | ``\'n\'``   | Number. This is the same as ``\'g\'``, except that it uses   |\n   |           | the current locale setting to insert the appropriate       |\n   |           | number separator characters.                               |\n   +-----------+------------------------------------------------------------+\n   | ``\'%\'``   | Percentage. Multiplies the number by 100 and displays in   |\n   |           | fixed (``\'f\'``) format, followed by a percent sign.        |\n   +-----------+------------------------------------------------------------+\n   | None      | The same as ``\'g\'``.                                       |\n   +-----------+------------------------------------------------------------+\n\n\nFormat examples\n===============\n\nThis section contains examples of the new format syntax and comparison\nwith the old ``%``-formatting.\n\nIn most of the cases the syntax is similar to the old\n``%``-formatting, with the addition of the ``{}`` and with ``:`` used\ninstead of ``%``. For example, ``\'%03.2f\'`` can be translated to\n``\'{:03.2f}\'``.\n\nThe new format syntax also supports new and different options, shown\nin the follow examples.\n\nAccessing arguments by position:\n\n   >>> \'{0}, {1}, {2}\'.format(\'a\', \'b\', \'c\')\n   \'a, b, c\'\n   >>> \'{}, {}, {}\'.format(\'a\', \'b\', \'c\')  # 2.7+ only\n   \'a, b, c\'\n   >>> \'{2}, {1}, {0}\'.format(\'a\', \'b\', \'c\')\n   \'c, b, a\'\n   >>> \'{2}, {1}, {0}\'.format(*\'abc\')      # unpacking argument sequence\n   \'c, b, a\'\n   >>> \'{0}{1}{0}\'.format(\'abra\', \'cad\')   # arguments\' indices can be repeated\n   \'abracadabra\'\n\nAccessing arguments by name:\n\n   >>> \'Coordinates: {latitude}, {longitude}\'.format(latitude=\'37.24N\', longitude=\'-115.81W\')\n   \'Coordinates: 37.24N, -115.81W\'\n   >>> coord = {\'latitude\': \'37.24N\', \'longitude\': \'-115.81W\'}\n   >>> \'Coordinates: {latitude}, {longitude}\'.format(**coord)\n   \'Coordinates: 37.24N, -115.81W\'\n\nAccessing arguments\' attributes:\n\n   >>> c = 3-5j\n   >>> (\'The complex number {0} is formed from the real part {0.real} \'\n   ...  \'and the imaginary part {0.imag}.\').format(c)\n   \'The complex number (3-5j) is formed from the real part 3.0 and the imaginary part -5.0.\'\n   >>> class Point(object):\n   ...     def __init__(self, x, y):\n   ...         self.x, self.y = x, y\n   ...     def __str__(self):\n   ...         return \'Point({self.x}, {self.y})\'.format(self=self)\n   ...\n   >>> str(Point(4, 2))\n   \'Point(4, 2)\'\n\nAccessing arguments\' items:\n\n   >>> coord = (3, 5)\n   >>> \'X: {0[0]};  Y: {0[1]}\'.format(coord)\n   \'X: 3;  Y: 5\'\n\nReplacing ``%s`` and ``%r``:\n\n   >>> "repr() shows quotes: {!r}; str() doesn\'t: {!s}".format(\'test1\', \'test2\')\n   "repr() shows quotes: \'test1\'; str() doesn\'t: test2"\n\nAligning the text and specifying a width:\n\n   >>> \'{:<30}\'.format(\'left aligned\')\n   \'left aligned                  \'\n   >>> \'{:>30}\'.format(\'right aligned\')\n   \'                 right aligned\'\n   >>> \'{:^30}\'.format(\'centered\')\n   \'           centered           \'\n   >>> \'{:*^30}\'.format(\'centered\')  # use \'*\' as a fill char\n   \'***********centered***********\'\n\nReplacing ``%+f``, ``%-f``, and ``% f`` and specifying a sign:\n\n   >>> \'{:+f}; {:+f}\'.format(3.14, -3.14)  # show it always\n   \'+3.140000; -3.140000\'\n   >>> \'{: f}; {: f}\'.format(3.14, -3.14)  # show a space for positive numbers\n   \' 3.140000; -3.140000\'\n   >>> \'{:-f}; {:-f}\'.format(3.14, -3.14)  # show only the minus -- same as \'{:f}; {:f}\'\n   \'3.140000; -3.140000\'\n\nReplacing ``%x`` and ``%o`` and converting the value to different\nbases:\n\n   >>> # format also supports binary numbers\n   >>> "int: {0:d};  hex: {0:x};  oct: {0:o};  bin: {0:b}".format(42)\n   \'int: 42;  hex: 2a;  oct: 52;  bin: 101010\'\n   >>> # with 0x, 0o, or 0b as prefix:\n   >>> "int: {0:d};  hex: {0:#x};  oct: {0:#o};  bin: {0:#b}".format(42)\n   \'int: 42;  hex: 0x2a;  oct: 0o52;  bin: 0b101010\'\n\nUsing the comma as a thousands separator:\n\n   >>> \'{:,}\'.format(1234567890)\n   \'1,234,567,890\'\n\nExpressing a percentage:\n\n   >>> points = 19.5\n   >>> total = 22\n   >>> \'Correct answers: {:.2%}\'.format(points/total)\n   \'Correct answers: 88.64%\'\n\nUsing type-specific formatting:\n\n   >>> import datetime\n   >>> d = datetime.datetime(2010, 7, 4, 12, 15, 58)\n   >>> \'{:%Y-%m-%d %H:%M:%S}\'.format(d)\n   \'2010-07-04 12:15:58\'\n\nNesting arguments and more complex examples:\n\n   >>> for align, text in zip(\'<^>\', [\'left\', \'center\', \'right\']):\n   ...     \'{0:{fill}{align}16}\'.format(text, fill=align, align=align)\n   ...\n   \'left<<<<<<<<<<<<\'\n   \'^^^^^center^^^^^\'\n   \'>>>>>>>>>>>right\'\n   >>>\n   >>> octets = [192, 168, 0, 1]\n   >>> \'{:02X}{:02X}{:02X}{:02X}\'.format(*octets)\n   \'C0A80001\'\n   >>> int(_, 16)\n   3232235521\n   >>>\n   >>> width = 5\n   >>> for num in range(5,12):\n   ...     for base in \'dXob\':\n   ...         print \'{0:{width}{base}}\'.format(num, base=base, width=width),\n   ...     print\n   ...\n       5     5     5   101\n       6     6     6   110\n       7     7     7   111\n       8     8    10  1000\n       9     9    11  1001\n      10     A    12  1010\n      11     B    13  1011\n',
ae2451
+ 'formatstrings': '\nFormat String Syntax\n********************\n\nThe ``str.format()`` method and the ``Formatter`` class share the same\nsyntax for format strings (although in the case of ``Formatter``,\nsubclasses can define their own format string syntax).\n\nFormat strings contain "replacement fields" surrounded by curly braces\n``{}``. Anything that is not contained in braces is considered literal\ntext, which is copied unchanged to the output.  If you need to include\na brace character in the literal text, it can be escaped by doubling:\n``{{`` and ``}}``.\n\nThe grammar for a replacement field is as follows:\n\n      replacement_field ::= "{" [field_name] ["!" conversion] [":" format_spec] "}"\n      field_name        ::= arg_name ("." attribute_name | "[" element_index "]")*\n      arg_name          ::= [identifier | integer]\n      attribute_name    ::= identifier\n      element_index     ::= integer | index_string\n      index_string      ::= <any source character except "]"> +\n      conversion        ::= "r" | "s"\n      format_spec       ::= <described in the next section>\n\nIn less formal terms, the replacement field can start with a\n*field_name* that specifies the object whose value is to be formatted\nand inserted into the output instead of the replacement field. The\n*field_name* is optionally followed by a  *conversion* field, which is\npreceded by an exclamation point ``\'!\'``, and a *format_spec*, which\nis preceded by a colon ``\':\'``.  These specify a non-default format\nfor the replacement value.\n\nSee also the *Format Specification Mini-Language* section.\n\nThe *field_name* itself begins with an *arg_name* that is either a\nnumber or a keyword.  If it\'s a number, it refers to a positional\nargument, and if it\'s a keyword, it refers to a named keyword\nargument.  If the numerical arg_names in a format string are 0, 1, 2,\n... in sequence, they can all be omitted (not just some) and the\nnumbers 0, 1, 2, ... will be automatically inserted in that order.\nBecause *arg_name* is not quote-delimited, it is not possible to\nspecify arbitrary dictionary keys (e.g., the strings ``\'10\'`` or\n``\':-]\'``) within a format string. The *arg_name* can be followed by\nany number of index or attribute expressions. An expression of the\nform ``\'.name\'`` selects the named attribute using ``getattr()``,\nwhile an expression of the form ``\'[index]\'`` does an index lookup\nusing ``__getitem__()``.\n\nChanged in version 2.7: The positional argument specifiers can be\nomitted, so ``\'{} {}\'`` is equivalent to ``\'{0} {1}\'``.\n\nSome simple format string examples:\n\n   "First, thou shalt count to {0}" # References first positional argument\n   "Bring me a {}"                  # Implicitly references the first positional argument\n   "From {} to {}"                  # Same as "From {0} to {1}"\n   "My quest is {name}"             # References keyword argument \'name\'\n   "Weight in tons {0.weight}"      # \'weight\' attribute of first positional arg\n   "Units destroyed: {players[0]}"  # First element of keyword argument \'players\'.\n\nThe *conversion* field causes a type coercion before formatting.\nNormally, the job of formatting a value is done by the\n``__format__()`` method of the value itself.  However, in some cases\nit is desirable to force a type to be formatted as a string,\noverriding its own definition of formatting.  By converting the value\nto a string before calling ``__format__()``, the normal formatting\nlogic is bypassed.\n\nTwo conversion flags are currently supported: ``\'!s\'`` which calls\n``str()`` on the value, and ``\'!r\'`` which calls ``repr()``.\n\nSome examples:\n\n   "Harold\'s a clever {0!s}"        # Calls str() on the argument first\n   "Bring out the holy {name!r}"    # Calls repr() on the argument first\n\nThe *format_spec* field contains a specification of how the value\nshould be presented, including such details as field width, alignment,\npadding, decimal precision and so on.  Each value type can define its\nown "formatting mini-language" or interpretation of the *format_spec*.\n\nMost built-in types support a common formatting mini-language, which\nis described in the next section.\n\nA *format_spec* field can also include nested replacement fields\nwithin it. These nested replacement fields can contain only a field\nname; conversion flags and format specifications are not allowed.  The\nreplacement fields within the format_spec are substituted before the\n*format_spec* string is interpreted. This allows the formatting of a\nvalue to be dynamically specified.\n\nSee the *Format examples* section for some examples.\n\n\nFormat Specification Mini-Language\n==================================\n\n"Format specifications" are used within replacement fields contained\nwithin a format string to define how individual values are presented\n(see *Format String Syntax*).  They can also be passed directly to the\nbuilt-in ``format()`` function.  Each formattable type may define how\nthe format specification is to be interpreted.\n\nMost built-in types implement the following options for format\nspecifications, although some of the formatting options are only\nsupported by the numeric types.\n\nA general convention is that an empty format string (``""``) produces\nthe same result as if you had called ``str()`` on the value. A non-\nempty format string typically modifies the result.\n\nThe general form of a *standard format specifier* is:\n\n   format_spec ::= [[fill]align][sign][#][0][width][,][.precision][type]\n   fill        ::= <any character>\n   align       ::= "<" | ">" | "=" | "^"\n   sign        ::= "+" | "-" | " "\n   width       ::= integer\n   precision   ::= integer\n   type        ::= "b" | "c" | "d" | "e" | "E" | "f" | "F" | "g" | "G" | "n" | "o" | "s" | "x" | "X" | "%"\n\nIf a valid *align* value is specified, it can be preceded by a *fill*\ncharacter that can be any character and defaults to a space if\nomitted. Note that it is not possible to use ``{`` and ``}`` as *fill*\nchar while using the ``str.format()`` method; this limitation however\ndoesn\'t affect the ``format()`` function.\n\nThe meaning of the various alignment options is as follows:\n\n   +-----------+------------------------------------------------------------+\n   | Option    | Meaning                                                    |\n   +===========+============================================================+\n   | ``\'<\'``   | Forces the field to be left-aligned within the available   |\n   |           | space (this is the default for most objects).              |\n   +-----------+------------------------------------------------------------+\n   | ``\'>\'``   | Forces the field to be right-aligned within the available  |\n   |           | space (this is the default for numbers).                   |\n   +-----------+------------------------------------------------------------+\n   | ``\'=\'``   | Forces the padding to be placed after the sign (if any)    |\n   |           | but before the digits.  This is used for printing fields   |\n   |           | in the form \'+000000120\'. This alignment option is only    |\n   |           | valid for numeric types.                                   |\n   +-----------+------------------------------------------------------------+\n   | ``\'^\'``   | Forces the field to be centered within the available       |\n   |           | space.                                                     |\n   +-----------+------------------------------------------------------------+\n\nNote that unless a minimum field width is defined, the field width\nwill always be the same size as the data to fill it, so that the\nalignment option has no meaning in this case.\n\nThe *sign* option is only valid for number types, and can be one of\nthe following:\n\n   +-----------+------------------------------------------------------------+\n   | Option    | Meaning                                                    |\n   +===========+============================================================+\n   | ``\'+\'``   | indicates that a sign should be used for both positive as  |\n   |           | well as negative numbers.                                  |\n   +-----------+------------------------------------------------------------+\n   | ``\'-\'``   | indicates that a sign should be used only for negative     |\n   |           | numbers (this is the default behavior).                    |\n   +-----------+------------------------------------------------------------+\n   | space     | indicates that a leading space should be used on positive  |\n   |           | numbers, and a minus sign on negative numbers.             |\n   +-----------+------------------------------------------------------------+\n\nThe ``\'#\'`` option is only valid for integers, and only for binary,\noctal, or hexadecimal output.  If present, it specifies that the\noutput will be prefixed by ``\'0b\'``, ``\'0o\'``, or ``\'0x\'``,\nrespectively.\n\nThe ``\',\'`` option signals the use of a comma for a thousands\nseparator. For a locale aware separator, use the ``\'n\'`` integer\npresentation type instead.\n\nChanged in version 2.7: Added the ``\',\'`` option (see also **PEP\n378**).\n\n*width* is a decimal integer defining the minimum field width.  If not\nspecified, then the field width will be determined by the content.\n\nPreceding the *width* field by a zero (``\'0\'``) character enables\nsign-aware zero-padding for numeric types.  This is equivalent to a\n*fill* character of ``\'0\'`` with an *alignment* type of ``\'=\'``.\n\nThe *precision* is a decimal number indicating how many digits should\nbe displayed after the decimal point for a floating point value\nformatted with ``\'f\'`` and ``\'F\'``, or before and after the decimal\npoint for a floating point value formatted with ``\'g\'`` or ``\'G\'``.\nFor non-number types the field indicates the maximum field size - in\nother words, how many characters will be used from the field content.\nThe *precision* is not allowed for integer values.\n\nFinally, the *type* determines how the data should be presented.\n\nThe available string presentation types are:\n\n   +-----------+------------------------------------------------------------+\n   | Type      | Meaning                                                    |\n   +===========+============================================================+\n   | ``\'s\'``   | String format. This is the default type for strings and    |\n   |           | may be omitted.                                            |\n   +-----------+------------------------------------------------------------+\n   | None      | The same as ``\'s\'``.                                       |\n   +-----------+------------------------------------------------------------+\n\nThe available integer presentation types are:\n\n   +-----------+------------------------------------------------------------+\n   | Type      | Meaning                                                    |\n   +===========+============================================================+\n   | ``\'b\'``   | Binary format. Outputs the number in base 2.               |\n   +-----------+------------------------------------------------------------+\n   | ``\'c\'``   | Character. Converts the integer to the corresponding       |\n   |           | unicode character before printing.                         |\n   +-----------+------------------------------------------------------------+\n   | ``\'d\'``   | Decimal Integer. Outputs the number in base 10.            |\n   +-----------+------------------------------------------------------------+\n   | ``\'o\'``   | Octal format. Outputs the number in base 8.                |\n   +-----------+------------------------------------------------------------+\n   | ``\'x\'``   | Hex format. Outputs the number in base 16, using lower-    |\n   |           | case letters for the digits above 9.                       |\n   +-----------+------------------------------------------------------------+\n   | ``\'X\'``   | Hex format. Outputs the number in base 16, using upper-    |\n   |           | case letters for the digits above 9.                       |\n   +-----------+------------------------------------------------------------+\n   | ``\'n\'``   | Number. This is the same as ``\'d\'``, except that it uses   |\n   |           | the current locale setting to insert the appropriate       |\n   |           | number separator characters.                               |\n   +-----------+------------------------------------------------------------+\n   | None      | The same as ``\'d\'``.                                       |\n   +-----------+------------------------------------------------------------+\n\nIn addition to the above presentation types, integers can be formatted\nwith the floating point presentation types listed below (except\n``\'n\'`` and None). When doing so, ``float()`` is used to convert the\ninteger to a floating point number before formatting.\n\nThe available presentation types for floating point and decimal values\nare:\n\n   +-----------+------------------------------------------------------------+\n   | Type      | Meaning                                                    |\n   +===========+============================================================+\n   | ``\'e\'``   | Exponent notation. Prints the number in scientific         |\n   |           | notation using the letter \'e\' to indicate the exponent.    |\n   |           | The default precision is ``6``.                            |\n   +-----------+------------------------------------------------------------+\n   | ``\'E\'``   | Exponent notation. Same as ``\'e\'`` except it uses an upper |\n   |           | case \'E\' as the separator character.                       |\n   +-----------+------------------------------------------------------------+\n   | ``\'f\'``   | Fixed point. Displays the number as a fixed-point number.  |\n   |           | The default precision is ``6``.                            |\n   +-----------+------------------------------------------------------------+\n   | ``\'F\'``   | Fixed point. Same as ``\'f\'``.                              |\n   +-----------+------------------------------------------------------------+\n   | ``\'g\'``   | General format.  For a given precision ``p >= 1``, this    |\n   |           | rounds the number to ``p`` significant digits and then     |\n   |           | formats the result in either fixed-point format or in      |\n   |           | scientific notation, depending on its magnitude.  The      |\n   |           | precise rules are as follows: suppose that the result      |\n   |           | formatted with presentation type ``\'e\'`` and precision     |\n   |           | ``p-1`` would have exponent ``exp``.  Then if ``-4 <= exp  |\n   |           | < p``, the number is formatted with presentation type      |\n   |           | ``\'f\'`` and precision ``p-1-exp``. Otherwise, the number   |\n   |           | is formatted with presentation type ``\'e\'`` and precision  |\n   |           | ``p-1``. In both cases insignificant trailing zeros are    |\n   |           | removed from the significand, and the decimal point is     |\n   |           | also removed if there are no remaining digits following    |\n   |           | it.  Positive and negative infinity, positive and negative |\n   |           | zero, and nans, are formatted as ``inf``, ``-inf``, ``0``, |\n   |           | ``-0`` and ``nan`` respectively, regardless of the         |\n   |           | precision.  A precision of ``0`` is treated as equivalent  |\n   |           | to a precision of ``1``.  The default precision is ``6``.  |\n   +-----------+------------------------------------------------------------+\n   | ``\'G\'``   | General format. Same as ``\'g\'`` except switches to ``\'E\'`` |\n   |           | if the number gets too large. The representations of       |\n   |           | infinity and NaN are uppercased, too.                      |\n   +-----------+------------------------------------------------------------+\n   | ``\'n\'``   | Number. This is the same as ``\'g\'``, except that it uses   |\n   |           | the current locale setting to insert the appropriate       |\n   |           | number separator characters.                               |\n   +-----------+------------------------------------------------------------+\n   | ``\'%\'``   | Percentage. Multiplies the number by 100 and displays in   |\n   |           | fixed (``\'f\'``) format, followed by a percent sign.        |\n   +-----------+------------------------------------------------------------+\n   | None      | The same as ``\'g\'``.                                       |\n   +-----------+------------------------------------------------------------+\n\n\nFormat examples\n===============\n\nThis section contains examples of the new format syntax and comparison\nwith the old ``%``-formatting.\n\nIn most of the cases the syntax is similar to the old\n``%``-formatting, with the addition of the ``{}`` and with ``:`` used\ninstead of ``%``. For example, ``\'%03.2f\'`` can be translated to\n``\'{:03.2f}\'``.\n\nThe new format syntax also supports new and different options, shown\nin the follow examples.\n\nAccessing arguments by position:\n\n   >>> \'{0}, {1}, {2}\'.format(\'a\', \'b\', \'c\')\n   \'a, b, c\'\n   >>> \'{}, {}, {}\'.format(\'a\', \'b\', \'c\')  # 2.7+ only\n   \'a, b, c\'\n   >>> \'{2}, {1}, {0}\'.format(\'a\', \'b\', \'c\')\n   \'c, b, a\'\n   >>> \'{2}, {1}, {0}\'.format(*\'abc\')      # unpacking argument sequence\n   \'c, b, a\'\n   >>> \'{0}{1}{0}\'.format(\'abra\', \'cad\')   # arguments\' indices can be repeated\n   \'abracadabra\'\n\nAccessing arguments by name:\n\n   >>> \'Coordinates: {latitude}, {longitude}\'.format(latitude=\'37.24N\', longitude=\'-115.81W\')\n   \'Coordinates: 37.24N, -115.81W\'\n   >>> coord = {\'latitude\': \'37.24N\', \'longitude\': \'-115.81W\'}\n   >>> \'Coordinates: {latitude}, {longitude}\'.format(**coord)\n   \'Coordinates: 37.24N, -115.81W\'\n\nAccessing arguments\' attributes:\n\n   >>> c = 3-5j\n   >>> (\'The complex number {0} is formed from the real part {0.real} \'\n   ...  \'and the imaginary part {0.imag}.\').format(c)\n   \'The complex number (3-5j) is formed from the real part 3.0 and the imaginary part -5.0.\'\n   >>> class Point(object):\n   ...     def __init__(self, x, y):\n   ...         self.x, self.y = x, y\n   ...     def __str__(self):\n   ...         return \'Point({self.x}, {self.y})\'.format(self=self)\n   ...\n   >>> str(Point(4, 2))\n   \'Point(4, 2)\'\n\nAccessing arguments\' items:\n\n   >>> coord = (3, 5)\n   >>> \'X: {0[0]};  Y: {0[1]}\'.format(coord)\n   \'X: 3;  Y: 5\'\n\nReplacing ``%s`` and ``%r``:\n\n   >>> "repr() shows quotes: {!r}; str() doesn\'t: {!s}".format(\'test1\', \'test2\')\n   "repr() shows quotes: \'test1\'; str() doesn\'t: test2"\n\nAligning the text and specifying a width:\n\n   >>> \'{:<30}\'.format(\'left aligned\')\n   \'left aligned                  \'\n   >>> \'{:>30}\'.format(\'right aligned\')\n   \'                 right aligned\'\n   >>> \'{:^30}\'.format(\'centered\')\n   \'           centered           \'\n   >>> \'{:*^30}\'.format(\'centered\')  # use \'*\' as a fill char\n   \'***********centered***********\'\n\nReplacing ``%+f``, ``%-f``, and ``% f`` and specifying a sign:\n\n   >>> \'{:+f}; {:+f}\'.format(3.14, -3.14)  # show it always\n   \'+3.140000; -3.140000\'\n   >>> \'{: f}; {: f}\'.format(3.14, -3.14)  # show a space for positive numbers\n   \' 3.140000; -3.140000\'\n   >>> \'{:-f}; {:-f}\'.format(3.14, -3.14)  # show only the minus -- same as \'{:f}; {:f}\'\n   \'3.140000; -3.140000\'\n\nReplacing ``%x`` and ``%o`` and converting the value to different\nbases:\n\n   >>> # format also supports binary numbers\n   >>> "int: {0:d};  hex: {0:x};  oct: {0:o};  bin: {0:b}".format(42)\n   \'int: 42;  hex: 2a;  oct: 52;  bin: 101010\'\n   >>> # with 0x, 0o, or 0b as prefix:\n   >>> "int: {0:d};  hex: {0:#x};  oct: {0:#o};  bin: {0:#b}".format(42)\n   \'int: 42;  hex: 0x2a;  oct: 0o52;  bin: 0b101010\'\n\nUsing the comma as a thousands separator:\n\n   >>> \'{:,}\'.format(1234567890)\n   \'1,234,567,890\'\n\nExpressing a percentage:\n\n   >>> points = 19.5\n   >>> total = 22\n   >>> \'Correct answers: {:.2%}\'.format(points/total)\n   \'Correct answers: 88.64%\'\n\nUsing type-specific formatting:\n\n   >>> import datetime\n   >>> d = datetime.datetime(2010, 7, 4, 12, 15, 58)\n   >>> \'{:%Y-%m-%d %H:%M:%S}\'.format(d)\n   \'2010-07-04 12:15:58\'\n\nNesting arguments and more complex examples:\n\n   >>> for align, text in zip(\'<^>\', [\'left\', \'center\', \'right\']):\n   ...     \'{0:{fill}{align}16}\'.format(text, fill=align, align=align)\n   ...\n   \'left<<<<<<<<<<<<\'\n   \'^^^^^center^^^^^\'\n   \'>>>>>>>>>>>right\'\n   >>>\n   >>> octets = [192, 168, 0, 1]\n   >>> \'{:02X}{:02X}{:02X}{:02X}\'.format(*octets)\n   \'C0A80001\'\n   >>> int(_, 16)\n   3232235521\n   >>>\n   >>> width = 5\n   >>> for num in range(5,12):\n   ...     for base in \'dXob\':\n   ...         print \'{0:{width}{base}}\'.format(num, base=base, width=width),\n   ...     print\n   ...\n       5     5     5   101\n       6     6     6   110\n       7     7     7   111\n       8     8    10  1000\n       9     9    11  1001\n      10     A    12  1010\n      11     B    13  1011\n',
ae2451
  'function': '\nFunction definitions\n********************\n\nA function definition defines a user-defined function object (see\nsection *The standard type hierarchy*):\n\n   decorated      ::= decorators (classdef | funcdef)\n   decorators     ::= decorator+\n   decorator      ::= "@" dotted_name ["(" [argument_list [","]] ")"] NEWLINE\n   funcdef        ::= "def" funcname "(" [parameter_list] ")" ":" suite\n   dotted_name    ::= identifier ("." identifier)*\n   parameter_list ::= (defparameter ",")*\n                      (  "*" identifier ["," "**" identifier]\n                      | "**" identifier\n                      | defparameter [","] )\n   defparameter   ::= parameter ["=" expression]\n   sublist        ::= parameter ("," parameter)* [","]\n   parameter      ::= identifier | "(" sublist ")"\n   funcname       ::= identifier\n\nA function definition is an executable statement.  Its execution binds\nthe function name in the current local namespace to a function object\n(a wrapper around the executable code for the function).  This\nfunction object contains a reference to the current global namespace\nas the global namespace to be used when the function is called.\n\nThe function definition does not execute the function body; this gets\nexecuted only when the function is called. [3]\n\nA function definition may be wrapped by one or more *decorator*\nexpressions. Decorator expressions are evaluated when the function is\ndefined, in the scope that contains the function definition.  The\nresult must be a callable, which is invoked with the function object\nas the only argument. The returned value is bound to the function name\ninstead of the function object.  Multiple decorators are applied in\nnested fashion. For example, the following code:\n\n   @f1(arg)\n   @f2\n   def func(): pass\n\nis equivalent to:\n\n   def func(): pass\n   func = f1(arg)(f2(func))\n\nWhen one or more top-level *parameters* have the form *parameter*\n``=`` *expression*, the function is said to have "default parameter\nvalues."  For a parameter with a default value, the corresponding\n*argument* may be omitted from a call, in which case the parameter\'s\ndefault value is substituted.  If a parameter has a default value, all\nfollowing parameters must also have a default value --- this is a\nsyntactic restriction that is not expressed by the grammar.\n\n**Default parameter values are evaluated when the function definition\nis executed.**  This means that the expression is evaluated once, when\nthe function is defined, and that the same "pre-computed" value is\nused for each call.  This is especially important to understand when a\ndefault parameter is a mutable object, such as a list or a dictionary:\nif the function modifies the object (e.g. by appending an item to a\nlist), the default value is in effect modified. This is generally not\nwhat was intended.  A way around this  is to use ``None`` as the\ndefault, and explicitly test for it in the body of the function, e.g.:\n\n   def whats_on_the_telly(penguin=None):\n       if penguin is None:\n           penguin = []\n       penguin.append("property of the zoo")\n       return penguin\n\nFunction call semantics are described in more detail in section\n*Calls*. A function call always assigns values to all parameters\nmentioned in the parameter list, either from position arguments, from\nkeyword arguments, or from default values.  If the form\n"``*identifier``" is present, it is initialized to a tuple receiving\nany excess positional parameters, defaulting to the empty tuple.  If\nthe form "``**identifier``" is present, it is initialized to a new\ndictionary receiving any excess keyword arguments, defaulting to a new\nempty dictionary.\n\nIt is also possible to create anonymous functions (functions not bound\nto a name), for immediate use in expressions.  This uses lambda forms,\ndescribed in section *Lambdas*.  Note that the lambda form is merely a\nshorthand for a simplified function definition; a function defined in\na "``def``" statement can be passed around or assigned to another name\njust like a function defined by a lambda form.  The "``def``" form is\nactually more powerful since it allows the execution of multiple\nstatements.\n\n**Programmer\'s note:** Functions are first-class objects.  A "``def``"\nform executed inside a function definition defines a local function\nthat can be returned or passed around.  Free variables used in the\nnested function can access the local variables of the function\ncontaining the def.  See section *Naming and binding* for details.\n',
ae2451
  'global': '\nThe ``global`` statement\n************************\n\n   global_stmt ::= "global" identifier ("," identifier)*\n\nThe ``global`` statement is a declaration which holds for the entire\ncurrent code block.  It means that the listed identifiers are to be\ninterpreted as globals.  It would be impossible to assign to a global\nvariable without ``global``, although free variables may refer to\nglobals without being declared global.\n\nNames listed in a ``global`` statement must not be used in the same\ncode block textually preceding that ``global`` statement.\n\nNames listed in a ``global`` statement must not be defined as formal\nparameters or in a ``for`` loop control target, ``class`` definition,\nfunction definition, or ``import`` statement.\n\n**CPython implementation detail:** The current implementation does not\nenforce the latter two restrictions, but programs should not abuse\nthis freedom, as future implementations may enforce them or silently\nchange the meaning of the program.\n\n**Programmer\'s note:** the ``global`` is a directive to the parser.\nIt applies only to code parsed at the same time as the ``global``\nstatement. In particular, a ``global`` statement contained in an\n``exec`` statement does not affect the code block *containing* the\n``exec`` statement, and code contained in an ``exec`` statement is\nunaffected by ``global`` statements in the code containing the\n``exec`` statement.  The same applies to the ``eval()``,\n``execfile()`` and ``compile()`` functions.\n',
ae2451
  'id-classes': '\nReserved classes of identifiers\n*******************************\n\nCertain classes of identifiers (besides keywords) have special\nmeanings.  These classes are identified by the patterns of leading and\ntrailing underscore characters:\n\n``_*``\n   Not imported by ``from module import *``.  The special identifier\n   ``_`` is used in the interactive interpreter to store the result of\n   the last evaluation; it is stored in the ``__builtin__`` module.\n   When not in interactive mode, ``_`` has no special meaning and is\n   not defined. See section *The import statement*.\n\n   Note: The name ``_`` is often used in conjunction with\n     internationalization; refer to the documentation for the\n     ``gettext`` module for more information on this convention.\n\n``__*__``\n   System-defined names. These names are defined by the interpreter\n   and its implementation (including the standard library).  Current\n   system names are discussed in the *Special method names* section\n   and elsewhere.  More will likely be defined in future versions of\n   Python.  *Any* use of ``__*__`` names, in any context, that does\n   not follow explicitly documented use, is subject to breakage\n   without warning.\n\n``__*``\n   Class-private names.  Names in this category, when used within the\n   context of a class definition, are re-written to use a mangled form\n   to help avoid name clashes between "private" attributes of base and\n   derived classes. See section *Identifiers (Names)*.\n',
ae2451
@@ -52,6 +53,7 @@ topics = {'assert': '\nThe ``assert`` st
ae2451
  'operator-summary': '\nOperator precedence\n*******************\n\nThe following table summarizes the operator precedences in Python,\nfrom lowest precedence (least binding) to highest precedence (most\nbinding). Operators in the same box have the same precedence.  Unless\nthe syntax is explicitly given, operators are binary.  Operators in\nthe same box group left to right (except for comparisons, including\ntests, which all have the same precedence and chain from left to right\n--- see section *Comparisons* --- and exponentiation, which groups\nfrom right to left).\n\n+-------------------------------------------------+---------------------------------------+\n| Operator                                        | Description                           |\n+=================================================+=======================================+\n| ``lambda``                                      | Lambda expression                     |\n+-------------------------------------------------+---------------------------------------+\n| ``if`` -- ``else``                              | Conditional expression                |\n+-------------------------------------------------+---------------------------------------+\n| ``or``                                          | Boolean OR                            |\n+-------------------------------------------------+---------------------------------------+\n| ``and``                                         | Boolean AND                           |\n+-------------------------------------------------+---------------------------------------+\n| ``not`` ``x``                                   | Boolean NOT                           |\n+-------------------------------------------------+---------------------------------------+\n| ``in``, ``not in``, ``is``, ``is not``, ``<``,  | Comparisons, including membership     |\n| ``<=``, ``>``, ``>=``, ``<>``, ``!=``, ``==``   | tests and identity tests              |\n+-------------------------------------------------+---------------------------------------+\n| ``|``                                           | Bitwise OR                            |\n+-------------------------------------------------+---------------------------------------+\n| ``^``                                           | Bitwise XOR                           |\n+-------------------------------------------------+---------------------------------------+\n| ``&``                                           | Bitwise AND                           |\n+-------------------------------------------------+---------------------------------------+\n| ``<<``, ``>>``                                  | Shifts                                |\n+-------------------------------------------------+---------------------------------------+\n| ``+``, ``-``                                    | Addition and subtraction              |\n+-------------------------------------------------+---------------------------------------+\n| ``*``, ``/``, ``//``, ``%``                     | Multiplication, division, remainder   |\n|                                                 | [8]                                   |\n+-------------------------------------------------+---------------------------------------+\n| ``+x``, ``-x``, ``~x``                          | Positive, negative, bitwise NOT       |\n+-------------------------------------------------+---------------------------------------+\n| ``**``                                          | Exponentiation [9]                    |\n+-------------------------------------------------+---------------------------------------+\n| ``x[index]``, ``x[index:index]``,               | Subscription, slicing, call,          |\n| ``x(arguments...)``, ``x.attribute``            | attribute reference                   |\n+-------------------------------------------------+---------------------------------------+\n| ``(expressions...)``, ``[expressions...]``,     | Binding or tuple display, list        |\n| ``{key: value...}``, ```expressions...```       | display, dictionary display, string   |\n|                                                 | conversion                            |\n+-------------------------------------------------+---------------------------------------+\n\n-[ Footnotes ]-\n\n[1] In Python 2.3 and later releases, a list comprehension "leaks" the\n    control variables of each ``for`` it contains into the containing\n    scope.  However, this behavior is deprecated, and relying on it\n    will not work in Python 3.\n\n[2] While ``abs(x%y) < abs(y)`` is true mathematically, for floats it\n    may not be true numerically due to roundoff.  For example, and\n    assuming a platform on which a Python float is an IEEE 754 double-\n    precision number, in order that ``-1e-100 % 1e100`` have the same\n    sign as ``1e100``, the computed result is ``-1e-100 + 1e100``,\n    which is numerically exactly equal to ``1e100``.  The function\n    ``math.fmod()`` returns a result whose sign matches the sign of\n    the first argument instead, and so returns ``-1e-100`` in this\n    case. Which approach is more appropriate depends on the\n    application.\n\n[3] If x is very close to an exact integer multiple of y, it\'s\n    possible for ``floor(x/y)`` to be one larger than ``(x-x%y)/y``\n    due to rounding.  In such cases, Python returns the latter result,\n    in order to preserve that ``divmod(x,y)[0] * y + x % y`` be very\n    close to ``x``.\n\n[4] While comparisons between unicode strings make sense at the byte\n    level, they may be counter-intuitive to users. For example, the\n    strings ``u"\\u00C7"`` and ``u"\\u0043\\u0327"`` compare differently,\n    even though they both represent the same unicode character (LATIN\n    CAPITAL LETTER C WITH CEDILLA). To compare strings in a human\n    recognizable way, compare using ``unicodedata.normalize()``.\n\n[5] The implementation computes this efficiently, without constructing\n    lists or sorting.\n\n[6] Earlier versions of Python used lexicographic comparison of the\n    sorted (key, value) lists, but this was very expensive for the\n    common case of comparing for equality.  An even earlier version of\n    Python compared dictionaries by identity only, but this caused\n    surprises because people expected to be able to test a dictionary\n    for emptiness by comparing it to ``{}``.\n\n[7] Due to automatic garbage-collection, free lists, and the dynamic\n    nature of descriptors, you may notice seemingly unusual behaviour\n    in certain uses of the ``is`` operator, like those involving\n    comparisons between instance methods, or constants.  Check their\n    documentation for more info.\n\n[8] The ``%`` operator is also used for string formatting; the same\n    precedence applies.\n\n[9] The power operator ``**`` binds less tightly than an arithmetic or\n    bitwise unary operator on its right, that is, ``2**-1`` is\n    ``0.5``.\n',
ae2451
  'pass': '\nThe ``pass`` statement\n**********************\n\n   pass_stmt ::= "pass"\n\n``pass`` is a null operation --- when it is executed, nothing happens.\nIt is useful as a placeholder when a statement is required\nsyntactically, but no code needs to be executed, for example:\n\n   def f(arg): pass    # a function that does nothing (yet)\n\n   class C: pass       # a class with no methods (yet)\n',
ae2451
  'power': '\nThe power operator\n******************\n\nThe power operator binds more tightly than unary operators on its\nleft; it binds less tightly than unary operators on its right.  The\nsyntax is:\n\n   power ::= primary ["**" u_expr]\n\nThus, in an unparenthesized sequence of power and unary operators, the\noperators are evaluated from right to left (this does not constrain\nthe evaluation order for the operands): ``-1**2`` results in ``-1``.\n\nThe power operator has the same semantics as the built-in ``pow()``\nfunction, when called with two arguments: it yields its left argument\nraised to the power of its right argument.  The numeric arguments are\nfirst converted to a common type.  The result type is that of the\narguments after coercion.\n\nWith mixed operand types, the coercion rules for binary arithmetic\noperators apply. For int and long int operands, the result has the\nsame type as the operands (after coercion) unless the second argument\nis negative; in that case, all arguments are converted to float and a\nfloat result is delivered. For example, ``10**2`` returns ``100``, but\n``10**-2`` returns ``0.01``. (This last feature was added in Python\n2.2. In Python 2.1 and before, if both arguments were of integer types\nand the second argument was negative, an exception was raised).\n\nRaising ``0.0`` to a negative power results in a\n``ZeroDivisionError``. Raising a negative number to a fractional power\nresults in a ``ValueError``.\n',
ae2451
+ 'print': '\nThe ``print`` statement\n***********************\n\n   print_stmt ::= "print" ([expression ("," expression)* [","]]\n                  | ">>" expression [("," expression)+ [","]])\n\n``print`` evaluates each expression in turn and writes the resulting\nobject to standard output (see below).  If an object is not a string,\nit is first converted to a string using the rules for string\nconversions.  The (resulting or original) string is then written.  A\nspace is written before each object is (converted and) written, unless\nthe output system believes it is positioned at the beginning of a\nline.  This is the case (1) when no characters have yet been written\nto standard output, (2) when the last character written to standard\noutput is a whitespace character except ``\' \'``, or (3) when the last\nwrite operation on standard output was not a ``print`` statement. (In\nsome cases it may be functional to write an empty string to standard\noutput for this reason.)\n\nNote: Objects which act like file objects but which are not the built-in\n  file objects often do not properly emulate this aspect of the file\n  object\'s behavior, so it is best not to rely on this.\n\nA ``\'\\n\'`` character is written at the end, unless the ``print``\nstatement ends with a comma.  This is the only action if the statement\ncontains just the keyword ``print``.\n\nStandard output is defined as the file object named ``stdout`` in the\nbuilt-in module ``sys``.  If no such object exists, or if it does not\nhave a ``write()`` method, a ``RuntimeError`` exception is raised.\n\n``print`` also has an extended form, defined by the second portion of\nthe syntax described above. This form is sometimes referred to as\n"``print`` chevron." In this form, the first expression after the\n``>>`` must evaluate to a "file-like" object, specifically an object\nthat has a ``write()`` method as described above.  With this extended\nform, the subsequent expressions are printed to this file object.  If\nthe first expression evaluates to ``None``, then ``sys.stdout`` is\nused as the file for output.\n',
ae2451
  'raise': '\nThe ``raise`` statement\n***********************\n\n   raise_stmt ::= "raise" [expression ["," expression ["," expression]]]\n\nIf no expressions are present, ``raise`` re-raises the last exception\nthat was active in the current scope.  If no exception is active in\nthe current scope, a ``TypeError`` exception is raised indicating that\nthis is an error (if running under IDLE, a ``Queue.Empty`` exception\nis raised instead).\n\nOtherwise, ``raise`` evaluates the expressions to get three objects,\nusing ``None`` as the value of omitted expressions.  The first two\nobjects are used to determine the *type* and *value* of the exception.\n\nIf the first object is an instance, the type of the exception is the\nclass of the instance, the instance itself is the value, and the\nsecond object must be ``None``.\n\nIf the first object is a class, it becomes the type of the exception.\nThe second object is used to determine the exception value: If it is\nan instance of the class, the instance becomes the exception value. If\nthe second object is a tuple, it is used as the argument list for the\nclass constructor; if it is ``None``, an empty argument list is used,\nand any other object is treated as a single argument to the\nconstructor.  The instance so created by calling the constructor is\nused as the exception value.\n\nIf a third object is present and not ``None``, it must be a traceback\nobject (see section *The standard type hierarchy*), and it is\nsubstituted instead of the current location as the place where the\nexception occurred.  If the third object is present and not a\ntraceback object or ``None``, a ``TypeError`` exception is raised.\nThe three-expression form of ``raise`` is useful to re-raise an\nexception transparently in an except clause, but ``raise`` with no\nexpressions should be preferred if the exception to be re-raised was\nthe most recently active exception in the current scope.\n\nAdditional information on exceptions can be found in section\n*Exceptions*, and information about handling exceptions is in section\n*The try statement*.\n',
ae2451
  'return': '\nThe ``return`` statement\n************************\n\n   return_stmt ::= "return" [expression_list]\n\n``return`` may only occur syntactically nested in a function\ndefinition, not within a nested class definition.\n\nIf an expression list is present, it is evaluated, else ``None`` is\nsubstituted.\n\n``return`` leaves the current function call with the expression list\n(or ``None``) as return value.\n\nWhen ``return`` passes control out of a ``try`` statement with a\n``finally`` clause, that ``finally`` clause is executed before really\nleaving the function.\n\nIn a generator function, the ``return`` statement is not allowed to\ninclude an ``expression_list``.  In that context, a bare ``return``\nindicates that the generator is done and will cause ``StopIteration``\nto be raised.\n',
ae2451
  'sequence-types': "\nEmulating container types\n*************************\n\nThe following methods can be defined to implement container objects.\nContainers usually are sequences (such as lists or tuples) or mappings\n(like dictionaries), but can represent other containers as well.  The\nfirst set of methods is used either to emulate a sequence or to\nemulate a mapping; the difference is that for a sequence, the\nallowable keys should be the integers *k* for which ``0 <= k < N``\nwhere *N* is the length of the sequence, or slice objects, which\ndefine a range of items. (For backwards compatibility, the method\n``__getslice__()`` (see below) can also be defined to handle simple,\nbut not extended slices.) It is also recommended that mappings provide\nthe methods ``keys()``, ``values()``, ``items()``, ``has_key()``,\n``get()``, ``clear()``, ``setdefault()``, ``iterkeys()``,\n``itervalues()``, ``iteritems()``, ``pop()``, ``popitem()``,\n``copy()``, and ``update()`` behaving similar to those for Python's\nstandard dictionary objects.  The ``UserDict`` module provides a\n``DictMixin`` class to help create those methods from a base set of\n``__getitem__()``, ``__setitem__()``, ``__delitem__()``, and\n``keys()``. Mutable sequences should provide methods ``append()``,\n``count()``, ``index()``, ``extend()``, ``insert()``, ``pop()``,\n``remove()``, ``reverse()`` and ``sort()``, like Python standard list\nobjects.  Finally, sequence types should implement addition (meaning\nconcatenation) and multiplication (meaning repetition) by defining the\nmethods ``__add__()``, ``__radd__()``, ``__iadd__()``, ``__mul__()``,\n``__rmul__()`` and ``__imul__()`` described below; they should not\ndefine ``__coerce__()`` or other numerical operators.  It is\nrecommended that both mappings and sequences implement the\n``__contains__()`` method to allow efficient use of the ``in``\noperator; for mappings, ``in`` should be equivalent of ``has_key()``;\nfor sequences, it should search through the values.  It is further\nrecommended that both mappings and sequences implement the\n``__iter__()`` method to allow efficient iteration through the\ncontainer; for mappings, ``__iter__()`` should be the same as\n``iterkeys()``; for sequences, it should iterate through the values.\n\nobject.__len__(self)\n\n   Called to implement the built-in function ``len()``.  Should return\n   the length of the object, an integer ``>=`` 0.  Also, an object\n   that doesn't define a ``__nonzero__()`` method and whose\n   ``__len__()`` method returns zero is considered to be false in a\n   Boolean context.\n\nobject.__getitem__(self, key)\n\n   Called to implement evaluation of ``self[key]``. For sequence\n   types, the accepted keys should be integers and slice objects.\n   Note that the special interpretation of negative indexes (if the\n   class wishes to emulate a sequence type) is up to the\n   ``__getitem__()`` method. If *key* is of an inappropriate type,\n   ``TypeError`` may be raised; if of a value outside the set of\n   indexes for the sequence (after any special interpretation of\n   negative values), ``IndexError`` should be raised. For mapping\n   types, if *key* is missing (not in the container), ``KeyError``\n   should be raised.\n\n   Note: ``for`` loops expect that an ``IndexError`` will be raised for\n     illegal indexes to allow proper detection of the end of the\n     sequence.\n\nobject.__setitem__(self, key, value)\n\n   Called to implement assignment to ``self[key]``.  Same note as for\n   ``__getitem__()``.  This should only be implemented for mappings if\n   the objects support changes to the values for keys, or if new keys\n   can be added, or for sequences if elements can be replaced.  The\n   same exceptions should be raised for improper *key* values as for\n   the ``__getitem__()`` method.\n\nobject.__delitem__(self, key)\n\n   Called to implement deletion of ``self[key]``.  Same note as for\n   ``__getitem__()``.  This should only be implemented for mappings if\n   the objects support removal of keys, or for sequences if elements\n   can be removed from the sequence.  The same exceptions should be\n   raised for improper *key* values as for the ``__getitem__()``\n   method.\n\nobject.__iter__(self)\n\n   This method is called when an iterator is required for a container.\n   This method should return a new iterator object that can iterate\n   over all the objects in the container.  For mappings, it should\n   iterate over the keys of the container, and should also be made\n   available as the method ``iterkeys()``.\n\n   Iterator objects also need to implement this method; they are\n   required to return themselves.  For more information on iterator\n   objects, see *Iterator Types*.\n\nobject.__reversed__(self)\n\n   Called (if present) by the ``reversed()`` built-in to implement\n   reverse iteration.  It should return a new iterator object that\n   iterates over all the objects in the container in reverse order.\n\n   If the ``__reversed__()`` method is not provided, the\n   ``reversed()`` built-in will fall back to using the sequence\n   protocol (``__len__()`` and ``__getitem__()``).  Objects that\n   support the sequence protocol should only provide\n   ``__reversed__()`` if they can provide an implementation that is\n   more efficient than the one provided by ``reversed()``.\n\n   New in version 2.6.\n\nThe membership test operators (``in`` and ``not in``) are normally\nimplemented as an iteration through a sequence.  However, container\nobjects can supply the following special method with a more efficient\nimplementation, which also does not require the object be a sequence.\n\nobject.__contains__(self, item)\n\n   Called to implement membership test operators.  Should return true\n   if *item* is in *self*, false otherwise.  For mapping objects, this\n   should consider the keys of the mapping rather than the values or\n   the key-item pairs.\n\n   For objects that don't define ``__contains__()``, the membership\n   test first tries iteration via ``__iter__()``, then the old\n   sequence iteration protocol via ``__getitem__()``, see *this\n   section in the language reference*.\n",