--- libgo/Makefile.am.jj 2014-01-08 13:53:06.000000000 +0100 +++ libgo/Makefile.am 2014-03-05 15:20:09.938466093 +0100 @@ -1133,7 +1133,6 @@ go_crypto_ecdsa_files = \ go/crypto/ecdsa/ecdsa.go go_crypto_elliptic_files = \ go/crypto/elliptic/elliptic.go \ - go/crypto/elliptic/p224.go \ go/crypto/elliptic/p256.go go_crypto_hmac_files = \ go/crypto/hmac/hmac.go --- libgo/Makefile.in.jj 2014-01-08 13:53:06.000000000 +0100 +++ libgo/Makefile.in 2014-03-05 15:20:20.372465471 +0100 @@ -1291,7 +1291,6 @@ go_crypto_ecdsa_files = \ go_crypto_elliptic_files = \ go/crypto/elliptic/elliptic.go \ - go/crypto/elliptic/p224.go \ go/crypto/elliptic/p256.go go_crypto_hmac_files = \ --- libgo/go/crypto/elliptic/elliptic.go.jj 2016-02-05 20:11:20.000000000 +0100 +++ libgo/go/crypto/elliptic/elliptic.go 2016-02-05 22:36:06.145039321 +0100 @@ -338,7 +338,6 @@ var p384 *CurveParams var p521 *CurveParams func initAll() { - initP224() initP256() initP384() initP521() --- libgo/go/crypto/elliptic/elliptic_test.go.jj 2016-02-05 20:11:19.000000000 +0100 +++ libgo/go/crypto/elliptic/elliptic_test.go 2016-02-05 22:37:37.857772875 +0100 @@ -5,39 +5,16 @@ package elliptic import ( - "crypto/rand" - "encoding/hex" - "fmt" "math/big" "testing" ) -func TestOnCurve(t *testing.T) { - p224 := P224() - if !p224.IsOnCurve(p224.Params().Gx, p224.Params().Gy) { - t.Errorf("FAIL") - } -} - -func TestOffCurve(t *testing.T) { - p224 := P224() - x, y := new(big.Int).SetInt64(1), new(big.Int).SetInt64(1) - if p224.IsOnCurve(x, y) { - t.Errorf("FAIL: point off curve is claimed to be on the curve") - } - b := Marshal(p224, x, y) - x1, y1 := Unmarshal(p224, b) - if x1 != nil || y1 != nil { - t.Errorf("FAIL: unmarshalling a point not on the curve succeeded") - } -} - type baseMultTest struct { k string x, y string } -var p224BaseMultTests = []baseMultTest{ +var p256BaseMultTests = []baseMultTest{ { "1", "b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", @@ -300,47 +277,12 @@ var p224BaseMultTests = []baseMultTest{ }, } -func TestBaseMult(t *testing.T) { - p224 := P224() - for i, e := range p224BaseMultTests { - k, ok := new(big.Int).SetString(e.k, 10) - if !ok { - t.Errorf("%d: bad value for k: %s", i, e.k) - } - x, y := p224.ScalarBaseMult(k.Bytes()) - if fmt.Sprintf("%x", x) != e.x || fmt.Sprintf("%x", y) != e.y { - t.Errorf("%d: bad output for k=%s: got (%x, %x), want (%s, %s)", i, e.k, x, y, e.x, e.y) - } - if testing.Short() && i > 5 { - break - } - } -} - -func TestGenericBaseMult(t *testing.T) { - // We use the P224 CurveParams directly in order to test the generic implementation. - p224 := P224().Params() - for i, e := range p224BaseMultTests { - k, ok := new(big.Int).SetString(e.k, 10) - if !ok { - t.Errorf("%d: bad value for k: %s", i, e.k) - } - x, y := p224.ScalarBaseMult(k.Bytes()) - if fmt.Sprintf("%x", x) != e.x || fmt.Sprintf("%x", y) != e.y { - t.Errorf("%d: bad output for k=%s: got (%x, %x), want (%s, %s)", i, e.k, x, y, e.x, e.y) - } - if testing.Short() && i > 5 { - break - } - } -} - func TestP256BaseMult(t *testing.T) { p256 := P256() p256Generic := p256.Params() - scalars := make([]*big.Int, 0, len(p224BaseMultTests)+1) - for _, e := range p224BaseMultTests { + scalars := make([]*big.Int, 0, len(p256BaseMultTests)+1) + for _, e := range p256BaseMultTests { k, _ := new(big.Int).SetString(e.k, 10) scalars = append(scalars, k) } @@ -365,7 +307,7 @@ func TestP256Mult(t *testing.T) { p256 := P256() p256Generic := p256.Params() - for i, e := range p224BaseMultTests { + for i, e := range p256BaseMultTests { x, _ := new(big.Int).SetString(e.x, 16) y, _ := new(big.Int).SetString(e.y, 16) k, _ := new(big.Int).SetString(e.k, 10) @@ -386,7 +328,6 @@ func TestInfinity(t *testing.T) { name string curve Curve }{ - {"p224", P224()}, {"p256", P256()}, } @@ -419,21 +360,10 @@ func TestInfinity(t *testing.T) { } } -func BenchmarkBaseMult(b *testing.B) { - b.ResetTimer() - p224 := P224() - e := p224BaseMultTests[25] - k, _ := new(big.Int).SetString(e.k, 10) - b.StartTimer() - for i := 0; i < b.N; i++ { - p224.ScalarBaseMult(k.Bytes()) - } -} - func BenchmarkBaseMultP256(b *testing.B) { b.ResetTimer() p256 := P256() - e := p224BaseMultTests[25] + e := p256BaseMultTests[25] k, _ := new(big.Int).SetString(e.k, 10) b.StartTimer() for i := 0; i < b.N; i++ { @@ -452,32 +382,3 @@ func BenchmarkScalarMultP256(b *testing. p256.ScalarMult(x, y, priv) } } - -func TestMarshal(t *testing.T) { - p224 := P224() - _, x, y, err := GenerateKey(p224, rand.Reader) - if err != nil { - t.Error(err) - return - } - serialized := Marshal(p224, x, y) - xx, yy := Unmarshal(p224, serialized) - if xx == nil { - t.Error("failed to unmarshal") - return - } - if xx.Cmp(x) != 0 || yy.Cmp(y) != 0 { - t.Error("unmarshal returned different values") - return - } -} - -func TestP224Overflow(t *testing.T) { - // This tests for a specific bug in the P224 implementation. - p224 := P224() - pointData, _ := hex.DecodeString("049B535B45FB0A2072398A6831834624C7E32CCFD5A4B933BCEAF77F1DD945E08BBE5178F5EDF5E733388F196D2A631D2E075BB16CBFEEA15B") - x, y := Unmarshal(p224, pointData) - if !p224.IsOnCurve(x, y) { - t.Error("P224 failed to validate a correct point") - } -} --- libgo/go/crypto/ecdsa/ecdsa_test.go.jj 2016-02-05 20:10:59.000000000 +0100 +++ libgo/go/crypto/ecdsa/ecdsa_test.go 2016-02-05 22:41:54.916215999 +0100 @@ -33,7 +33,6 @@ func testKeyGeneration(t *testing.T, c e } func TestKeyGeneration(t *testing.T) { - testKeyGeneration(t, elliptic.P224(), "p224") if testing.Short() { return } @@ -98,7 +97,6 @@ func testSignAndVerify(t *testing.T, c e } func TestSignAndVerify(t *testing.T) { - testSignAndVerify(t, elliptic.P224(), "p224") if testing.Short() { return } @@ -135,7 +133,6 @@ func testNonceSafety(t *testing.T, c ell } func TestNonceSafety(t *testing.T) { - testNonceSafety(t, elliptic.P224(), "p224") if testing.Short() { return } @@ -170,7 +167,6 @@ func testINDCCA(t *testing.T, c elliptic } func TestINDCCA(t *testing.T) { - testINDCCA(t, elliptic.P224(), "p224") if testing.Short() { return } @@ -236,8 +232,6 @@ func TestVectors(t *testing.T) { parts := strings.SplitN(line, ",", 2) switch parts[0] { - case "P-224": - pub.Curve = elliptic.P224() case "P-256": pub.Curve = elliptic.P256() case "P-384": --- libgo/go/crypto/x509/x509.go.jj 2016-02-05 20:11:19.000000000 +0100 +++ libgo/go/crypto/x509/x509.go 2016-02-05 22:36:06.147039294 +0100 @@ -334,9 +334,6 @@ func getPublicKeyAlgorithmFromOID(oid as // RFC 5480, 2.1.1.1. Named Curve // -// secp224r1 OBJECT IDENTIFIER ::= { -// iso(1) identified-organization(3) certicom(132) curve(0) 33 } -// // secp256r1 OBJECT IDENTIFIER ::= { // iso(1) member-body(2) us(840) ansi-X9-62(10045) curves(3) // prime(1) 7 } @@ -349,7 +346,6 @@ func getPublicKeyAlgorithmFromOID(oid as // // NB: secp256r1 is equivalent to prime256v1 var ( - oidNamedCurveP224 = asn1.ObjectIdentifier{1, 3, 132, 0, 33} oidNamedCurveP256 = asn1.ObjectIdentifier{1, 2, 840, 10045, 3, 1, 7} oidNamedCurveP384 = asn1.ObjectIdentifier{1, 3, 132, 0, 34} oidNamedCurveP521 = asn1.ObjectIdentifier{1, 3, 132, 0, 35} @@ -357,8 +353,6 @@ var ( func namedCurveFromOID(oid asn1.ObjectIdentifier) elliptic.Curve { switch { - case oid.Equal(oidNamedCurveP224): - return elliptic.P224() case oid.Equal(oidNamedCurveP256): return elliptic.P256() case oid.Equal(oidNamedCurveP384): @@ -371,8 +365,6 @@ func namedCurveFromOID(oid asn1.ObjectId func oidFromNamedCurve(curve elliptic.Curve) (asn1.ObjectIdentifier, bool) { switch curve { - case elliptic.P224(): - return oidNamedCurveP224, true case elliptic.P256(): return oidNamedCurveP256, true case elliptic.P384(): @@ -1502,7 +1494,7 @@ func signingParamsForPublicKey(pub inter pubType = ECDSA switch pub.Curve { - case elliptic.P224(), elliptic.P256(): + case elliptic.P256(): hashFunc = crypto.SHA256 sigAlgo.Algorithm = oidSignatureECDSAWithSHA256 case elliptic.P384(): --- libgo/go/crypto/elliptic/p224.go.jj 2016-01-15 10:58:09.000000000 +0100 +++ libgo/go/crypto/elliptic/p224.go 2016-02-05 22:36:06.147039294 +0100 @@ -1,765 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package elliptic - -// This is a constant-time, 32-bit implementation of P224. See FIPS 186-3, -// section D.2.2. -// -// See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background. - -import ( - "math/big" -) - -var p224 p224Curve - -type p224Curve struct { - *CurveParams - gx, gy, b p224FieldElement -} - -func initP224() { - // See FIPS 186-3, section D.2.2 - p224.CurveParams = &CurveParams{Name: "P-224"} - p224.P, _ = new(big.Int).SetString("26959946667150639794667015087019630673557916260026308143510066298881", 10) - p224.N, _ = new(big.Int).SetString("26959946667150639794667015087019625940457807714424391721682722368061", 10) - p224.B, _ = new(big.Int).SetString("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4", 16) - p224.Gx, _ = new(big.Int).SetString("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", 16) - p224.Gy, _ = new(big.Int).SetString("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34", 16) - p224.BitSize = 224 - - p224FromBig(&p224.gx, p224.Gx) - p224FromBig(&p224.gy, p224.Gy) - p224FromBig(&p224.b, p224.B) -} - -// P224 returns a Curve which implements P-224 (see FIPS 186-3, section D.2.2) -func P224() Curve { - initonce.Do(initAll) - return p224 -} - -func (curve p224Curve) Params() *CurveParams { - return curve.CurveParams -} - -func (curve p224Curve) IsOnCurve(bigX, bigY *big.Int) bool { - var x, y p224FieldElement - p224FromBig(&x, bigX) - p224FromBig(&y, bigY) - - // y² = x³ - 3x + b - var tmp p224LargeFieldElement - var x3 p224FieldElement - p224Square(&x3, &x, &tmp) - p224Mul(&x3, &x3, &x, &tmp) - - for i := 0; i < 8; i++ { - x[i] *= 3 - } - p224Sub(&x3, &x3, &x) - p224Reduce(&x3) - p224Add(&x3, &x3, &curve.b) - p224Contract(&x3, &x3) - - p224Square(&y, &y, &tmp) - p224Contract(&y, &y) - - for i := 0; i < 8; i++ { - if y[i] != x3[i] { - return false - } - } - return true -} - -func (p224Curve) Add(bigX1, bigY1, bigX2, bigY2 *big.Int) (x, y *big.Int) { - var x1, y1, z1, x2, y2, z2, x3, y3, z3 p224FieldElement - - p224FromBig(&x1, bigX1) - p224FromBig(&y1, bigY1) - if bigX1.Sign() != 0 || bigY1.Sign() != 0 { - z1[0] = 1 - } - p224FromBig(&x2, bigX2) - p224FromBig(&y2, bigY2) - if bigX2.Sign() != 0 || bigY2.Sign() != 0 { - z2[0] = 1 - } - - p224AddJacobian(&x3, &y3, &z3, &x1, &y1, &z1, &x2, &y2, &z2) - return p224ToAffine(&x3, &y3, &z3) -} - -func (p224Curve) Double(bigX1, bigY1 *big.Int) (x, y *big.Int) { - var x1, y1, z1, x2, y2, z2 p224FieldElement - - p224FromBig(&x1, bigX1) - p224FromBig(&y1, bigY1) - z1[0] = 1 - - p224DoubleJacobian(&x2, &y2, &z2, &x1, &y1, &z1) - return p224ToAffine(&x2, &y2, &z2) -} - -func (p224Curve) ScalarMult(bigX1, bigY1 *big.Int, scalar []byte) (x, y *big.Int) { - var x1, y1, z1, x2, y2, z2 p224FieldElement - - p224FromBig(&x1, bigX1) - p224FromBig(&y1, bigY1) - z1[0] = 1 - - p224ScalarMult(&x2, &y2, &z2, &x1, &y1, &z1, scalar) - return p224ToAffine(&x2, &y2, &z2) -} - -func (curve p224Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) { - var z1, x2, y2, z2 p224FieldElement - - z1[0] = 1 - p224ScalarMult(&x2, &y2, &z2, &curve.gx, &curve.gy, &z1, scalar) - return p224ToAffine(&x2, &y2, &z2) -} - -// Field element functions. -// -// The field that we're dealing with is ℤ/pℤ where p = 2**224 - 2**96 + 1. -// -// Field elements are represented by a FieldElement, which is a typedef to an -// array of 8 uint32's. The value of a FieldElement, a, is: -// a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7] -// -// Using 28-bit limbs means that there's only 4 bits of headroom, which is less -// than we would really like. But it has the useful feature that we hit 2**224 -// exactly, making the reflections during a reduce much nicer. -type p224FieldElement [8]uint32 - -// p224P is the order of the field, represented as a p224FieldElement. -var p224P = [8]uint32{1, 0, 0, 0xffff000, 0xfffffff, 0xfffffff, 0xfffffff, 0xfffffff} - -// p224IsZero returns 1 if a == 0 mod p and 0 otherwise. -// -// a[i] < 2**29 -func p224IsZero(a *p224FieldElement) uint32 { - // Since a p224FieldElement contains 224 bits there are two possible - // representations of 0: 0 and p. - var minimal p224FieldElement - p224Contract(&minimal, a) - - var isZero, isP uint32 - for i, v := range minimal { - isZero |= v - isP |= v - p224P[i] - } - - // If either isZero or isP is 0, then we should return 1. - isZero |= isZero >> 16 - isZero |= isZero >> 8 - isZero |= isZero >> 4 - isZero |= isZero >> 2 - isZero |= isZero >> 1 - - isP |= isP >> 16 - isP |= isP >> 8 - isP |= isP >> 4 - isP |= isP >> 2 - isP |= isP >> 1 - - // For isZero and isP, the LSB is 0 iff all the bits are zero. - result := isZero & isP - result = (^result) & 1 - - return result -} - -// p224Add computes *out = a+b -// -// a[i] + b[i] < 2**32 -func p224Add(out, a, b *p224FieldElement) { - for i := 0; i < 8; i++ { - out[i] = a[i] + b[i] - } -} - -const two31p3 = 1<<31 + 1<<3 -const two31m3 = 1<<31 - 1<<3 -const two31m15m3 = 1<<31 - 1<<15 - 1<<3 - -// p224ZeroModP31 is 0 mod p where bit 31 is set in all limbs so that we can -// subtract smaller amounts without underflow. See the section "Subtraction" in -// [1] for reasoning. -var p224ZeroModP31 = []uint32{two31p3, two31m3, two31m3, two31m15m3, two31m3, two31m3, two31m3, two31m3} - -// p224Sub computes *out = a-b -// -// a[i], b[i] < 2**30 -// out[i] < 2**32 -func p224Sub(out, a, b *p224FieldElement) { - for i := 0; i < 8; i++ { - out[i] = a[i] + p224ZeroModP31[i] - b[i] - } -} - -// LargeFieldElement also represents an element of the field. The limbs are -// still spaced 28-bits apart and in little-endian order. So the limbs are at -// 0, 28, 56, ..., 392 bits, each 64-bits wide. -type p224LargeFieldElement [15]uint64 - -const two63p35 = 1<<63 + 1<<35 -const two63m35 = 1<<63 - 1<<35 -const two63m35m19 = 1<<63 - 1<<35 - 1<<19 - -// p224ZeroModP63 is 0 mod p where bit 63 is set in all limbs. See the section -// "Subtraction" in [1] for why. -var p224ZeroModP63 = [8]uint64{two63p35, two63m35, two63m35, two63m35, two63m35m19, two63m35, two63m35, two63m35} - -const bottom12Bits = 0xfff -const bottom28Bits = 0xfffffff - -// p224Mul computes *out = a*b -// -// a[i] < 2**29, b[i] < 2**30 (or vice versa) -// out[i] < 2**29 -func p224Mul(out, a, b *p224FieldElement, tmp *p224LargeFieldElement) { - for i := 0; i < 15; i++ { - tmp[i] = 0 - } - - for i := 0; i < 8; i++ { - for j := 0; j < 8; j++ { - tmp[i+j] += uint64(a[i]) * uint64(b[j]) - } - } - - p224ReduceLarge(out, tmp) -} - -// Square computes *out = a*a -// -// a[i] < 2**29 -// out[i] < 2**29 -func p224Square(out, a *p224FieldElement, tmp *p224LargeFieldElement) { - for i := 0; i < 15; i++ { - tmp[i] = 0 - } - - for i := 0; i < 8; i++ { - for j := 0; j <= i; j++ { - r := uint64(a[i]) * uint64(a[j]) - if i == j { - tmp[i+j] += r - } else { - tmp[i+j] += r << 1 - } - } - } - - p224ReduceLarge(out, tmp) -} - -// ReduceLarge converts a p224LargeFieldElement to a p224FieldElement. -// -// in[i] < 2**62 -func p224ReduceLarge(out *p224FieldElement, in *p224LargeFieldElement) { - for i := 0; i < 8; i++ { - in[i] += p224ZeroModP63[i] - } - - // Eliminate the coefficients at 2**224 and greater. - for i := 14; i >= 8; i-- { - in[i-8] -= in[i] - in[i-5] += (in[i] & 0xffff) << 12 - in[i-4] += in[i] >> 16 - } - in[8] = 0 - // in[0..8] < 2**64 - - // As the values become small enough, we start to store them in |out| - // and use 32-bit operations. - for i := 1; i < 8; i++ { - in[i+1] += in[i] >> 28 - out[i] = uint32(in[i] & bottom28Bits) - } - in[0] -= in[8] - out[3] += uint32(in[8]&0xffff) << 12 - out[4] += uint32(in[8] >> 16) - // in[0] < 2**64 - // out[3] < 2**29 - // out[4] < 2**29 - // out[1,2,5..7] < 2**28 - - out[0] = uint32(in[0] & bottom28Bits) - out[1] += uint32((in[0] >> 28) & bottom28Bits) - out[2] += uint32(in[0] >> 56) - // out[0] < 2**28 - // out[1..4] < 2**29 - // out[5..7] < 2**28 -} - -// Reduce reduces the coefficients of a to smaller bounds. -// -// On entry: a[i] < 2**31 + 2**30 -// On exit: a[i] < 2**29 -func p224Reduce(a *p224FieldElement) { - for i := 0; i < 7; i++ { - a[i+1] += a[i] >> 28 - a[i] &= bottom28Bits - } - top := a[7] >> 28 - a[7] &= bottom28Bits - - // top < 2**4 - mask := top - mask |= mask >> 2 - mask |= mask >> 1 - mask <<= 31 - mask = uint32(int32(mask) >> 31) - // Mask is all ones if top != 0, all zero otherwise - - a[0] -= top - a[3] += top << 12 - - // We may have just made a[0] negative but, if we did, then we must - // have added something to a[3], this it's > 2**12. Therefore we can - // carry down to a[0]. - a[3] -= 1 & mask - a[2] += mask & (1<<28 - 1) - a[1] += mask & (1<<28 - 1) - a[0] += mask & (1 << 28) -} - -// p224Invert calculates *out = in**-1 by computing in**(2**224 - 2**96 - 1), -// i.e. Fermat's little theorem. -func p224Invert(out, in *p224FieldElement) { - var f1, f2, f3, f4 p224FieldElement - var c p224LargeFieldElement - - p224Square(&f1, in, &c) // 2 - p224Mul(&f1, &f1, in, &c) // 2**2 - 1 - p224Square(&f1, &f1, &c) // 2**3 - 2 - p224Mul(&f1, &f1, in, &c) // 2**3 - 1 - p224Square(&f2, &f1, &c) // 2**4 - 2 - p224Square(&f2, &f2, &c) // 2**5 - 4 - p224Square(&f2, &f2, &c) // 2**6 - 8 - p224Mul(&f1, &f1, &f2, &c) // 2**6 - 1 - p224Square(&f2, &f1, &c) // 2**7 - 2 - for i := 0; i < 5; i++ { // 2**12 - 2**6 - p224Square(&f2, &f2, &c) - } - p224Mul(&f2, &f2, &f1, &c) // 2**12 - 1 - p224Square(&f3, &f2, &c) // 2**13 - 2 - for i := 0; i < 11; i++ { // 2**24 - 2**12 - p224Square(&f3, &f3, &c) - } - p224Mul(&f2, &f3, &f2, &c) // 2**24 - 1 - p224Square(&f3, &f2, &c) // 2**25 - 2 - for i := 0; i < 23; i++ { // 2**48 - 2**24 - p224Square(&f3, &f3, &c) - } - p224Mul(&f3, &f3, &f2, &c) // 2**48 - 1 - p224Square(&f4, &f3, &c) // 2**49 - 2 - for i := 0; i < 47; i++ { // 2**96 - 2**48 - p224Square(&f4, &f4, &c) - } - p224Mul(&f3, &f3, &f4, &c) // 2**96 - 1 - p224Square(&f4, &f3, &c) // 2**97 - 2 - for i := 0; i < 23; i++ { // 2**120 - 2**24 - p224Square(&f4, &f4, &c) - } - p224Mul(&f2, &f4, &f2, &c) // 2**120 - 1 - for i := 0; i < 6; i++ { // 2**126 - 2**6 - p224Square(&f2, &f2, &c) - } - p224Mul(&f1, &f1, &f2, &c) // 2**126 - 1 - p224Square(&f1, &f1, &c) // 2**127 - 2 - p224Mul(&f1, &f1, in, &c) // 2**127 - 1 - for i := 0; i < 97; i++ { // 2**224 - 2**97 - p224Square(&f1, &f1, &c) - } - p224Mul(out, &f1, &f3, &c) // 2**224 - 2**96 - 1 -} - -// p224Contract converts a FieldElement to its unique, minimal form. -// -// On entry, in[i] < 2**29 -// On exit, in[i] < 2**28 -func p224Contract(out, in *p224FieldElement) { - copy(out[:], in[:]) - - for i := 0; i < 7; i++ { - out[i+1] += out[i] >> 28 - out[i] &= bottom28Bits - } - top := out[7] >> 28 - out[7] &= bottom28Bits - - out[0] -= top - out[3] += top << 12 - - // We may just have made out[i] negative. So we carry down. If we made - // out[0] negative then we know that out[3] is sufficiently positive - // because we just added to it. - for i := 0; i < 3; i++ { - mask := uint32(int32(out[i]) >> 31) - out[i] += (1 << 28) & mask - out[i+1] -= 1 & mask - } - - // We might have pushed out[3] over 2**28 so we perform another, partial, - // carry chain. - for i := 3; i < 7; i++ { - out[i+1] += out[i] >> 28 - out[i] &= bottom28Bits - } - top = out[7] >> 28 - out[7] &= bottom28Bits - - // Eliminate top while maintaining the same value mod p. - out[0] -= top - out[3] += top << 12 - - // There are two cases to consider for out[3]: - // 1) The first time that we eliminated top, we didn't push out[3] over - // 2**28. In this case, the partial carry chain didn't change any values - // and top is zero. - // 2) We did push out[3] over 2**28 the first time that we eliminated top. - // The first value of top was in [0..16), therefore, prior to eliminating - // the first top, 0xfff1000 <= out[3] <= 0xfffffff. Therefore, after - // overflowing and being reduced by the second carry chain, out[3] <= - // 0xf000. Thus it cannot have overflowed when we eliminated top for the - // second time. - - // Again, we may just have made out[0] negative, so do the same carry down. - // As before, if we made out[0] negative then we know that out[3] is - // sufficiently positive. - for i := 0; i < 3; i++ { - mask := uint32(int32(out[i]) >> 31) - out[i] += (1 << 28) & mask - out[i+1] -= 1 & mask - } - - // Now we see if the value is >= p and, if so, subtract p. - - // First we build a mask from the top four limbs, which must all be - // equal to bottom28Bits if the whole value is >= p. If top4AllOnes - // ends up with any zero bits in the bottom 28 bits, then this wasn't - // true. - top4AllOnes := uint32(0xffffffff) - for i := 4; i < 8; i++ { - top4AllOnes &= out[i] - } - top4AllOnes |= 0xf0000000 - // Now we replicate any zero bits to all the bits in top4AllOnes. - top4AllOnes &= top4AllOnes >> 16 - top4AllOnes &= top4AllOnes >> 8 - top4AllOnes &= top4AllOnes >> 4 - top4AllOnes &= top4AllOnes >> 2 - top4AllOnes &= top4AllOnes >> 1 - top4AllOnes = uint32(int32(top4AllOnes<<31) >> 31) - - // Now we test whether the bottom three limbs are non-zero. - bottom3NonZero := out[0] | out[1] | out[2] - bottom3NonZero |= bottom3NonZero >> 16 - bottom3NonZero |= bottom3NonZero >> 8 - bottom3NonZero |= bottom3NonZero >> 4 - bottom3NonZero |= bottom3NonZero >> 2 - bottom3NonZero |= bottom3NonZero >> 1 - bottom3NonZero = uint32(int32(bottom3NonZero<<31) >> 31) - - // Everything depends on the value of out[3]. - // If it's > 0xffff000 and top4AllOnes != 0 then the whole value is >= p - // If it's = 0xffff000 and top4AllOnes != 0 and bottom3NonZero != 0, - // then the whole value is >= p - // If it's < 0xffff000, then the whole value is < p - n := out[3] - 0xffff000 - out3Equal := n - out3Equal |= out3Equal >> 16 - out3Equal |= out3Equal >> 8 - out3Equal |= out3Equal >> 4 - out3Equal |= out3Equal >> 2 - out3Equal |= out3Equal >> 1 - out3Equal = ^uint32(int32(out3Equal<<31) >> 31) - - // If out[3] > 0xffff000 then n's MSB will be zero. - out3GT := ^uint32(int32(n) >> 31) - - mask := top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT) - out[0] -= 1 & mask - out[3] -= 0xffff000 & mask - out[4] -= 0xfffffff & mask - out[5] -= 0xfffffff & mask - out[6] -= 0xfffffff & mask - out[7] -= 0xfffffff & mask -} - -// Group element functions. -// -// These functions deal with group elements. The group is an elliptic curve -// group with a = -3 defined in FIPS 186-3, section D.2.2. - -// p224AddJacobian computes *out = a+b where a != b. -func p224AddJacobian(x3, y3, z3, x1, y1, z1, x2, y2, z2 *p224FieldElement) { - // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-p224Add-2007-bl - var z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v p224FieldElement - var c p224LargeFieldElement - - z1IsZero := p224IsZero(z1) - z2IsZero := p224IsZero(z2) - - // Z1Z1 = Z1² - p224Square(&z1z1, z1, &c) - // Z2Z2 = Z2² - p224Square(&z2z2, z2, &c) - // U1 = X1*Z2Z2 - p224Mul(&u1, x1, &z2z2, &c) - // U2 = X2*Z1Z1 - p224Mul(&u2, x2, &z1z1, &c) - // S1 = Y1*Z2*Z2Z2 - p224Mul(&s1, z2, &z2z2, &c) - p224Mul(&s1, y1, &s1, &c) - // S2 = Y2*Z1*Z1Z1 - p224Mul(&s2, z1, &z1z1, &c) - p224Mul(&s2, y2, &s2, &c) - // H = U2-U1 - p224Sub(&h, &u2, &u1) - p224Reduce(&h) - xEqual := p224IsZero(&h) - // I = (2*H)² - for j := 0; j < 8; j++ { - i[j] = h[j] << 1 - } - p224Reduce(&i) - p224Square(&i, &i, &c) - // J = H*I - p224Mul(&j, &h, &i, &c) - // r = 2*(S2-S1) - p224Sub(&r, &s2, &s1) - p224Reduce(&r) - yEqual := p224IsZero(&r) - if xEqual == 1 && yEqual == 1 && z1IsZero == 0 && z2IsZero == 0 { - p224DoubleJacobian(x3, y3, z3, x1, y1, z1) - return - } - for i := 0; i < 8; i++ { - r[i] <<= 1 - } - p224Reduce(&r) - // V = U1*I - p224Mul(&v, &u1, &i, &c) - // Z3 = ((Z1+Z2)²-Z1Z1-Z2Z2)*H - p224Add(&z1z1, &z1z1, &z2z2) - p224Add(&z2z2, z1, z2) - p224Reduce(&z2z2) - p224Square(&z2z2, &z2z2, &c) - p224Sub(z3, &z2z2, &z1z1) - p224Reduce(z3) - p224Mul(z3, z3, &h, &c) - // X3 = r²-J-2*V - for i := 0; i < 8; i++ { - z1z1[i] = v[i] << 1 - } - p224Add(&z1z1, &j, &z1z1) - p224Reduce(&z1z1) - p224Square(x3, &r, &c) - p224Sub(x3, x3, &z1z1) - p224Reduce(x3) - // Y3 = r*(V-X3)-2*S1*J - for i := 0; i < 8; i++ { - s1[i] <<= 1 - } - p224Mul(&s1, &s1, &j, &c) - p224Sub(&z1z1, &v, x3) - p224Reduce(&z1z1) - p224Mul(&z1z1, &z1z1, &r, &c) - p224Sub(y3, &z1z1, &s1) - p224Reduce(y3) - - p224CopyConditional(x3, x2, z1IsZero) - p224CopyConditional(x3, x1, z2IsZero) - p224CopyConditional(y3, y2, z1IsZero) - p224CopyConditional(y3, y1, z2IsZero) - p224CopyConditional(z3, z2, z1IsZero) - p224CopyConditional(z3, z1, z2IsZero) -} - -// p224DoubleJacobian computes *out = a+a. -func p224DoubleJacobian(x3, y3, z3, x1, y1, z1 *p224FieldElement) { - var delta, gamma, beta, alpha, t p224FieldElement - var c p224LargeFieldElement - - p224Square(&delta, z1, &c) - p224Square(&gamma, y1, &c) - p224Mul(&beta, x1, &gamma, &c) - - // alpha = 3*(X1-delta)*(X1+delta) - p224Add(&t, x1, &delta) - for i := 0; i < 8; i++ { - t[i] += t[i] << 1 - } - p224Reduce(&t) - p224Sub(&alpha, x1, &delta) - p224Reduce(&alpha) - p224Mul(&alpha, &alpha, &t, &c) - - // Z3 = (Y1+Z1)²-gamma-delta - p224Add(z3, y1, z1) - p224Reduce(z3) - p224Square(z3, z3, &c) - p224Sub(z3, z3, &gamma) - p224Reduce(z3) - p224Sub(z3, z3, &delta) - p224Reduce(z3) - - // X3 = alpha²-8*beta - for i := 0; i < 8; i++ { - delta[i] = beta[i] << 3 - } - p224Reduce(&delta) - p224Square(x3, &alpha, &c) - p224Sub(x3, x3, &delta) - p224Reduce(x3) - - // Y3 = alpha*(4*beta-X3)-8*gamma² - for i := 0; i < 8; i++ { - beta[i] <<= 2 - } - p224Sub(&beta, &beta, x3) - p224Reduce(&beta) - p224Square(&gamma, &gamma, &c) - for i := 0; i < 8; i++ { - gamma[i] <<= 3 - } - p224Reduce(&gamma) - p224Mul(y3, &alpha, &beta, &c) - p224Sub(y3, y3, &gamma) - p224Reduce(y3) -} - -// p224CopyConditional sets *out = *in iff the least-significant-bit of control -// is true, and it runs in constant time. -func p224CopyConditional(out, in *p224FieldElement, control uint32) { - control <<= 31 - control = uint32(int32(control) >> 31) - - for i := 0; i < 8; i++ { - out[i] ^= (out[i] ^ in[i]) & control - } -} - -func p224ScalarMult(outX, outY, outZ, inX, inY, inZ *p224FieldElement, scalar []byte) { - var xx, yy, zz p224FieldElement - for i := 0; i < 8; i++ { - outX[i] = 0 - outY[i] = 0 - outZ[i] = 0 - } - - for _, byte := range scalar { - for bitNum := uint(0); bitNum < 8; bitNum++ { - p224DoubleJacobian(outX, outY, outZ, outX, outY, outZ) - bit := uint32((byte >> (7 - bitNum)) & 1) - p224AddJacobian(&xx, &yy, &zz, inX, inY, inZ, outX, outY, outZ) - p224CopyConditional(outX, &xx, bit) - p224CopyConditional(outY, &yy, bit) - p224CopyConditional(outZ, &zz, bit) - } - } -} - -// p224ToAffine converts from Jacobian to affine form. -func p224ToAffine(x, y, z *p224FieldElement) (*big.Int, *big.Int) { - var zinv, zinvsq, outx, outy p224FieldElement - var tmp p224LargeFieldElement - - if isPointAtInfinity := p224IsZero(z); isPointAtInfinity == 1 { - return new(big.Int), new(big.Int) - } - - p224Invert(&zinv, z) - p224Square(&zinvsq, &zinv, &tmp) - p224Mul(x, x, &zinvsq, &tmp) - p224Mul(&zinvsq, &zinvsq, &zinv, &tmp) - p224Mul(y, y, &zinvsq, &tmp) - - p224Contract(&outx, x) - p224Contract(&outy, y) - return p224ToBig(&outx), p224ToBig(&outy) -} - -// get28BitsFromEnd returns the least-significant 28 bits from buf>>shift, -// where buf is interpreted as a big-endian number. -func get28BitsFromEnd(buf []byte, shift uint) (uint32, []byte) { - var ret uint32 - - for i := uint(0); i < 4; i++ { - var b byte - if l := len(buf); l > 0 { - b = buf[l-1] - // We don't remove the byte if we're about to return and we're not - // reading all of it. - if i != 3 || shift == 4 { - buf = buf[:l-1] - } - } - ret |= uint32(b) << (8 * i) >> shift - } - ret &= bottom28Bits - return ret, buf -} - -// p224FromBig sets *out = *in. -func p224FromBig(out *p224FieldElement, in *big.Int) { - bytes := in.Bytes() - out[0], bytes = get28BitsFromEnd(bytes, 0) - out[1], bytes = get28BitsFromEnd(bytes, 4) - out[2], bytes = get28BitsFromEnd(bytes, 0) - out[3], bytes = get28BitsFromEnd(bytes, 4) - out[4], bytes = get28BitsFromEnd(bytes, 0) - out[5], bytes = get28BitsFromEnd(bytes, 4) - out[6], bytes = get28BitsFromEnd(bytes, 0) - out[7], bytes = get28BitsFromEnd(bytes, 4) -} - -// p224ToBig returns in as a big.Int. -func p224ToBig(in *p224FieldElement) *big.Int { - var buf [28]byte - buf[27] = byte(in[0]) - buf[26] = byte(in[0] >> 8) - buf[25] = byte(in[0] >> 16) - buf[24] = byte(((in[0] >> 24) & 0x0f) | (in[1]<<4)&0xf0) - - buf[23] = byte(in[1] >> 4) - buf[22] = byte(in[1] >> 12) - buf[21] = byte(in[1] >> 20) - - buf[20] = byte(in[2]) - buf[19] = byte(in[2] >> 8) - buf[18] = byte(in[2] >> 16) - buf[17] = byte(((in[2] >> 24) & 0x0f) | (in[3]<<4)&0xf0) - - buf[16] = byte(in[3] >> 4) - buf[15] = byte(in[3] >> 12) - buf[14] = byte(in[3] >> 20) - - buf[13] = byte(in[4]) - buf[12] = byte(in[4] >> 8) - buf[11] = byte(in[4] >> 16) - buf[10] = byte(((in[4] >> 24) & 0x0f) | (in[5]<<4)&0xf0) - - buf[9] = byte(in[5] >> 4) - buf[8] = byte(in[5] >> 12) - buf[7] = byte(in[5] >> 20) - - buf[6] = byte(in[6]) - buf[5] = byte(in[6] >> 8) - buf[4] = byte(in[6] >> 16) - buf[3] = byte(((in[6] >> 24) & 0x0f) | (in[7]<<4)&0xf0) - - buf[2] = byte(in[7] >> 4) - buf[1] = byte(in[7] >> 12) - buf[0] = byte(in[7] >> 20) - - return new(big.Int).SetBytes(buf[:]) -} --- libgo/go/crypto/elliptic/p224_test.go.jj 2016-01-15 10:58:09.000000000 +0100 +++ libgo/go/crypto/elliptic/p224_test.go 2016-02-05 22:36:06.148039280 +0100 @@ -1,47 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package elliptic - -import ( - "math/big" - "testing" -) - -var toFromBigTests = []string{ - "0", - "1", - "23", - "b70e0cb46bb4bf7f321390b94a03c1d356c01122343280d6105c1d21", - "706a46d476dcb76798e6046d89474788d164c18032d268fd10704fa6", -} - -func p224AlternativeToBig(in *p224FieldElement) *big.Int { - ret := new(big.Int) - tmp := new(big.Int) - - for i := uint(0); i < 8; i++ { - tmp.SetInt64(int64(in[i])) - tmp.Lsh(tmp, 28*i) - ret.Add(ret, tmp) - } - ret.Mod(ret, p224.P) - return ret -} - -func TestToFromBig(t *testing.T) { - for i, test := range toFromBigTests { - n, _ := new(big.Int).SetString(test, 16) - var x p224FieldElement - p224FromBig(&x, n) - m := p224ToBig(&x) - if n.Cmp(m) != 0 { - t.Errorf("#%d: %x != %x", i, n, m) - } - q := p224AlternativeToBig(&x) - if n.Cmp(q) != 0 { - t.Errorf("#%d: %x != %x (alternative)", i, n, m) - } - } -} --- libgo/go/crypto/elliptic/p256.go.jj 2016-02-05 20:11:19.000000000 +0100 +++ libgo/go/crypto/elliptic/p256.go 2016-02-05 22:36:06.148039280 +0100 @@ -235,6 +235,8 @@ func p256ReduceCarry(inout *[p256Limbs]u inout[7] += carry << 25 } +const bottom28Bits = 0xfffffff + // p256Sum sets out = in+in2. // // On entry, in[i]+in2[i] must not overflow a 32-bit word. @@ -267,6 +269,7 @@ const ( two31m2 = 1<<31 - 1<<2 two31p24m2 = 1<<31 + 1<<24 - 1<<2 two30m27m2 = 1<<30 - 1<<27 - 1<<2 + two31m3 = 1<<31 - 1<<3 ) // p256Zero31 is 0 mod p.