ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
Internet Engineering Task Force (IETF)                         JM. Valin
ec241f
Request for Comments: 8251                           Mozilla Corporation
ec241f
Updates: 6716                                                     K. Vos
ec241f
Category: Standards Track                                        vocTone
ec241f
ISSN: 2070-1721                                             October 2017
ec241f
ec241f
ec241f
                    Updates to the Opus Audio Codec
ec241f
ec241f
Abstract
ec241f
ec241f
   This document addresses minor issues that were found in the
ec241f
   specification of the Opus audio codec in RFC 6716.  It updates the
ec241f
   normative decoder implementation included in Appendix A of RFC 6716.
ec241f
   The changes fix real and potential security-related issues, as well
ec241f
   as minor quality-related issues.
ec241f
ec241f
Status of This Memo
ec241f
ec241f
   This is an Internet Standards Track document.
ec241f
ec241f
   This document is a product of the Internet Engineering Task Force
ec241f
   (IETF).  It represents the consensus of the IETF community.  It has
ec241f
   received public review and has been approved for publication by the
ec241f
   Internet Engineering Steering Group (IESG).  Further information on
ec241f
   Internet Standards is available in Section 2 of RFC 7841.
ec241f
ec241f
   Information about the current status of this document, any errata,
ec241f
   and how to provide feedback on it may be obtained at
ec241f
   https://www.rfc-editor.org/info/rfc8251.
ec241f
ec241f
Copyright Notice
ec241f
ec241f
   Copyright (c) 2017 IETF Trust and the persons identified as the
ec241f
   document authors.  All rights reserved.
ec241f
ec241f
   This document is subject to BCP 78 and the IETF Trust's Legal
ec241f
   Provisions Relating to IETF Documents
ec241f
   (https://trustee.ietf.org/license-info) in effect on the date of
ec241f
   publication of this document.  Please review these documents
ec241f
   carefully, as they describe your rights and restrictions with respect
ec241f
   to this document.  Code Components extracted from this document must
ec241f
   include Simplified BSD License text as described in Section 4.e of
ec241f
   the Trust Legal Provisions and are provided without warranty as
ec241f
   described in the Simplified BSD License.
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
Valin & Vos                  Standards Track                    [Page 1]
ec241f

ec241f
RFC 8251                       Opus Update                  October 2017
ec241f
ec241f
ec241f
Table of Contents
ec241f
ec241f
   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
ec241f
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
ec241f
   3.  Stereo State Reset in SILK  . . . . . . . . . . . . . . . . .   3
ec241f
   4.  Parsing of the Opus Packet Padding  . . . . . . . . . . . . .   4
ec241f
   5.  Resampler Buffer  . . . . . . . . . . . . . . . . . . . . . .   4
ec241f
   6.  Integer Wrap-Around in Inverse Gain Computation . . . . . . .   6
ec241f
   7.  Integer Wrap-Around in LSF Decoding . . . . . . . . . . . . .   7
ec241f
   8.  Cap on Band Energy  . . . . . . . . . . . . . . . . . . . . .   7
ec241f
   9.  Hybrid Folding  . . . . . . . . . . . . . . . . . . . . . . .   8
ec241f
   10. Downmix to Mono . . . . . . . . . . . . . . . . . . . . . . .   9
ec241f
   11. New Test Vectors  . . . . . . . . . . . . . . . . . . . . . .   9
ec241f
   12. Security Considerations . . . . . . . . . . . . . . . . . . .  11
ec241f
   13. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  11
ec241f
   14. Normative References  . . . . . . . . . . . . . . . . . . . .  11
ec241f
   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  11
ec241f
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  12
ec241f
ec241f
1.  Introduction
ec241f
ec241f
   This document addresses minor issues that were discovered in the
ec241f
   reference implementation of the Opus codec.  Unlike most IETF
ec241f
   specifications, RFC 6716 [RFC6716] defines Opus in terms of a
ec241f
   normative reference decoder implementation rather than from the
ec241f
   associated text description.  Appendix A of that RFC includes the
ec241f
   reference decoder implementation, which is why only issues affecting
ec241f
   the decoder are listed here.  An up-to-date implementation of the
ec241f
   Opus encoder can be found at <https://opus-codec.org/>.
ec241f
ec241f
   Some of the changes in this document update normative behavior in a
ec241f
   way that requires new test vectors.  Only the C implementation is
ec241f
   affected, not the English text of the specification.  This
ec241f
   specification remains fully compatible with RFC 6716 [RFC6716].
ec241f
ec241f
   Note: Due to RFC formatting conventions, lines exceeding the column
ec241f
   width in the patch are split using a backslash character.  The
ec241f
   backslashes at the end of a line and the white space at the beginning
ec241f
   of the following line are not part of the patch.  Referenced line
ec241f
   numbers are approximations.  A properly formatted patch including all
ec241f
   changes is available at 
ec241f
   materials-98-codec-opus-update-00.patch> and has a SHA-1 hash of
ec241f
   029e3aa88fc342c91e67a21e7bfbc9458661cd5f.
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
Valin & Vos                  Standards Track                    [Page 2]
ec241f

ec241f
RFC 8251                       Opus Update                  October 2017
ec241f
ec241f
ec241f
2.  Terminology
ec241f
ec241f
   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
ec241f
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
ec241f
   "OPTIONAL" in this document are to be interpreted as described in
ec241f
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
ec241f
   capitals, as shown here.
ec241f
ec241f
3.  Stereo State Reset in SILK
ec241f
ec241f
   The reference implementation does not reinitialize the stereo state
ec241f
   during a mode switch.  The old stereo memory can produce a brief
ec241f
   impulse (i.e., single sample) in the decoded audio.  This can be
ec241f
   fixed by changing silk/dec_API.c around line 72:
ec241f
ec241f
   
ec241f
        for( n = 0; n < DECODER_NUM_CHANNELS; n++ ) {
ec241f
            ret  = silk_init_decoder( &channel_state[ n ] );
ec241f
        }
ec241f
   +    silk_memset(&((silk_decoder *)decState)->sStereo, 0,
ec241f
   +                sizeof(((silk_decoder *)decState)->sStereo));
ec241f
   +    /* Not strictly needed, but it's cleaner that way */
ec241f
   +    ((silk_decoder *)decState)->prev_decode_only_middle = 0;
ec241f
ec241f
        return ret;
ec241f
    }
ec241f
   
ec241f
ec241f
   This change affects the normative output of the decoder, but the
ec241f
   amount of change is within the tolerance and is too small to make the
ec241f
   test vector check fail.
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
Valin & Vos                  Standards Track                    [Page 3]
ec241f

ec241f
RFC 8251                       Opus Update                  October 2017
ec241f
ec241f
ec241f
4.  Parsing of the Opus Packet Padding
ec241f
ec241f
   It was discovered that some invalid packets of a very large size
ec241f
   could trigger an out-of-bounds read in the Opus packet parsing code
ec241f
   responsible for padding.  This is due to an integer overflow if the
ec241f
   signaled padding exceeds 2^31-1 bytes (the actual packet may be
ec241f
   smaller).  The code can be fixed by decrementing the (signed) len
ec241f
   value, instead of incrementing a separate padding counter.  This is
ec241f
   done by applying the following changes around line 596 of
ec241f
   src/opus_decoder.c:
ec241f
ec241f
   
ec241f
          /* Padding flag is bit 6 */
ec241f
          if (ch&0x40)
ec241f
          {
ec241f
   -         int padding=0;
ec241f
             int p;
ec241f
             do {
ec241f
                if (len<=0)
ec241f
                   return OPUS_INVALID_PACKET;
ec241f
                p = *data++;
ec241f
                len--;
ec241f
   -            padding += p==255 ? 254: p;
ec241f
   +            len -= p==255 ? 254: p;
ec241f
             } while (p==255);
ec241f
   -         len -= padding;
ec241f
          }
ec241f
   
ec241f
ec241f
   This packet-parsing issue is limited to reading memory up to about 60
ec241f
   KB beyond the compressed buffer.  This can only be triggered by a
ec241f
   compressed packet more than about 16 MB long, so it's not a problem
ec241f
   for RTP.  In theory, it could crash a file decoder (e.g., Opus in
ec241f
   Ogg) if the memory just after the incoming packet is out of range,
ec241f
   but our attempts to trigger such a crash in a production application
ec241f
   built using an affected version of the Opus decoder failed.
ec241f
ec241f
5.  Resampler Buffer
ec241f
ec241f
   The SILK resampler had the following issues:
ec241f
ec241f
   1.  The calls to memcpy() were using sizeof(opus_int32), but the type
ec241f
       of the local buffer was opus_int16.
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
Valin & Vos                  Standards Track                    [Page 4]
ec241f

ec241f
RFC 8251                       Opus Update                  October 2017
ec241f
ec241f
ec241f
   2.  Because the size was wrong, this potentially allowed the source
ec241f
       and destination regions of the memcpy() to overlap on the copy
ec241f
       from "buf" to "buf".  We believe that nSamplesIn (number of input
ec241f
       samples) is at least fs_in_khZ (sampling rate in kHz), which is
ec241f
       at least 8.  Since RESAMPLER_ORDER_FIR_12 is only 8, that should
ec241f
       not be a problem once the type size is fixed.
ec241f
ec241f
   3.  The size of the buffer used RESAMPLER_MAX_BATCH_SIZE_IN, but the
ec241f
       data stored in it was actually twice the input batch size
ec241f
       (nSamplesIn<<1).
ec241f
ec241f
   The code can be fixed by applying the following changes around line
ec241f
   78 of silk/resampler_private_IIR_FIR.c:
ec241f
ec241f
   
ec241f
ec241f
    )
ec241f
    {
ec241f
        silk_resampler_state_struct *S = \
ec241f
   (silk_resampler_state_struct *)SS;
ec241f
        opus_int32 nSamplesIn;
ec241f
        opus_int32 max_index_Q16, index_increment_Q16;
ec241f
   -    opus_int16 buf[ RESAMPLER_MAX_BATCH_SIZE_IN + \
ec241f
   RESAMPLER_ORDER_FIR_12 ];
ec241f
   +    opus_int16 buf[ 2*RESAMPLER_MAX_BATCH_SIZE_IN + \
ec241f
   RESAMPLER_ORDER_FIR_12 ];
ec241f
ec241f
        /* Copy buffered samples to start of buffer */
ec241f
   -    silk_memcpy( buf, S->sFIR, RESAMPLER_ORDER_FIR_12 \
ec241f
   * sizeof( opus_int32 ) );
ec241f
   +    silk_memcpy( buf, S->sFIR, RESAMPLER_ORDER_FIR_12 \
ec241f
   * sizeof( opus_int16 ) );
ec241f
ec241f
        /* Iterate over blocks of frameSizeIn input samples */
ec241f
        index_increment_Q16 = S->invRatio_Q16;
ec241f
        while( 1 ) {
ec241f
            nSamplesIn = silk_min( inLen, S->batchSize );
ec241f
ec241f
            /* Upsample 2x */
ec241f
            silk_resampler_private_up2_HQ( S->sIIR, &buf[ \
ec241f
   RESAMPLER_ORDER_FIR_12 ], in, nSamplesIn );
ec241f
ec241f
            max_index_Q16 = silk_LSHIFT32( nSamplesIn, 16 + 1 \
ec241f
   );         /* + 1 because 2x upsampling */
ec241f
            out = silk_resampler_private_IIR_FIR_INTERPOL( out, \
ec241f
   buf, max_index_Q16, index_increment_Q16 );
ec241f
            in += nSamplesIn;
ec241f
            inLen -= nSamplesIn;
ec241f
ec241f
ec241f
ec241f
Valin & Vos                  Standards Track                    [Page 5]
ec241f

ec241f
RFC 8251                       Opus Update                  October 2017
ec241f
ec241f
ec241f
            if( inLen > 0 ) {
ec241f
                /* More iterations to do; copy last part of \
ec241f
   filtered signal to beginning of buffer */
ec241f
   -            silk_memcpy( buf, &buf[ nSamplesIn << 1 ], \
ec241f
   RESAMPLER_ORDER_FIR_12 * sizeof( opus_int32 ) );
ec241f
   +            silk_memmove( buf, &buf[ nSamplesIn << 1 ], \
ec241f
   RESAMPLER_ORDER_FIR_12 * sizeof( opus_int16 ) );
ec241f
            } else {
ec241f
                break;
ec241f
            }
ec241f
        }
ec241f
ec241f
        /* Copy last part of filtered signal to the state for \
ec241f
   the next call */
ec241f
   -    silk_memcpy( S->sFIR, &buf[ nSamplesIn << 1 ], \
ec241f
   RESAMPLER_ORDER_FIR_12 * sizeof( opus_int32 ) );
ec241f
   +    silk_memcpy( S->sFIR, &buf[ nSamplesIn << 1 ], \
ec241f
   RESAMPLER_ORDER_FIR_12 * sizeof( opus_int16 ) );
ec241f
    }
ec241f
   
ec241f
ec241f
6.  Integer Wrap-Around in Inverse Gain Computation
ec241f
ec241f
   It was discovered through decoder fuzzing that some bitstreams could
ec241f
   produce integer values exceeding 32 bits in
ec241f
   LPC_inverse_pred_gain_QA(), causing a wrap-around.  The C standard
ec241f
   considers this behavior as undefined.  The following patch around
ec241f
   line 87 of silk/LPC_inv_pred_gain.c detects values that do not fit in
ec241f
   a 32-bit integer and considers the corresponding filters unstable:
ec241f
ec241f
  
ec241f
           /* Update AR coefficient */
ec241f
           for( n = 0; n < k; n++ ) {
ec241f
  -            tmp_QA = Aold_QA[ n ] - MUL32_FRAC_Q( \
ec241f
  Aold_QA[ k - n - 1 ], rc_Q31, 31 );
ec241f
  -            Anew_QA[ n ] = MUL32_FRAC_Q( tmp_QA, rc_mult2 , mult2Q );
ec241f
  +            opus_int64 tmp64;
ec241f
  +            tmp_QA = silk_SUB_SAT32( Aold_QA[ n ], MUL32_FRAC_Q( \
ec241f
  Aold_QA[ k - n - 1 ], rc_Q31, 31 ) );
ec241f
  +            tmp64 = silk_RSHIFT_ROUND64( silk_SMULL( tmp_QA, \
ec241f
  rc_mult2 ), mult2Q);
ec241f
  +            if( tmp64 > silk_int32_MAX || tmp64 < silk_int32_MIN ) {
ec241f
  +               return 0;
ec241f
  +            }
ec241f
  +            Anew_QA[ n ] = ( opus_int32 )tmp64;
ec241f
           }
ec241f
  
ec241f
ec241f
ec241f
ec241f
ec241f
Valin & Vos                  Standards Track                    [Page 6]
ec241f

ec241f
RFC 8251                       Opus Update                  October 2017
ec241f
ec241f
ec241f
7.  Integer Wrap-Around in LSF Decoding
ec241f
ec241f
   It was discovered -- also from decoder fuzzing -- that an integer
ec241f
   wrap-around could occur when decoding bitstreams with extremely large
ec241f
   values for the high Line Spectral Frequency (LSF) parameters.  The
ec241f
   end result of the wrap-around is an illegal read access on the stack,
ec241f
   which the authors do not believe is exploitable but should
ec241f
   nonetheless be fixed.  The following patch around line 137 of silk/
ec241f
   NLSF_stabilize.c prevents the problem:
ec241f
ec241f
   
ec241f
              /* Keep delta_min distance between the NLSFs */
ec241f
            for( i = 1; i < L; i++ )
ec241f
   -            NLSF_Q15[i] = silk_max_int( NLSF_Q15[i], \
ec241f
   NLSF_Q15[i-1] + NDeltaMin_Q15[i] );
ec241f
   +            NLSF_Q15[i] = silk_max_int( NLSF_Q15[i], \
ec241f
   silk_ADD_SAT16( NLSF_Q15[i-1], NDeltaMin_Q15[i] ) );
ec241f
ec241f
            /* Last NLSF should be no higher than 1 - NDeltaMin[L] */
ec241f
   
ec241f
ec241f
8.  Cap on Band Energy
ec241f
ec241f
   On extreme bitstreams, it is possible for log-domain band energy
ec241f
   levels to exceed the maximum single-precision floating point value
ec241f
   once converted to a linear scale.  This would later cause the decoded
ec241f
   values to be NaN (not a number), possibly causing problems in the
ec241f
   software using the PCM values.  This can be avoided with the
ec241f
   following patch around line 552 of celt/quant_bands.c:
ec241f
ec241f
   
ec241f
          {
ec241f
             opus_val16 lg = ADD16(oldEBands[i+c*m->nbEBands],
ec241f
                             SHL16((opus_val16)eMeans[i],6));
ec241f
   +         lg = MIN32(QCONST32(32.f, 16), lg);
ec241f
             eBands[i+c*m->nbEBands] = PSHR32(celt_exp2(lg),4);
ec241f
          }
ec241f
          for (;i<m->nbEBands;i++)
ec241f
   
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
Valin & Vos                  Standards Track                    [Page 7]
ec241f

ec241f
RFC 8251                       Opus Update                  October 2017
ec241f
ec241f
ec241f
9.  Hybrid Folding
ec241f
ec241f
   When encoding in hybrid mode at low bitrate, we sometimes only have
ec241f
   enough bits to code a single Constrained-Energy Lapped Transform
ec241f
   (CELT) band (8 - 9.6 kHz).  When that happens, the second band (CELT
ec241f
   band 18, from 9.6 - 12 kHz) cannot use folding because it is wider
ec241f
   than the amount already coded and falls back to white noise.  Because
ec241f
   it can also happen on transients (e.g., stops), it can cause audible
ec241f
   pre-echo.
ec241f
ec241f
   To address the issue, we change the folding behavior so that it is
ec241f
   never forced to fall back to Linear Congruential Generator (LCG) due
ec241f
   to the first band not containing enough coefficients to fold onto the
ec241f
   second band.  This is achieved by simply repeating part of the first
ec241f
   band in the folding of the second band.  This changes the code in
ec241f
   celt/bands.c around line 1237:
ec241f
ec241f
  
ec241f
            b = 0;
ec241f
         }
ec241f
ec241f
  -      if (resynth && M*eBands[i]-N >= M*eBands[start] && \
ec241f
  (update_lowband || lowband_offset==0))
ec241f
  +      if (resynth && (M*eBands[i]-N >= M*eBands[start] || \
ec241f
  i==start+1) && (update_lowband || lowband_offset==0))
ec241f
               lowband_offset = i;
ec241f
ec241f
  +      if (i == start+1)
ec241f
  +      {
ec241f
  +         int n1, n2;
ec241f
  +         int offset;
ec241f
  +         n1 = M*(eBands[start+1]-eBands[start]);
ec241f
  +         n2 = M*(eBands[start+2]-eBands[start+1]);
ec241f
  +         offset = M*eBands[start];
ec241f
  +         /* Duplicate enough of the first band folding data to \
ec241f
  be able to fold the second band.
ec241f
  +            Copies no data for CELT-only mode. */
ec241f
  +         OPUS_COPY(&norm[offset+n1], &norm[offset+2*n1 - n2], n2-n1);
ec241f
  +         if (C==2)
ec241f
  +            OPUS_COPY(&norm2[offset+n1], &norm2[offset+2*n1 - n2], \
ec241f
  n2-n1);
ec241f
  +      }
ec241f
  +
ec241f
         tf_change = tf_res[i];
ec241f
         if (i>=m->effEBands)
ec241f
         {
ec241f
  
ec241f
ec241f
ec241f
ec241f
ec241f
Valin & Vos                  Standards Track                    [Page 8]
ec241f

ec241f
RFC 8251                       Opus Update                  October 2017
ec241f
ec241f
ec241f
   as well as around line 1260:
ec241f
ec241f
   
ec241f
             fold_start = lowband_offset;
ec241f
             while(M*eBands[--fold_start] > effective_lowband);
ec241f
             fold_end = lowband_offset-1;
ec241f
   -         while(M*eBands[++fold_end] < effective_lowband+N);
ec241f
   +         while(++fold_end < i && M*eBands[fold_end] < \
ec241f
   effective_lowband+N);
ec241f
             x_cm = y_cm = 0;
ec241f
             fold_i = fold_start; do {
ec241f
               x_cm |= collapse_masks[fold_i*C+0];
ec241f
ec241f
   
ec241f
ec241f
   The fix does not impact compatibility, because the improvement does
ec241f
   not depend on the encoder doing anything special.  There is also no
ec241f
   reasonable way for an encoder to use the original behavior to improve
ec241f
   quality over the proposed change.
ec241f
ec241f
10.  Downmix to Mono
ec241f
ec241f
   The last issue is not strictly a bug, but it is an issue that has
ec241f
   been reported when downmixing an Opus decoded stream to mono, whether
ec241f
   this is done inside the decoder or as a post-processing step on the
ec241f
   stereo decoder output.  Opus intensity stereo allows optionally
ec241f
   coding the two channels 180 degrees out of phase on a per-band basis.
ec241f
   This provides better stereo quality than forcing the two channels to
ec241f
   be in phase, but when the output is downmixed to mono, the energy in
ec241f
   the affected bands is canceled, sometimes resulting in audible
ec241f
   artifacts.
ec241f
ec241f
   As a work-around for this issue, the decoder MAY choose not to apply
ec241f
   the 180-degree phase shift.  This can be useful when downmixing to
ec241f
   mono inside or outside of the decoder (e.g., requested explicitly
ec241f
   from an API).
ec241f
ec241f
11.  New Test Vectors
ec241f
ec241f
   Changes in Sections 9 and 10 have sufficient impact on the test
ec241f
   vectors to make them fail.  For this reason, this document also
ec241f
   updates the Opus test vectors.  The new test vectors now include two
ec241f
   decoded outputs for the same bitstream.  The outputs with suffix 'm'
ec241f
   do not apply the CELT 180-degree phase shift as allowed in
ec241f
   Section 10, while the outputs without the suffix do.  An
ec241f
   implementation is compliant as long as it passes either set of
ec241f
   vectors.
ec241f
ec241f
ec241f
ec241f
ec241f
Valin & Vos                  Standards Track                    [Page 9]
ec241f

ec241f
RFC 8251                       Opus Update                  October 2017
ec241f
ec241f
ec241f
   Any Opus implementation that passes either the original test vectors
ec241f
   from RFC 6716 [RFC6716] or one of the new sets of test vectors is
ec241f
   compliant with the Opus specification.  However, newer
ec241f
   implementations SHOULD be based on the new test vectors rather than
ec241f
   the old ones.
ec241f
ec241f
   The new test vectors are located at
ec241f
   
ec241f
   newvectors-00.tar.gz>.  The SHA-1 hashes of the test vectors are:
ec241f
ec241f
   e49b2862ceec7324790ed8019eb9744596d5be01  testvector01.bit
ec241f
   b809795ae1bcd606049d76de4ad24236257135e0  testvector02.bit
ec241f
   e0c4ecaeab44d35a2f5b6575cd996848e5ee2acc  testvector03.bit
ec241f
   a0f870cbe14ebb71fa9066ef3ee96e59c9a75187  testvector04.bit
ec241f
   9b3d92b48b965dfe9edf7b8a85edd4309f8cf7c8  testvector05.bit
ec241f
   28e66769ab17e17f72875283c14b19690cbc4e57  testvector06.bit
ec241f
   bacf467be3215fc7ec288f29e2477de1192947a6  testvector07.bit
ec241f
   ddbe08b688bbf934071f3893cd0030ce48dba12f  testvector08.bit
ec241f
   3932d9d61944dab1201645b8eeaad595d5705ecb  testvector09.bit
ec241f
   521eb2a1e0cc9c31b8b740673307c2d3b10c1900  testvector10.bit
ec241f
   6bc8f3146fcb96450c901b16c3d464ccdf4d5d96  testvector11.bit
ec241f
   338c3f1b4b97226bc60bc41038becbc6de06b28f  testvector12.bit
ec241f
   f5ef93884da6a814d311027918e9afc6f2e5c2c8  testvector01.dec
ec241f
   48ac1ff1995250a756e1e17bd32acefa8cd2b820  testvector02.dec
ec241f
   d15567e919db2d0e818727092c0af8dd9df23c95  testvector03.dec
ec241f
   1249dd28f5bd1e39a66fd6d99449dca7a8316342  testvector04.dec
ec241f
   b85675d81deef84a112c466cdff3b7aaa1d2fc76  testvector05.dec
ec241f
   55f0b191e90bfa6f98b50d01a64b44255cb4813e  testvector06.dec
ec241f
   61e8b357ab090b1801eeb578a28a6ae935e25b7b  testvector07.dec
ec241f
   a58539ee5321453b2ddf4c0f2500e856b3966862  testvector08.dec
ec241f
   bb96aad2cde188555862b7bbb3af6133851ef8f4  testvector09.dec
ec241f
   1b6cdf0413ac9965b16184b1bea129b5c0b2a37a  testvector10.dec
ec241f
   b1fff72b74666e3027801b29dbc48b31f80dee0d  testvector11.dec
ec241f
   98e09bbafed329e341c3b4052e9c4ba5fc83f9b1  testvector12.dec
ec241f
   1e7d984ea3fbb16ba998aea761f4893fbdb30157  testvector01m.dec
ec241f
   48ac1ff1995250a756e1e17bd32acefa8cd2b820  testvector02m.dec
ec241f
   d15567e919db2d0e818727092c0af8dd9df23c95  testvector03m.dec
ec241f
   1249dd28f5bd1e39a66fd6d99449dca7a8316342  testvector04m.dec
ec241f
   d70b0bad431e7d463bc3da49bd2d49f1c6d0a530  testvector05m.dec
ec241f
   6ac1648c3174c95fada565161a6c78bdbe59c77d  testvector06m.dec
ec241f
   fc5e2f709693738324fb4c8bdc0dad6dda04e713  testvector07m.dec
ec241f
   aad2ba397bf1b6a18e8e09b50e4b19627d479f00  testvector08m.dec
ec241f
   6feb7a7b9d7cdc1383baf8d5739e2a514bd0ba08  testvector09m.dec
ec241f
   1b6cdf0413ac9965b16184b1bea129b5c0b2a37a  testvector10m.dec
ec241f
   fd3d3a7b0dfbdab98d37ed9aa04b659b9fefbd18  testvector11m.dec
ec241f
   98e09bbafed329e341c3b4052e9c4ba5fc83f9b1  testvector12m.dec
ec241f
ec241f
   Note that the decoder input bitstream files (.bit) are unchanged.
ec241f
ec241f
ec241f
ec241f
Valin & Vos                  Standards Track                   [Page 10]
ec241f

ec241f
RFC 8251                       Opus Update                  October 2017
ec241f
ec241f
ec241f
12.  Security Considerations
ec241f
ec241f
   This document fixes two security issues reported on Opus that affect
ec241f
   the reference implementation in RFC 6716 [RFC6716]: CVE-2013-0899
ec241f
   <https://nvd.nist.gov/vuln/detail/CVE-2013-0899> and CVE-2017-0381
ec241f
   <https://nvd.nist.gov/vuln/detail/CVE-2017-0381>.  CVE-2013-0899
ec241f
   theoretically could have caused an information leak.  The leaked
ec241f
   information would have gone through the decoder process before being
ec241f
   accessible to the attacker.  The update in Section 4 fixes this.
ec241f
   CVE-2017-0381 could have resulted in a 16-bit out-of-bounds read from
ec241f
   a fixed location.  The update in Section 7 fixes this.  Beyond the
ec241f
   two fixed Common Vulnerabilities and Exposures (CVEs), this document
ec241f
   adds no new security considerations beyond those in RFC 6716
ec241f
   [RFC6716].
ec241f
ec241f
13.  IANA Considerations
ec241f
ec241f
   This document does not require any IANA actions.
ec241f
ec241f
14.  Normative References
ec241f
ec241f
   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
ec241f
              Requirement Levels", BCP 14, RFC 2119,
ec241f
              DOI 10.17487/RFC2119, March 1997,
ec241f
              <https://www.rfc-editor.org/info/rfc2119>.
ec241f
ec241f
   [RFC6716]  Valin, JM., Vos, K., and T. Terriberry, "Definition of the
ec241f
              Opus Audio Codec", RFC 6716, DOI 10.17487/RFC6716,
ec241f
              September 2012, <https://www.rfc-editor.org/info/rfc6716>.
ec241f
ec241f
   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
ec241f
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
ec241f
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.
ec241f
ec241f
Acknowledgements
ec241f
ec241f
   We would like to thank Juri Aedla for reporting the issue with the
ec241f
   parsing of the Opus padding.  Thanks to Felicia Lim for reporting the
ec241f
   LSF integer overflow issue.  Also, thanks to Tina le Grand, Jonathan
ec241f
   Lennox, and Mark Harris for their feedback on this document.
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
Valin & Vos                  Standards Track                   [Page 11]
ec241f

ec241f
RFC 8251                       Opus Update                  October 2017
ec241f
ec241f
ec241f
Authors' Addresses
ec241f
ec241f
   Jean-Marc Valin
ec241f
   Mozilla Corporation
ec241f
   331 E. Evelyn Avenue
ec241f
   Mountain View, CA  94041
ec241f
   United States of America
ec241f
ec241f
   Phone: +1 650 903-0800
ec241f
   Email: jmvalin@jmvalin.ca
ec241f
ec241f
ec241f
   Koen Vos
ec241f
   vocTone
ec241f
ec241f
   Email: koenvos74@gmail.com
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
ec241f
Valin & Vos                  Standards Track                   [Page 12]
ec241f