PostgreSQL 13.5 Documentation

The PostgreSQL Global Development Group

PostgreSQL 13.5 Documentation
The PostgreSQL Global Development Group
Copyright © 1996-2021 The PostgreSQL Global Development Group

Legal Notice
PostgreSQL is Copyright © 1996-2021 by the PostgreSQL Global Development Group.
Postgres95 is Copyright © 1994-5 by the Regents of the University of California

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written agreement
is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE
AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED
HEREUNDER IS ON AN “ASIS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

= = o PP XXX
1. What 1S POSIGrESQL? ...ttt ettt et e e e e e XXXl
2. A Brief History of POSIGreSQLuuiiiiiiieiiiii et XXXV

2.1. The Berkeley POSTGRES PrOJECEcccvvuniiiiiiiiieieiiie et XXXV
2.2, POSIOrESOS ...t XXXV
2.3, POSIOrESQL ..ot XXXV
3. CONVENTIONS ...ttt ettt ettt ettt ettt ettt e et et e et et e et et e e e e b s XXXV
4. Further InfOrmMaLionooeuueiiiii e e XXXVi
5. Bug Reporting GUIEIINESuuiiiiiiii e e XXXVi
5.1 1deNtifYiNg BUGS ...cevveeieii ettt XXXVi
5.2, WhEL 10 REPOI ...t XXXVil
5.3. Where t0 REPOI BUGSccevviiieiiiiiieeeei ettt ettt e XXXiX
N T 1o - PP 1
L. GEtING SEAEAen ettt et 3
L1 INSEAITEIION .ottt 3
1.2. Architectural FUNDamMEeNtalScoouuuiiiiiiiie e 3
1.3. Creating @ Dal@haseccoeuuiiiiiiiii e 4
1.4, ACCESSING 8 DAANBSEcoviieiiiii e 5
2. The SQL LBNGUBGE ...cevtueieiit ettt ettt ettt e e e na e e eneans 8
2% W [i oo (8o (o o RO TSP SPPPTPR 8
A O 0] 1= o = PP 8
2.3. Creating @aNew Tableuiiii e 8
2.4. Populating a Table With ROWSccoouuiiiiiiiii e 9
25, QUEYING A TaADIE ..o 10
2.6. J0INS BEWEEN TaDIESuiiiiii e 12
2.7. AQQregate FUNCLIONSccuuuieieiiie ettt ettt e e e na e eeees 14
2.8 UPUELES ...ttt 16
2.9, DEIBLIONS ...t e et et aean 16
3. AGVANCED FEAIUMNEScevu ittt ettt e et e e enb e e eneas 18
I3 B [L oo (8 1o o EO TP PPPPTT 18
B2, VIBINS ettt 18
3.3 FOrEIgN KEBYS ..t 18
B THANSACHIONS ...ttt ettt ettt et e e e e 19
3.5, WINAOW FUNCHIONSovueiiii et 21
3.6, INNEITEANCE ...t 24
7. CONCIUSION ..ttt ettt ettt ettt e et e e e et e e eenen s 26
[1. The SQL LBNQUAJE eeeetiee ettt ettt ettt ettt et et e et et e e e et e e e eaa e e eenens 27
A, SQL SYNEBX t.tteeeetti ettt ettt ettt e ettt ettt e e e e 35
A1, LeXiCal SHUCKUME ...ttt ettt e e e e e et e e eeees 35
4.2, ValUE EXPIESSIONSeeeeiiietieii ettt ettt ettt et e et e e e 44
4.3. CalliNg FUNCLIONS ...ttt ettt eneans 59
5. Data DEFINITION ...oeeiiieii et 62
DL TADIE BASICS ..ttt 62
5.2. DEFAUIT VAIUBS ... e 63
5.3. Generated COIUMNScoouiieiiii e et eeeans 64
B4, CONSITAINTS ...evtneeeeet ettt ettt ettt e et et et e e e e e e ennen s 65
5.5, SYStEM COIUMNS ...ttt 74
5.6. MOAIfTYiNG TaDIESceiiiiieiee e 75
BT PrIVIIEOES ..o 77
5.8. ROW SeCUurity POIICIESuuiiiiiii e 82
5.9, SCREMAS ... 89

PostgreSQL 13.5 Documentation

5.10. INNEITANCE ... et e e et 93
5.11. Table Partitioningoceuuiiiiiiiiii e ee e e e e e e e e e e e e 97
I = o (= To o I - A 111
5.13. Other Database ODJECESuuivviiiiii e e 112
5.14. Dependency TraCKingociuuieeii eanaas 112
(SR T = 1Y =T o 10 = 1 o 114
(O 1S g To [- - NP 114
S Lo = (] g o B T - L 115
(SRR D= I (] oo - v U 116
6.4. Returning Data from Modified ROWSccccoviiiiiiiie e, 116
28 8 = = 118
8 T @ = 4T PN 118
7.2. TahlE EXPIrESSIONSivviieiii e e e e e e e e e e et e e st e e e e eaneees 118
SRS = [o B I £ SRR 134
7.4. CombiNING QUETES ... ccuuiiiiiieiie et e e e e e e e e e e e et e e et e e e ean s 136
7.5, SOMING ROWS ..ot e e e e e e e e e e e e e eanaeees 137
L Y B =0 o O o P 138
T.7. VALUES LISES 1ieiiiiieiiii ettt ettt e et e et e e e b 139
7.8. W TH Queries (Common Table EXPreSSions)vvveveeeiiieiiiieeiineeiineesieeeaneens 140
T D= = T Y/ oS PP 147
T80 O N U 0= Lo Y o= 148
8.2, M ONEAY Ty DS ittt ittt et e 153
G O == ot (= g Y/ o= PR 154
8.4. BINAry Dala TYPES ..uuciiiiiii it e et e e e e e e e e e e e e e eaa s 156
R = (=l T (ST Y/ o= P 158
S = T To =T N Y/ o= P 169
A 10001 = =0 B Y/ o= 170
8.8. GEOMELNIC TYPES ..uvitiiii ettt et et e et e e e e e e e e et e e et e e et e e et eeaaeaeens 172
8.9. NEtWOrK AdOreSS TYPES .ovuiiiiieii et et e e e e e e e e e e e e e et e e et e e aanaaes 174
8.10. Bit SIHNG TYPES . uiitnieiie et e e e e e e e e e e et e e et e ea e eaes 177
8.11. TeXt SEACH TYPES o vvun it e e 177
ST 2 U1 1 T I/ o= P 180
ST Q. I 1Y/ o= ST 181
ST N S @ NI Y/ o=~ PP 183
e I N = Y PP 192
8.16. COMPOSITE TYPES .vvuiiiiieein et ettt e et e et e e e e e e e e e e st e e et e e et e e et e e aneeaenns 203
8.7, RANGE TYPES .ottt 209
8.18. DOMAIN TYPES ..uuiiiiiiiii e et e e e e e e e e e e e et e e et e et e e e e aaeeaanns 215
8.19. ObjeCt 1AdENtifier TYPES ..vuiiii i eiiie e e e e e e e ea e 216
ST 0 oo [0 1 1Y 1= TSN 217
ST I e =0 (o 0l N o1 218
1 I N 0 Tox [0 5= 0 (o @ o= = 0 220
1S I oo vz B @ o= = (] £ 220
9.2. Comparison FUNCtions and OPEratorsSocvvuieiiiieiiieeii e e e e e e e eannas 221
9.3. Mathematical Functions and OPEratorScc.ovevvrieiiiiieiii e e e e 225
9.4. String FUNCLioNS and OPEIatOrScvvueiiieeiiie e e e e e e e e e e e e eaaes 233
9.5. Binary String FUNctions and OPEratorsSccuuveiuuieeeueeeiiieeiieeeieeraineeaneeaenns 242
9.6. Bit String FUNCtions and OPEratorsccuuvevuiieiiieeiiie e e e e e e e 246
A = 1 (= g TN\ (11 o P 248
9.8. Data Type Formatting FUNCLIONSccoviiiiiiiiiii e e 266
9.9. Date/Time FUNCtions and OPEratorSccuueviiieiiiieeiii e e e e e e e eanas 275
9.10. ENum SUPPOIt FUNCLIONScvviciiiiceii e e e e e e 291
9.11. Geometric FUNCtions and OPEratorsScvvueiirnieiiieeeii e ee e e e eaannes 292
9.12. Network Address Functions and OPEratorsScceuueeeueerinierieeeiieeeineesanenns 299

PostgreSQL 13.5 Documentation

9.13. Text Search FUNCtions and OPEratorsSoeeveieiiiieeii e e e e e e e 303
9.14. UUID FUNCLIONSuieieiiieee ittt ettt et e et e e et e e e ea e e eeennas 309
9.15. XML FUNCLIONS ... iieiiiieeiiii ettt e e e e et e e e e b 310
9.16. JSON FUNCLions and OPEraiorsScc.uueveunieeieeeiieeieee e e e e e e e e e e e e aanaas 325
9.17. Sequence Manipulation FUNCLIONSooiuiiiiiiiiciiec e e e e 344
9.18. Conditional EXPrESSIONSuuiiireiiiiieiiieee e e e e e e e e e e e s e e e eaneees 346
9.19. Array FUNCtions and OPEratorsSccuueiiieeiiieeeiiieeiie e e e e e e et e e eeaens 349
9.20. Range FUNCLioNS and OPEratorScvvueiiieeiiieeeiieeei e e et e e e e e e e et e e e eanaes 353
9.21. AQQregate FUNCLIONSccuuiiiii e e e e e e eanaees 355
9.22. WINAOW FUNCLIONSvuiiieiii et e s 362
9.23. SUDQUENY EXPrESSIONSuueiiiiiiiiieeiieeeieeeee e e e e e e e et e e et e e e e e et e e et e eanaeenes 363
9.24. Row and Array COMPAIiSONSeeuueiiieeiieeeiiieeeieesieeeieeeanaeestneestneeenaeenes 366
9.25. Set RetUrNiNg FUNCLIONSuuiiiici e e e e e 369
9.26. System Information Functions and OPEratorsc.uveveiieeieeernieriiieeeneeeenns 373
9.27. System Administration FUNCHIONScouuiiiiiiiiiiie e e 390
9.28. Trigger FUNCLIONSuuiiii i e e e e e e e e e e e e e e e e et e e e eaneees 406
9.29. Event Trigger FUNCLIONSco.uuiiiiicicc e e e e e e e 407
9.30. Statistics INfOrmMation FUNCLIONSviiiiiiiieiiiin e 410
O Y oL @0 0177 = o] o PP 412
FO. 1. OVEIVIBIW Leuieeiiii et et e e e e e e et e e e et e e e e st e e e e eatn e 412
B0.2, P AIONS v uitittt ettt et 413
L0 R T o] o LU 417
O R 1R (o] = o 421
10.5. UNI ON, CASE, and Related CONSIIUCESvvvieviiiiieeeiiiieeeciii e 422
10.6. SELECT OUPUL COIUMNSuueiiiiiieeeiie e ee et e e e e et e e e 424
T o (== SRR 425
0 O 1 1 oo (0 o IR 425
2 1 o L= G Y/ o === 426
11.3. MUItICOIUMN TNAEXES .. .ceeeviieeeeei e 428
11.4. Indexes and ORDER BYccuuuiiiiiiiieieiiiise e e et e et e eeaanns 429
11.5. Combining MUItiple INAEXEScviiiiiiee e 430
12.6. UNIQUE INAEXES ...vueeieee et e e e e e e e e e e e e e aanees 431
11.7. INAEXES ON EXPrESSIONSuiiiiieiiieeiiiee e ee e e e e e e e e e e e st e e e eaneees 431
11.8. Partial INAEXES .. .ceeeviieeiii et 432
11.9. Index-Only Scans and Covering INAEXESc.voveviieiiiieiiieceee e 435
11.10. Operator Classes and Operator FamilieSccooevvieiiiiiiiiii e, 438
11.11. Indexes and Coll@tioNSoviiieiiiiiiiiii e 439
11.12. EXxamining INAeX USAQEuuiivnieiieii e e e e e e e et eeanae e 440
12, FUIl TEXE SEAICH .o e e e aaen s 442
2 R | 1 oo (0o o IR 442
12.2. TahleS @nd INAEXES .. .cevvviieiiei et e eeeen 446
12.3. Controlling TeXt SEarchcccuiiiiiiiiie e 448
12.4. AddItioNal FEAIUMEScvuiieiii e e e 456
T o T S SUPP 462
12.6. DICHONAITES ..vuieeeitiieee ettt ettt e ettt e et e e ettt e e e et e e e eatn s e e e entnneeeenes 464
12.7. Configuration EXamMPIEcouuiiiiicii e 474
12.8. Testing and Debugging Text Searchcoevviiiiiiiiiie e, 475
12.9. GIN and GIST INAEX TYPES .evvureiieiinieieeiiiieeeei et et e et eeeat e e eaee e eeaaens 480
2250 O T o 1= o ST o oo o P 481
2 O T 1] = o) R SPPPT 484
13. ConCUITENCY CONLION .uuuiiit i e e e e e e e e e e e e e e et e e et e e ean e eanaes 486
G20 O 1 1 oo [0 1o IR 486
13.2. Transaction ISOIAtONcoevuiieiiiii e 486
T o[T o] Vo [492

PostgreSQL 13.5 Documentation

13.4. Data Consistency Checks at the Application Levelccocoiveiiiiiiiiiviineennnn, 498

ST O Y= 500

13.6. LOcKing and INAEXESovvniii e e e s 500
(o 7= 0o =T T 502
14.2. USING EXPLAIL N L.ouiiiiiiiiiee st s s e e e e e et e s e e e e e eenannns 502

14.2. Statistics Used by the Plannercooiiiiiiiii e 515

14.3. Controlling the Planner with Explicit JO N ClauSeSccooevviveviiieiiineeiieeenn, 520

14.4. Populating @ Databaseuevviieiiiieiiie e e 522

14.5. NON-DUrable SEtliNGSuueveriiii e e e e e e e eees 524

ST = = RO = oS 526
15.1. How Parallel QUErY WOTKSiiiiiiiiii e 526

15.2. When Can Parallel Query Be Used?covvvviiiiiieiiiiceiiie e 527

15.3. Parallel PLanScoovviieiiii et e 528

15.4. Parallel SafEYoieeeeieeeeiiiee e 530

RIS o V7= g AN 41T g 1 = (o o PP 532
16. Installation from SOUICE COUEuuuieiiiii e 539
T S oo g Y= = o] o PP 539

16.2. REQUITEIMENES ...uuiiii e e et e e e e e e e e e et e et e e e e e et e e ean e ean s 539

16.3. GELHNG thE SOUMCE .. .cvuiii e e e e 541

16.4. INStallation ProCeOUMEiiieei e e e et e e ea e eees 541

16.5. POSt-INStallation SEIUDuueveiiiii e 554

16.6. Supported Platformsccuuiiiii e 556

16.7. Platform-SpeCific NOES ...uuiiii e 556

17. Ingtallation from Source Code 0N WINAOWSoovveviiiiiiiiiieeciiiie e 562
17.1. Building with Visual C++ or the Microsoft Windows SDKcccoceveveiinnnnns 562

18. Server Setup and OPEratioNuiiieeiiii e e e e e e e e e e e e 567
18.1. The PostgreSQL USEr ACCOUNTuuiiviiiiieeiieeee e e e e e e e e e e e eanas 567

18.2. Creating a Datahase CIUSLEYoiiiiiiii e 567

18.3. Starting the Database SEIVENccvuiiiii e 570

18.4. Managing Kernel RESOUICESccvuuiiiiiiiii et e e e e e e e e 573

18.5. Shutting DOWN the SEIVEruiiiiici e 581

18.6. Upgrading a POStgreSOQL CIUSLErccvvuiiiiieiii e eee e e e e e e e 582

18.7. Preventing Server SPOOfiNgcvuuiiiiiieiiie e e e e e 585

18.8. ENCryption OPLiONS .. .ccvuueiiiiciiii e e e e e e e e e e e e e e eaaas 585

18.9. Secure TCP/IP Connections With SSLccviiiiiiiiiiiii e 587
18.10. Secure TCP/IP Connections with GSSAPI Encryptioncccoeevvivivinnennnnn. 591
18.11. Secure TCP/IP Connections with SSH Tunnelscoovvviviiiiiiiiiiecciieeeee, 591
18.12. Registering Event Log on WINdOWSooiviiiiiiiieiiiiecie e e e 592

19. Server CoNfIQUIAION ... ciuu i e e e e e e e e e e e e e et e e et e e e e e ranes 594
19.1. SEttiNG ParaMELErS ..vuu i e e e e e e e e e e 594

19.2. Fil@ LOCAIIONS ..uueeiiiieee ettt et e et e et e e e et e e e e e 598

19.3. Connections and AUthENtICALTIONvvveiiiiiii e 599

19.4. ReSOUrce CONSUMPLIONcvvuieiiieeiiee e e e e e e e e e e et e e e e e e e eneeaens 605
RSNV) (Y 417 o I o o 614

RS SR =o)L= 1 o o 624

19.7. QUENY Planningcoouniiiiiiiii e 630

19.8. Error Reporting and LOGQiNGuuuevrreieiieeiieeeiieeieeeseeeeieeeaneesanaeeenneesenaes 638

19.9. RUN-TIME SEALISHICS . vvvvviieieeii et e e e 649
19.10. AULtOMALIC VACUUMING ...vvvniiiieeiieeeie e e e e e e e e e e s e et e e e e e et e eeanneeaneees 650
19.11. Client ConneCtion DEfALITSviivvieiieiii e e 653

e 2 o o Y == o 1= 0= | 662
19.13. Version and Platform Compatibilitycccooviiiiiiiiiiciii e, 663
e o T T | o 665
19.15. Presat OPtiONS ...cuuuiiii e e et e e e e e e e e e e e e et e e et e e et e e e e ean s 666

Vi

PostgreSQL 13.5 Documentation

20.

21.

22.

23.

24.

25.

26.

27.

19.16. CUStOMIZEA OPLIONSiviiieii e e e e e e e e aaaas 667
19.17. DEVEIOPEr OPLIONSuuiiiiieeiii e e e e e e e e e e e e e e e e e eanaas 668
19.18. SNOIt OPLIONS .. evuueeeieieii e e e e e e e e e e e e e e e e et e e ean e een s 672
Client AULRENTICEIION e e e e 673
20.1. The pg_hba. conf File ... 673
20.2. USEN NAIME MBS .. it 681
20.3. Authentication MEthOOSuuiiiiiiiiiii e 682
20.4. Trust AULNENEICAIIONvvuiiieii e e e 683
20.5. Password AUtNENtICALIONiiiiiiiiei e 683
20.6. GSSAPI AULNENtICALION ...ivvviieiiiis e a s 684
20.7. SSPI AUNENEICALION ...eevviieiiei e e e e e s 686
20.8. Ident AULNENTICAIONcevveieeieiie e e e 687
20.9. Peer AULNENLICALIONciieiiieeiei e e et e e e e e eeees 687
20.10. LDAP AULhENTICAIONiiieiieeeeiis et e e e e e e e eeeens 688
20.11. RADIUS AUtNENICALION ...iivviieiiiis et e s 691
20.12. Certificate AUENICALIONiiiiiii e 692
20.13. PAM AULNENLICAION ...ciiivieeiiiii e 692
20.14. BSD AULNENLICALIONeeiivieeeeiiii et e e e e e e e 693
20.15. Authentication ProblemSuuiiiiiiiiieiiiii e 693
DataDase ROIES ... coeeiiiee et e e e 695
211, Dat@hase ROIESeiiiiiiee et 695
21.2. ROIE ALLIDULES .. e e 696
21.3. ROIE MEMDEISNIP . ivicii e e e e 697
21.4. Dropping ROIESiii e 699
215, DEfAUIT ROIES ...t e e 700
21.6. FUNCLION SECUMLY .vuuiiiieiieeie e e e e e e e e e e e e et e e e eaa s 701
MaNaging Dalabasescovuueiiii i 702
221, OVEIVIBIW .ttt ettt e e e et e e e et e e e e et e e e e et e e e e ettaeeeett e e e eentaeeaees 702
22.2. Creating @ Databaseccuueiiieiii i e e 702
22.3. Template Databasesuvevviieiiii e 703
22.4. Databhase CONfigUIaioncouueeiuieiiiiieiii e e e e e e e e e ea e eees 705
22.5. Destroying a Dat@haSeccvuuiiiiieii i 705
A T I o = o o = T 705
(oo 12 1o o RS OPPTTPN 708
PG T I o oz LIS o] oo o AP 708
23.2. Coll@tion SUPPOITcivieii e eie e e e e e e e e e e e e e et e e e e e eanaas 710
23.3. CharaCter SEt SUPPOIuueiiii i e e e e e e e e e e e eaes 717
Routine Database MaintenanCe TasKSoeeveuenieeriiiiieeeeiiieee et e e et e e e e e e 728
24.1. ROULINE VACUUMING ...uuiitiieiiieeei e et e e e e e e e e e e e et e e et e e e aneesaa e e enneeennnas 728
24.2. ROULINE REINAEXING +..cvvveiitieiiii e e e e e e e e e e e e et e e et e eea e aanns 736
24.3. Log File MaINtENANCEcvvi it eeie et e et e e e e e e e e e e e e eees 737
B E o (U 0o B =S (o] 739
25.1. SQL DUMP ettt e et e e et e e et e e et e e e aae 739
25.2. File System Level Backupccovuiiiiiiiiiiecii e 742
25.3. Continuous Archiving and Point-in-Time Recovery (PITR)coovvviveviiieninns 743
High Availability, Load Balancing, and Replicationcccoecviiiiiiiiiiiin e, 756
26.1. Comparison of Different SOlUtiONScccviiiiiiiiiii e 756
26.2. Log-Shipping Standby SErVEISciviiiiiiicii e 759
26.3. FIOVEN ... 769
26.4. Alternative Method for Log Shippingc.uvevvieiiiiiiiiecie e e 769
26.5. HOt SEANADY ...ovvieiiiiiecce e 771
Monitoring Database ACHIVITYcovuiiiiiei e e 779
27.1. Standard UNiX TOOISuuiiiiiiieeiiiie ettt e e e e e e e e e e e 779
27.2. The Statistics COHECONuuiiiiiiii e 780

Vii

PostgreSQL 13.5 Documentation

27.3. VIEWING LOCKS .. v eaa s 813

27.4. Progress REPOMINGuuivviieiii e e e e e e e e e e e e e e s e e et eeaneees 813

27.5. DYNAMIC TIaCiNG c.vvuuiiiieiiieie e e e e e e e e e e e e et e e et e et e e e et e e e e eeanns 821

28. MONItoring DiSK USAQEuuuiiiiiiii i e e e e e e e e eanas 831
28.1. Determining DiSK USAQE ...c.uuiiiiieiiieiiie e e e e e et e e e e e e e e e aaaeeaen 831

28.2. DISK FUIl FaIlUME ... 832

29. Reliability and the Write-AhEad LOgoevvviiiiiiiiie e 833
P2 I (= T] 1 PSP 833
29.2. Write-Ahead Logging (WAL) ...ovuii i 835

29.3. ASynchronous COMMITccuueiiiieiiiie e e e e e e e e e e e e e e e e e eaanees 835

29.4. WAL ConfigUurationievuuieiiieiiii e e e e e e e e e e e et e e et e e e e eanas 837

2905, WAL INEEIMEIS ..ttt e e e e e e s 840

G0 I oo [Tor= I 2 3= o] o= (o KU P 841
0 0 = ¥ o o= o o PSPPI 841
G021 1= o1 o P 842

0 G A 0o) Tt £ PR 843

30.4. RESICLIONSeeeeiiiee ettt ettt et e e et e e et n e e e et r e e e aaan e e e eaaan s 843
30.5. ATChITECIUIE .. vt e e et e e eae s 844

1G0T o g (o oo 845
S = ol 1) PPN 845

30.8. Configuration SEINGSuivevueiii e e e e e e e e 846

30.9. QUICK SBLUP ... eieeiiiee ettt e et e e e aaans 846

31. Just-in-Time Compilation (JIT) .ouueiinieiii e e e e e e e e e e e e e aaaees 847
31.1. What IS JIT compilation?ccuueiiiieiiiiieii e e e e e 847

3 22 V4 = o B (o N I PSPPSR 847

G G T @0 1 To (1= 1 (o] o [849

314, EXENSIDIILY ooeeeeeee e 849

G B L= s | (== o g 1= =P 851
32.1. RUNNING the TESES ...iiiiiiii e e e e e e e e ean s 851

32.2. TESE EVAIUBLION ...ttt e et e et e e e e e e e e 855

32.3. Variant Comparison FilEScoouiiiiiiiii e 857

G A =~ £ USSP 858

32.5. Test Coverage EXamiNalionccueiiiniiiiieeiii e e e e e e e e e e e e e eaas 859

Y O 1= o 1 1= 4 == PP 860
33, 1IBPG — C LIbrary ..o 865
33.1. Database Connection Control FUNCLIONSccuvviiiiiiiinieiiii e 865

33.2. CoNNECtion StAtUS FUNCLIONSvuueiiiiiie et e e 881

33.3. Command EXeCUtion FUNCHIONSooveuuiiiiiiiiiieeeii e 888

33.4. Asynchronous Command ProCESSINGcuueeruieiiiieiiiieeiieeeeiieeeieeerieeaneesens 904

33.5. Retrieving Query Results ROW-bY-ROWcocoiiiiiiiiiiiiie e, 909

33.6. Canceling QUENES IN PrOGreESSuuciviiiiiii et e e e e 909

33.7. The Fast-Path INterfacecoovvviiiii e 910

33.8. Asynchronous NOEITICAEIONccuuiiiiiiii e e 912

33.9. Functions Associated with the COPY Commandovveeviviineeiiiiineeniiinnnne, 912
33.10. CONLIOl FUNCHIONS .. .ueeeiiii et e e et e e e s e e e et e e e e eat s e e e eaanneeees 917
33.11. MisCellaneouS FUNCLIONScccvuniiiiiiie e e et e e eeeai e 919
ICTC T 2 Lo 1 Lo Y o=] o 922
33.13. EVENE SYSIOIM Loeiiiiiiii e 924
33.14. ENvironment VariableSuuiiiiiiiiiiiiii e 931
33.15. The Passord FIleoociiuii e 932
33.16. The Connection Service Fileoviiiiiiiiiiii e 933
33.17. LDAP Lookup of Connection Parametersccovevviiiiiiieiiie e 933
3318, SOL SUPPOIT ..ttt 934
33.19. Behavior in Threaded Programsccoceuieiiiiiiiii e 938

viii

PostgreSQL 13.5 Documentation

33.20. Building [iDpg Programsccouueeiiiiiiie e e 939
33.21. EXAMPIE PrOQramS it 940
G/ I (o[-l @][= ox P 952
17 0 I g1 1o [0 o 1o o SN 952
34.2. Implementation FEALUIEScovviiii e e 952
34.3. CHENt INtEITACES . .ovvvvi e e s 952
34.4. SrvVer-Side FUNCLIONScccuuiieiiiie e e e e e e s 957
34.5. EXAMPIE PrOgram ... ccvui i i e e e e e e e e e e e e aaa s 958
35. ECPG — Embedded SQL iN C ...ccovvviiiiiiiieeeeeee i e e e e et s s e e e e e eentnn e e e e eaeaenes 965
L0 N I L= o o= o P 965
35.2. Managing Database CONNECLIONSocvuueiiiieeiii e e e e e e eaa s 965
35.3. RUNNing SQL COMMANGScivieiiiieiiii e e e e e e e e e e e eanes 968
35.4. UsSiNg HOSt VariableSocvviiiii e 971
35.5. DYNAMIC SQL 1evtvtiiieeeeeiieeiiiis e e s e e e eeeatat s e s e e e e eeaaats s s e e e e aeeaaatan e aeeeaeeannnns 987
35.6. POLYPES LIbIaryuueiie i 989
35.7. USING DESCIIPLOr ATEBScivviiiiii e et e e e et e e e e e e e e e et e e e e e aanaes 1003
35.8. Error Handlingcouueiiiiiiii e e 1017
35.9. PreproCessor DITECHIVESuuuiiii i e e e e e e aanees 1025
35.10. Processing Embedded SQL Programscoevuveeiieeiinieiiieeeieeeieeeeieeeen, 1027
35.11. Library FUNCLIONScoviiiiii e e s 1028
35.12. Large ObJECES ...vvuiiiii e e et 1028
35.13. CH+ APPHICALIONS .. cevuiiiieeii e e e e e e e e aaas 1030
35.14. Embedded SQL COmMMAaNGScouuieiiiieiiiiieiii e eeee e e e e e e 1034
35.15. Informix Compatibility MOdEcoeviiiiiii e, 1059
LI ST g1 1= 1 1 =SSP 1075
36. The INfOrmMation SCHEMAuiiiiiii e 1078
I 3 TS v 0 1 4= 1078
KL I DT - B Y/ o =< T 1078
36.3.informati on_schema_catal og namecco.cccoeviiiiiiiniin e, 1079
36.4.adm ni strable role authorizationscccoeviiiiiiiiinncineeen, 1079
36.5. applicabl @ rol €S .., 1079
36.6. At LT i DUL ES oo 1080
36.7. Char ACt BF _SBL S ittt e ea s 1082
36.8. check_constraint_routi Ne_USageccoeevviveviiiiiiiiieiii e, 1083
36.9. CheCK_CONSE I ai NES it 1084
1T 0 A o o] N - L A o) 1 PP 1084
36.11.col l ati on_character_set _applicabilitycccoooiiiiiiiiinninnn. 1084
36.12. COl UM_COl UMN_USAQE ..ieviiiiii e e e 1085
36.13. COl UM_dOMBI N_USAQE ..ievniiiiiieiiieee e e e e e e e e e e 1085
36.14. COl UNM_OPL i ONS .iiiiiiii e e e 1086
36.15. COl UMM_Pri Vil €08S i 1086
36.16. COl UNM_UAL _USAQE ..iiiiiiiii et e e e e e e e 1087
36.17. COl UMMIS Lottt e et e et e e e b e e eanens 1088
36.18. constrai Nt _COl UNM_USAQE ...uuiiivniiiiieiii e e e e 1091
36.19. constrai nt_tabl @ USAgecocceviiiiiiiiiiiii e 1091
36.20. data_type pri Vil €0€S .o 1092
36.21. dOMBI N_CONSE T Al NE'S tovuiiiiiiiii e e 1093
36.22. dOMBI N_UAL _USAQE .uiiiiiiii i e e e 1093
T2 T o] 11 U o K-S PSSP 1094
36.24. €l EIMENE L Y PES it 1096
36.25. €Nabl €d IOl €S .uiiiiiiii i 1098
36.26. forei gn_data_wrapper _0Opti ONScooceiviiiiiiiiiiiiiie e, 1098
36.27.forei gn_dat @ W apPPEI'S it e 1099
36.28. fOrei gn_Server_OpPti ONS ..ooiiiiiiiiiii e 1099

PostgreSQL 13.5 Documentation

36.29. f OF BI g _SBI VI S citiiiiiieiiie et e e e e e e e 1099
36.30.foreign_tabl e Options ..ccooiiiiii i, 1100
36.3L. forei gn_tabl €S .o 1100
36.32. KEY_COl UMN_USAQE .uiiiieiiii it e e e e e e e et e e 1101
36.33. Par AR B S ittt e 1102
36.34. referential _constrainNtsccooeiiiiiiiiii i 1103
36.35. 10l €_COl UM _grant's ..ooceuiiiiiiiiiie e e 1104
36.36. 10l € routiNe_grants ..oooiiiiiiiiii e 1105
36.37.r0l e _tabl e _grants ..o 1105
36.38. 10l € UL grant S ..uiiiiiiiiii e e 1106
36.39. 10l €_USAQE_grant S .oiuviiiiiiiiii i 1107
36.40. roUt i NE_Pri Vil BOBS i 1107
T I o U T ¢ 1= PRSP 1108
36.42. SCREMAL @ .iiviviiiiiii e 1112
36,43, SEOUEINCES ouiiuiiiiiiiie et e et e e e e e e e 1113
36.44. SOl T AL UM @S ivrniiiii i 1114
36.45.sql _inmplenmentati on_info ..o, 1114
36.46. SOl PAIt S ciiiiiiiii i 1115
36.47. SOl ST ZI N e 1115
36.48.tabl @ CONStrai NES .o 1116
36.49. tabl € _Pri Vil €S .o 1116
36.50. T AD] €S .uuiiiiiiii i 1117
36.5L. tFANST OF ITB ..ottt ea e 1118
36.52. triggered _update Col UMMS ...ocoiieiiiiiiiii e 1119
TSI A o o [0 =] =T PN 1119
36.54. Ut _Pri Vil @S oo 1121
36.55. USAQE _Pri Vil BOES i 1121
36.56. USer _definNed tYPEeS i 1122
36.57. user _mappPi NQ_OPL i ONS .o 1124
36.58. USEI _IMBPPI NUS wtuiiitiiiiieiiiee e e et e et e e e e e e e s e et e et e e et e e eanaeeanas 1124
36.59. Vi EBW _COl UMM _USAQE civvniii i e e e e s 1125
36.60. Vi EBW I OUL i NE_USAQE t.vuiiiiiiiiiieeieeei e e e e e e e e e e e e e e 1125
36.61L. Vi eW t abl € _USAQE .iovviiiii e 1126
TSy V= 1. PP 1126
A S = A= . oo =0 1 411 oo [1128
7. EXIENAING SQL ..oeeiiiiiiii e aaan 1134
37.1. How Extensibility WOrkSccooiiiiiiiiiii e 1134
37.2. The PostgreSQL TYPE SYSIEM ...vuiiiiicii e e e e e e e e e 1134
37.3. User-Defined FUNCLIONSuiiiiiiiieieii et eaaan s 1137
37.4. User-Defined ProCeAUMESoovveuiieieii ettt e et e eeaaens 1138
37.5. Query Language (SQL) FUNCLIONSccvvniiiiiieiie e e e e 1138
37.6. FUNCtion OVErloadingveiiiiiiiiieiie e 1155
37.7. Function Volatility CategOriEsc.uuiiiiiieeiieeiiiee e e e e e e e 1156
37.8. Procedural Language FUNCLIONScooovuiiiiiieiii e 1158
37.9. INternal FUNCLIONSc.uuiiiiiiii e e e e e e e eeaes 1158
37.10. C-Language FUNCLIONSciuiiieii e e e e e e e e e e e e e e e e eaeeees 1158
37.11. Function Optimization INfOrmMationccoeveiiiieiiieiiiecr e eeieens 1180
37.12. User-Defined AQQregatescuueiinieiiiieeie e e e e e e e e e e e saneens 1181
37.13. USEr-DefiNed TYPES ..vueiieiiieieiii ettt ettt e e e e e et eeeae s 1189
37.14. User-Defined OPEratorsevuueiiiieeiii e e ee s e e e e e e e et e s e e e e aneees 1193
37.15. Operator Optimization INfOrMationcccccuiieiiiieiiiieiin e e 1194
37.16. Interfacing EXteNnsionS tO INAEXESccvuiiiiiiii e 1198
37.17. Packaging Related Objects into an EXtENSIONccoovvvviiiiiiieciii e, 1212
37.18. Extension Building INfrastruCturecccoveviiiiiiii i 1220

PostgreSQL 13.5 Documentation

G T I o o = PPN 1225
38.1. Overview of Trigger BENaVIOrociviiiiiii e 1225
38.2. Visibility of Data Changesucvvuiiiiiiiii e e e 1228
38.3. Writing Trigger FUNCLIONS IN Ciiiiiiic e 1228
38.4. A Complete Trigger EXampleco.uiiiiiiiii e e e 1231
1 T = o A N T o (= £ 1236
39.1. Overview of Event Trigger BENAVIONcovviviiiiiieci e 1236
39.2. Event Trigger FINiNG MalriXccouiiiiiiiiii it e e 1237
39.3. Writing Event Trigger FUNCLIONSIN Coovniviiiiiiiecccce e 1240
39.4. A Complete Event Trigger EXamplec.oeiviiiiiiiiiii e 1242
39.5. A Table Rewrite Event Trigger EXamplecooovvieiiiiiiiiiccie e 1243
40. The RUIE SYSLEIM ...t e e e e e 1245
40.1. ThE QUENY TIEE .uuiiiiieii et et e e e e e e et e et e e et e e aanaaes 1245
40.2. Views and the RUIE SYSIEMcoviiiiiiciie e 1247
40.3. MAEriAliZO VIBWS .. .ceeeiiieeeeei et e e e e e e 1254
40.4. Rules on | NSERT, UPDATE, and DELETEcccoiiiiiiiiiieiiiiiieeccie e 1257
40.5. RUIES aNd PriVIIEgES .. cvvniii e 1268
40.6. Rules and Command SEALUSuuieviriiieiiiiie et r e 1270
40.7. RUIES VEISUS THOOES cuuniiiiieiiii et et et e e e e e et e e s e e e e et e et eeaaneeeens 1271
41, Procedural LanQUBOESuiieuneiiiieeiie et et e e ee e e e e et e e e e st e e s te e st e et e eaaneeeens 1274
41.1. Installing Procedural LanQUagEScccuueiiiiiiiiieiiie e eeei e e e e 1274
42. PL/pgSQL — SQL Procedural LangUagecccuueiinieiiiieeiiieeiiieeeee e e e e e 1277
2.0, OVEIVIEW «.eevtnieeeeti e et e et s e e ettt e e ettt e e et n e e ettt e e e et s e e e ettaeeeestnaeeaees 1277
42.2. Structure of PL/PGSQL ..ueiiiiiii e 1278
A2.3. DECIArAHONS .. .ceievie ettt et e e aea 1280
O d o (=== 0] 1 1286
42.5. BASIC SEALEIMENLSuieiiiiiieee i e et e et e e et e e e et s e e e eat s e e e ertn e eeee 1287
42.6. CONLTOl SETUCLUMEScieiiii ettt e et e e et eeeeeaa e eees 1295
A O N 1o = T PP 1310
42.8. TransaCtion ManagemENtcc.ueeiuiieiiiee e e e e e e e e e e e aanas 1316
42.9. Errors ant MESSA0ESuueeeeiiieeii et e e e e e e e e e e e e e et e e e e r e aa e aaa 1318
42.10. Trigger FUNCHIONSceei i e e e e e e e e e e e e e e e aaaees 1320
42.11. PL/pgSQL under the HOOMoovuiiiiiiiciii e 1329
42.12. Tips for Developing in PL/PGSQLovvniiii e 1333
42.13. Porting from Oracle PL/SQLccovuiiiiiieiii e e e 1337
43. PL/Tcl — Tcl Procedural LanQUagEccvvueiiieeiiieiiieeeee e e e e e e e e e e 1347
A0, OVEIVIEW ..eevtiieeeeii e ettt e et e ettt e e ettt e e e ettt e e ettt e e e et s e e e ett e e eaestnaeeaees 1347
43.2. PL/Tcl Functions and ArQUMENEScceunieiiiieiiiieeiieceieeee e e e et e e e e eeanns 1347
43.3. Data Values in PLITCl .ooooveiie e 1349
43.4. Globa Datain PLITCl couuuiiiii i e 1350
43.5. Database AcCesS from PL/ITCl ...ovviiiiiiiii e 1350
43.6. Trigger FUNCLIONS IN PLITCl .ovviii e 1353
43.7. Event Trigger FUNCLIONS iN PLITCl c.vviiiiii e 1354
43.8. Error Handling in PLITCl ...oovniiii e 1355
43.9. Explicit SubtransaCtions in PLITClcovuiiiiiiiiie e 1356
43.10. Transaction ManagemMENtoeviiiiiiiie e e e e e 1357
43.11. PL/TCl CONfigUIrationcouuuiriieiie e e e e e e e e e e e et e et e e e e aens 1357
43.12. Tcl Procedure NAIMESuieeeiiiieeeiii et e et e et e e 1358
44, PL/Perl — Perl Procedural LanQUageccuuuieeuniiiiieiiie e eeeie e e e e e e eanaeeaen 1359
44.1. PL/Perl Functions and ArgUMENLScccuuieiiieiiieeiieeeiie e e e e e e eeenns 1359
44.2. Data Values in PLIPErl ..o 1364
A4.3. BUIE-IN FUNCHIONS .ot 1364
44.4. Globa ValUES iN PLIPENTiiiiiiicii e 1369
44.5. Trusted and Untrusted PL/PENuuiiiiiiiiiiiiiiie e 1370

Xi

PostgreSQL 13.5 Documentation

Y T o I = 4 B e o 1= PPN 1372
A4.7. PLIPErl EVENE TIIQOEIS . .evtneiiieeie e et e e e e e e e e e e e e e e e e et e e e e eanns 1373
44.8. PL/Perl Under the HOOiiiiiiiiiiiiiii e 1374

45, PL/Python — Python Procedural Languagecccovviiiiiiiiiiiieiii e 1376
45.1. Python 2 VS, PYthOn 3 ..o 1376

45.2. PL/PYthON FUNCHIONS ... coviiiii e e e e 1377

A5.3. DAA VAIUBSuuiiiiii et 1379

SRS 1=] oo D - - U 1384

45.5. Anonymous Code BIOCKSciiiiiiiiiicii e 1385

45.6. Trigger FUNCLIONSciiieii e e e e e e e e e eees 1385

A5.7. DAADASE ACCESS ...cevviieieiiiiee et e e ettt e e e 1386

45.8. EXplicit SUDLraNSACHIONScccuuiiiiiieiiie e e e e e e e 1390

45.9. TransaCtion ManagemENtcc.uveiuiieiii e e e e e e e e e e e aanas 1391
45.10. Utility FUNCLIONSiiiicii et e e e e e e e e e e e een 1392
45.11. Environment VariableSooiiiiiiiiiiiii e 1393

46. Server Programming INtErfacecoovui i 1395
46.1. INterface FUNCLIONScovuiieiiii e e e 1395

46.2. Interface SUPPOrt FUNCLIONScccuiiiiiiei e e e e e e e e e 1431

46.3. MemOory ManagemMENTovuiuiieiiiie et 1440

46.4. TransaCtion ManagemENtcc.ueeiuiieiiiiee e ee e e e e e e e e e aanas 1450

46.5. Visibility of Data Changesccuoviiiiiiiiiiciii e 1453

4B.6. EXAMPIES ..ottt aee 1453

47. Background WOTKEr PrOCESSESuuuiiiieiiiieiiii e e ee e e e e e e e e e e e e et e s aaeeeanaees 1457
48. LOgiCal DECOUING ...vuiitniiiiieiie e e e e e e e e e e e e e e et e e e et e e et e eeanaaees 1461
48.1. Logical Decoding EXaMPIESccuuiiiiiiiiii e 1461

48.2. Logical Decoding CONCEPLSuuivvueiiiieeiiiee it eei e e e e e e e e e e e e aes 1464

48.3. Streaming Replication Protocol Interfaceccoovvviiiiiiiiiiiiinieee e, 1465

48.4. Logical Decoding SQL INtErfateccvuviiiiiiiieei e 1465
48.5. System Catalogs Related to Logical Decodingccevvvvviiieiiiieiiiieiiiieeeinns 1465

48.6. Logical Decoding OULPUL PIUGINScovuiiiiieiiiieei e e 1466

48.7. Logical Decoding OULPUL WIHTEIScivueiiiciii e e e 1470

48.8. Synchronous Replication Support for Logical Decodingcocevvvevvneeinnnnns 1470

49. Replication Progress TraCkingveuuieieueeeiieeiiie e e e e e e e e et e e e e e e e e e eeanns 1472
VL REFEIBNCE ...t e et et e e et et e e e eaes 1473
S @ I o 41010 P 1479
N =1 | PSP 1483
ALTER AGGREGATE ...ttt et e et a e et e eeeaaa e e e eee 1484
ALTER COLLATION .ttt ettt e et e e et eeaeaan e e eenees 1486
ALTER CONVERSION ...coutiiiiiiiiiieiiiiin et e e e e e e e s e e eaaaeeeenenns 1488
ALTER DATABASE ...ttt e e e 1490
ALTER DEFAULT PRIVILEGEScoiiiiiiici e 1493
ALTER DOMAIUN L.t e et e et e e e et e e e eeae e e e eae 1497
ALTER EVENT TRIGGERcccttiiiiiiiiiieiiii e 1501
ALTER EXTENSION ...ouiiiiiiiiiiiii ettt e e et e e e et e e e eaan e eeees 1502
ALTER FOREIGN DATA WRAPPERcccuuiiiiiiiiiieiiiii e e e 1506
ALTER FOREIGN TABLE ..ottt 1508
ALTER FUNCTION ..ttt e s e et e e st e e e enn e 1513
ALTER GROUP ...ttt e et e e et e e e et e e e eabe e eeees 1517
ALTER INDEX ..oiiiiiiiii ettt ettt e et e e et e e e aaa e e eeenns 1519
ALTER LANGUAGE ..ottt e 1522
ALTER LARGE OBUJECT ...vuuiiiiiiiiietiite ettt e et e et e e e e e eaannaeaennnns 1523
ALTER MATERIALIZED VIEW ...ooiiiiiiiiii et 1524
ALTER OPERATOR ...ttt ettt e et e e 1526
ALTER OPERATOR CLASS ...ttt ettt e et e e eeai e e eees 1528

Xii

PostgreSQL 13.5 Documentation

ALTER OPERATOR FAMILY oo 1530
ALTER POLICY oot 1534
ALTER PROCEDUREcoouiiiiiiiii e 1536
ALTER PUBLICATION ..ot 1539
ALTER ROLE ... 1541
ALTER ROUTINE ..ot 1545
ALTER RULE ... e 1547
ALTER SCHEMA .o 1548
ALTER SEQUENCEo 1549
ALTER SERVER ..ot 1552
ALTER STATISTICS ..o 1554
ALTER SUBSCRIPTIONciiiiiiiiiiiiiii e 1556
ALTER SYSTEM .o 1558
ALTER TABLE ..o 1560
ALTER TABLESPACE ... oo 1578
ALTER TEXT SEARCH CONFIGURATIONociiiviiiiiiiiiiieieci e 1580
ALTER TEXT SEARCH DICTIONARY ...ttt 1582
ALTER TEXT SEARCH PARSERccooiiiiiiiiii e 1584
ALTER TEXT SEARCH TEMPLATE ... 1585
ALTER TRIGGER ...t 1586
ALTER TYPE Lo 1588
ALTER USER ..o 1593
ALTER USER MAPPING ..ot 1594
ALTER VIEW .o 1596
ANALYZE ... o 1598
BEGIN . 1601
CALL e 1603
CHECKPOINT o 1604
LS . 1605
CLUSTER e 1607
COMMENT Lo e 1610
COMMIT s 1615
COMMIT PREPAREDcccviiiiiiiiii e 1616
GO Y 1617
CREATE ACCESS METHODcccvuiiiiiiiiiiiiie e 1628
CREATE AGGREGATE ... 1630
CREATE CAST o 1638
CREATE COLLATION L.oiiiiiiiiiiiii et 1643
CREATE CONVERSION ...t 1646
CREATE DATABASE ..o 1648
CREATE DOMAIN .o e 1652
CREATE EVENT TRIGGERcoiiiiiiiiiiiic e 1655
CREATE EXTENSION ...ooiiiiiiiiiii e 1657
CREATE FOREIGN DATA WRAPPERccoiiiiiiii e 1660
CREATE FOREIGN TABLE ..., 1662
CREATE FUNCTION L..ouiiiiiiiii e 1667
CREATE GROUP ... oottt 1675
CREATE INDEX ..o it 1676
CREATE LANGUAGE ..o, 1685
CREATE MATERIALIZED VIEW ..ot 1688
CREATE OPERATOR ...ttt 1690
CREATE OPERATOR CLASS ..ot 1693
CREATE OPERATOR FAMILY .ot 1696
CREATE POLICY .ottt 1697

PostgreSQL 13.5 Documentation

CREATE PROCEDUREcoiiiiiiiici e 1703
CREATE PUBLICATION ..ottt 1707
CREATE ROLE ..ot 1710
CREATE RULE ..o 1715
CREATE SCHEMA ..o 1718
CREATE SEQUENCEiiiiiiiiiii et 1721
CREATE SERVER ..ot 1725
CREATE STATISTICS ... 1727
CREATE SUBSCRIPTION ..ottt 1730
CREATE TABLE ... 1733
CREATE TABLE AS ... o 1756
CREATE TABLESPACE ..o 1759
CREATE TEXT SEARCH CONFIGURATION ..o, 1761
CREATE TEXT SEARCH DICTIONARY ..ot 1763
CREATE TEXT SEARCH PARSER ...t 1765
CREATE TEXT SEARCH TEMPLATE ... 1767
CREATE TRANSFORM ..ottt 1769
CREATE TRIGGERoiiiiiiiii e 1772
CREATE TYPE .o 1779
CREATE USER ..ot 1788
CREATE USER MAPPING ..ot 1789
CREATE VIEW .ot 1791
DEALLOCATE ..o 1796
DECLARE ..o 1797
DELETE . o 1801
DISCARD ... 1804
DO 1806
DROP ACCESS METHODccuiiiiiiiiiicii e 1808
DROP AGGREGATE ...t 1809
DROP CAST ot 1811
DROP COLLATION .ottt 1812
DROP CONVERSIONcoiiiiiiiiiiiii e 1813
DROP DATABASE ..o 1814
DROP DOMAIN .ot 1816
DROP EVENT TRIGGERcciiiiiiiiiiii e 1817
DROP EXTENSION ..ot 1818
DROP FOREIGN DATA WRAPPERcooiiii e 1820
DROP FOREIGN TABLE ..o, 1821
DROP FUNCTION .ottt 1822
DROP GROUPoiiiiiiici e 1824
DROP INDEX ...ttt 1825
DROP LANGUAGE ... oot 1827
DROP MATERIALIZED VIEW ..o 1829
DROP OPERATOR ...ttt 1830
DROP OPERATOR CLASS ... 1832
DROP OPERATOR FAMILY .oiiiiiiiiii e 1834
DROP OWNEDciiiiiiiiiiii i 1836
DROP POLICY .ttt 1838
DROP PROCEDURE ..ot 1839
DROP PUBLICATION ..ottt 1841
DROP ROLE ..ot 1842
DROP ROUTINE ...coiiiiiii et 1844
DROP RULE ..ot 1845
DROP SCHEMA ... e 1846

Xiv

PostgreSQL 13.5 Documentation

DROP SEQUENCEciiiiiiiii e 1848
DROP SERVER ..o 1849
DROP STATISTICS ... 1850
DROP SUBSCRIPTION ..ottt 1851
DROP TABLE ... 1853
DROP TABLESPACE ..o 1854
DROP TEXT SEARCH CONFIGURATIONooiiiiiiiiiii e 1855
DROP TEXT SEARCH DICTIONARY ..ot 1856
DROP TEXT SEARCH PARSER ..ot 1857
DROP TEXT SEARCH TEMPLATE ..., 1858
DROP TRANSFORM ...ttt 1859
DROP TRIGGERouiiiiiiiiiiiii e 1861
DROP TYPE ... 1862
DROP USER ... ottt 1863
DROP USER MAPPING ..ot 1864
DROP VIEW .o e 1865
ENDD 1866
EXECUTE .o 1867
EXPLAIN L 1868
FET CH o 1874
GRAIN T 1878
IMPORT FOREIGN SCHEMA ... 1883
INSERT .o 1885
LISTEN o 1893
LOAD o 1895
L O CK i 1896
MOVE .o 1899
NOTIRY e 1901
PREPARE ... 1904
PREPARE TRANSACTIONcciiiiiiiiiiiiii e 1907
REASSIGN OWNEDocviiiiiiii e 1909
REFRESH MATERIALIZED VIEW ..o 1910
REINDEX ... 1912
RELEASE SAVEPOINT ..ot 1917
RE S E T e 1919
REVOKE ..o 1920
ROLLBACK o 1924
ROLLBACK PREPAREDiiiiiiiiiiici e 1925
ROLLBACK TO SAVEPOINT ..ot 1926
SAVEPOINT oo 1928
SECURITY LABEL ..o 1930
SE L E T e 1933
SELECT INTO oot 1955
SE T 1957
SET CONSTRAINTS ..o 1960
SET ROLE ..o 1962
SET SESSION AUTHORIZATION ...ccviiiiiiciicceee e 1964
SET TRANSACTION L.ooiiiiiiii e 1966
SHOW e 1969
START TRANSACTION ..o 1971
TRUNGCATE oo 1972
UNLISTEN Lo 1975
UPDATE .o 1977
VACUUM Lo e 1982

XV

PostgreSQL 13.5 Documentation

VALUES ...t 1986
[1. PostgreSQL Client APPlCAIONSuuiiiiiiiii e e e e e e 1989
(o1 (o | o PP 1990
(o= 1= | o PP 1993
CTEBLEUSEY ... evuete ettt ettt et et et et e et e e e et e et e et e et e e ea et e et e et e e n e e e e e aeen e 1997
AroPaD oo 2002
(01 0] 11 2005
(< of oo PRSPPI 2008
PG _DESEDACKUD ... 2011
01007 o 2020
oo w0 0 o P 2040
oo 0 L8 o PN 2043
PO AUMPAEIL ..ot e 2057
1o TS (= |V P 2064
Lo T = o= AV L= P 2066
o To T (= w17 oo 1o NP 2071
10 (== (0] (PP P PP 2075
PO VENTYDACKUD ..eeeie e 2085
01 o | PN 2088
(=070 1= | o TP 2131
A= e U110 o o PPN 2135
[11. PostgreSQL Server APPlICaLiONSciuueiiiie i e e e e e e e eaa s 2140
TNIEAD e e 2141
PY_arChiVECIEANUDuiiii e 2146
[oTo e 4= S 0 1S 2148
[oTo T w0011 0] [=1 - P 2150
oo N o | 2151
[T T =5 =11 | 2157
oo (=111 o PN 2161
10 T (=S)Y/ 2165
o Lo === A (142 PP 2166
o100 oo =" [T 2170
o102z Lo L1 3o o 2179
01075 0 === PPN 2182
1051 = S 2190
RV I 1 01 =0T PP 2191
50. Overview of POStOreSQL INtEMMaS ... ccuuuiiiiiciii e e 2197
50.1. The Path Of @ QUETYiiiiiiii e e 2197
50.2. How Connections Are Establishedcooeviiiiiiiiiiici e 2198
50.3. ThE Parsar SEAgE ...uuivviieiii et e e e e e e e e e e eeaans 2198
50.4. The PostgreSQL RUIE SYStEMuuiiiiiiieiiiiie e 2199
50.5. Planner/OptimMiZErcouniiiii e e 2199
S O = o U (o PR 2201
Y ISV 1= 0 (IO [0 o PPN 2202
oY I @Y= qV = T PP 2202
51,2, PO _A0GE €A & ittt 2204
LY G T o Yo - 1o PP 2205
LY I N o To = 10 £ 0] PP 2206
LY I o Lo = 101 0] S o o PP 2207
BL.6. PO At trdef o 2208
BL7. PG _ At tri BUL @ (oo 2208
BL.8. PO QUL NI 0 .o 2210
51.9. pg_aut h_MBNDEIS oo 2211
LY O o o T o - 11 APPSR 2212

XVi

PostgreSQL 13.5 Documentation

51.11.
51.12.
51.13.
51.14.
51.15.
51.16.
51.17.
51.18.
51.19.
51.20.
51.21.
51.22.
51.23.
51.24.
51.25.
51.26.
51.27.
51.28.
51.29.
51.30.
51.31.
51.32.
51.33.
51.34.
51.35.
51.36.
51.37.
51.38.
51.39.
51.40.
51.41.
51.42.
51.43.
51.44.
51.45.
51.46.
51.47.
51.48.
51.49.
51.50.
51.51.
51.52.
51.53.
51.54.
51.55.
51.56.
51.57.
51.58.
51.59.
51.60.
51.61.
51.62.
51.63.
51.64.

PO Cl ASS ittt 2213
PO_COl T ati ON oo 2215
oo T oXo] = S = U o | S 2216
oo T oXo] 1Y4=T g8=X 1o o TS 2218
PO_dat @DASE ... 2218
PO _db rol @ SettinNg oo 2219
pg_defaul t _acl ... 2220
PO _AEPENA ..o 2220
PO_AESCIi PLi ON oo 2222
010 J=1 0 10 10 £ PP PP PPPP 2223
oo =AY A=Y 0 R O o o = (P 2223
oo T =1 4 7 oY o [2224
pg_foreign_data W apper ..ooociieeiiiiii e 2225
PO _FOr @i gN_SEIVEI .o 2225
pg_foreign tabl e .., 2226
oo TN 4T 1= 2226
PO I NNEI T TS i 2228
oo TN o L S o G Y £ 2228
oo T = Ua o [= Yo [P 2229
PO_| @rgeobj €CT i 2230
pg_l argeobject _netadataccooeeeiiiiiiiiiin 2230
oo A F=1 0 (=157 o - (ol = PP 2230
PO _OPC] @SS ittt 2231
oo [0] o 1=] =Y A o] PP 2232
PO _OPT @M L Y i 2232
pg_partitioned tableccooiiiiiii 2233
PO POl I CY i 2234
PO Pl OC ittt 2234
PO_PUDL i CAt i ON e 2237
Pg_publicati on_rel . 2237
010 T =1 0 o [PP PRPP 2238
pg_replicati on_ori giN e 2238
oo TN =1 T = T 2239
PO_SeCl @bl .o 2239
0o JEST =10 (1= 4 Lo = PRSPPI 2240
PO_ShAEPENA ... 2240
PY_ShAESCIi Pti ON (v 2242
Pg_shsecl abel ... 2242
PO_ St At i SEI € ciiviiiiii i 2242
PO_Stati StiC _BXE i 2244
pg_statistic_ext _datacccooiiiiiiiiiiii 2245
PO_SUDSCIIiPtiON (oo 2245
PY_SUDSCription rel . 2246
PO _tabl ESPACE oo 2246
POt anST OF Mo 2247
oo T O g e [1= 2247
PO 1S CONTI gt e 2249
PO 1S _CONFI g MBP coiiiiii e 2249
PO 1S i Cl oo 2250
PO b S PaAI SO ittt 2250
PO _tS tenPlat @ oo 2251
PO Y P ittt 2251
[oTo TV EX =Y S 12-1 0¥ o o o [P 2255
Y (= VAT PP 2255

PostgreSQL 13.5 Documentation

51.65. pg_avail abl @ _ext @NSi ONS ...coccoviiiiiiiiiiii e 2256
51.66. pg_avai |l abl e_ext ensi On_Versi ONScccoecviiiviiieeiiieiiiiiecie e, 2257
Y YA o To T o2 o 1 | o [P P 2257
L LGS A o o T o 1 g o] g T PPN 2258
51.69. PO fil € SELEiNGS iiiiiiiiiii e 2259
LY MO o To T o | (o] U1 o R PP 2260
51.71. pg_hba fil e rul @S . 2260
Y I 7 o To TR T 4 Lo [0 €= PN 2261
BL73. PO | OCKS it 2261
Y S o To N .- VA = 1P 2264
Y ST o To R o o] B o =P 2264
51.76. pg_prepared_Stat EMBNEScoiiiiiiiii e 2265
B51.77. pg_prepar €d_XaCL S ..ioiiiiiiiiiiii e 2266
51.78. pg_publication_tabl sccoooiiiiiiiiii 2266
51.79.pg_replication origin_statuscccooeiiiiniiiiiiiiii e, 2267
51.80. pg_replicati on_SIOtS .o 2267
oY I o To o =T PN 2268
oY IS v o To T V1 =T PN 2269
51.83. Pg_SECI ADEI S coornii i 2270
Y e oo I =T o [UT=] o ol =T PPN 2270
Y IS T o T TR =) A A 4 [P 2271
51.86. PO _ShaAUOWuiiiiiii e 2273
51.87. pg_shmem al | 0Cat i ONScooviiiiiii e 2274
D188, PO ST AL S ittt e 2275
B51.89. PO _St Al S BXt oo 2276
51.90. PG _tAbl S oeriiiiiii 2277
51.91. pg_timezone _abbrevs ... 2278
51.92. PG _ti MBZONE _NAIMES .iivtuiiiiiiiii e et e e e e e et e e e ean s 2278
L e o o T U =1 =] PRSP 2279
e /N o To TRV EY =1 N 01 Y 1 o L o 1T 2279
YIRS T o T VA =1 TP 2280
52. Frontend/Backend ProtOCO!iiiiiiiiieiiiie et 2281
YA I O Y= a1 = 1 PP 2281
52.2. MESSAGE FIOW ...oiiiiiiiiii e e e 2283
52.3. SASL AULNENLICALIONiiiiiiieeieie e e e 2296
52.4. Streaming Replication ProtoColccccuiviiiiiiiiii e, 2298
52.5. Logical Streaming Replication Protocolcccooevviiiiiiiiiineie e, 2305
52.6. MESSAgE Dala TYPES ..vuiviiiieieiei ittt ettt et 2306
52.7. MESSA0E FOIMMELS . .vuiviitiii it e e 2307
52.8. Error and Notice Message FieldSooivviiiiiiiiiiii e 2324
52.9. Logical Replication Message FOrMaLSccuuveiiueiiiiieiiiieciieeeinee e e eaeeeae 2326
52.10. Summary of Changes since Protocol 2.0cccoveviiiiiiiiiiiiec e, 2331
53. PostgreSQL Coding CONVENLIONSueiiuuiiiiieiiieeei e e e e e e e e e e e e et eeaneee 2333
LoYC T o4 10 = 1 o 2333
53.2. Reporting Errors Within the SErveroveviiiiiii e, 2334
53.3. Error Message StYl€ GUIAEcouiiiiiiiii e 2337
53.4. Miscellaneous Coding CONVENLIONSccvuuieiiiieiiieecii e e e e e 2341
54, Native Language SUPPOITuueiuteriieeeiee e re et e et s e e e e e e e st e e e e s e eateeenneeennns 2344
54.1. FOr the TranSlaloruieiiiiiieiiie e e e e eeees 2344
54.2. FOr the PrOgramimeruiiii e e e e e e e e e e anas 2347
55. Writing a Procedural Language Handlerccoooviiiiiiiii e 2350
56. Writing a Foreign Data WIaDPES ... covvuiiiieeiiieec et e e e e e e e e e e e eens 2353
56.1. Foreign Data Wrapper FUNCHIONScovuiiiiieiie e e e 2353
56.2. Foreign Data Wrapper Callback ROULINESooovviiiiiiiiii e 2353

XViii

PostgreSQL 13.5 Documentation

57.

58.

59.

60.
61.

62.

63.

64.

65.

66.

67.

68.

56.3. Foreign Data Wrapper Helper FUNCLIONScccvvviiiiiiiiiiccie e, 2368
56.4. Foreign Data Wrapper Query Planningcoooeiiiiiieiiii e, 2369
56.5. Row Locking in Foreign Data WIappeEr'Soevviieiineeiii e e e e e e e 2371
Writing a Table Sampling Methodcc.oooiiiiiiii e, 2373
57.1. Sampling Method SUpport FUNCLIONScouviiiiiieiiecc e, 2374
Writing a Custom SCan ProVideruiiiiiiiiii e 2377
58.1. Creating Custom Scan PathSccoiiiiiiiiic e, 2377
58.2. Creating Custom SCan Planscociviiiiiii e 2378
58.3. EXECULING CUSLOM SCANSuvvvieiiiieiiieeeiie e e e e e e e e e e e e e e e e e eaes 2379
GeNEtiC QUENY OPLIMIZEN .vuiei i e e e e e eees 2382
59.1. Query Handling as a Complex Optimization Problemccooiiiiieii 2382
59.2. GENELIC AlQOIItNMS ... i 2382
59.3. Genetic Query Optimization (GEQO) in POStgreSQLccevvvvevvieeiieeiieeennne, 2383
59.4. Further REAINGcovvniiiiiiii e 2385
Table Access Method Interface Definitioncooviiieiiiii e 2386
Index Access Method Interface DeEfiNitionvvviiiiiiiiiiii e 2387
61.1. Basic APl Structure for INAEXESc.uuuiiiiiiiieceie e 2387
61.2. Index Access Method FUNCLIONSooevveiiiiiiiiieci e 2390
B1.3. INAEX SCANMNING ...evvneeinieiie e e e e e e e e e e e e e e e e e e et e e et e eaneeeees 2395
61.4. Index Locking CoNSIAErationSoveiuiieiiiieiiiieeiie e e e e 2397
61.5. Index Uniqueness ChECKScccuiiiiiiiiiie e 2398
61.6. Index Cost EStimation FUNCLIONSviiiviiiieiiiii e e 2399
GENENIC WAL RECOIUSvuiiiiii et et e et e eeeat e e e ene 2403
B-TrEE INUEXES ..vn e et e e e et e s 2405
(2G50 1 1 o (8o [o 2405
63.2. Behavior of B-Tree Operator ClasseSovvuiiiiiieiiieeeii e e e e e e 2405
63.3. B-Tree SUpPOrt FUNCHIONScuuiiiiiciie e e e e e e e e 2406
63.4. IMPIEMENLALION .. .evuiiii e e e e e e e e e e e e eaans 2409
LTI I 1 070 (== PP 2412
(57 0 g1 oo (8o [o S 2412
64.2. BUIIt-iN Operator ClaSSeSu.ciuueiiiieiiii e e e e e et e e e e e e eeen 2412
S T N (=011 o 1 1) YRR 2413
64.4. IMPIEMENLBLIONuuiiiii e e e e e e e e e e e e eanns 2425
B4.5. EXAMPIES ..ovvviiiei ettt 2426
SP-GIST INAEXES ...evvvviiiieie e e ettt ettt e e e e e e e e e e e e e e e et e e e e e e e eeaernnnes 2427
L1300 g1 oo (8o o o S 2427
65.2. BUIIt-iN Operator ClasSeSu.iivueiiiieiiii e ee e e e e e e e e e e e e een 2427
L I N (=011 o 1 1 YRR 2428
65.4. IMPIEMENTALIONvuiiii e e e e e e e e e e e e e eaans 2437
B5.5. EXAMPIES ..u it 2438
GIN TNOEXES vt eeee ettt e s et e e e e e e e e e e et s e e e e e e e estatnseaeeaeeennes 2439
L1200 1 g1 o (8o [o 2439
66.2. BUIIt-iN Operator ClasSeSu.evvueiiiieiiii e e e e e e e e e e e een 2439
ST R I N (=011 o 1 1 SRR 2439
66.4. IMPIEMENTALIONvuiiii e e e e e e e e e e e e eaens 2442
66.5. GIN TipS aNd TTICKS ..uuuiiiiieiii e e e e e e e aeas 2444
(Lo T 1] = o PP 2444
B6.7. EXAMPIES ...t 2445
BRIN INUEXES ...vvviei ettt ettt s e e e e e e ettt s e e e e e e e aaaaa e e e eeeees 2446
L8 1 1 oo (8o o o S 2446
67.2. BUIIt-iN OPerator ClaSSeSu.iiuueiiiieiiii e ee e e e e e e e e e e e e eanaeeeen 2447
T N (=01] o 1 1 PSSP 2448
[F= S T D10 (o= <SPPI 2452
B8. 1. OVEIVIBIW .vvvviii e e eee it e e e ettt e s e e e e e e e et e e e e e e e ettt e e e e e e e e aesanenn s 2452

XiX

PostgreSQL 13.5 Documentation

68.2. IMPIEMENLALIONvuiiii e e e e e e e e e e e e e eaans 2453

69. Database PhySICal SIOraQgEcvvviiii e e e e e e e e 2454
69.1. Datahase FIle LayOUuLoceuuiiiiieiii e e e e e e e 2454

B9.2. TOA ST ottt ettt ettt 2456

69.3. FIree SPACE M ..ottt 2459

69.4. VISIDIIIY M@ ..o 2459

69.5. The INItidization FOTKcooiiiiiiiiiii e 2460

69.6. Datahase Page LayOuLcccouuieiiniiiiii e e e e e e e e e 2460

70. System Catalog Declarations and Initial CONteNtSceevvvveiiiiiiiiieeiiieeie e, 2464
70.1. System Catalog Declaration RUIESveiiiiiiiiiici e, 2464

70.2. System Catalog INitial Datal........ccevvieiiiieiiieeiii e e 2465

70.3. BKI Fil@ FOMMEL ...ccvvieiiiiie et 2470

70.4. BKI COMIMANGScevviiieeiiiie ettt e e e e e e e et e e e e aan s 2470
70.5. Structure of the Bootstrap BKI Filec.coeviiiiiiiiiiiiin e, 2471

70.6. BKI EXAMPIE c.eviiiiei ettt 2472

71. How the Planner USES SEatiStCS ..vvvvuuiiiiiiiieeiiii ettt e s 2473
71.1. Row EStimation EXamMPIESc.uiiiiiiiiiii e e e e e 2473

71.2. Multivariate StatisticsS EXampPleScoovviiiiiiiiici e 2479

71.3. Planner Statistics and SECUIMLYovvvniiiiii e e 2483

72. Backup Manifest FOMMELcovuiiiiiici e e e e e e aanas 2484
72.1. Backup Manifest Top-level ObJECEocvvieiiiiiiii e, 2484

72.2. Backup Manifest File OBJECtoivviiiiiie e, 2484

72.3. Backup Manifest WAL Range ObJECtovvviiiiieiii e e 2485

RV LAY o] =5 o 1D =N 2486
A. POSIOreSOQL ETOr COUESuuiiiieii et e e e e e e e e e e eaaas 2493
ST BT (T T g LTS T o] oo o 2502
B.1. Date/Time Input INtErpretationocvvviiiiiiiiie e 2502

B.2. Handling of Invalid or Ambiguous TimesStampsc.ccceveviiieiiiiieiiiieei e, 2503

B.3. Date/Time K&Y WOIASieiiiiiii e e e e e e e e 2504

B.4. Date/Time Configuration FilESociii i 2505

B.5. POSIX Time Zone SPeCifiCationSuveiuieiiiieiiii e e e e e 2506

B.6. HIiStory Of UNItSiiiiiiiiiii i e e e e 2508

B.7. JUAN DAES ...vuiieeiiiii et 2509

C. SOL KEY WOIAS ... ceiteiiiieeiiie e e et e e e e e e e e e e e et e e et e e et e e eaneeaanaes 2511
D. SQL CONfOIMMANCEevuiiiiii et e e e e e e e et e e e e e e e e enaeees 2535
D.1. SUPPOIEd FEALUIEScvueiiie e e e e e e e e e e eaens 2536

D.2. UNSUPPOIEd FEAIUIESuiiiiiiieii e e e e e e e e e e e e e e e e eanes 2547

D.3. XML Limits and Conformance to SQL/XMLcccoevviiiiiiiiiiiiiiiineceeeeee, 2556

I e 1= S N o] (=< P 2560
E.L REEBSE 13.5 .. i 2560

E.2. REIEASE 1314 ..o 2568

E.3. REIEASE 13.3 ..o 2574

B4 REIEBSE 13.2 ... 2578

E.D. REIEESE 13,1 ..o 2586

E.B. REIEASE 13 ...t 2590

E.7. Prior REIEASESu i 2610

F. Additional SUpplied MOAUIESuiiiiiii e 2611
F.L admMinpackooeniiiice e 2612

F.2. @MCNECK ...t 2613

F.3. @UEN_AEIY ..o 2616

0| (o T = o) =1 o PN 2617

FLB. BIOOM Lo e 2620

ST o1 (==Y o 1 o 2623

L A o 1 (==Y o £ P 2624

XX

PostgreSQL 13.5 Documentation

RS T o) (=4 APPSR 2625
FiO. CUD Lo 2628
[0 0 | o] o PRSP 2633
Nt I o o T | PP 2665
L 2o [A6,/ P 2666
F.13. €arthdiSIaNCE ...oeveieeiei e 2667
Lt 1T = o P 2669
F.A5. fUZZYSIIMAECKH ..oeeii e e 2672
Nt T 01 o = PP 2674
T 17 o o N 2682
S T - - Y 2684
0t L T 1= o PP 2687
2 o PP 2691
L T == PP 2692
[070 L= 1 4 o)< o P 2700
F.23. PassWOrdCNECKcciuiiiiii e e 2709
F.24. pg BUFfEICACE .. cov e 2710
FL2D, POCIY PO ittt 2711
L I oo =S 0 0= 1 7= 2723
e R oo [o (= V= 1 [PP P TP PREN 2725
2 S 0o | 1011 oo PN 2726
F.29. PO_Stal SalBMBNTS ... 2727
G O 0T 1 =0 o T 2734
e I oo [1 (0 [0 T 2739
F.32. PO VISIDIHITY e 2745
F.33. POSIOrES FOW ..ovuiiiiicii e 2746
[R o PSPPSR 2753
G ST = o0 o | 2756
T o PP 2764
L A 1T o o T PP 2766
F.38. tADIEFUNC ... 2767
1S I [SOOI 2778
[TO I (== o =0 o] oo [P 2779
FLAL, TSN _SYSIBIM TOWS L.ttt e e et et e e e e e e en 2779
F.A2. tSM_SYSIEIM TIME c.ouiiii e e e e e e e e aens 2780
G R U 0= ol o | PP PTPTN 2781
Y D 1H T o 01\ o PP 2783
Fud5. XIMI2 Lo e 2784
G. Additional SUPPIIEd Programsccuuuieiiieiii e ee e e e e e e e e e e e eens 2790
G.1. Client APPIICAIONSievi e e e e aeeeen 2790
G.2. Server APPlICALIONScii i 2798
[R (= g = I 0= o £ PP 2803
H. L CHENt INEEIFACES .. iveeeiie e 2803
H.2. AdMINIStration TOOISccuuuiiiiiiiiieiiiii e 2803
H.3. Procedural LanQUAagESuuiieuniiiiiieiiieee e e e e e e e e e e et e e e eanes 2804
[I a1 T PPN 2804
I. The Source Code REPOSITOIY ... ccuuiiiieiiiee et e e e e e e e e e et e e e e eanaees 2805
[.1. Getting the SOUICE VIa Gtu.iiiiiciiiii e 2805
IV B o o109 01 - 1o o PSP 2806
J L DOCBOOK ...ttt 2806
B oo S P 2806
J.3. Building the DOCUMENLEEIONcovvniiiiie e e e e e e e 2808
J.4. Documentation AULNOIINGcooviiiiiii e e 2810
5. SEYIE GUITE ..cevneeiiii e et e e 2810

XXi

PostgreSQL 13.5 Documentation

N 0 (o=@ I 41 SN 2813

[o {0017/ 1 1 PSPPI 2814
TS oY UPPR PP 2821
TR0 oS 0o AP 2834

N.L When Color iSUSEAuiiiiiiiieiiii e e e eanes 2834

N.2. Configuring the COlOrScovuuiiiiie e 2834

O. Obsolete or RENAMEM FEAIUMNESccuviiiiiii et e e et e e e eeeens 2835
O.1.recovery. conf filemergedintopostgresqgl.confc..coeviiinennnnn. 2835

0.2. pg_xI ogdunp renamed to pg_wal dunpcooeeviiiiiiiiiiiiiee e 2835

0.3. pg_reset x|l og renamedto pg_resetwalccooceviiiiiiiiiiiiiiiines 2835

0.4. pg_recei vexl og renamedtopg_recei vewalcccceevviiiiiiiieiinennnn, 2835

1211 o] oo r="o] /N 2836
g0 1= USRI 2838

XXii

List of Figures

59.1. Structure of a Genetic AlGOMTMoouuiii e
B6.1. GIN INEEIMAIS ...ttt ettt e et e e e b
B9.1. PagE LAYOULeeeiiitie ittt ettt

XXiii

List of Tables

4.1. BaCKSlash ESCAPE SEOUENCESceietieiiiti e et e et e et e et e et e et et e e e e et e e e e enaaes 38
4.2. Operator Precedence (highest t0 TOWESE)uiiiiiiiiieiiii e 43
5.1. ACL Privilege ADDreVIGtioNSoiiiiiiieeiiii et e e 80
5.2. SUMMary of ACCESS PriVIIEOESu it 81
S D - = Y o= TP PP 147
8.2, INUMENIC TYPES ..ttt ettt ettt ettt e et r e e e et e e et et e e e e eaa s 149
8.3, IMONELAIY TYPES ..ottt ettt ettt e et e 154
8.4, CAIACLES TYPES ..ot eeiiti ettt ettt ettt ettt e et e e et e ettt e et e e e e e e enaa s 154
8.5. SPECial CharaCler TYPES ..c.vuu ittt ettt ettt e e et e ettt e e et e e e e e bt e e eenaaeeees 156
8.6. BINAIY Daa TYPESvueeieitieeeett ettt e et e ettt e ettt e e et et r e e et et e e et et e e eeat e e eent e eeen 156
8.7. byt ea Literal ESCAPEI OCLELSuiiiiiiieeieii ettt e e 157
8.8. byt ea OUutput ESCAPEd OCLELScceiiiiieeiii et 158
8.9. DAE/TIME TYPES .. eetueeeiiti ettt ettt ettt ettt ettt e et e et e e e e et e e e e b e e eeaans 158
8.10. DB INPUL ...eeeeeet ettt et e et e 160
811, THME INPUL ..ttt ettt ettt ettt e et et e et e e e et e e e et e nb e e ennaas 161
8.12. TiME ZONE INPUL ...ttt ettt ettt ettt et e ettt e e e et e e e e ana e eenees 161
8.13. Special DaE/TIME INPULScevuiiiiiie ettt e e e e e e enanns 163
8.14. DAe/TIME OULPUL SEYIES ...t eeees 164
8.15. Date Order CONVENTIONSeeeetteeeitti e ettt ettt e ettt e et e e ee b e e e e et e e e eete e e eeetanaeeees 164
8.16. 1SO 8601 Interval Unit ADDIreviationSc.uuiiiiiiiiiieii e 166
8.L7. INEIVEl TNPUL ...ttt ettt e e et e e e 167
8.18. Interval Output Style EXaMPIEScoovuiiiiiiii e 168
8.19. BOOIEAN DaLA TYPE ... eeeetieeeeeti ettt ettt ettt e et e et e et e e e e e e e aene 169
8.20. GEOMELNIC TYPES .. eeeti ettt ettt ettt et e et e et e et et e e e e et e eeeaa s 172
8.21. NEIWOIK AQArESS TYPES ... eeetiieteet ettt ettt ettt e e et e et eeena s 174
8.22. Ci dr Type INPUE EXAMPIEScoeiiieiei et 175
8.23. JSON Primitive Types and Corresponding PostgreSQL TYPEScccvvvnieiiiiiiieiiiiiieeeeiiiieeees 184
8.24.] SONPAt h Variahlesiiiiii e 192
8.25.] SONPAL N ACCESSOIS ... eieeetiie ettt ettt ettt ettt e e et et e e et eeaaan s 192
8.26. ODJECE 1dENLITIEr TYPES ... eeeiei ettt 216
827, PSRUUO-TYPES ..ttt ettt 218
9.1. COMPATSON OPEIGIOIS ...eetueeeetie ettt ettt e ettt et e e e et e et e et et e et e e e e e et e e e enn e eeenans 221
9.2. COMPAISON PraEdiCaLEScuuuieiiii ettt et 222
9.3. COmMPAISON FUNCLIONS ...ttt et e eaans 225
9.4. MathematiCal OPEIALOSceeeeueeeeii ettt ettt ettt ettt et et e et e e et e e eeaans 225
9.5. MathematiCal FUNCHIONScuuuuiiiiii ettt ettt e e e e e enaans 227
9.6. RANAOM FUNCLIONSceiiiieieii ettt ettt e et e e e e e e eenanns 230
9.7. TrigONOMELNIC FUNCHIONS ... ittt sttt ettt e e ettt e e e et e e e ena e eeens 231
9.8. HyperboliC FUNCHIONSiiiiiie et 233
9.9. SQL String FUNCLiONS 8N OPEIEIOISuieiiiiieeeiii ettt e ettt e ettt e e et e eeent e e e e e eees 234
9.10. Other SING FUNCHIONSuiiiiiii e e e e 236
9.11. SQL Binary String FUNCtions and OPEraorsSuueiertiieieiiiaeeeiiae e et e e e e 242
9.12. Other Binary String FUNCLIONSc..uuiiiiitiee ittt e e e e e ena e eens 243
9.13. Text/Binary String CONVErsion FUNCLIONSccouuuiiiiiiieeiiii et e e e 245
9.14. Bit SINQG OPEIAIOIS «...vteieeii ettt ettt ettt e et e e et e e et et e e e eaaa s 246
9.15. Bit SINQG FUNCHIONS ...ttt et e et e et e e s 247
9.16. Regular EXpression MatCh OPEIELOrSccuuuu i eiiiiiieeieii ettt e et e e et e e e et e e eeea e eeens 251
9.17. Regular EXPression ATOIMISc.uuu ittt ettt e ettt e et e et e e e et e e e b 256
9.18. Regular EXpression QUANTITIENSuuuiiiiiiie e 257
9.19. Regular EXPression CONSITAINTScvevuueiiiii ettt e et e e 257
9.20. Regular Expression CharaCter-Entry ESCPESocvvuvuieiiiiiieiiiii et 259

XXiV

PostgreSQL 13.5 Documentation

9.21.
9.22.
9.23.
9.24.
9.25.
9.26.
9.27.
9.28.
9.29.
9.30.
9.31.
9.32.
9.33.
9.34.
9.35.
9.36.
9.37.
9.38.
9.39.
9.40.
9.41.
9.42.
9.43.
9.44.
9.45.
9.46.
9.47.
9.48.
9.49.
9.50.
9.51.
9.52.
9.53.
9.54.
9.55.
9.56.
9.57.
9.58.
9.59.
9.60.
9.61.
9.62.
9.63.
9.64.
9.65.
9.66.
9.67.
9.68.
9.69.
9.70.
9.71.
9.72.
9.73.
9.74.

Regular Expression Class-Shorthand ESCAPESveiviiiiiiiiiiii e e e e 260
Regular EXpression CoNStraint ESCAPESuvvuuiiinieiiieiiieee e ee e e e e e e e e e e e ean s 261
Regular EXpression Back REFEIENCESocivuiiiii e 261
ARE Embedded-Option LEErS ... couuiiii e e e e e e e e 262
FOrmatting FUNCHIONSovuiiii e e e e e e e e e e e e e eens 266
Template Patterns for Date/Time FOrmMattingcccueeiiiieiiiiieiie e e e e e e 267
Template Pattern Modifiers for Date/Time FOrmattingcocevvveviiiiiiiiieiiiiecineeeeeeeis 269
Template Patterns for NUMeric FOrmattingcc.oveviiiiiiiiiiiii e 272
Template Pattern Modifiers for Numeric FOrmattingcoooevveeiiiiiiiiieiiineeieeceieeeeeeenn, 273
oo = L T 1 o)== 273
Date/TIME OPEIBIOIS ...vueeteeeii et ettt et e e e e e e e e e e e e et e e et e e et e e e e e st e eateeeanaeeannas 275
DA€/ TiME FUNCHIONSvtiiee it e e et e e e e e e e e et e e eenanns 277
AT TIME ZONE VANTANES ..uuiiiiiieeeiiie ettt e s e e a et s e e et e e e et e e e eaan e 287
ENUM SUPPOIt FUNCLIONSciie e e e e e e e e e e e e e ea e e aanees 291
(€100 1= (ol @] 1= - 10 = 292
GEOMELTTC FUNCLIONS ...ttt e et e e ettt e e e et r e e e eetereeeeabn s e eeeatnnaeeees 296
Geometric Type Conversion FUNCLIONSccouuiiiiiieiiie e e e e e e e e e 297
oo (o[£ SN @ o= = (0] £ 299
I[P AdAress FUNCLIONScovviiieiiiis ettt s e et e e e et e e e e at e e e e e 301
MAC AdAreSS FUNCLIONSoeviieiiiiie ettt e e et e e et e e et eeeeae s 302
LS == (o A IO o= = 0] £ TP 303
SRS == T T (o PR 304
Text Search Debugging FUNCLIONScoouuiiiiieii e e e e e e e e e eaaes 308
J SON aNd | SOND OPEIAOIS . .civviiiii e e e e e e e e e e e e et e e et eeanaee 325
Additional | SOND OPEIAIOrSuuiiiiieiii e e e e e e e e eaaees 326
JSON Creation FUNCLIONSciiuiieeiiiiie et e et e e e et s e e e eat s e e e eat e e eeatn s e e aeaanaaaees 328
JSON Processing FUNCLIONSiiiiiiii e e e e e e e et e e e e e e e e aanaees 329
j sonpat h Operators and MEethOOSccoouiiiiiiii e 339
j sonpat h Filter EXpression EIEMENESoiiiiiiiiiii e e e 341
S = [0 1= g Tor Y W o 1T 344
F N = YO o= = (0] £ PRSPPI 349
F N 4 = YA U o 1 o 350
RANGE OB OIS . it iti ittt e et e 353
[T (= U o 0] 354
General-Purpose Aggregate FUNCLIONSo.uiiiiiiii e e e e e e e eaaes 355
Aggregate FUNCLIONS fOr SEAiStICSvvvuiiiiieiii e e e e 358
Ordered-Set AQQregate FUNCLIONScovuiiiii e e e e e e e e e e e e e aaneees 360
Hypothetical-Set Aggregate FUNCLIONSccovuiiiiiiiciie e 360
CTCo TN o 1 (o [@] o 1= £ 1 o o TP 361
General-Purpose Window FUNCLIONSoovuiiiiiiciii e e e e e e e e e eaae e 362
Series Generating FUNCHIONSccuuiiiiici e e e e e e e e e e et e e ea e eeas 370
Subscript Generating FUNCLIONSccuuiiiiieie e e e e e e e e eaa s 371
Session INFOrmMation FUNCHIONSuiiiiiii ittt e e 373
Access Privilege Inquiry FUNCLIONSiiiiiiiii e e e 376
= (o I =T 01 @] 1= - (o =P 378
= (o IR =T a1 W 1 Lo ORI 378
Schema Visibility Inquiry FUNCLIONScuuiiiiiiiii e e 379
System Catalog INformation FUNCHIONSccuuiiiieiii e e e e 380
INAEX COIUMN PrOPEMIES .. ovvi i e e e e e e e e e et e e e eaes 384
F g0 Lo = (0] 0= o 1= 385
Index Access Method Properti€Scuuuiiiii e e 385
Object Information and Addressing FUNCLIONSc.uviiiiieiiiiieii e 385
Comment INformation FUNCLIONSiiiiiiiieiii e 386
Transaction 1D and Snapshot Information FUNCLIONScoviiiiiiiiiieiii e 387

XXV

PostgreSQL 13.5 Documentation

9.75. SNAPSNOt COMPONENESuueitieiiii ettt e et e e e e e e e e e e e e e et e e et e e et e eeta e e et eetn e rannaeanaees 387
9.76. Deprecated Transaction ID and Snapshot Information FUNCLIONSccooevviiiiiiieiineennn, 388
9.77. Committed Transaction Information FUNCLIONSccouuiiiiiiiiiiieeiiiie e 389
9.78. CONLrol Data FUNCHIONS ... eiiiiiee et e ettt e et e e et e e e et e e e e et e e e eate s e e e eatnaeeeenes 389
9.79. pg_control _checkpoi nt Output CoOlUMNSccuuiiiiiiiiiii e e e e 389
9.80. pg_control _syst emOUutput COIUMNSccouiieiiiiiiiii e 390
9.81. pg_control _init OUPUt COIUMNSccvvniiiiieeiie e e e e e e e e e e e e eaes 390
9.82. pg_control _recovery Output COlUMNSccuuiiiiiieiiiieiie e e 390
9.83. Configuration Settings FUNCLIONSoiiiiiiii e e e aeas 391
9.84. Server SIgnaling FUNCHIONScuuiiii e e e e e aaa e 391
9.85. Backup Control FUNCLIONSuiiiiciiicce e e e e e e e e e et e e e e e eaaas 392
9.86. Recovery INformation FUNCHIONScouuuiiiii i ee e e e e e e e et e e e e aen 394
9.87. Recovery Control FUNCHIONSiiueieiiii e e e e e e e e e e e s e e e eaneees 395
9.88. Snapshot Synchronization FUNCHIONSc.uuiiiiiciie e e e e e e 396
9.89. Replication Management FUNCHIONScouuiiiiiieiii e e e e e eeens 397
9.90. Database ObJeCt SIZ€ FUNCLIONSuiiii i e e e e e e e e e ees 399
9.91. Database Object LOCation FUNCHIONScovuiiiiiiiiiii e e e e e e e e e e e e 401
9.92. Collation Management FUNCLIONScouuuiiiieei e e e e e e e e eenas 401
9.93. Partitioning INformation FUNCLIONSoiiiiiiiii e e e 401
9.94. Index MaintenanCe FUNCLIONSoiiiiiiiieiii e e e e e 402
9.95. GeneriC File ACCESS FUNCLIONSccuuiiiiiiiiiiei ittt e e e e e eaees 403
9.96. AdVISOry LOCK FUNCLIONSuiiiiiii e ce e e e e e e e e e e e e e e e e et e e et e e eaaeees 405
9.97. BUIIt-IN Trigger FUNCLIONSciviieii e e e e e e e e e e e et e e e e e aanaees 406
9.98. Table Rewrite INformation FUNCLIONSocuuuiiiiiiiis e 409
12.1. Default Parser's TOKEN TYPES ..vuuciiieiiiiee e et e e e e e e e e et e et e et e e et e e et e e e eanaas 462
13.1. Transaction 1S0l@tion LEVEISuuiiiiiii e 487
13.2. Conflicting LOCK MOOESuuiiiiiiiiieci e e e e e e e e e e e 494
13.3. Conflicting ROW-LEVE LOCKSciuieiiicie e e e e e e e 496
18.1. SYysStemM V IPC ParameterSvuiiiiiieei et e e e e e 574
18.2. SSL SarVEr FilE USAgEu it e e e e e e e e e 589
19.1. synchronous COMMIt MOGESc.uuiiiiiiiii e e e e e e 616
19.2. MeSSage SEVENTY LEVEIS ...uu i e e 643
19.3. ShOrt OptioN KEY ...ivvniii e e e e e e e e 672
P2 N B L = O A = (o =< PP 700
23.1. PoStgreSQL Charalter SBLSciuuuiiii it ee e e e e e e e e e e e e e et e et e e aaeeeeas 717
23.2. Built-in Client/Server Character Set CONVEISIONSuuiviiiiieiiiiiieeeeiineeeeiis e eeaineeeeaines 722
23.3. All Built-in Character Set CONVEISIONScicuuuueriiiiietiiineeeeiiaeeeetiaeeeeii e e eeraaeeennnns 723
26.1. High Availability, Load Balancing, and Replication Feature MatriXcccoocvuiveeinnernnnnnns 758
27.1. DYNAMIC SEAISHCS VIBWS ..ovviiiii e e e e e e e e e e e e e et e et e e ea e eees 782
27.2. Collected SEAISHCS VIBWS .. .ceeviieeiiie ettt e e et e e e e et e e e eatanaeeeees 782
27.3.pg_Stat _aCti Vi ty VIBW oo e e e 784
PV L T o I/ o= PP 786
27.5. Wait Events of TYPE ACT 1 Vi LY wuuiiiiiiiii e 787
27.6. Wait Events of Type BUf f €r Pi N ..o 788
27.7. Wait Events of TYPE Cl i €Nt .oovniiiiiii e e e e 788
27.8. Wait Events of TYPE EXT €NST ON ..ciiviiiiiiiii e 788
27.9. Wait EventS Of TYPE I O .uniiiniiii i e e e e e e e aen 788
27.10. Wait Events Of TYPE I PC ..ooviiiiiiii it e e e e eeens 791
27.11. Wait Events of TYPE LOCK ...civiiiii e 793
27.12. Wait Events of TYPe LVWLOCK ...vuiiiiiiii it e e e e e e e e e e e e e 793
27.13. Wait Events of TYPE Ti IMBOUL ..uuiiieiiiiii e e e e e e e e e s e eaaees 797
27.14. pg_stat _repliCcati ON VIBW ... e e e 797
27.15. pg_stat _Wal _FeCEI VEI VIBW .ot e e e e 799
27.16. pg_stat _SUDSCIipti OnN VIBW ..o 800

PostgreSQL 13.5 Documentation

27.07. PO ST AL SSI VIO coiiiii e 801
27.18. PG _St At _gSSAPI VIBW couiiiiii i e e 802
27.19. pg_Stat _arChi VEI VIBW oouuiiii e e e e e e e e 802
27.20. pg_Stat _BOWE it &5 VIBW coouniii e e e e 803
27.21. pg_stat _dat @base VIiEW ..o 804
27.22. pg_stat _database _confliCts VIBW .oociiiiiiiiiiii e 805
27.23. pg_stat_all _tabl @S VIEW oo 806
27.24. pg_stat _all i NAdEXES VIBW ..o 807
27.25.pg_statio_all _tabl €S VIEBW ..o 808
27.26. pg_statio_all i NAEXES VIBW ..ocuiiiiiiiii e 809
27.27.pg_statio_all _SeqUENCES VIBW ...cc.uiiiiiiiiiii e e e e 809
27.28. pg_stat _user _fUNCEi ONS VIBW ..o e e e 810
27.29. PG ST At S| I U VIBW i e e e 810
27.30. Additional StatistiCS FUNCHIONSuuuiiiiiiieiiiiis et e e e e e eeees 811
27.31. Per-Backend Statistics FUNCHIONSuiiiiiiiieciiis e e et e eees 812
27.32. pg_stat_progress_anal YZe VIBWcccooiiiiiii i 813
27.33. ANALY ZE PhaSBS ..vuu ettt e e e et e e 814
27.34.pg_stat_progress_create_ i NAeX VIBW ...cc.oiiiii i 815
27.35. CREATE INDEX PhESES ...cutuiitiiiiieeeiiiie ettt e et e et s e e et s e e e et s e e eaaan e e ennens 816
27.36. pg_stat _progress_VAaCUUMVIBW ...couuiiiiiiiiii e e e e e e e e e et e st e e e eaneees 817
27.37. VACUUM PRESESuuiiiiiiiiii ettt ettt e e e e et e e e et e e e e et e e e e aan e ens 818
27.38. pg_stat_progress_ClUSter VIBWcooiiiiiiii e 819
27.39. CLUSTER and VACUUM FULL PhaSEScuuuiiiiiiiiieiiiiie e 819
27.40. pg_stat _progress_basebackup VIeWccooeiiiiiiiiii e 820
27.41. BaSE DaCKUD PRASES ... cuuiiiiiie et e e e e e e e e e e e e e e aa 820
27.42. BUIlt-iN DTTace ProbES ...cceviicieii e 821
27.43. Defined Types Used in Probe Parametersc..veiiiiiiiiiiiii e e 828
33.1. SSL MOE DESCIIPLIONSivtieiii et e e e et e e e e e e e e e e e e e e e et e e et e e et e e e aaeeaneees 937
33.2. Libpg/Client SSL FIlE@ USAQE ... cvuuiiiiiiiiiie et et e e e e e e e e e eanees 937
34.1. SQL-Oriented Large Object FUNCLIONScovuiiiiiiicii e e 957
35.1. Mapping Between PostgreSQL Data Types and C Variable TYPESvvvvvvvveviiciiiieeiieeennnn, 974
35.2. Vadid Input Formats for PGTYPESdat € from asccccccovvviiiiiiiciieeeeec e, 993
35.3. Vdid Input Formats for PGTYPESdat € f Nt _asSCccooeviiiiiiiiiiii e 995
35.4. Valid Input Formatsfor rdef mtdat @cooviiiiiiiii 996
35.5. Valid Input Formats for PGTYPESt i mest anp_from ascccoeveviiiiiiiiiiiicciie e 997
36.1.i nformati on_schena_catal og_nanme Columnsccoeeeiiiiiiieiiin e, 1079
36.2. adm ni strabl e _rol e _authorizations Columns............cccooevviieiiiiiii e, 1079
36.3. applicabl e rol €5 ColUMNSoiiiiiiiiii e e e 1080
36.4. At 11 DUL €S COIUMNSuuiiiiiii e et e e e e 1080
36.5. charact er _Set'S COlUMNSc.uiiiiiieiii e e e e e e e et e e e eeas 1083
36.6. check_constraint_routine_usage Columns...........cccovviiiiiiiiieciin e, 1083
36.7. check _constrai NtS COlUMNSiiiiiieiiii e e e e e e een 1084
36.8. COl 1 @t i ONS COIUMNSuuiiiiiii et e e e e e e 1084
36.9.col l ation_character_set_applicability Columns..........cccooeeiviiiinininnennnn. 1085
36.10. col um_col umm_uSage COIUMNSuiiiiiiiii e e e e e e e e e 1085
36.11. col um_domai N_uSage COIUMNSc.uiiiiieiiiie e e e e e e e e 1085
36.12. cOl UMM_0Pt i ONS COlUMMNS .. .ccuuiiiicii e e e e e e e e eaen 1086
36.13. col um_pri vil €ges ColUMNScccouuiiiiiiiiii e e e e 1087
36.14. col umMm_udt _USAQge COIUMNSccvuiii e e e e e e e e ees 1087
36.15. COI UMMS COIUMINS .. .iiiiieeiii e et e et e e et e e e et e e e e et e e e eaanaas 1088
36.16. constrai nt _col unm_usage ColUMNScoeiiiiiiiiieiiiieeie e 1091
36.17.constraint _tabl e _usage ColUmMNScc.oieiiiiiiiiieiie e 1092
36.18. data_type privileges ColumMNS.........cccooiuiiiiiiiiiiiii e 1092
36.19. domai n_constrai Nt's COlUMNSceiiiiiiiiie e e e 1093

XXVii

PostgreSQL 13.5 Documentation

36.20. domai N_udt _USAQe COIUMNSccuuiiiii e e e e e e e et e eeaaeeees 1093
36.21. dOMBI NS COIUMINS .. .ceiiiieeiii et e et e e e et e e e et e e e e et e e e eaen s 1094
36.22. el ement _t YPES COIUMNSovuiiiii e e e e e e e e e eaes 1096
36.23. enabl €d_r 0l €S COlUMNSc.uiiiiiii e e e e e eaas 1098
36.24.forei gn_data_wrapper_opti ons ColUmMNScccuviiiieiiiiieiiii e eee e, 1098
36.25.foreign_data_ W appers COlUMNSccooiiiiiiiiiiiii e 1099
36.26. forei gn_server_opti onNs COlUMNSooiiiiiiiiiiiiii e e e 1099
36.27.forei gn_Servers COIUMNSoiiiiii i e e 1100
36.28.foreign_tabl e options ColUMNSccocoviiiiiiiiii e 1100
36.29. forei gn_tabl €5 COlUMNScocuiiiiiiiii e e 1101
36.30. key_col umm_uSage COlUMNSuiiii i e e e e e e e e e eaaaeees 1101
36.3L. par aMBt €5'S COIUMNSciuuiiii e e e e e e e e e et e et eeaaeeaens 1102
36.32.referential _constraints ColUMNSccoevviiiiiiieiiiiiei e 1104
36.33. 10l e_col um_grants COlUMNScoiiiiiiiiiii e e e e 1104
36.34.rol e _routine _grants COlUMNScccouuiiiiiiiiiii e e e e e e ae e 1105
36.35.r0l e _tabl e grants ColUmMNSooiiiiiiiiiiiiiie e 1106
36.36. rol e_udt _grants COIUMNSooiiiiiiiiii e e e e 1106
36.37.r0l e_usage_grants ColUMNSc.oeiiiiiiiiiiiiiie e e e e e e e e e 1107
36.38. routine_privileges ColUMNScoiiiiiiiiiiiie e e 1107
36.39. T OUL T NES COIUMNS ...iivtiiieiii e e e e et e e et e e e et eeeeaen s 1108
36.40. SChemBt @ COIUMNSoouiiiiii e e e et e e et eeeaen s 1113
36.41. SEQUENCES COIUMNSuiiiiii i e e e e e e e e e e e e et e e e e eaaas 1113
36.42. sl _feat ures COIUMNScouiiiiiicii e e e e e e e e eaas 1114
36.43.sql _inmplementation info ColumMNS..........cooeiiiiiiiiiiii e 1115
36.44. SOl _PArts COIUMNSiiiiiiiii e e e e e e et e e e eanas 1115
36.45. SOl _Si Zi NG COIUMNSiiiiii e e e e e e e e e e eaans 1116
36.46.tabl e _constrai NtS COolUMNScccuuiiiiiiiiii e e e 1116
36.47.tabl e _privil eges ColUMNScociiiiiiiiiiii e e e e 1117
36.48. t @bl €S COIUMNSciiiiiiiie e 1117
36.49. t ranST Or MB COIUMMSiiiii e et e e 1118
36.50. tri ggered _update_col umms ColUMNScoevviiiiiiiiiie e 1119
ST I O e T =T =T @0 1¥ T 410 TP 1119
36.52. udt _pri Vil eges COlUMNScoouiiiiiiieii e e e e e e e aes 1121
36.53. usage _pPri Vil €ges ColUMNSoiiiiiiiiii e e ea e 1122
36.54. user _defined _types COlUMNSc..oeiiiiiiiiiii e e 1122
36.55. user _mappi NG_OPti ONS COlUMNScooviiiiiii e e 1124
36.56. user _mBpPPi NQS COIUMNSiiiiiei e e e e e e e e eean e eaes 1124
36.57. vi ew_col umm_usage ColUMNSccuuiiiiieiiii e e e e e e e e e 1125
36.58. vi ew _routi ne_usage COIUMNSoeeiiiiiiiiii e e e e e e e 1125
36.59. vi ew t abl e _usage ColUMNScccouuiiiiiiii e e 1126
36.60. Vi €WS COIUMNS ..uuiieiiii et et e e e e e e et e e e e et n e e e e et e e e e st aeas 1127
G I oY 4 o) g T ol Y/ === 1135
37.2. Equivalent C Types for Built-in SQL TYPESccuuiiiiiieiiiciie e ee e e e e e e e e 1162
G T S T (= SR 1 = (=0 == 1199
R o oS S 1 = 1= SR 1199
37.5. GIST Two-Dimensional “R-treg” Strat@gi€Suveivuieiriieiiiieeiiie e e e e e e 1200
37.6. SP-GIST POINE SITAEIESueeeeiiiieeeeii ettt e e e e e e et e e e e et e e e eaa s 1200
T A € NN = YA = (= o =S PP 1200
37.8. BRIN MiNMaX SIralEOIES .. cuvuiiiiieiiiieiii et e e e e e et e e e anaeeanaas 1201
37.9. B-Tree SUPPOIt FUNCLIONSiiie i e e e e e e e e e e e e e e e et eeaaaeees 1201
37.10. Hash SUPPOrt FUNCLIONSuuiiiiecii e e e e e e e e e e e e aens 1202
37.11. GiST SUPPOIT FUNCHIONSiiiiiiiieei e e e e e e e e e e e e e e e e eanns 1202
37.12. SP-GiST SUPPOIT FUNCHIONS ... ovvieiiiicii et ee e e e e e e e e e e e e et e e e e aaeeaenns 1202
37.13. GIN SUPPOIt FUNCLIONS ... ieviiii et e e e e e e e e e e e e e aan e ean s 1203

XXVii

PostgreSQL 13.5 Documentation

37.14. BRIN SUPPOIt FUNCHIONS .. .ouuiiiiiieciiee e e e e e e e e e et e et e e st e e et e e e et e e aaneeeens 1203
39.1. Event Trigger Support by Command Tagoeevniriiniiiiiieeiiieeeie e e e e e e e e e 1237
42.1. Available DIiagnoStiCS ItEMSiiiii e e e e e e e e eees 1294
42.2. Error DIiagnOStiCS [TEIMS . .uuuiiii e e e e et e e e e aa s 1309
272. Policies Applied by Command TYPEuuviiiniiii i e e 1700
273. pghench Automatic Variablescouiiiiiiiii e 2029
A o o 1= T AT O o= = 0] £ T 2031
275. PYDENCH FUNCLIONSiiiicii e e e e e e e e e e e e et e e ean e eaas 2033
LY I ISV (= 0 (N O 7 o o [2202
51.2. pg_aggregat € COlUMMSccouuiiiiiiiii e e e e e et e et e e eaens 2204
oY G T o o T =1 .4 1 o] 0o 0 2205
oY I o o T =V o o B o [0 01) 2206
51.5. Pg_anPr OC COlUMNSuuiiiiiiii e e e e e e e e e e e e et e e e e e e e eaanas 2207
51.6. pg_attrdef COlUMNSc.oiiiiiei e e 2208
51.7.pg_attribut @ COolUMNSciiiiiii e e e e e 2208
51.8. pg_aut hi d COlUMNSiiiiiii e e e e e e e aaaas 2210
51.9. pg_aut h_menber s ColUMNSc..iiiiiiii e e 2211
Lo I (O o To R o= =X A] V1 1P 2212
Lo I I O o T T o = £ =T 0 1 41T 2213
51.12. pg_col 1 ati on COIUMNScouuiiiii e e e e e e e eaas 2215
51.13. pg_constrai Nt COlUMNSc.uiiiiiii e e e e e e e eaes 2216
51.14. pg_CONVETr Si ON COIUMNSiiuiiiiiieiii e e e e e e e e e e e e et e eean e eees 2218
51.15. pg_dat abase COlUMNSccuuiiiiiiiiii e e e e e aans 2218
51.16. pg_db role_setting ColUMNScoeiiiiiiiiiiiii e e 2220
51.17. pg_defaul t _acl COlUMNScc.iiiiiiiiii e e 2220
51.18. pg_depend COIUMNScouuiiiii e e e e e e e e e e et e e e eaaas 2221
51.19. pg_descCri ption COlUMNScouuiiiiiiieii e e e e e e e e e eaen 2223
Loy 20 o To =1 10 1 @] 070 1 2223
51.21. pg_event _trigger COlUMNSciiiiiiiii e e e e e e e eae e 2224
51.22. pg_ext €nsi 0N COIUMNScouuiiiii e e e e e e e e eaas 2224
51.23. pg_foreign_data wapper ColUMNSccoeeuuiiiiiiieiiiieein e 2225
51.24. pg_forei gn_server ColUMNSc.ieiiiiiiiiiieiie e e e e e e e e e 2225
51.25. pg _foreign_tabl @ ColUMNScocoiiiiiiiiiii e e 2226
51.26. Pg_i NAEX COIUMNS .. .cuuiiiiicii e e e e e e e e e e et e e et e e et e e e e eaenas 2226
51.27. pg_ i NNEri 1S COlUMNSuuiiiiieii e e e e e e e e e e e eens 2228
51.28. pg_ i Nit _Pri Vs COIUMNSciiiiiii e e e e e e e e ea e eaas 2228
51.29. pg_| anguage COlUMMNScccuuiiiiieiii e e e e e e e e e e e e et e et e e aaneeeans 2229
51.30. pg_| ar geobj €Ct COlUMNSccouiiiiiii e e e e aes 2230
51.31. pg_l argeobj ect _netadat a ColumNSccoeeviiiiiiiiiiii e 2230
51.32. pg_NamESPACE COIUMNSuiiiiieii e e e e e e e ean e eaas 2231
51.33. PG_0PCI @SS COIUMNSciitiiiii e e e e e e e e e e e e eaens 2231
51.34. pg_0oper at O COlUMMSoiiuiieii et e e e e e e e e e e e et e et e e aaneeeens 2232
51.35. pg_opfam [y COlUMNSccouiiiiiiei e e e e e e eans 2233
51.36. pg_partitioned _tabl € ColUMNScooiiiiiiiiii e 2233
51.37. Pg_POI i CY COIUMNSuiiiiiiii e e e e e e e eaaas 2234
LY IC TS o To N o] e T @] V0 TP 2235
51.39. pg_publ i cati on COlUMNSccouiiiiiiieii e e e e e e e e 2237
51.40. pg_publication_rel ColumnSscccciiiiiiiiiiii e e 2238
Loy 7N o To N =Y [L= T @0 LW T 410 TP 2238
51.42. pg_replication_origin ColumMNSccocouiiiiiiiiiiiiiiie e e 2239
51.43. PG reWr i t € COIUMNSciitiiii e e e e e e e e et e e e e e eaens 2239
51.44. pg_secl abel ColUMNSccouiiiiiiii e e e e e 2240
51.45. pg_SEQUENCE COIUMMS .. .ouuiiiiiieiiiei e e e e e e e e e e e e e s e e et e e et e e et e e aaneeeens 2240
51.46. pg_shdepend ColUMNSccuiiiiiiiiii e e e e e aens 2241

PostgreSQL 13.5 Documentation

51.47. pg_shdescri pti 0N ColUMNSoiiiiiiiiie e e e ea e 2242
51.48. pg_shsecl abel ColumNScc.iiiiiiiiiiii e 2242
51.49. pg_Stati StiC COUMNSiiiiiiii i e eaas 2243
51.50. pg_stati stiC_ext COlUMNScoiiiiiiiiii i e e e eae e 2244
51.51. pg_statistic_ext_data ColumNSc..couiiiiiiiiiiiiiiii e 2245
51.52. pg_subscripti on COlUMNSccoiiiiiiiii e e 2245
51.53. pg_subscription_rel ColUmMNSc.cccoiiiiiiiiiiiici e e 2246
51.54. pg_tabl eSpace COlUMNSccouiiiiiiiie e e e ea e e 2247
51.55. pg_transf or MCOIUMNScouuii e e e e e e eaas 2247
51.56. PG _tri gger COUMNS ..o e e e e e e e e e e et e e e e eeaens 2247
51.57. pg tS_Confi g COUMNSiiiiiiii i e e aaas 2249
51.58. pg_ts_confi g _mBP COlUMNSuiiiiiiiiii e e e e e e 2249
51.59. PG tS_di Ct COIUMNSciiiiiii e e e e e e aens 2250
51.60. pg_tS_parsSer COIUMNSccouuiiiii e e e e e e e e e e eeas 2250
51.61. pg ts tenpl at @ ColUMNScccuiiiiiiiiiii e e e e e e e e 2251
LY Y2 o To T 00 YA 1T O] 01 1P 2252
Y ISR A o Tt ar=To Fo] YA ©Co o L= PP 2254
51.64. pg_user _mappi NG COIUMNSoiiiii e e e e 2255
Y LIS V= 1< 0 BV AT T PSP 2256
51.66. pg_avai | abl e_ext ensi ons ColUMNSccocvviiiiiiiiiiii e 2257
51.67. pg_avai |l abl e_extensi on_versi ons ColumNScccoeevuiiiiiiieiiieeciiieeineeannne, 2257
51.68. pg_CONFi g COIUMNSuiiiiiiiii e e e e e e e e e eanas 2258
51.69. PG _CUISOI'S COIUMNS ...uiitiiii e e e e e e e e e e et e e et e e et eeaaeeaens 2258
51.70. pg_fil e _settings ColUMNScoooiiiiiiiiiiiii e e e e e ea e 2259
Loy I o To e | o 10] o @0 1¥ T 410 TP 2260
51.72. pg_hba fil e rul @s ColumMNScccoeiiiiiiiiii e 2260
51.73. PG_i NAEXES COIUMNSiiiiiii e e e e e e e e et e e e e eeaens 2261
51.74. PG | OCKS COlUMNS .. .cuuiiiiiiii e e e e e e e e e et e et e e e e e aanas 2262
51.75. pg_MBAt Vi WS COIUMMS .. .ouuiiiiiieii e e e e e e e e e e e e e e e et e et e e aan e eens 2264
51.76. Pg_POI i Ci €S COlUMMNSuuiiiiieii e e e e e e e e e e e e e aa e eens 2265
51.77. pg_prepared_stat ement s ColUMNSccoouiiiiiiiiiiiieiie e 2265
51.78. pg_prepared _Xact s COolUMNSccuiiiiiiiiiii e e e e e e e e 2266
51.79. pg_publication_tabl es ColumNScoooiiiiiiiiii i 2266
51.80. pg_replication _origin_status ColUmNS.........cccooveiiiiiiiiieiiiieeiin e, 2267
51.8L.pg_replication_slots ColUMNScoeiiiiiiiiiiiiii e 2267
51.82. PG _r 0l €S COlUMMNS .. .cuuiiiiiiii e e e e e e e e e e et e et e et e e e e eaaaas 2269
51.83. PG T Ul €S COIUMNS .. .ouuiiiiii e e e e e e e e e e e e et e et e e et e e e e eeenas 2269
51.84. pg_secl abel s COlUMNSo.uiiiiiiii e e e 2270
51.85. pg_SeqUENCES COIUMNSuuiiiiieii e e e e e e e e et e aan e eeas 2270
51.86. Pg_Se€tti NGS COIUMNS ...ccuuiiiiieii e e e e e e e e et e e e e aan e eens 2271
51.87. pg_Shadow COIUMNSoouiiii e e e e e eaaas 2273
51.88. pg_shmem al | ocat i oNs COlUMNSoiiiiiiiiiiiciie e 2274
51.89. PG ST AL'S COIUMNS .. .cuuiiiiiiii e e e e e e e e e e et e e e e e aaaas 2275
51.90. pg_stats_ext COIUMNScouiiiiiiiii e e e e e e e e eaas 2276
51.91. pg_tabl €S COIUMNScouiiiiice e e e e eaaas 2277
51.92. pg_ti mezone_abbrevs COolUMNScccouiiiiiiiii e e e 2278
51.93. pg_ti mezone _Names COlUMMNSc.couuiiiiiieiii e e e e e e e e e e 2278
LY I o T T Y =1 @] 00 1 PP 2279
51.95. pg_user _nmappi NGS COIUMNSiiiii e e e e e e e e e eaaaeees 2279
51.96. PG Vi EWS COIUMNS .. .ouuiiiiiiiie e ee e e e e e e e e e e e et e e et e e st e et e e aaneeeanas 2280
64.1. BUilt-iN GIST OPErator ClaSSESuuueiitneiiietiiiieeiie et e e et e e e et e e e e e et eeata e e et astnaes 2412
65.1. BUilt-in SP-GIST Operator ClaSSsESuciuuieiiieiiiiieiiiee i et e e e e e et e et e e e aens 2427
66.1. BUIlt-iN GIN OpPErator ClaSSEScuuuiiiiiieiiieeiiiieee e e e e e e e e e e e e e e e et e et e eanaeeaen 2439
67.1. BUilt-in BRIN Operator ClaSsEScvuuiiiiieiii e e e e e e e e e e e e e et e e s e e eeaes 2447

XXX

PostgreSQL 13.5 Documentation

67.2. Function and Support Numbers for Minmax Operator Classescocevveiveeviieviineeanns 2449
67.3. Function and Support Numbers for Inclusion Operator Classesoovevvveeiiiieiiiieeinnennn, 2449
69.1. ConteNtS OF PCDATA ...t ettt e e e et e e e e e e eeenns 2454
B9.2. PAOE LAYOULuiieiiiii et 2460
69.3. PageHeaderData LayOULcc.uueiiiiiiiie e et e e e e e e e e et e e e e e e eanas 2461
69.4. HeapTupleHeaderData LayOULoceunieiiiiiiii e e e e e e e e e e e e e e e aanas 2462
AL POSIOreSQL ErrOr COUESuuiiiieiiieeie e ettt e e e e e e e e e e e et e et e e et e e eeanns 2493
230 Vo g 11 I = 0 1P 2504
B.2. Day Of the WEeK NAIMESciiiiiiiiii e e e e e e 2504
B.3. Date/Time Field MOGIfIErS .cooeeii et eeee 2505
C.L. SOL KEY WOKASiiiieiiieii et e e e e e e e e e e et e e et e e et e e et eeaaneeeanaas 2511
[- Yo [o o= U Qi U 1 o 2612
F.2. Cube External REPrESENTAiONScvvvuieiieeii i ee e e e e e e e e e e e e e e s e e e e e e eaanns 2628
G T W oL @ o= = o] £ 2629
Fod. CUDE FUNCLIONS ... it e e e e e e e et e e e et e e e e aaa s 2630
F.5. Cube-Based Earthdistance FUNCLIONSocovvuiiiiiiii e 2668
F.6. Point-Based EarthdiStance OPeEratorscouuueiiieiiiiieiie e e e e e e e e e e e aens 2669
O 1 T=) o T @ o= = o) £ TS 2676
F.8. NSt Or @ FUNCHIONS ..ceviiiiei e e e e e e e s 2677
FO. intarray FUNCHONSccouiiii e e e e e e e e e et e eeanaeees 2684
[(ORI oL = L = | VA @ o= = o) £ S 2685
L Y T 7 = T Y/ o= 2688
[2 =Y o I ¥ o o L PSP 2689
[T I A YT @ o= = () £ 2694
[O T W T 1o PP 2695
F.15. pg_buffercache Columnscooiiiiiiiii e 2710
F.16. Supported AIgorithms fOr CryPt () oveenieie e e 2712
F.17. Iteration CountS fOr CrYPE () covvieiiiiiii e e e e e 2713
F.18. Hash AlQOrithm SPEEOSciiiii e 2714
F.19. Summary of Functionality with and without OpenSSLccccieiiii i 2721
F.20. pgr oW 0cks OUtPULt COIUMNSccuuiiiiiei e e e e eaas 2726
F.21. pg_stat_statements COlUMNScooiiiiiiiiii e e 2728
F.22. pgstatt upl @ OUtPUt COIUMNSc.uuiiiici e e e e e e eees 2735
F.23. pgst att upl e_appr ox Output ColUMNSc.uiiiiiiiii e e e 2738
2o Yo T O e 1 Voo 2740
F.25. POt I OMOPEIEIONS ...t e e e e aaas 2741
F.26. seg External REPreSENtalioNSccuuiiiiiieiiii i e e e e e e e e e e e e e et e e e e e eanaas 2754
F.27. Examples of Valid SEQ INPULcoovniiiiiii e e e e eaaas 2754
F.28. SO0 GiST OPEIAIONS . eevuiiiiieiit i eeii ettt e et e et e e e e e et e e et e e et e e et e sat e e st e astneertnaeeanaeaes 2755
[IS = oo o | I g Tox o) 2763
F.30. t @bl €f UNC FUNCHIONScoviiiiiii e e e s 2768
F.31. CONNECE DY PalramMEterSciiiiiiie e e e e e e e et e e e e aneees 2775
F.32. FUNCtions fOr UUID GENEIAHONccvuvieeiiii ettt e e e 2783
F.33. Functions Returning UUID CONSLANESccvueiiiieiiiieeiii e e eiee et ee e e e eai e e e e eanes 2784
7 g 1 1 B T o1 o) PP 2785
F.35. xpat h_t abl @ ParameterScoouiiiiii e e e e e 2786
H.1. Externally Maintained Client INterfacesco.oeeiiiiiiiii i 2803
H.2. Externally Maintained Procedural LanQUagESc.ueeiuuieiiiiieiii e ieeee e e e e e e 2804
K.1. PoStgreSQL LimitaliOnScccuuiiiiieiiieiii e ee e e e e e e e e e e e e e et e et e e st e eeaneeeens 2813

XXXI

List of Examples

8.1. USING the CharaCter TYPES ... ittt ettt e e et e e et e e e ert e e eena e eees 155
8.2. USINg the DOOI €8N TYPE ...t 169
8.3. USING the Bit SIHNG TYPES .. ettt ittt ettt et e e e e et e e eebe e eeees 177
9.1. XSLT Stylesheet for Converting SQL/XML Output to HTMLoooiiviiiiiiiiiiiciieccie, 324
10.1. Square Root Operator Type RESOIULIONccevueieiiiii e 415
10.2. String Concatenation Operator Type RESOIULIONcoivviiiiiiiiieicii e 415
10.3. Absolute-Vaue and Negation Operator Type ReSOIULIONcccvuuiieiiiiiiiiiiiiieece e 415
10.4. Array Inclusion Operator TYPe RESOIULIONuuiiiiiiiiiiiiie et 416
10.5. Custom Operator 0N @ DOMaIN TYPEuneiiiiiiee it e et eei e 417
10.6. Rounding Function Argument TYpe RESOIULIONoeiiiiiieiiiiii e 419
10.7. Variadic FUNCtION RESOIULIONciiiitceeii ettt 419
10.8. Substring FUNCtion TYPEe RESOIULIONuuiiiiiiiieieii et 420
10.9. char act er Storage TYPE CONVEISIONcccuuuiieiiiiieeeiii e ettt e et e et e e et eeenaaes 422
10.10. Type Resolution with Underspecified Typesin aUnioncocviiveiiiiniiiiiineeeiie, 423
10.11. Type Resolution in @ SIMPIe UNIONooiiuiiiiiii e 423
10.12. Type Resolution in @ Transposed UNIONccoeuueiiriieeeiiie et eeein e e e eeii e 423
10.13. Type Resolution in @ Nested UNIONuiiiiiiiieiiiiie e e e 423
11.1. Setting up a Partial Index to Exclude Common ValUESuuvieiiiiiieiiiiiieecei e 432
11.2. Setting up a Partial Index to Exclude Uninteresting Valuescoevviieiiiiiiieiiiiiieeceie 433
11.3. Setting up a Partial UNique INOEXccouuuiiiiieie et 434
11.4. Do Not Use Partial Indexes as a Substitute for Partitioningccooovevveiiineiiiiinneeiininnnn. 434
20.1. Example pg_hba. CONf ENtrEScoouuiiiiiiii e 679
20.2. An Example pg_i dent . conf File ... 682
33.1. libpg EXample Program Li oottt 940
33.2. 1ibpg EXampPle Program 2uioeiiii e 943
33.3. 1ibpg EXample Program 3oo.u e 946
34.1. Large Objects with libpg Example Program ... 958
35.1. Example SQLDA PrOQIaIMuoiiiiieeeeti et e et e et e et et e e e eeti s e e eett e e e eeaeaeeeens 1014
35.2. ECPG Program Accessing Large ODJECESuuiiiiiiiiiiii e 1029
41.1. Manual Installation of PLIPENTcoouuiiii e 1275
42.1. Quoting Values in DYNamiC QUENTESuiiiiiriieiiiii et e e et e et eeei e e e 1291
42.2. Exceptions With UPDATE/I NSERTiiiiiiieiii ettt 1308
42.3. A PL/PGSQL Trigger FUNCHIONuiiiiiii ettt e 1322
42.4. A PL/pgSQL Trigger Function for AUitingcooeviiieiiiiiiiei e 1323
42.5. A PL/pgSQL View Trigger Function for AUditinguviiiiiiniiiiiiiniccei e, 1324
42.6. A PL/pgSQL Trigger Function for Maintaining a Summary Tableccccoooveviiiiierennnn, 1325
42.7. Auditing with Transition Tablescooeuiiiiiii e 1328
42.8. A PL/pgSQL Event Trigger FUNCLIONccuuuiiiiiiiieiiii et 1329
42.9. Porting a Simple Function from PL/SQL t0 PL/PISQLuiiiiiiieeiiiie e 1338
42.10. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL 1339
42.11. Porting a Procedure With String Manipulation and OUT Parameters from PL/SQL to PL/

0105 PP UPPT PPN 1340
42.12. Porting a Procedure from PL/SQL t0 PL/PGSQLcviviiieiiiiieeeei et 1342
F.1. Create a Foreign Table for POStgreSQL CSV LOGSccvvvunieiiiiiieeiiiiie e 2671

XXXii

Preface

Thisbook isthe official documentation of PostgreSQL. It has been written by the PostgreSQL developers
and other volunteers in parallel to the development of the PostgreSQL software. It describes al the
functionality that the current version of PostgreSQL officialy supports.

To make the large amount of information about PostgreSQL manageable, this book has been organized
in several parts. Each part is targeted at a different class of users, or at users in different stages of their
PostgreSQL experience:

Part | isan informal introduction for new users.

Part Il documents the SQL query language environment, including data types and functions, as well as
user-level performance tuning. Every PostgreSQL user should read this.

Part 111 describes the installation and administration of the server. Everyone who runs a PostgreSQL
server, beit for private use or for others, should read this part.

Part IV describes the programming interfaces for PostgreSQL client programs.

Part V containsinformation for advanced users about the extensibility capabilities of the server. Topics
include user-defined data types and functions.

Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

Part VII contains assorted information that might be of use to PostgreSQL devel opers.

1. What Is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2%, developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database systems
much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of the
SQL standard and offers many modern features:

complex queries

foreign keys

triggers

updatable views

transactional integrity
multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

data types
functions

operators
aggregate functions

1 https://dsf berkeley.edu/postgres. html

XXXl

https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html

Preface

* index methods
 procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free of
charge for any purpose, beit private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over two decades of
development behind it, PostgreSQL is now the most advanced open-source database available anywhere.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial concepts for the
system were presented in [ston86], and the definition of the initial data model appeared in [rowe87]. The
design of the rule system at that time was described in [ston87a]. The rationale and architecture of the
storage manager were detailed in [ston87b].

POSTGRES has undergone several major releases since then. The first “demoware” system became
operationa in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
[ston904], was released to a few externa users in June 1989. In response to a critique of the first rule
system ([ston89]), the rule system was redesigned ([ston90b]), and Version 2 was released in June 1990
with the new rule system. Version 3 appeared in 1991 and added support for multiple storage managers,
an improved query executor, and a rewritten rule system. For the most part, subsequent releases until
Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: afinancial dataanalysissystem, ajet engine performance monitoring package, an asteroid tracking
database, a medical information database, and several geographic information systems. POSTGRES has
also been used as an educational tool at severa universities. Finaly, Illustra Information Technologies
(later merged into Informix?, which is now owned by 1BM3) picked up the code and commercialized it.
In late }992, POSTGRES became the primary data manager for the Sequoia 2000 scientific computing
project”.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have been
devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES project
officially ended with Version 4.2.

2.2. Postgres9s

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a hew
name, Postgres95 was subsequently rel eased to the web to find its own way in the world as an open-source
descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the Wisconsin

2 https://www.ibm.com/anal ytics/informix
8 https://www.ibm.com/
4 http://meteora.ucsd.edu/s2k/s2k_home.html

XXXIV

https://www.ibm.com/analytics/informix
https://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html
http://meteora.ucsd.edu/s2k/s2k_home.html
https://www.ibm.com/analytics/informix
https://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

» The query language PostQUEL was replaced with SQL (implemented in the server). (Interface library
libpq was named after PostQUEL .) Subqueries were not supported until PostgreSQL (see below), but
they could be imitated in Postgres95 with user-defined SQL functions. Aggregate functions were re-
implemented. Support for the GROUP BY query clause was also added.

A new program (psql) was provided for interactive SQL queries, which used GNU Readline. Thislargely
superseded the old monitor program.

» A new front-end library, | i bpgt cl , supported Tcl-based clients. A sample shell, pgt cl sh, provided
new Tcl commands to interface Tcl programs with the Postgreso5 server.

» The large-object interface was overhauled. The inversion large objects were the only mechanism for
storing large objects. (Theinversion file system was removed.)

» Theinstance-level rule system was removed. Rules were till available as rewrite rules.

A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed with
the source code

* GNU make (instead of BSD make) was used for the build. Also, Postgreso5 could be compiled with an
unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the origina POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres’ (now rarely in al capital letters) because of
tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing problems
in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capabilities,
although work continuesin all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

The following conventions are used in the synopsis of a command: brackets ([and]) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, asis usual in Tcl.) Braces
({ and}) and vertical lines (|) indicate that you must choose one aternative. Dots (. . .) mean that the
preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands are
preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should

XXXV

Preface

not be interpreted too narrowly; this book does not have fixed presumptions about system administration
procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL :

Wiki
The PostgreSQL wiki® contains the project's FAQ® (Frequently Asked Questions) list, TODO' ligt,
and detailed information about many more topics.

Web Site

The PostgreSQL web site® carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with other
users, and to contact the developers. Consult the PostgreSQL web site for details.

Y ourself!

PostgreSQL isan open-source project. Assuch, it dependson the user community for ongoing support.
As you begin to use PostgreSQL, you will rely on others for help, either through the documentation
or through the mailing lists. Consider contributing your knowledge back. Read the mailing lists and
answer questions. If you learn something which is not in the documentation, writeit up and contribute
it. If you add featuresto the code, contribute them.

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part of
PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone's advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a newer
version to seeif the bug happensthere. Or we might decide that the bug cannot be fixed before some major
rewrite we might be planning is done. Or perhapsit is simply too hard and there are more important things
on the agenda. If you need help immediately, consider obtaining acommercial support contract.

5.1. Identifying Bugs

Beforeyou report abug, pleaseread and re-read the documentation to verify that you can really do whatever
itisyou aretrying. If it is not clear from the documentation whether you can do something or not, please

S https://wiki.postgresql .org

6 https://wiki.postgresqgl.org/wiki/Frequently_Asked_Questions
! https://wiki.postgresqgl .org/wiki/Todo

8 https://www.postgresqgl.org

XXXVi

https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org
https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org

Preface

report that too; it is a bug in the documentation. If it turns out that a program does something different
from what the documentation says, that is a bug. That might include, but is not limited to, the following
circumstances:

» A program terminates with a fatal signal or an operating system error message that would point to a
prablem in the program. (A counterexample might be a*“disk full” message, since you have to fix that
yourself.)

* A program produces the wrong output for any given input.
» A program refuses to accept valid input (as defined in the documentation).

» A program accepts invalid input without a notice or error message. But keep in mind that your idea of
invalid input might be our idea of an extension or compatibility with traditional practice.

 PostgreSQL failsto compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of the
mailing listsfor help in tuning your applications. Failing to comply to the SQL standard is not necessarily
abug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to seeif your bug is already known. If you
cannot decode the information on the TODO list, report your problem. The least we can do is make the
TODO list clearer.

5.2. What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do not
speculate what you think went wrong, what “it seemed to do”, or which part of the program has a fault.
If you are not familiar with the implementation you would probably guess wrong and not help us a hit.
And even if you are, educated explanations are a great supplement to but no substitute for facts. If we are
going to fix the bug we still have to see it happen for ourselves first. Reporting the bare factsisrelatively
straightforward (you can probably copy and paste them from the screen) but al too often important details
are left out because someone thought it does not matter or the report would be understood anyway.

The following items should be contained in every bug report:

» The exact sequence of steps from program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in abare SELECT statement without the preceding CREATE
TABLE and | NSERT statements, if the output should depend on the data in the tables. We do not have
the time to reverse-engineer your database schema, and if we are supposed to make up our own data
we would probably miss the problem.

Thebest format for atest casefor SQL-related problemsisafilethat can be runthrough the psgl frontend
that shows the problem. (Be sure to not have anythinginyour ~/ . psql r ¢ start-up file.) An easy way
to create thisfileisto use pg_dump to dump out the table declarations and data needed to set the scene,
then add the problem query. Y ou are encouraged to minimize the size of your example, but thisis not
absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the offending
queries. We will probably not set up a web server to reproduce your problem. In any case remember
to provide the exact input files; do not guess that the problem happens for “large files’ or “midsize
databases’, etc. since thisinformation is too inexact to be of use.

XXXVii

Preface

» The output you got. Please do not say that it “didn't work” or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash or
otherwise obvious it might not happen on our platform. The easiest thing is to copy the output from
theterminal, if possible.

Note

If you are reporting an error message, please obtain the most verbose form of the message. In
psal, say \ set VERBOSI TY ver bose beforehand. If you are extracting the message from
the server log, set the run-time parameter log_error_verbosity to ver bose so that all details
are logged.

Note

In case of fatal errors, the error message reported by the client might not contain al the
information available. Please also look at the log output of the database server. If you do not
keep your server'slog output, this would be a good time to start doing so.

» The output you expected is very important to state. If you just write “This command gives me that
output.” or “Thisisnot what | expected.”, we might run it ourselves, scan the output, and think it looks
OK andisexactly what we expected. We should not haveto spend thetimeto decode the exact semantics
behind your commands. Especially refrain from merely saying that “ Thisis not what SQL says/Oracle
does.” Digging out the correct behavior from SQL is not afun undertaking, nor do we all know how all
the other relational databases out there behave. (If your problem is a program crash, you can obviously
omit thisitem.)

» Any command line options and other start-up options, including any relevant environment variables or
configuration files that you changed from the default. Again, please provide exact information. If you
are using a prepackaged distribution that starts the database server at boot time, you should try to find
out how that is done.

» Anything you did at al differently from the installation instructions.

» The PostgreSQL version. You can run the command SELECT ver si on(); to find out the version
of the server you are connected to. Most executable programs also support a- - ver si on option; at
least post gres --versionandpsql --versi on shouldwork. If the function or the options
do not exist then your version is more than old enough to warrant an upgrade. If you run a prepackaged
version, such as RPMs, say so, including any subversion the package might have. If you are talking
about a Git snapshot, mention that, including the commit hash.

If your version is older than 13.5 we will amost certainly tell you to upgrade. There are many bug fixes
and improvements in each new release, so it is quite possible that a bug you have encountered in an
older release of PostgreSQL has already been fixed. We can only provide limited support for sitesusing
older rel eases of PostgreSQL ; if you require more than we can provide, consider acquiring acommercial
support contract.

» Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not
assume everyone knows what exactly “Debian” contains or that everyone runs on x86_64. If you have

XXXViii

Preface

installation problems then information about the toolchain on your machine (compiler, make, and so
on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your input
files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an article’
that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. Thiswill
probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still havetime
to find and share your work-around. Also, once again, do not waste your time guessing why the bug exists.
We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is called
“PostgreSQL", sometimes “Postgres’ for short. If you are specifically talking about the backend process,
mention that, do not just say “PostgreSQL crashes’. A crash of asingle backend processis quite different
from crash of the parent “postgres’ process; please don't say “the server crashed” when you mean asingle
backend process went down, nor vice versa. Also, client programs such as the interactive frontend “ psgl”
are completely separate from the backend. Please try to be specific about whether the problem is on the
client or server side.

5.3. Where to Report Bugs

In general, send bug reports to the bug report mailing list at
<pgsql - bugs@i st s. post gresqgl . or g>. You are requested to use a descriptive subject for your
email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project's web site™®. Entering a bug
report thisway causesit to be mailed tothe<pgsql - bugs@i st s. post gr esql . or g> mailinglist.

If your bug report has security implications and you'd prefer that it not become immediately visible
in public archives, don't send it to pgsql - bugs. Security issues can be reported privately to
<security@ostgresql.org>.

Do not send bug reports to any of the user maling lists, such as
<pgsql -sqgl @i sts. postgresql . org> or
<pgsql -general @i sts. postgresqgl.org>. These mailing lists are for answering user
guestions, and their subscribers normally do not wish to receive bug reports. More importantly, they are
unlikely to fix them.

Also, please do not send reports to the developers mailing list
<pgsql - hackers@i sts. post gresql . org>. This list is for discussing the development of
PostgreSQL, and it would be nice if we could keep the bug reports separate. We might choose to take up
adiscussion about your bug report on pgsqgl - hacker s, if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing list
<pgsql -docs@i st s. post gresqgl . or g>. Please be specific about what part of the documentation
you are unhappy with.

If your bug is a portability problem on a non-supported platform, send mall to
<pgsql - hackers@i st s. post gresql . or g>, sowe (and you) can work on porting PostgreSQL
to your platform.

° https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
10 https:/iwww. postgresal.org/

XXXIX

https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/
https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/

Preface

Note

Due to the unfortunate amount of spam going around, all of the above lists will be moderated
unless you are subscribed. That means there will be some delay before the email is delivered. If
you wish to subscribe to the lists, please visit https://lists.postgresql.org/ for instructions.

xl

https://lists.postgresql.org/

Part I. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple introduction to
PostgreSQL, relational database concepts, and the SQL language to those who are new to any one of these aspects. We
only assume some general knowledge about how to use computers. No particular Unix or programming experienceis
required. Thispartismainly intended to give you some hands-on experience with important aspects of the PostgreSQL
system. It makes no attempt to be a complete or thorough treatment of the topicsit covers.

After you have worked through this tutorial you might want to move on to reading Part |1 to gain a more formal
knowledge of the SQL language, or Part IV for information about devel oping applications for PostgreSQL . Those who
set up and manage their own server should also read Part 111.

Table of Contents

L. GEIING SEAMEAeeeeeii e ettt ettt eaaas 3
0 T 1 = = = 1o o 3
1.2. Architectural FUNDamENtalScouiiniii e 3
1.3. Creating @ Dalahaseccouuuieiiii e 4
1.4, ACCESSING 8 DAIANASEvuiieeiiei e 5
2. The SQL LBNGUBGEetun ettt ettt e ettt et e e e e et e e e eab e e eenenas 8
b2 I 1 11 oo U o 1) o [N 8
A O 04 /= o = PP 8
2.3. Creating @ NEW Table ..oo.unii e 8
2.4. Populating @ Table With ROWScoouiiiiiiii et 9
2.5, QUENYING A TADIE ...eeee e 10
2.6. J0INS BEIWEEN TAIESiviitiiiii it 12
2.7. AQOregate FUNCLIONSccutiieieiti ettt ettt et ettt e e et e et e e e et e e eenans 14
2.8 UPUELES ...ttt 16
R B L= = (0] 16
3. AGVANCED FEAIUIMNES .. ouitieeit et e e e e e e e e e et e e e e e ens 18
G 3 O 1 oo U o 11 o [18
I VA= VP 18
3.3 FOrEIgN KBYS ..ttt ettt aee 18
I I =01 o o1 19
3.5, WINAOW FUNCLIONScviiitii ettt e e e e e e e aees 21
IS T 101015 41 7= ot PP 24
G I o g Tox 11 Lo o T 26

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is already
installed at your site, either because it was included in your operating system distribution or because
the system administrator already installed it. If that is the case, you should obtain information from the
operating system documentation or your system administrator about how to access PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your
experimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user; no superuser (root) accessis required.

If you are installing PostgreSQL yourself, then refer to Chapter 16 for instructions on installation, and
return to this guide when the installation is complete. Be sure to follow closely the section about setting
up the appropriate environment variables.

If your site administrator has not set thingsup in the default way, you might have some morework to do. For
example, if the database server machineisaremote machine, you will need to set the PGHOST environment
variable to the name of the database server machine. The environment variable PGPORT might also have
to be set. The bottom lineisthis: if you try to start an application program and it complains that it cannot
connect to the database, you should consult your site administrator or, if that is you, the documentation
to make sure that your environment is properly set up. If you did not understand the preceding paragraph
then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding how
the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL usesaclient/server model. A PostgreSQL session consistsof thefollowing
cooperating processes (programs):

» A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program is
caled post gres.

» The user's client (frontend) application that wants to perform database operations. Client applications
can bevery diversein nature: aclient could be atext-oriented tool, agraphical application, aweb server
that accesses the database to display web pages, or a specialized database maintenance tool. Some client
applications are supplied with the PostgreSQL distribution; most are developed by users.

Asistypical of client/server applications, the client and the server can be on different hosts. In that case
they communicate over a TCP/IP network connection. Y ou should keep thisin mind, because the files that
can be accessed on aclient machine might not be accessible (or might only be accessible using a different
file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve thisit starts
(“forks’) a new process for each connection. From that point on, the client and the new server process
communicate without intervention by the original post gr es process. Thus, the master server processis
always running, waiting for client connections, whereas client and associated server processes come and
go. (All of thisis of courseinvisible to the user. We only mention it here for completeness.)

Getting Started

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. In that case you can omit this
step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:

$ createdb nydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:

creat edb: command not found

then PostgreSQL was not installed properly. Either it was not installed at al or your shell's search path
was not set to includeit. Try calling the command with an absol ute path instead:

$ /usr/local/pgsql/bin/createdb nmydb

The path at your site might be different. Contact your site administrator or check the instalation
instructions to correct the situation.

Another response could be this:

creat edb: could not connect to database postgres: could not connect to
server: No such file or directory

I's the server running locally and accepting

connections on Unix domain socket "/tnp/.s.PGSQ.5432"?

This means that the server was not started, or it was not started where cr eat edb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:

createdb: could not connect to database postgres: FATAL: role "joe"
does not exi st

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you arethe administrator, see Chapter 21 for help creating accounts. Y ou will need to become
the operating system user under which PostgreSQL was installed (usually post gr es) to create the first
user account. It could also be that you were assigned a PostgreSQL user name that is different from your
operating system user name; in that case you need to use the - U switch or set the PGUSER environment
variable to specify your PostgreSQL user name.

Getting Started

If you have a user account but it does not have the privileges required to create a database, you will see
the following:

creat edb: database creation failed: ERROR permnission denied to
create dat abase

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your site
administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the purposes
of thistutorial under the user account that you started the server as. 1

Y ou can also create databases with other names. PostgreSQL allows you to create any number of databases
at agiven site. Database names must have an alphabetic first character and are limited to 63 bytesin length.
A convenient choice is to create a database with the same name as your current user name. Many tools
assume that database name as the default, so it can save you some typing. To create that database, simply

type:

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database ny db, you can destroy it using the following command:

$ dropdb nydb

(For this command, the database name does not default to the user account name. You aways need to
specify it.) Thisaction physically removes all files associated with the database and cannot be undone, so

this should only be done with a great deal of forethought.

More about cr eat edb and dr opdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can accessit by:

* Running the PostgreSQL interactive terminal program, called psgl, which alows you to interactively
enter, edit, and execute SQL commands.

» Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC support
to create and manipul ate a database. These possibilities are not covered in this tutorial.

» Writing a custom application, using one of the several available language bindings. These possibilities
are discussed further in Part V.

Y ou probably want to start up psql to try the examplesin thistutorial. It can be activated for the nydb
database by typing the command:

$ psql nydb

Lasan explanation for why thisworks: PostgreSQL user names are separate from operating system user accounts. When you connect to a database,
you can choose what PostgreSQL user hame to connect as; if you don't, it will default to the same name as your current operating system account.
Asit happens, there will always be aPostgreSQL user account that has the same name as the operating system user that started the server, and it also
happens that that user always has permission to create databases. Instead of logging in as that user you can also specify the - U option everywhere
to select a PostgreSQL user name to connect as.

Getting Started

If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using cr eat edb.

Inpsql , you will be greeted with the following message:

psql (13.5)
Type "hel p* for help.

mydb=>

Thelast line could also be:

nydb=#

That would mean you are a database superuser, which is most likely the case if you installed the
PostgreSQL instance yourself. Being a superuser means that you are not subject to access controls. For
the purposes of this tutorial that is not important.

If you encounter problems starting psql then go back to the previous section. The diagnostics of
creat edb and psql aresimilar, and if the former worked the latter should work as well.

Thelast line printed out by psql isthe prompt, and it indicatesthat psql islistening to you and that you
can type SQL queriesinto awork space maintained by psql . Try out these commands:

nydb=> SELECT version();
ver si on

PostgreSQ@. 13.5 on x86_64-pc-|inux-gnu, conpiled by gcc (Debian
4.9.2-10) 4.9.2, 64-bit
(1 row

nmydb=> SELECT current _date;
dat e

2016- 01- 07
(1 row

nydb=> SELECT 2 + 2;
?col um?

(1 row

The psqgl program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\ ”. For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

mydb=> \ h

To get out of psql , type:

Getting Started

nydb=> \q

and psql will quit and return you to your command shell. (For more internal commands, type\ ? at the
psql prompt.) Thefull capabilitiesof psqgl are documented in psgl. In thistutorial wewill not use these
features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is only
intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous books
have been written on SQL, including [melt93] and [date97]. Y ou should be aware that some PostgreSQL
language features are extensions to the standard.

In the examplesthat follow, we assume that you have created a database named ny db, as described in the
previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory sr c/
tutorial /. (Binary distributions of PostgreSQL might not provide thosefiles.) To use thosefiles, first
change to that directory and run make:

$ cd .../src/tutorial
$ nake

This creates the scripts and compiles the C files containing user-defined functions and types. Then, to start
the tutorial, do the following:

$ psqgl -s nydb

nydb=> \i basi cs. sql

The\i command reads in commands from the specified file. psql 's- s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section are
inthefilebasi cs. sql .

2.2. Concepts

PostgreSQL is a relational database management system (RDBMS). That means it is a system for
managing data stored in relations. Relation is essentially a mathematical term for table. The notion of
storing data in tables is so commonplace today that it might seem inherently obvious, but there are a
number of other ways of organizing databases. Files and directories on Unix-like operating systems form
an example of ahierarchical database. A more modern development is the object-oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named columns,
and each column is of aspecific datatype. Whereas columns have afixed order in each row, it isimportant
to remember that SQL does not guarantee the order of the rows within the tablein any way (although they
can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL server
instance constitutes a database cluster.

2.3. Creating a New Table

Y ou can create a new table by specifying the table name, along with all column names and their types:

The SQL Language

CREATE TABLE weat her (

city var char (80),

temp_lo int, -- low tenperature
t enmp_hi int, -- high tenperature
prcp real, -- precipitation
dat e dat e

)

Y ou can enter thisintopsql withthelinebreaks. psql will recognizethat the command isnot terminated
until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you can
type the command aligned differently than above, or even all on one line. Two dashes (“- -) introduce
comments. Whatever follows them isignored up to the end of the line. SQL is case insensitive about key
words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

var char (80) specifiesadatatypethat can store arbitrary character strings up to 80 charactersin length.
i nt isthe normal integer type. r eal isatype for storing single precision floating-point numbers. dat e
should be self-explanatory. (Y es, the column of typedat e isalso named dat e. This might be convenient
or confusing — you choose.)

PostgreSQL supports the standard SQL types i nt, smal lint, real, doubl e precision,
char (N),varchar (N),dat e,ti me,ti mestanp,andi nt er val , aswell asother types of general
utility and arich set of geometric types. PostgreSQL can be customized with an arbitrary number of user-
defined data types. Consequently, type names are not key words in the syntax, except where required to
support special cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
nane var char (80),
| ocation poi nt

)
Thepoi nt typeisan example of a PostgreSQL -specific data type.
Finally, it should be mentioned that if you don't need a table any longer or want to recreate it differently

you can remove it using the following command:

DROP TABLE t abl enane;

2.4. Populating a Table With Rows

The | NSERT statement is used to popul ate a table with rows:

I NSERT | NTO weat her VALUES (' San Franci sco', 46, 50, 0.25,
'1994-11-27");

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by singlequotes(*), asintheexample. Thedat e typeisactually quiteflexible
in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The SQL Language

Thepoi nt type requires a coordinate pair as input, as shown here:

I NSERT I NTO cities VALUES (' San Francisco', '(-194.0, 53.0)');

The syntax used so far requires you to remember the order of the columns. An aternative syntax allows
you to list the columns explicitly:

| NSERT | NTO weat her (city, tenp_lo, tenp_hi, prcp, date)
VALUES (' San Francisco', 43, 57, 0.0, '1994-11-29");

Y ou canlist the columnsin adifferent order if you wish or even omit some columns, e.g., if the precipitation
is unknown:

| NSERT | NTO weat her (date, city, tenp_hi, tenp_lo)
VALUES (' 1994-11-29', 'Hayward', 54, 37);

Many devel opers consider explicitly listing the columns better style than relying on the order implicitly.
Please enter al the commands shown above so you have some datato work with in the following sections.

Y ou could aso have used COPY to load large amounts of data from flat-text files. Thisis usually faster
because the COPY command is optimized for this application while allowing lessflexibility than | NSERT.
An example would be:

COPY weat her FROM '/ hone/ user/weat her.txt';
where the file name for the source file must be available on the machine running the backend process, not

the client, since the backend process reads the file directly. Y ou can read more about the COPY command
in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the part
that lists the tables from which to retrieve the data), and an optional qualification (the part that specifies
any restrictions). For example, to retrieve all the rows of tableweat her , type:

SELECT * FROM weat her;

Here* isashorthand for “all columns’. * So the same result would be had with:

SELECT city, tenp_lo, temp_hi, prcp, date FROM weat her;

The output should be:

city | temp_lo | tenp_hi | prcp | date

1 While SELECT * is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column to the table
would change the results.

10

The SQL Language

--------------- T LT T gy
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 43 | 57 | 0 | 1994-11-29
Haywar d | 37 | 54 | | 1994-11-29

(3 rows)

Y ou can write expressions, not just simple column references, in the select list. For example, you can do:

SELECT city, (tenp_hi+tenp |lo)/2 AS tenp_avg, date FROM weat her;

This should give:

city | temp_avg | dat e
_______________ o,
San Franci sco | 48 | 1994-11-27
San Franci sco | 50 | 1994-11-29
Haywar d | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The AS clauseis optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression is
true are returned. The usual Boolean operators (AND, OR, and NOT) are alowed in the qualification. For
example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weat her
WHERE city = 'San Franci sco’ AND prcp > 0.0;

Result:

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T L e
San Francisco | 46 | 50 | 0.25 | 1994-11-27
(1 row)

Y ou can request that the results of a query be returned in sorted order:

SELECT * FROM weat her
ORDER BY city;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T L g
Haywar d | 37 | 54 | | 1994-11-29
San Franci sco | 43 | 57 | 0 | 1994-11-29
San Franci sco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn't fully specified, and so you might get the San Francisco rows in either
order. But you'd always get the results shown above if you do:

11

The SQL Language

SELECT * FROM weat her
ORDER BY city, tenp_lo;

Y ou can request that duplicate rows be removed from the result of a query:

SELECT DI STINCT city
FROM weat her ;

Haywar d
San Franci sco
(2 rows)

Here again, the result row ordering might vary. Y ou can ensure consistent results by using DI STI NCT
and ORDER BY together: 2

SELECT DI STINCT city
FROM weat her
ORDER BY city;

2.6. Joins Between Tables

Thusfar, our queries have only accessed one table at atime. Queries can access multiple tables at once, or
access the same table in such away that multiple rows of the table are being processed at the sametime. A
guery that accesses multiple rows of the same or different tables at onetimeis called ajoin query. Asan
example, say you wish to list al the weather records together with the location of the associated city. To
do that, we need to compare theci t y column of each row of theweat her table with the nane column
of al rowsintheci ti es table, and select the pairs of rows where these values match.

Note

This is only a conceptual model. The join is usualy performed in a more efficient manner than
actually comparing each possible pair of rows, but thisisinvisible to the user.

This would be accomplished by the following query:

SELECT *
FROM weat her, cities
WHERE city = nane;

city | temp_lo | tenp_hi | prcp | dat e | nane
| location

2 In some database systems, including older versions of PostgreSQL, the implementation of DI STI NCT automatically orders the rows and so
ORDER BY is unnecessary. But thisis not required by the SQL standard, and current PostgreSQL does not guarantee that DI STI NCT causes the
rows to be ordered.

12

The SQL Language

San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco
| (-194,53)

San Franci sco | 43 | 57 | 0 | 1994-11-29 | San Francisco
| (-194,53)

(2 rows)

Observe two things about the result set:

» Thereisnoresult row for the city of Hayward. Thisisbecausethereisno matchingentry intheci ti es
table for Hayward, so the join ignores the unmatched rowsin the weat her table. We will see shortly
how this can be fixed.

* There are two columns containing the city name. Thisis correct because the lists of columns from the
weat her and ci ti es tables are concatenated. In practice this is undesirable, though, so you will
probably want to list the output columns explicitly rather than using * :

SELECT city, tenp_lo, tenp_hi, prcp, date, location
FROM weat her, cities
WHERE city = nane;

Exercises Attempt to determine the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong to. If
there were duplicate column names in the two tables you'd need to qualify the column names to show
which one you meant, asin:

SELECT weather.city, weather.tenp_ |l o, weather.tenp_hi,
weat her. prcp, weather.date, cities.location
FROM weat her, cities
WHERE cities.name = weather.city;

It iswidely considered good style to qualify all column namesin ajoin query, so that the query won't fail
if aduplicate column nameis later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT *
FROM weat her INNER JO N cities ON (weather.city = cities. nane);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do is
to scan theweat her table and for each row to find the matching ci t i es row(s). If no matching row is
found we want some “empty values’ to be substituted for theci t i es table'scolumns. Thiskind of query
is called an outer join. (Thejoins we have seen so far are inner joins.) The command looks like this:

SELECT *
FROM weat her LEFT QUTER JO N cities ON (weather.city =
cities.nane);

city | temp_lo | tenp_hi | prcp | dat e | nane
| location

13

The SQL Language

--------------- T LT T gy
o e e e e oo - - T ——
Haywar d | 37 | 54 | | 1994-11-29 |
|
San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco
| (-194,53)
San Franci sco | 43 | 57 | 0 | 1994-11-29 | San Francisco
| (-194,53)
(3 rows)

This query is called aleft outer join because the table mentioned on the left of the join operator will have
each of itsrowsin the output at |east once, whereas the table on the right will only have those rows output
that match some row of the left table. When outputting a |eft-table row for which there is no right-table
match, empty (null) values are substituted for the right-table columns.

Exercisec Thereare aso right outer joins and full outer joins. Try to find out what those do.

We can also join atable against itself. Thisis caled aself join. As an example, suppose we wish to find
all the weather records that are in the temperature range of other weather records. So we need to compare
thet enp_| o andt enp_hi columns of each weat her row tothet enp_| o andt enp_hi columns
of al other weat her rows. We can do this with the following query:

SELECT WL.city, WiL.tenp_lo AS |l ow, WL..tenp_hi AS hi gh,
W.city, W2.tenp_lo AS low, W2.tenp_hi AS high
FROM weat her WL, weat her W2
WHERE Wi.tenp_ lo < W2.tenp_l o
AND WL. tenmp_hi > W2.tenp_hi;

city | Tow | high | city | low | high
--------------- Fom e e e e e
San Francisco | 43 | 57 | San Francisco | 46 | 50
Haywar d | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as WL and V2 to be able to distinguish the left and right side of
thejoin. Y ou can aso use these kinds of aliasesin other queries to save some typing, e.g.:

SELECT *
FROM weat her w, cities ¢
WHERE w. city = c. naneg;

Y ou will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to compute
thecount , sum avg (average), max (maximum) and mi n (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT nmax(tenp_l o) FROM weat her;

14

The SQL Language

If we wanted to know what city (or cities) that reading occurred in, we might try:

SELECT city FROM weat her WHERE tenp_l o = max(tenp_l 0); VRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation; so
obvioudly it has to be evaluated before aggregate functions are computed.) However, asis often the case
the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weat her
WHERE tenp | o = (SELECT nax(tenp_l o) FROM weat her);

San Franci sco

(1 row

ThisisOK becausethe subquery isanindependent computation that computesits own aggregate separately
from what is happening in the outer query.

Aggregates are aso very useful in combination with GROUP BY clauses. For example, we can get the
maximum low temperature observed in each city with:

SELECT city, max(tenp_l o)
FROM weat her
GROUP BY city;

city | max
_______________ Fe e - - -
Haywar d | 37
San Francisco | 46
(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows matching
that city. We can filter these grouped rows using HAVI NG

SELECT city, max(tenp_l o)
FROM weat her
GROUP BY city
HAVI NG max(tenp_l 0) < 40;

15

The SQL Language

Hayward | 37
(1 row

which gives us the same results for only the citiesthat have al t enp_| o values below 40. Finaly, if we
only care about cities whose names begin with “S”, we might do:

SELECT city, max(tenp_l o)
FROM weat her
VWHERE city LIKE ' S% --
GROUP BY city
HAVI NG max(tenp_l o) < 40;

The L1 KE operator does pattern matching and is explained in Section 9.7.

It isimportant to understand the interaction between aggregates and SQL's WHERE and HAVI NG clauses.
Thefundamental difference between WHERE and HAVI NGisthis: WHERE selectsinput rows before groups
and aggregates are computed (thus, it controls which rows go into the aggregate computation), whereas
HAVI NG selects group rows after groups and aggregates are computed. Thus, the WHERE clause must not
contain aggregate functions; it makes no sense to try to use an aggregate to determine which rows will
be inputs to the aggregates. On the other hand, the HAVI NG clause always contains aggregate functions.
(Strictly speaking, you are allowed to write a HAVI NG clause that doesn't use aggregates, but it's seldom
useful. The same condition could be used more efficiently at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVI NG, because we avoid doing the grouping and
aggregate calculations for al rows that fail the WHERE check.

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after Novemnber 28. Y ou can correct the data as follows:

UPDATE weat her
SET tenmp_hi = tenp_hi - 2, tenp_lo =tenp_lo - 2
VWHERE date > '1994-11-28';

Look at the new state of the data:

SELECT * FROM weat her ;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T S LT Jpeppp
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Haywar d | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from atable using the DELETE command. Suppose you are no longer interested in
the weather of Hayward. Then you can do the following to delete those rows from the table:

16

The SQL Language

DELETE FROM weat her WHERE city = 'Hayward';

All weather records belonging to Hayward are removed.

SELECT * FROM weat her ;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T LT T gy
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 41 | 55 | 0 | 1994-11-29
(2 rows)

One should be wary of statements of the form

DELETE FROM t abl enane;

Without aqualification, DELETE will remove all rows from the given table, leaving it empty. The system
will not request confirmation before doing this!

17

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL. We will now discuss some more advanced features of SQL that simplify management and
prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examplesfound in Chapter 2 to change or improve them, so it will be
useful to have read that chapter. Some examples from this chapter can also be found inadvanced. sql
inthetutorial directory. Thisfile also contains some sample datato load, which isnot repeated here. (Refer
to Section 2.1 for how to use thefile.)

3.2. Views

Refer back to the queriesin Section 2.6. Suppose the combined listing of weather records and city location
is of particular interest to your application, but you do not want to type the query each time you need
it. You can create a view over the query, which gives a name to the query that you can refer to like an
ordinary table:

CREATE VI EW nyvi ew AS
SELECT nane, tenp_lo, tenp_hi, prcp, date, |ocation
FROM weat her, cities
WHERE city = nane;

SELECT * FROM nyvi ew,

Making liberal use of viewsisakey aspect of good SQL database design. Views allow you to encapsul ate
the details of the structure of your tables, which might change as your application evolves, behind
consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is not
uncommon.

3.3. Foreign Keys

Recall the weat her and ci ti es tables from Chapter 2. Consider the following problem: Y ou want
to make sure that no one can insert rows in the weat her table that do not have a matching entry in
theci t i es table. Thisis called maintaining the referential integrity of your data. In simplistic database
systems thiswould be implemented (if at al) by first looking at theci t i es tableto check if amatching
record exists, and then inserting or rejecting the new weat her records. This approach has a number of
problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
nane varchar (80) primary key,
| ocation point

)

18

Advanced Features

CREATE TABLE weat her (

city varchar (80) references cities(nane),
temp_lo int,

t enmp_hi int,

prcp real,

dat e dat e

)

Now try inserting an invalid record:
| NSERT | NTO weat her VALUES (' Berkeley', 45, 53, 0.0, '1994-11-28');

ERROR: insert or update on table "weather" violates foreign key
constraint "weather_city_fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this ssimple
exampleinthistutorial, but just refer you to Chapter 5 for moreinformation. Making correct use of foreign
keys will definitely improve the quality of your database applications, so you are strongly encouraged to
learn about them.

3.4. Transactions

Transactions are afundamental concept of all database systems. The essential point of atransaction isthat
it bundles multiple steps into a single, al-or-nothing operation. The intermediate states between the steps
are not visible to other concurrent transactions, and if some failure occurs that prevents the transaction
from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well as
total deposit balances for branches. Suppose that we want to record a payment of $100.00 from Alice's
account to Bob's account. Simplifying outrageously, the SQL commands for this might look like:

UPDATE accounts SET bal ance bal ance - 100. 00
VWHERE nanme = 'Alice';
UPDATE branches SET bal ance = bal ance - 100. 00
VWHERE nane = (SELECT branch_name FROM accounts WHERE narne
"Alice');
UPDATE accounts SET bal ance = bal ance + 100. 00
VWHERE nanme = ' Bob';
UPDATE branches SET bal ance = bal ance + 100. 00
VWHERE nane = (SELECT branch_name FROM accounts WHERE narne

' Bob') ;

The details of these commands are not important here; the important point isthat there are several separate
updates involved to accomplish this rather simple operation. Our bank's officers will want to be assured
that either all these updates happen, or none of them happen. It would certainly not do for a system failure
to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice long remain a happy
customer if she was debited without Bob being credited. We need aguaranteethat if something goeswrong
partway through the operation, none of the steps executed so far will take effect. Grouping the updates
into a transaction gives us this guarantee. A transaction is said to be atomic: from the point of view of
other transactions, it either happens completely or not at al.

19

Advanced Features

We also want a guarantee that once atransaction is completed and acknowledged by the database system,
it has indeed been permanently recorded and won't be lost even if a crash ensues shortly thereafter. For
example, if we are recording a cash withdrawal by Bob, we do not want any chance that the debit to
his account will disappear in a crash just after he walks out the bank door. A transactional database
guarantees that all the updates made by atransaction are logged in permanent storage (i.e., on disk) before
the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic updates:
when multiple transactions are running concurrently, each one should not be able to see the incomplete
changes made by others. For example, if onetransaction isbusy totalling all the branch balances, it would
not do for it to include the debit from Alice's branch but not the credit to Bob's branch, nor vice versa. So
transactions must be all-or-nothing not only in terms of their permanent effect on the database, but alsoin
termsof their visibility asthey happen. The updates made so far by an open transaction areinvisibleto other
transactions until the transaction completes, whereupon all the updates become visible simultaneously.

In PostgreSQL, atransaction is set up by surrounding the SQL commands of the transaction with BEG N
and COMM T commands. So our banking transaction would actually look like:

BEG N;

UPDATE accounts SET bal ance = bal ance - 100. 00
VWHERE nanme = 'Alice';

-- etc etc

COW T;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice's balance went negative), we can issue the command ROLLBACK instead of COVM T, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within atransaction. If you do not issue
a BEG N command, then each individual statement has an implicit BEG N and (if successful) COWM T
wrapped around it. A group of statements surrounded by BEA N and COVMM T is sometimes called a
transaction block.

Note

Some client libraries issue BEG N and COMM T commands automatically, so that you might get
the effect of transaction blocks without asking. Check the documentation for the interface you are
using.

It's possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPO NT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction's database changes between defining the savepoint and rolling back
to it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it severa times.
Conversely, if you are sure you won't need to roll back to a particular savepoint again, it can be released,
so the system can free some resources. Keep in mind that either releasing or rolling back to a savepoint
will automatically release all savepoints that were defined after it.

All thisis happening within the transaction block, so none of it isvisible to other database sessions. When
and if you commit the transaction block, the committed actions become visible as a unit to other sessions,
while the rolled-back actions never become visible at all.

20

Advanced Features

Remembering the bank database, suppose we debit $100.00 from Alice'saccount, and credit Bob's account,
only to find later that we should have credited Wally's account. We could do it using savepoints like this:

BEG N,

UPDATE accounts SET bal ance
WHERE nane = 'Alice';

SAVEPO NT ny_savepoi nt;

UPDATE accounts SET bal ance
VWHERE nane = ' Bob';

-- oops ... forget that and use Wally's account

ROLLBACK TO ny_savepoi nt;

UPDATE accounts SET bal ance = bal ance + 100. 00
VWHERE nane = 'Vally';

COW T,

bal ance - 100. 00

bal ance + 100. 00

Thisexampleis, of course, oversimplified, but there'salot of control possiblein atransaction block through
the use of savepoints. Moreover, ROLLBACK TOisthe only way to regain control of atransaction block
that was put in aborted state by the system due to an error, short of rolling it back completely and starting

again.
3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function.
However, window functions do not cause rows to become grouped into a single output row like non-
window aggregate calls would. Instead, the rows retain their separate identities. Behind the scenes, the
window function is able to access more than just the current row of the query resullt.

Here is an example that shows how to compare each employee's salary with the average salary in his or
her department:

SELECT depnane, enpno, salary, avg(salary) OVER (PARTI TI ON BY depnane)
FROM enpsal ary;

depnane | enpno | salary | avg
----------- T fE Ry
devel op | 11 | 5200 | 5020. 0000000000000000
devel op | 7| 4200 | 5020.0000000000000000
devel op | 9 | 4500 | 5020. 0000000000000000
devel op | 8 | 6000 | 5020. 0000000000000000
devel op | 10 | 5200 | 5020. 0000000000000000
personnel | 5| 3500 | 3700. 0000000000000000
personnel | 2| 3900 | 3700. 0000000000000000
sal es | 3 4800 | 4866.6666666666666667
sal es | 1] 5000 | 4866.6666666666666667
sal es | 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table enpsal ary, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows that
have the same depnane value asthe current row. (This actually is the same function as the non-window

21

Advanced Features

avg aggregate, but the OVER clause causes it to be treated as a window function and computed across
the window frame.)

A window function call always contains an OVER clause directly following the window function's name
and argument(s). This is what syntactically distinguishes it from a normal function or non-window
aggregate. The OVER clause determines exactly how the rows of the query are split up for processing by the
window function. The PARTI TI ON BY clause within OVER divides the rows into groups, or partitions,
that share the same values of the PARTI TI ON BY expression(s). For each row, the window function is
computed across the rows that fall into the same partition as the current row.

Y ou can also control the order in which rows are processed by window functions using ORDER BY within
OVER. (The window ORDER BY does not even have to match the order in which the rows are output.)
Hereisan example:

SELECT depnane, enpno, salary,
rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC)
FROM enpsal ary;

depname | enpno | salary | rank
----------- S
devel op | 8 | 6000 | 1
devel op | 10 | 5200 | 2
devel op | 11 | 5200 | 2
devel op | 9 | 4500 | 4
devel op | 7 | 4200 | 5
per sonnel | 2| 3900 | 1
per sonnel | 5] 3500 | 2
sal es | 1| 5000 | 1
sal es | 4 | 4800 | 2
sal es | 3| 4800 | 2
(10 rows)

As shown here, the r ank function produces a numerical rank for each distinct ORDER BY value in
the current row's partition, using the order defined by the ORDER BY clause. r ank needs no explicit
parameter, because its behavior is entirely determined by the OVER clause.

The rows considered by awindow function are those of the “virtual table” produced by the query's FROM
clause as filtered by its WHERE, GROUP BY, and HAVI NG clauses if any. For example, a row removed
because it does not meet the WHERE condition is not seen by any window function. A query can contain
multiple window functions that slice up the data in different ways using different OVER clauses, but they
all act on the same collection of rows defined by this virtual table.

We aready saw that ORDER BY can be omitted if the ordering of rowsis not important. It isalso possible
to omit PARTI TI ON BY, in which case there is asingle partition containing all rows.

There is another important concept associated with window functions: for each row, thereis a set of rows
within its partition called its window frame. Some window functions act only on the rows of the window
frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame consists of
all rows from the start of the partition up through the current row, plus any following rows that are equal
to the current row according to the ORDER BY clause. When ORDER BY is omitted the default frame
consists of all rowsin the partition. ! Hereisan exampleusing sum

! There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

22

Advanced Features

SELECT sal ary, sun{salary) OVER () FROM enpsal ary;

salary | sum

________ Fom e a - -
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100

(10 rows)

Above, since thereis no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTI TI ON BY isthe whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get very
different results:

SELECT sal ary, sun{salary) OVER (ORDER BY sal ary) FROM enpsal ary;

salary | sum

________ i,
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100

(10 rows)

Here the sum is taken from the first (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They
are forbidden elsewhere, such as in GROUP BY, HAVI NG and WHERE clauses. This is because they
logically execute after the processing of those clauses. Also, window functions execute after non-window
aggregate functions. This means it is valid to include an aggregate function call in the arguments of a
window function, but not vice versa.

If thereis aneed to filter or group rows after the window calculations are performed, you can use a sub-
select. For example:

SELECT depnane, enpno, salary, enroll_date
FROM

23

Advanced Features

(SELECT depnane, enpno, salary, enroll _date,
rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC,
enpno) AS pos
FROM enpsal ary
) AS ss
WHERE pos < 3;

The above query only shows the rows from the inner query having r ank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but thisis duplicative and error-prone if the same windowing behavior is wanted for several
functions. Instead, each windowing behavior can be named in a W NDOWclause and then referenced in
OVER. For example;

SELECT sun{sal ary) OVER w, avg(salary) OVER w
FROM enpsal ary
W NDOW w AS (PARTI TI ON BY depnanme ORDER BY sal ary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.22, Section 7.2.5, and the
SELECT reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let'screatetwo tables: A tableci t i es andatablecapi t al s. Naturaly, capitalsare also cities, so you
want some way to show the capitals implicitly when you list al cities. If you're really clever you might
invent some scheme like this:

CREATE TABLE capitals (

nane t ext,

popul ati on real,

el evation int, -- (in ft)
state char (2)

)

CREATE TABLE non_capitals (

nane t ext,
popul ati on real,
el evation int -- (in ft)

)

CREATE VIEWcities AS
SELECT nane, popul ation, elevation FROM capitals
UNI ON
SELECT nane, popul ation, el evation FROM non_capitals;

Thisworks OK asfar asquerying goes, but it getsugly when you need to update several rows, for onething.

A better solution isthis:

CREATE TABLE cities (

24

Advanced Features

name t ext,
popul ati on real,
el evation int -- (in ft)

);

CREATE TABLE capitals (
state char (2) UNI QUE NOT NULL
) INHERI TS (cities);

In this case, arow of capi t al s inherits al columns (namne, popul ati on, and el evati on) from
its parent, ci ti es. The type of the column nane ist ext, a native PostgreSQL type for variable
length character strings. The capi t al s table has an additional column, st at e, which shows its state
abbreviation. In PostgreSQL, atable can inherit from zero or more other tables.

For example, the following query finds the names of al cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT nane, el evation
FROM ci ti es
VWHERE el evati on > 500;

which returns;

nane | elevation
___________ e e e e e m - -
Las Vegas | 2174
Mari posa | 1953
Madi son | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
elevation over 500 feet:

SELECT nane, el evation
FROM ONLY cities
VWHERE el evati on > 500;

nane | elevation
___________ .
Las Vegas | 2174
Mari posa | 1953
(2 rows)

Herethe ONLY beforeci t i es indicatesthat the query should berun over only theci t i es table, and not
tablesbelow ci t i es intheinheritance hierarchy. Many of the commandsthat we have already discussed
— SELECT, UPDATE, and DELETE — support this ONLY notation.

Note

Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.10 for more detail.

25

Advanced Features

3.7. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site? for links to more
resources.

2 https://www.postgresqgl.org

26

https://www.postgresql.org
https://www.postgresql.org

Part Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL . We start with describing the general syntax of SQL,
then explain how to create the structures to hold data, how to populate the database, and how to query it. The middle
part lists the available data types and functions for use in SQL commands. The rest treats several aspects that are
important for tuning a database for optimal performance.

Theinformationin this part isarranged so that anovice user can follow it start to end to gain afull understanding of the
topicswithout having to refer forward too many times. The chapters areintended to be self-contained, so that advanced
users can read the chaptersindividually asthey choose. The information in this part is presented in anarrative fashion
in topical units. Readers looking for a complete description of a particular command should see Part V1.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands. Readers that
are unfamiliar with these issues are encouraged to read Part | first. SQL commands are typically entered using the
PostgreSQL interactive terminal psgl, but other programs that have similar functionality can be used as well.

Table of Contents

A, SQL SYINEBX vttt ettt ettt et e et e et e et et et e et e e et e e e 35
A1, LEXIiCal SIUCKUME ...ttt ettt ettt e e e e e enees 35
4.1.1. Identifiers and K&y WOITSuiiiiiiiiieiiii e 35
.02, CONSLANTSoeeeeeeie ettt et ettt 37
4.01.3. OPEIELOIS ...ttt ettt ettt ettt et 42
4.1.4. SPECial CharaCLEN'S ceeiii ettt e e eees 42
.05, COMMEBNES ... eeee ettt ettt e r e e e e e e e e e e en s 43
4.1.6. OPErator PrECEOBNCEceiitiieeiii et 43

4.2, VElUE EXPIESSIONSceiitiieeieii ettt ettt e ettt e et e et e et e et e e e aba s 44
4.2.1. ColUMN REFEIENCES ...ttt et 45
4.2.2. POSItiONal PalraMELErSuuiiiiiiieieei ettt e 45
A.2.3. SUDSCIIPES .. eevteeeeei ettt ettt et 45
424, Field SEIECHON ...ueiiiii e 46
4.2.5. OPErator INVOCELIONSccevuneiiitieee et e ettt et e e e et eeeeneaeeees 46
4.2.6. FUNCHON CallS ...t 47
4.2.7. AQOregate EXPIrESSIONSccuuueiiiiiieieiti ettt ettt ettt e et e e e e 47
4.2.8. WIindow FUNCHION CallSiiiiiiiiiiii e 50
4.2.9. TYPE CaSS .eviiiiieii et 52
4.2.10. Collation EXPreESSIONSoceevrieeiiiti ettt ettt e e e e e eeeans 53
4.2.11. SCAlAr SUDQUENTESceeeieeeeeii ettt ettt ettt e e e e enaens 54
4.2.12. Array CONSITUCLOIScevieitiiierie ettt et e e e e e ea e eees 54
4.2.13. ROW CONSITUCTONSevteeeieiete ettt sttt et e e e e 56
4.2.14. Expression Evaluation RUIESccooiiiiiiiiiii e 57

4.3, CalliNg FUNCLIONSeeeit ettt ettt et e e e e e e enan s 59
4.3.1. Using POSItional NOELIONccvvveieiiiiiieeeeeii et 59
4.3.2. UsiNg NamMed NOLATONccuvuiiiiiiie e 60
4.3.3. USING MiXEA NOLALTONevuieiiiiieeiiiii ettt e een e e e 60

5. Dal@ DEFINITION ..ottt et 62
DL TADIE BASICS .ottt 62
5.2, DEFAUIT VAIUBS ...ttt 63
5.3. Generated COIUMINScoouuiiiiiii ettt et e e e e e 64
B, CONSITAINTS ...ttt ettt ettt e et e et et e et et e et et e e e ena s 65
5.4.1. CheCk CONSITAINTScevuieiiiiie ettt ettt e e e e e e e 65
5.4.2. NO-NUII CONSIFAINES ...eeveieieiii et e e 68
5.4.3. UNIQUE CONSIFEINES ...e.veueieeii ettt ettt ettt e e e 69
B5AA, PHIMEANY KEYS ...ttt e e 70
545, FOrEIgN KEYS ...ttt 70
5.4.6. EXCIUSION CONSITAINTScovtieieiit et e ettt et e et e e e et e e e ene e eeees 73

5.5, SYStEM COIUMMNS ...t et e e 74
5.6. MOAITYING TADIES ...t 75
5.6.1. AddING @ COIUMN ...oiviiiiiiii e 75
5.6.2. ReEMOVING @ COIUMN ...couuiiiiiiii ettt eeans 76
5.6.3. AddING @ CONSIFAINTceevtieeiiiis ettt e e e e et e e e e e eeees 76
5.6.4. RemMOVING @ CONSITAINTccuviiiiiiii e 76
5.6.5. Changing a Column's Default Valuec.oiviiiiiiiiiiiii e 77
5.6.6. Changing a Column's Daa TYPEuueieuunieiiiiiee ittt 77
5.6.7. Renaming @ COIUMIN ... coiiiiiiiiii e 77
5.6.8. RENAMING @ TADIEciiiiiiiiiii e 77

BT PrIVIIEOES ..o 77
5.8. ROW SeCUNtY POIICIES ...oeuuieiiii e 82
5.9, SCREMAS ... 89

28

The SQL Language

5.9.1. Creating @ SCheMAc.uiiiiic e 89
5.9.2. The PUDIIC SChEMEooiiiiiiec e 90
5.9.3. The Schema Search Pathccoooiiiiiiiiiiiii e 90
5.9.4. Schemas and PrivVilEgEScoiuniiii i 92
5.9.5. The System Catalog SChEMAcovuiiiiiiieii e 92
5.0.6. USAQE PallerNSiviiiiii e 92
5.9.7. POMaDIITY ..vviiiiiiieee e 93

oI O T 1=) = Lo PP 93
oI L0 B O Y= (=3P 96

5.11. Table Partitioningiiueeiii i e e e e e e e e e 97
DAL L. OVEIVIBIW ettt e et e e e et e e e et e e e e et e e e e et e e e e eran s 97
5.11.2. Declarative Partitioningccccouiiiiiiiiiiii e 98
5.11.3. Partitioning Using INNEFtanCeccoviiiiiiiiii e 103
5.11.4. Partition PrUniNgc.uoeiuiiiiii e e e e e e e e e e et eeaaaeeaes 108
5.11.5. Partitioning and Constraint EXCIUSIONc.veviiieiiiniiiii e 110
5.11.6. Best Practices for Declarative Partitioningcc.ccoeevviiieiiineeiiieriineecneeenn, 110

I o (= o o B I - PP 111
5.13. Other Database ODJECEScvvieiii e e e e e aens 112
5.14. DePendeNnCy TraCKiNgccuuueiiueiiiiie e e e e e e e e e e e e e e e e e e et e e e eanaeeeen 112
SR T = 1Y =T o 10 = 1 o PN 114
L 1= e (] aTo [D - - Y 114
LS UL = (] oo D = U 115
SRR D= 1 (] oo I - - P 116
6.4. Returning Data from Modified ROWScccuiiiiiiiiiii e 116
2 8 = 1= PN 118
8 T @ = 4T T ORI 118
A - o L=l (0 == Lo 118
7.2.1. ThE FROMCIBUSE ...cceviiiiiiie ettt ettt ettt e et e e e e 119
7.2.2. THE WHERE ClaUSEvvuieiiiiii ettt sttt e et e e e ean s 128
7.2.3. The GROUP BY and HAVI NG ClIaUSEScccvvuiiiiiiieeeiiiie e ee e 129
7.2.4. GROUPI NG SETS, CUBE, and ROLLUPiiiiiiiiieiiieece e 131
7.2.5. Window FUNCEION PrOCESSINGcovuiiiiiieiiieeie e e e e e e e e 134

SRS = 1 o I £ U UPPPTSPPR 134
7.3. 1. SEECE-LISt [TOMS oot e 134
7.3.2. COlUMN LADEIS ...t e e eaans 135
7.3.3. Dl STINCT ettt e e et e e et s e e e et e e e eeaaaeeeees 135

7.4. ComMBINING QUETES .. ccvuiiiiiie e et e e e e e e e e e e e e e e e et e e et e et e e aaneeeens 136
S o 1T 0T = 0 Y 137
T6. LIM T @8N0 OFFSET ..oiiiiiiiiie ettt e e e e et e e e as 138
TV A/ I S I I £ PP 139
7.8. W TH Queries (Common Table EXPreSSiONS)cc.uueeeiieiiiieriiieeiiieeiieeeeineesieeeaneens 140
7.8.1L SELECT iNW TH oo a s 140
7.8.2. Data-Modifying Statements in W TH ..., 145

S T D= = T Y/ o PRSPPI 147
S0 N[0 0= o Y == 148
e I 1 011 o = Y/ o PP 149
8.1.2. Arbitrary Precision NUMDBEISccoiiiiiiiiii e 149
8.1.3. Floating-POINt TYPES .ovun i e e e 151

ST S g Y/ o= PP 152

S I o g 1< = Y 1Y o< T PRSP 153
TG I O == o (= G Y/ o= PP 154
S = T g A T v T IV o 1= 156
8.4.1. byt €a HEX FOIMELcouiiiiiieii e e e e 157
8.4.2. byt €a ESCApe FOIMAL ...c.uuiiiiiiii e e e e 157

29

The SQL Language

R = =l T (ST Y/ 0= P 158
8.5.1. Date/TImME INPULeveniiiiiii e e e e e e e e e e e e e e e aaneees 160
8.5.2. DAE/TIME OULPULueeeeiiiieeeeeie e et e e e et e et e e et e e e et eeeeren e 163
8.5.3. TIME ZONES ...ttt e et e e et e e e eaa e aaee 164
8.5.4. INterval INPULoiieiii e e 166
8.5.5. INLEIVE OULPULueiiiitiee it e e e e e e e aa e e eannns 168

LS = ToTo =T N Y/ o= PN 169

A 1000 = =0 I Y/ o= 170
8.7.1. Declaration of Enumerated TYPES .. .cvuuiviueiiii e e e e 170
2 @ (o[1 o P 170
B.7.3. TYPE SAFELY eevviieiiii et 171
8.7.4. Implementation DELailScccuuiiiiiii e 171

R €= o 0 4= (o Y 1P 172
B.8. L. POIMES ...ttt e ettt e e a e aae 172
88,2, LINES ettt 172
8.8.3. LiNE SEOMENLSiviiiiii e e e 173
8814 BOXES ..t eiiiii e ettt ettt e et e a et a e aaaes 173
B85, PalNS ..ot 173
8.8.6. POIYQONS .. .ciiiiii i 173
S O] (o =~ PP 174

e I N\ = Y Yo (o (1= S Y o= 174
S35 R T 1= PSPPSR 174
SIS o o | S USRS 175
SR A I 1= VT o3 o | PSPPI 175
S I 1= U= Vo o | USSP 176
8.9.5. IMACATAN 8 ..ouiiiiiii e e e e 176

O TN S (1o T I3 - 177

B.11. TeEXt SEACH TYPES v it 177
S 00 I O T = VT o3 A o PP PTRPTUPT 178
S I 2 A=Y o [U 1= PRSP 179

ST 2 U1 1 R I/ o= PR 180

ST Q. I 1Y/ o= PP 181
8.13.1. Creating XML ValUBSoeiiiiiiieiiiii ettt e e e 181
8.13.2. ENcoding Handlingccouuiiiiiiiii i 182
8.13.3. ACCESSING XML ValUESuiiiiiciii et 183

ST N S O NI Y/ o=~ PP 183
8.14.1. JSON Input and OULPUE SYNEAXuevvvnieiiieeiiieeie e e e e e e e e e e eens 185
8.14.2. Designing JSON DOCUMENES .. .c.uuivieieineeiieeeieeeie e et eeeie e e e e sineesaneeennnas 186
8.14.3.] sonb Containment and EXIStENCEuovviiiiiii e 186
8.14.4. | SOND INAEXING ...evvneiii e e e e e e e aaa s 188
8.1A.5. TraNSFOMIS ... ettt ettt e et e et e e 191
8.14.6. JSONPAEN TYPE . eveiii e 191

o I N = Y PPN 192
8.15.1. Declaration Of Array TYPES ...cuvuiiiiieiiieeei et e e e e e e e e e e eaneees 193
8.15.2. Array ValUE INPULcovniiii e e e e e e e 193
8.15.3. ACCESSING ATTAYS ..ueetneeiineeei e eie ettt e et e e e e e et e e e et e e et e e et e e et e eaneeaens 195
8.15.4. MOAITYING ATTAYS ..vuieiiieii et e e e e e e e e e e e e e e e e eanaeees 197
8.15.5. SEaArChING IN ATTAYS coouniiiii et e e e e e e eaeas 200
8.15.6. Array Input and OULPUL SYNEEXccvvneviieiiiieeiii e eee e e e e e e e eaenas 201

8.16. COMPOSITE TYPES .vvuiiiueiiieeit ettt e et e e et e et e e et e e et eeaa e e et e e et e e et esttaeesnneaannaes 203
8.16.1. Declaration of COmMPOSItE TYPES ...cvvureiiiieiiieeiii e e e e e e e e anas 203
8.16.2. Constructing CompoSite VAUEScccuuiiiiiieiiiieiii e e 204
8.16.3. AcCeSSING COMPOSIEE TYPES ...vvvneiiiiieiiieeeiie et e et e e eteeeae e e e e et e e eaaesanees 205
8.16.4. Modifying COmMPOSITE TYPES ...cvvuniiiiieiii e e e e e e e e e eaa s 205

30

The SQL Language

8.16.5. Using Composite TYPes iN QUENIESc.ueiiieiiiieeiiiee e e e e e e eaaes 206
8.16.6. Composite Type Input and OULPUE SYNEAXccvvnveirneeiiieiiiieeie e e e e e 208

S I A m = g Te T Y/ o PP 209
8.17.1. BUIIt-iN RANGE TYPES ..ncevuieiiieeii e e et e e e e et e et e e e e aanas 209
8.17.2. EXAMPIES .. ettt 210
8.17.3. Inclusive and EXCIUSIVE BOUNGSuiveiiiiiiieiiiiineeiiiiine et e et e i 210
8.17.4. Infinite (Unbounded) RaNGESocvvuiiiiii e 210
8.17.5. RaNge INPUL/OULPULovvniiiieeii e e e e e e e e e e e aes 211
8.17.6. CoNSIIUCtING RANGESuviiiii it e e e e e e e e e ees 212
8.17.7. DISCrete RANGE TYPES . ovvniiiiieei et et e e e e e et e e e e e e e e e et e e et e een s 212
8.17.8. Defining New RaNGE TYPES ... cvvuiiiiii et e e e e e e e e e 213
B.17.9. INAEXING ...uniiieii e e 214
8.17.10. CONStraiNtS 0N RANGESuiiviieiiieiieee e ee e e e e e e e e e et eeaaaeeaes 214

ST T I T4 F= T T 1Y o1~ PN 215
8.19. ObJECt 1AENLITIEr TYPES .uuuiiii i e e e et e eaaaees 216
LSO oo [1 1 1Y o= TP 217
ST I s = (o 0l 1N o1 218
9. FUNCLIONS @NO OPEIAIOIS .. .iuvieeiieeii et e e e e e e e e e e e e e e e e e et e e et e e et e e st e eeaneeannaees 220
1o I oo o= @ o= = (] £ PP 220
9.2. Comparison FUNCtions and OPEIaLOrScvvvuieeiieeiiieeiiie e e e e e e et e e e eaeeeens 221
9.3. Mathematical FUNCtioNS and OPEratorSc.uvvieuneeiiiieiiii e e e e eeens 225
9.4. String FUNCLioNS and OPEIAtOrSuuiieueeeiieiieee e et e e e e e e e e e e e eeaen 233
LS T o T g 112 1 TP TPPTRPPTRN 240

9.5. Binary String FUNctions and OPEratorsSoveeuuieiiieiiineeiiieeeiie e e e s e eaieesaneeees 242
9.6. Bit String FUNCLiONS and OPEratorScvvvuiiiiieiiieeeeeeie e e e e e e e e e eaanns 246
A = (= g TN\ = (11 o P 248
O.7. 1. LEKE oot aaaan 248
9.7.2. SIM LAR TORegular EXPreSSIONScvvueiiiieiiieeiieeeiieeaieeeseessineesaneeenns 250
9.7.3. POSIX RegQUIAr EXPIESSIONS ... ccvuiiiiieiiieeiiieeeiieeeie e e e et e e eae e st e e e eannas 251

9.8. Data Type Formatting FUNCLIONScovuiiiiiiiii e e 266
9.9. Date/Time FUNCLioNS and OPEratorSccuuuiiiiiieiieeeii e e e e e e e e e e e e e e eeees 275
9.9.1. EXTRACT, dat € _Part .ociciiiiiiiieiiii e e e e e aanas 281

e 72 - L A =T A ¥ [o o 286
9.9.3. AT TIME ZONE ...ttt ettt e et e e et e eenens 287
9.9.4, CUITENt DA/ TIME ..uuuiiiii et e e e e ae e 288
9.9.5. Delaying EXECULION .. .c.uuiiiii i e e e e e e e e e et e e et e eea e eeas 290

9.10. ENUM SUPPOIt FUNCLIONSiitiiii e e e e e e e e e e e e e e e e eaens 291
9.11. Geometric FUNCiONS and OPEIAtOrSccvuueiiieeiiieeiiie e ee e e e e e e e e eanes 292
9.12. Network Address FUNCtions and OPEratorsc.uuevvuieiiieeiieeeii e e e e e eaneens 299
9.13. Text Search FUNCtIONS aNd OPEIELOrScuvuiiireeiieeeieeeiie e e e e e e e e e e eaaeens 303
.14, UUID FUNCLIONSiieitise et ettt e ettt e e et e e e et e e et e e e e et neeaennnns 309
9.15. XML FUNCLIONS ... eiiiiiiee ettt e e e e e e et e e e et e e e et e e e e aaan s 310
9.15.1. Producing XML CONENEccuuiiiiiiii e e e e e e e e e e e e e e eaneeees 310
9.15.2. XML PradiCates ...ocvuuieiiiiie ettt e et e e s 314
9.15.3. ProcessiNg XML ...uuuiiiiiiieeii ettt 316
9.15.4. Mapping TableS t0 XMLccovniiiiici e 321

9.16. JSON FUNCLIONS aNd OPEIELOIScvvvieiiieiiiieeeiee e ee e e e e e e e e e e et e e et e e eeaanns 325
9.16.1. Processing and Creating JSON Dafal........c..oevvvuieiiiieiiiieeiiieeeiieeee e e e 325
9.16.2. The SQL/JSON Path LanQUAGEccvvvuieiiiiiieeeeiiieeeeeine e et e e et e e 336

9.17. Sequence Manipulation FUNCLIONScciuiiiiiiii e e 344
9.18. ConditionNal EXPIrESSIONS ... ccuuueiiiieiiiieeiii e e e e e e e e e e e e e e e e et e e et eeanaas 346
.18, 1. CASE ...ttt a e e et aaans 346
9.18.2. COALESCEciiitiieieeii ettt ettt e et e e e et e e e e et e e e eabnnaeaee 348
O.18.3. NULLI F ettt ettt ettt e e et e et s e e e et s e e e eraneeaee 348

31

The SQL Language

9.18.4. GREATEST @nd LEAST ...uiiiiiiii ettt 349

9.19. Array FUNCIONS and OPEIratOrSuiieneeeiiieiiieee e e e e e e e e e e e e et e e e e e e eanaees 349
9.20. Range FUNCLiONS aNd OPEraiOrSvvuueiiiieiieeeiie e e e e ee e et e e e e e e e et eeanaeeaneeeen 353
9.21. AQQregate FUNCLIONSuuiii e e e e e e e e e e e ea e eaes 355
9.22. WINAOW FUNCHIONSvuiieeiiiiiee et e et e e e e e e e et e e e e aaa s 362
9.23. SUDQUENY EXPrESSIONSuiieiieiiieeii et e e e e e e e e et e e e et e e et e e st e e st eeaaneeannaees 363
S B S Y S TSP 363
122 3 L N U SPPPRN 364
S22 R T\ | T ST 365
0.23.4. ANY/SOMEouiiiiiiiii ettt e e e et e et e e et a e 365
0,235, AL L ottt e a e aaaes 366
9.23.6. SINGIE-ROW COMPAITSONcvviiiiiieeii e e e e e e e e eaa s 366

9.24. Row and Array COMPANISONSceuuiiueertiaeritiereteeeteestneeetnaestnreeaneestnaesrneesnaaees 366
LS T N N PPN 367
2\ | T\ ST 367
9.24.3. ANY/SONE (BITAY) 1ot vvvtneeeeuiniettetiieteeiiaeeeetiseeesti e aesse e eesseaeaess e eernnns 367
S I = - Y) OO SPR 368
9.24.5. Row Constructor COMPAIiSONeviuueeeineeiiiieriieeeeineeeieesreeeraeeaneasnaaes 368
9.24.6. Composite TYPe COMPAISONuuviineieiieeieeeiieeeieeeteeeaeeeete e et aeeanaeeanaees 369

9.25. Set REtUrNING FUNCHIONS ... covuiiiiicii e e e e e e e e e e aaa s 369
9.26. System Information FUNCtions and OPEratorsovevveeiiiieiiiieeiii e e e eaeeeaes 373
9.27. System AdmIiNistration FUNCLIONSccuuiiiiieiiii e ee e e e e e e e e 390
9.27.1. Configuration Settings FUNCLIONSoiiiiiieiiiieie e e e 390
9.27.2. Server SIgnaling FUNCLIONSoviiiiiiie e e e e e 391
9.27.3. Backup Control FUNCLIONSuiiiiieiiicciie e e e e 392
9.27.4. Recovery Control FUNCLONSocvuiiiiii e e e 394
9.27.5. Snapshot Synchronization FUNCLIONSccuoveiiiieiiin e, 396
9.27.6. Replication Management FUNCLIONScouveiiiiiiii e 396
9.27.7. Database Object Management FUNCLIONSc.oveivieiiieiiii e e e e eanne 399
9.27.8. Index MantenanCe FUNCLIONSooviiuiiieeiiiis e et e e e e et eeeri e eens 402
9.27.9. Generic File ACCESS FUNCLIONSuviiiiiiiee e 403
9.27.10. AdViSOry LOCK FUNCLIONSccvuneiiiiciii e e et e e e 404

(S22 T I o o = gl oo 406
9.29. Event Trigger FUNCLIONScouuiiiii e e e e e e e e e e e 407
9.29.1. Capturing Changes at Command ENndcccocoviieiiiiiiiiiieiiecc e, 407
9.29.2. Processing Objects Dropped by a DDL Commandccocevvveviiieiiineeennnnn. 408
9.29.3. Handling a Table ReWrite EVENtcovviiiiiiii e 409

9.30. Statistics INfOrmMation FUNCLIONSiiiiiiiieiiiii e e e e aees 410
9.30.1. INSPECLING MCV LiStS ..uiiviiiiiiieiii e e e e e 410

O Y/ oL 00177 = T o P 412
O @ = 4T PP 412
O @] o< - o= TP 413
L0 R T o] o L P SSP 417
O R 0 IS (o] - o = 421
10.5. UNI ON, CASE, and Related CONSITUCESeviviiieiiiiiieeeiiie e eeei e e e s 422
10.6. SELECT OULPUL COIUMNS ...vuueeiiiiiee ettt e e e et e e et e e e et e e e e ennas 424
T o (== PSSP 425
0 O oo [o PP 425
A 1 o L= G Y/ o === PP 426
11.3. MUILICOIUMN INAEXES ...eeeve ettt e e et e et e e e et s e e eeaeaeeaes 428
11.4. Indexes and ORDER BY ...iiiuiiiiiiiiieiiiii ettt e e e et e e e e e s 429
11.5. Combining MUItiple INAEXESiiiiiieiieci e e 430
12.6. UNIQUE INAEXESiciiieiiiie et e e e e e e e e e e e et e e et e e e eanaes 431
11.7. INAEXES ON EXPIrESSIONSivvieiiiieii e e e e e e e e e e e e e e e e et e e et e e aan s 431

32

The SQL Language

11.8. Partial INOEXES .. .ceeviiieeeeii ettt e et e et e e et s e e e et e e e eranaaaaes 432
11.9. Index-Only Scans and Covering INAEXEScouuiiviiiiiii e 435
11.10. Operator Classes and Operator Famili€Scoevuiiiiiiiiiiiiiei e, 438
11.11. Indexes and COlAIONSuuiiiieiiieiii e 439
11.12. EXxamining INAEX USAgEuuciviniiii e e e e e et e et e e e e aaans 440
I S 1= G = o o PSP 442
2 O 1 oo (0o o PP 442
12.1.1. What 1S @ DOCUMENE? ...vuiieeiiii et e e e e e e e et e e e e e eeees 443
12.1.2. Basic Text MatChingooiiuiiiiiiiii e 444
25t IR T @) o T 1N = T 3 446

12.2. TAhleS @A INOEXESeevveieieii et e et e e et e e eaens 446
12.2.1. Searching @ Table ...ocvuie e 446
12.2.2. Creating INAEXESvvvueii et e e e e e e e e e aeas 47

12.3. Controlling TEXt SEAICHiiiii i e e e 448
12.3.1. ParSiNg DOCUMENESuiiiiiiii e e e e e e e e e e e e et e e e e e e eeens 448
12.3.2. ParSiNG QUETIES .. .cvuiiiii e e et e e e e e e e e e e e e e e e e e aneees 449
12.3.3. Ranking Search RESUILSociuiiii i e 452
12.3.4. Highlighting RESUILS ... ccvviiiiiiii e e 455

12,4, AdAItioNal FEALUMEScevvieeiii ettt e e e e e 456
12.4.1. Manipulating DOCUMENESuuiiiiiieiiii e e e e e e e e e e e e 456
12.4.2. Manipulating QUENIESciuu it e e e e e e e aa s 457
12.4.3. Triggers for Automatic UPdatesccevueeiiiiiiiieiiii e e e e, 460
12.4.4. Gathering DOCUMENE SEALISHCS ..ovvuvvinieii e eee e e e e e e 461

T T = 462
12.6. DICHONAITES ...ueieeeii ettt e ettt e e e et r e e e et s e e e e st e e e et neeeseaneeennen 464
12.6.1. SEOP WOIAS .. .cvniciiiciie e e e e e e e e e e e e e et e e et e e e e aaeees 465
12.6.2. SIMPIE DICHIONAIY .vvniiiiieiii e e e e e e e e e e aanas 465
12.6.3. SYNONYM DICHONGIY ...cvvuiiiiiieii et et e e e e e e e e e e e e e e aa e aan s 467
12.6.4. TheSaUruS DIiCHIONAIYcvvuniiiiiiiii e e e e e e e e eaa s 468
12.6.5. ISPEI DICHONAIY ...cvvniiiiiciie et e e e e e e e eaa s 471
12.6.6. SNOWDEIl DICHIONAIYcvvnciiieee e e e e e e aeas 473

12.7. Configuration EXAMPIEccuuiiiieiiie e e e e e e e 474
12.8. Testing and Debugging Text Searchcovvviii i, 475
12.8.1. Configuration TESHNGcvvueiiieiiii e e e e e e e e eaaes 475
T = = i oo 478
R IC T B T Tox 04 = VA = (oo [479

12.9. GIN and GiST INAEX TYPES c.vvvvvrunieieeeiieiiiiies s e e e eeeeeta s e e e e e eaeatae e e e e e eaeaareannns 480
200 O T o 1= o [o] oo P 481
2 O R T 1] = o PP 484
G @0 o1l = 0 [0y o 1 () 486
30 1 oo [0 1 o PP 486
13.2. TransaCtion I1SOIAHONcccuviiieiii e e s 486
13.2.1. Read Commiitted ISOlation LEVElvviiiiiiiieiiiiieece e 487
13.2.2. Repeatable Read 1S0lation LEVEccoiiiiiiiiiiie e 489
13.2.3. Serializable [S0lation LEVE!ccevvviiieiiii i 490

T T (o[T I T 492
13.3.1. TADIE-LEVE LOCKS ...evuneiiiiiie ittt 492
13.3.2. ROW-LEVEI LOCKS ...euuiiiiiiiiee ettt e et e e 495
13.3.3. Page-Level LOCKSciiiiiii e e 496

R T T o oo 496
13.3.5. AQVISONY LOCKS ..uuiiiiiiii e e e e e e e e aaas 497

13.4. Data Consistency Checks at the Application Levelcccoeeviiiiiiiiiiniciiceeeeis 498
13.4.1. Enforcing Consistency with Serializable Transactionsccooeevvveeinnnn. 498
13.4.2. Enforcing Consistency with Explicit Blocking LOckSccccovviiiiiiiinnennnnn. 499

33

The SQL Language

ST O Y= SRR 500
13.6. LOCKINg @nd INAEXESivviiii et e e e e e e e e ees 500
o (o0 1= 0 o= T T = 502
I I U = o T I A P 502
I T o Y Y I AV 27 T P 502
14.2.2. EXPLAI N ANALYZEooviiiiie et e e e eea e e aaaanenas 509
R O £ PSPPI 514

14.2. Statistics Used by the Planneroooiiiiiiiiii e 515
14.2.1. SINgIE-ColUMN SEALISHCS . .ovvueiiieiiii e e e e e e e e e e eaae s 515
A 1= 00 (= IS 1 P 516

14.3. Controlling the Planner with Explicit JO N ClIaUSESccccvviiiiieiiiieciii e, 520
14.4. Populating @ Databaseiiviiiiiii e 522
14.4.1. Disable AULOCOMIMITvuuiiiiiiieee e e et e e e e e e et e e e eate e e eeee 522
A U L Y @ @ P 522
14.4.3. REMOVE INAEXES ...eevviiiieiie et e e et e e 522
14.4.4. Remove Foreign Key CONSITaiNtScocvueeiiiiiiiieiiieerieeeiiee e esieeeaneeaens 523
14.4.5. Increase mai Nt enance_WOr K _MBmM......ccoooiiiiiiiii i 523
14.4.6. Increase MAX_Wal _Si Z€ ..viiiiiiiii i 523
14.4.7. Disable WAL Archival and Streaming Replicationccccoeviviiniiinnennnnn. 523
14.4.8. RUN ANALYZE AFtEIWardScccvvviiiiiiiiieeeeeeeeiiiie e e e e e eeeeiin e s e e e e eeaannnnn s 523
14.4.9. Some Notes about PO AUMP ..o.vuiiiiii e e e e e e e e ees 524

14.5. NON-DUrable SElINGSvuieeeiiiiieie e e e e e e e e e e e an s 524
ST = = O = oS 526
15.1. How Parallel QUENY WOTKSoiiiiiiii i e e 526
15.2. When Can Parallel Query Be USEO?cuvviiiiiieiiiiiii e 527
15.3. Parallel Planscccoiiiiiiiiis st a e 528
15.3.1. Parallel SCaNSccuvvuiiiieeiiieiie et e e e e 528
15.3.2. Parallel JOINScovvviiiiei et 528
15.3.3. Parallel AQOregationooivuiiiiiieii e 529
15.3.4. Parallel APPENGcoviiiii e 529
15.3.5. Parallel Plan TIPS ...ccuuuiieiiiiii et e e e e e e e e 530

15.4. Parallel SafEYoieeeiiieeiii et aaaa 530
15.4.1. Parallel Labeling for Functions and AQQregatescoovevvieiiiieiiineeeieeninnnns 530

Chapter 4. SQL Syntax

This chapter describesthe syntax of SQL. It formsthe foundation for understanding the following chapters
which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it contains
several rules and concepts that are implemented inconsistently among SQL databases or that are specific
to PostgreSQL.

4.1. Lexical Structure

4.1.1.

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,
terminated by a semicolon (“;”). The end of the input stream also terminates a command. Which tokens
are valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, aliteral (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not beif thereisno
ambiguity (which is generally only the case if a specia character is adjacent to some other token type).

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
| NSERT | NTO MY_TABLE VALUES (3, 'hi there');

Thisisasequence of three commands, one per line (although thisis not required; more than one command
can be on aline, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a“SELECT”, an“UPDATE”", and an “INSERT” command. But for instance the UPDATE
command always requires a SET token to appear in a certain position, and this particular variation of
| NSERT also requires a VALUES in order to be complete. The precise syntax rules for each command
are described in Part VI.

Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that
is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are examples of
identifiers. They identify names of tables, columns, or other database objects, depending on the command
they are used in. Therefore they are sometimes simply called “names’. Key words and identifiers have
the same lexical structure, meaning that one cannot know whether atoken is an identifier or a key word
without knowing the language. A complete list of key words can be found in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks and
non-Latin letters) or an underscore (). Subsequent charactersin an identifier or key word can be |etters,
underscores, digits (0-9), or dollar signs ($). Notethat dollar signsare not allowed in identifiers according
to the letter of the SQL standard, so their use might render applications less portable. The SQL standard

35

SQL Syntax

will not define a key word that contains digits or starts or ends with an underscore, so identifiers of this
form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written in
commands, but they will be truncated. By default, NAVEDATAL ENis 64 so the maximum identifier length
is63 bytes. If thislimit is problematic, it can be raised by changing the NAMEDATALEN constantinsr ¢/
i ncl ude/ pg_confi g_manual . h.

Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;
can equivalently be written as:
uPDaTE ny_TabLE SeT a = 5;

A convention often used is to write key wordsin upper case and names in lower case, e.g..

UPDATE ny_table SET a = 5;

Thereisasecond kind of identifier: the delimited identifier or quoted identifier. It isformed by enclosing
an arbitrary sequence of characters in double-quotes (). A delimited identifier is aways an identifier,
never akey word. So" sel ect " could be used to refer to a column or table named “ select”, whereas an
unquoted sel ect would be taken as a key word and would therefore provoke a parse error when used
where atable or column name is expected. The example can be written with quoted identifiers like this:

UPDATE "ny_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
guote, write two double quotes.) This allows constructing table or column names that would otherwise not
be possible, such as ones containing spaces or ampersands. The length limitation still applies.

Quoting an identifier also makes it case-sensitive, whereas ungquoted names are always folded to lower
case. For example, the identifiers FOO, f 0o, and " f 00" are considered the same by PostgreSQL, but
"Foo" and" FOO' aredifferent from thesethree and each other. (Thefolding of unquoted namesto lower
case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names should be
folded to upper case. Thus, f 0o should be equivalent to " FOO' not " f 00" according to the standard. If
you want to write portabl e applicationsyou are advised to always quote aparticular name or never quoteit.)

A variant of quoted identifiersallowsincluding escaped Unicode charactersidentified by their code points.
Thisvariant startswith U& (upper or lower case U followed by ampersand) immediately before the opening
double quote, without any spacesin between, for example U&" f 00" . (Note that this creates an ambiguity
with the operator &. Use spaces around the operator to avoid this problem.) Inside the quotes, Unicode
characters can be specified in escaped form by writing a backslash followed by the four-digit hexadecimal
code point number or aternatively abacks ash followed by aplus sign followed by asix-digit hexadecimal
code point number. For example, the identifier " dat a" could be written as

U&" d\ 0061t \ +000061"

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

36

SQL Syntax

4.1.2.

U&"\ 0441\ 043B\ 043E\ 043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&" d! 0061t ! +000061" UESCAPE ' !

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
guote, adouble quote, or awhitespace character. Note that the escape character iswritten in single quotes,
not double quotes, after UESCAPE.

To include the escape character in the identifier literally, write it twice.

Either the 4-digit or the 6-digit escape form can be used to specify UTF-16 surrogate pairs to compose
characters with code points larger than U+FFFF, although the availability of the 6-digit form technically
makes thisunnecessary. (Surrogate pairsare not stored directly, but are combined into asingle code point.)

If the server encoding is not UTF-8, the Unicode code point identified by one of these escape sequences
is converted to the actual server encoding; an error isreported if that's not possible.

Constants

There are three kinds of implicitly-typed constants in PostgreSQL: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL isan arbitrary sequence of characters bounded by single quotes (*), for example
"This is a string'.Toincludeasingle-quote character within astring constant, write two adjacent
singlequotes, e.g.,' Di anne' ' s hor se' . Notethat thisisnot the same asadouble-quote character ().

Two string constants that are only separated by whitespace with at least one newline are concatenated and
effectively treated asif the string had been written as one constant. For example:

SELECT ' f o0’
"bar';

isequivalent to:

SELECT ' f oobar"' ;

but:

SELECT ' f o0’ "bar';

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

4.1.2.2. String Constants with C-Style Escapes

37

SQL Syntax

PostgreSQL also accepts“ escape” string constants, which are an extension to the SQL standard. An escape
string constant is specified by writing the letter E (upper or lower case) just before the opening single
quote, e.qg., E' f 0o’ . (When continuing an escape string constant across lines, write E only before the
first opening quote.) Within an escape string, a backslash character (\) begins a C-like backslash escape
seguence, in which the combination of backslash and following character(s) represent aspecial bytevalue,
asshownin Table4.1.

Table 4.1. Backslash Escape Sequences

Backslash Escape Sequence I nterpretation

\b backspace

\ f form feed

\n newline

\r carriage return

\ t tab

\ 0,\ 00,\ 000 (0 =0-7) octal byte value

\ xh,\ xhh (h =0-9, A-F) hexadecimal byte value

\ uxxxx, \ UXxxxxxxx (x =0-9, A—F) 16 or 32-bit hexadecimal Unicode character value

Any other character following a backslash is taken literally. Thus, to include a backslash character, write
two backslashes (\ \). Also, asingle quote can be included in an escape string by writing \ * , in addition
to the normal way of ' ' .

It isyour responsibility that the byte sequences you create, especially when using the octal or hexadecimal
escapes, compose valid characters in the server character set encoding. A useful alternative is to use
Unicode escapes or the alternative Unicode escape syntax, explained in Section 4.1.2.3; then the server
will check that the character conversionis possible.

Caution

If the configuration parameter standard_conforming_stringsis of f , then PostgreSQL recognizes
backslash escapesin both regular and escape string constants. However, as of PostgreSQL 9.1, the
default ison, meaning that backslash escapes are recognized only in escape string constants. This
behavior is more standards-compliant, but might break applications which rely on the historical
behavior, where backslash escapes were always recognized. As a workaround, you can set this
parameter to of f , but it is better to migrate away from using backslash escapes. If you need to use
abackslash escape to represent a specia character, write the string constant with an E.

In addition to standard_conform ng_strings, the configuration parameters
escape_string_warning and backslash_quote govern treatment of backslashes in string constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL al so supportsanother type of escape syntax for stringsthat allows specifying arbitrary Unicode
characters by code point. A Unicode escape string constant starts with U& (upper or lower case letter
U followed by ampersand) immediately before the opening quote, without any spaces in between, for
example U&' f 00" . (Note that this creates an ambiguity with the operator & Use spaces around the
operator to avoid this problem.) Inside the quotes, Unicode characters can be specified in escaped form by

38

SQL Syntax

writing abackslash followed by the four-digit hexadecimal code point number or alternatively abackslash
followed by a plus sign followed by a six-digit hexadecimal code point number. For example, the string
' dat a' could bewritten as

U&' d\ 0061t \ +000061'

Thefollowing less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&' \ 0441\ 043B\ 043E\ 043D

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&' d! 0061t ! +000061" UESCAPE ' !’

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
guote, a double quote, or a whitespace character.

To include the escape character in the string literaly, write it twice.

Either the 4-digit or the 6-digit escape form can be used to specify UTF-16 surrogate pairs to compose
characters with code points larger than U+FFFF, although the availability of the 6-digit form technically
makesthisunnecessary. (Surrogate pairsare not stored directly, but are combined into asingle code point.)

If the server encoding is not UTF-8, the Unicode code point identified by one of these escape sequences
is converted to the actual server encoding; an error isreported if that's not possible.

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard_conforming_stringsisturned on. Thisisbecause otherwise this syntax could confuse clients that
parse the SQL statements to the point that it could lead to SQL injections and similar security issues. If
the parameter is set to off, this syntax will be rejected with an error message.

4.1.2.4. Dollar-Quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those must
be doubled. To allow more readable queriesin such situations, PostgreSQL provides another way, called
“dollar quoting”, to write string constants. A dollar-quoted string constant consists of a dollar sign ($),
an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence of characters that
makes up the string content, a dollar sign, the same tag that began this dollar quote, and a dollar sign. For
example, here are two different ways to specify the string “Dianne's horse” using dollar quoting:

$$Di anne' s horse$$
$SonmeTag$Di anne' s hor se$SoneTag$

Noticethat inside the dollar-quoted string, single quotes can be used without needing to be escaped. Indeed,
no characters inside a dollar-quoted string are ever escaped: the string content is always written literally.
Backslashes are not special, and neither are dollar signs, unless they are part of a sequence matching the

opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level. This
ismost commonly used in writing function definitions. For example:

39

SQL Syntax

$f uncti on$
BEG N
RETURN ($1 ~ g[\t\r\n\v\\]q);
END;
$f uncti on$

Here, the sequence g[\ t \ r\ n\ vi\] g representsadollar-quoted literal string [\ t\ r\n\ vi\],
which will be recognized when the function body is executed by PostgreSQL . But since the sequence does
not match the outer dollar quoting delimiter $f unct i on$, it is just some more characters within the
constant so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that it
cannot contain adollar sign. Tags are case sensitive, so $t ag$St ri ng cont ent $t ag$ iscorrect, but
$TAGESt ri ng cont ent $t ag$ isnot.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write complicated
string literals than the standard-compliant single quote syntax. It is particularly useful when representing
string constants inside other constants, as is often needed in procedural function definitions. With single-
guote syntax, each backslash in the above example would have to be written as four backslashes, which
would be reduced to two backslashesin parsing the original string constant, and then to one when the inner
string constant is re-parsed during function execution.

4.1.2.5. Bit-String Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately before
the opening quote (no intervening whitespace), e.g., B' 1001' . The only characters allowed within bit-
string constantsare 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading X (upper or
lower case), e.g., X' 1FF' . This notation is equivalent to a bit-string constant with four binary digits for
each hexadecimal digit.

Both forms of bit-string constant can be continued acrosslinesin the same way asregular string constants.
Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants

Numeric constants are accepted in these general forms:

digits
digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits

wheredi gi t s isone or more decimal digits (O through 9). At least one digit must be before or after the
decimal point, if oneis used. At least one digit must follow the exponent marker (e), if one is present.
There cannot be any spaces or other characters embedded in the constant. Note that any leading plus or
minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

40

SQL Syntax

42

3.5

4.

.001

5e2
1.925e-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
typei nt eger if itsvaluefitsintypei nt eger (32 bits); otherwiseit is presumed to betypebi gi nt if
itsvaluefitsin type bi gi nt (64 bits); otherwise it istaken to betype nuner i ¢. Constants that contain
decimal points and/or exponents are alwaysinitialy presumed to betypenuneri c.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most casesthe constant will be automatically coerced to the most appropriate type depending
on context. When necessary, you can force a numeric value to be interpreted as a specific data type by
casting it. For example, you can force anumeric value to be treated astyper eal (f | oat 4) by writing:

REAL '1.23" -- string style
1.23:: REAL -- PostgreSQ (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type 'string'
"string' ::type
CAST ("string' AS type)

The string constant's text is passed to the input conversion routine for the type called t ype. Theresult is
a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to the
type the constant must be (for example, when it is assigned directly to a table column), in which case it
isautomatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify atype coercion using a function-like syntax:

typenane ('string')
but not al type names can be used in this way; see Section 4.2.9 for details.

The: :, CAST(), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, thet ype ' stri ng'
syntax can only be used to specify the type of asimple literal constant. Another restriction on thet ype
"string' syntax isthat it does not work for array types; use: : or CAST() to specify the type of an
array constant.

The CAST() syntax conformsto SQL. Thet ype ' string' syntax isageneralization of the standard:
SQL specifies this syntax only for afew data types, but PostgreSQL allows it for all types. The syntax
with: ; ishistorical PostgreSQL usage, asisthe function-call syntax.

41

SQL Syntax

4.1.3.

4.1.4.

Operators

An operator name is a sequence of up to NAVMEDATALEN-1 (63 by default) characters from the following
list:

+-*[<>=~1@#N & | ?

There are afew restrictions on operator names, however:

e -- and/* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

* A multiple-character operator name cannot end in + or -, unless the name also contains at least one
of these characters:

~1@#% & | ?

For example, @ isan allowed operator name, but * - isnot. Thisrestriction allows PostgreSQL to parse
SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usualy need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a left unary operator named
@ you cannot write X* @Y; you must write X* @Y to ensure that PostgreSQL reads it as two operator
names not one.

Special Characters

Some charactersthat are not al phanumeric have aspecial meaning that is different from being an operator.
Details on the usage can be found at the location where the respective syntax element is described. This
section only exists to advise the existence and summarize the purposes of these characters.

» A dollar sign ($) followed by digitsis used to represent a positional parameter in the body of afunction
definition or a prepared statement. In other contexts the dollar sign can be part of an identifier or a
dollar-quoted string constant.

 Parentheses(()) have their usual meaning to group expressions and enforce precedence. |n some cases
parentheses are required as part of the fixed syntax of a particular SQL command.

e Brackets ([]) are used to select the elements of an array. See Section 8.15 for more information on
arrays.

» Commas (,) are used in some syntactical constructs to separate the elements of alist.

» Thesemicolon (;) terminates an SQL command. It cannot appear anywhere within acommand, except
within a string constant or quoted identifier.

» Thecolon (:) isused to select “dlices’ from arrays. (See Section 8.15.) In certain SQL dialects (such
as Embedded SQL), the colon is used to prefix variable names.

e Theasterisk (*) isused in some contextsto denote all the fields of atablerow or compositevalue. It also
has a special meaning when used as the argument of an aggregate function, namely that the aggregate
does not require any explicit parameter.

» Theperiod (.) isused in numeric constants, and to separate schema, table, and column names.

42

SQL Syntax

4.1.5. Comments

4.1.6.

A comment is a sequence of characters beginning with double dashes and extending to the end of the
line eg.:

-- This is a standard SQ. conment

Alternatively, C-style block comments can be used:

/* multiline coment
* with nesting: /* nested bl ock conment */
*/

where the comment beginswith/ * and extendsto the matching occurrence of */ . These block comments
nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks of code
that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

Operator Precedence

Table 4.2 showsthe precedence and associativity of the operatorsin PostgreSQL . Most operators have the
same precedence and are | eft-associative. The precedence and associativity of the operatorsis hard-wired
into the parser. Add parentheses if you want an expression with multiple operators to be parsed in some
other way than what the precedence rulesimply.

Table 4.2. Operator Precedence (highest to lowest)

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL -style typecast
[1] left array element selection
+ - right unary plus, unary minus
n left exponentiation
* | % left multiplication, division, modulo
+ - left addition, subtraction
(any other operator) left all other native and user-defined
operators
BETVWEENI NLI KEI LI KESI M LAR range containment, set membership,
string matching
<>=<=>=<> comparison operators
I ST SNULL NOTNULL IS TRUE, IS FALSE, IS NULL,IS
DI STI NCT FROM etc
NOT right logical negation
AND left logical conjunction
oR left logical digunction

43

SQL Syntax

Note that the operator precedence rules also apply to user-defined operators that have the same names as
the built-in operators mentioned above. For example, if you define a“+" operator for some custom data
type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for examplein:

SELECT 3 OPERATOR(pg_catal og. +) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4.2 for “any other
operator”. Thisistrue no matter which specific operator appears inside OPERATOR() .

Note

PostgreSQL versions before 9.5 used dightly different operator precedence rules. In particular,
<=>= and <> used to be treated as generic operators; | S tests used to have higher priority; and
NOT BETWEEN and related constructs acted inconsistently, being taken in some cases as having
the precedence of NOT rather than BETWEEN. These rules were changed for better compliance
with the SQL standard and to reduce confusion from inconsistent treatment of logically equivalent
constructs. In most cases, these changes will result in no behavioral change, or perhapsin “no
such operator” failures which can be resolved by adding parentheses. However there are corner
cases in which a query might change behavior without any parsing error being reported. If you
are concerned about whether these changes have silently broken something, you can test your
application with the configuration parameter operator_precedence warning turned on to seeif any
warnings are logged.

4.2. Value Expressions

Value expressions are used in avariety of contexts, such asin the target list of the SELECT command, as
new columnvaluesinl NSERT or UPDATE, or in search conditionsin anumber of commands. Theresult of
avalueexpressionissometimescalled ascalar, to distinguish it from theresult of atable expression (which
is atable). Value expressions are therefore also called scalar expressions (or even simply expressions).
The expression syntax allows the calculation of values from primitive parts using arithmetic, logical, set,
and other operations.

A value expression is one of the following:

» A constant or literal value

A column reference

A positional parameter reference, in the body of afunction definition or prepared statement
A subscripted expression

A field selection expression

An operator invocation

A function call

An aggregate expression

A window function call

SQL Syntax

4.2.1.

4.2.2.

4.2.3.

* A typecast

A collation expression

* A scalar subquery

* An array constructor

* A row constructor

» Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do not
follow any general syntax rules. These generally have the semantics of a function or operator and are
explained in the appropriate location in Chapter 9. An exampleisthel S NULL clause.

We have aready discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

Column References

A column can be referenced in the form:

correl ati on. col umnane

correl ati on isthe name of atable (possibly qualified with a schema name), or an dlias for a table
defined by means of a FROMclause. The correlation name and separating dot can be omitted if the column
name is unique across all the tables being used in the current query. (See also Chapter 7.)

Positional Parameters

A positional parameter referenceisused toindicate avaluethat is supplied externally to an SQL statement.
Parametersare used in SQL function definitionsand in prepared queries. Some client libraries also support
specifying data values separately from the SQL command string, in which case parameters are used to
refer to the out-of-line data values. The form of a parameter referenceis:

$nunber

For example, consider the definition of afunction, dept , as:

CREATE FUNCTI ON dept (text) RETURNS dept

AS $$ SELECT * FROM dept WHERE nane = $1 $$
LANGUAGE SQ.;

Here the $1 references the value of the first function argument whenever the function is invoked.

Subscripts

If an expression yields avalue of an array type, then a specific element of the array value can be extracted
by writing

expressi on[subscri pt]

45

SQL Syntax

4.2.4.

4.2.5.

or multiple adjacent elements (an “array dice”) can be extracted by writing

expression[| ower _subscri pt: upper_subscri pt]

(Here, the brackets[] are meant to appear literally.) Each subscri pt isitself an expression, which
will be rounded to the nearest integer value.

In general the array expr essi on must be parenthesized, but the parentheses can be omitted when the
expression to be subscripted is just a column reference or positional parameter. Also, multiple subscripts
can be concatenated when the original array is multidimensional. For example:

nyt abl e. arraycol um|[4]

nyt abl e. two_d_col um[17] [34]
$1[10: 42]
(arrayfunction(a,b))[42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression. fiel dnane

In general the row expr essi on must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

nmyt abl e. mycol umm
$1. sonecol um
(rowfunction(a,b)).col 3

(Thus, a qualified column reference is actually just a specia case of the field selection syntax.) An
important special caseis extracting afield from atable column that is of a composite type:

(compositecol). sonefield
(myt abl e. conmposi tecol). sonefield

The parentheses are required here to show that conposi t ecol isacolumn name not a table name, or
that myt abl e is atable name not a schema name in the second case.

You can ask for al fields of acomposite value by writing . *:

(compositecol).*

This notation behaves differently depending on context; see Section 8.16.5 for details.

Operator Invocations

There are three possible syntaxes for an operator invocation:

46

SQL Syntax

4.2.6.

4.2.7.

expr essi on oper at or expr essi on (binary infix operator)
oper at or expr essi on (unary prefix operator)
expr essi on oper at or (unary postfix operator)

where the oper at or token follows the syntax rules of Section 4.1.3, or is one of the key words AND,
OR, and NOT, or isaqualified operator name in the form:

OPERATOR(schemma. oper at or nane)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

Function Calls

The syntax for afunction call isthe name of afunction (possibly qualified with a schemaname), followed
by its argument list enclosed in parentheses:

function_nane ([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt(2)
Thelist of built-in functionsisin Chapter 9. Other functions can be added by the user.

When issuing queries in a database where some users mistrust other users, observe security precautions
from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

Note

A function that takes a single argument of composite type can optionally be called using field-
selection syntax, and conversely field selection can be written in functional style. That is, the
notationscol (tabl e) andt abl e. col areinterchangeable. Thisbehavior isnot SQL -standard
but is provided in PostgreSQL because it allows use of functions to emulate “computed fields’.
For more information see Section 8.16.5.

Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected by a
guery. An aggregate function reduces multiple inputs to a single output value, such as the sum or average
of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_nane (expression [, ...] [order_by clause]) [FILTER
(WHERE filter_clause)]

aggregate_nane (ALL expression [, ...] [order_by clause])

[FILTER (WHERE filter_clause)]

aggregate_nane (DI STINCT expression [, ...] [order_by clause])

[FILTER (WHERE filter_clause)]

47

SQL Syntax

aggregate nane (*) [FILTER (WHERE filter_clause)]
aggregate _nane ([expression [, ...]]) WTHN GROUP
(order_by clause) [FILTER (WHERE filter_clause)]

whereaggr egat e_nane isapreviously defined aggregate (possibly qualified with aschemaname) and
expr essi on isany value expression that does not itself contain an aggregate expression or a window
function call. The optional or der _by_cl ause andfi |l t er _cl ause are described below.

Thefirst form of aggregate expression invokes the aggregate once for each input row. The second formis
the same asthefirst, since ALL isthe default. The third form invokes the aggregate once for each distinct
value of the expression (or distinct set of values, for multiple expressions) found in the input rows. The
fourth form invokes the aggregate once for each input row; since no particular input value is specified,
it is generaly only useful for the count (*) aggregate function. The last form is used with ordered-set
aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s) yield
null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in aggregates.

For example, count (*) yieldsthetotal number of input rows; count (f 1) yieldsthe number of input
rowsinwhichf 1 isnon-null, sincecount ignoresnulls;andcount (di sti nct f1) yieldsthenumber
of distinct non-null values of f 1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases
this does not matter; for example, ni n produces the same result no matter what order it receives
the inputs in. However, some aggregate functions (such as array_agg and stri ng_agg) produce
results that depend on the ordering of the input rows. When using such an aggregate, the optional
order by _cl ause can be used to specify the desired ordering. The or der _by_cl ause has the
same syntax asfor aquery-level ORDER BY clause, asdescribed in Section 7.5, except that its expressions
are aways just expressions and cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROM t abl e;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after all
the aggregate arguments. For example, write this:

SELECT string agg(a, ',' ORDER BY a) FROMtabl e;
not this:
SELECT string _agg(a ORDER BY a, ',') FROMtable; -- incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with two
ORDER BY keys (the second one being rather useless sinceit's a constant).

If DI STI NCT is specified in addition to an or der _by_cl ause, then all the ORDER BY expressions
must match regular arguments of the aggregate; that is, you cannot sort on an expression that isnot included
inthe DI STI NCT list.

Note

The ability to specify both DI STI NCT and ORDER BY in an aggregate function is a PostgreSQL
extension.

48

SQL Syntax

Placing ORDER BY within the aggregate's regular argument list, as described so far, is used when ordering
the input rows for general-purpose and statistical aggregates, for which ordering is optional. There is
a subclass of aggregate functions called ordered-set aggregates for which an or der _by_cl ause is
required, usually because the aggregate's computation isonly sensiblein terms of a specific ordering of its
input rows. Typical examples of ordered-set aggregates include rank and percentile calculations. For an
ordered-set aggregate, the or der _by cl ause iswritteninside W THIN GROUP (...), asshown
inthefinal syntax alternative above. The expressionsintheor der by cl ause are evaluated once per
input row just like regular aggregate arguments, sorted as per the or der _by _cl ause's requirements,
and fed to the aggregate function as input arguments. (Thisis unlike the case for anon-W THI N GROUP
order by cl ause, which is not treated as argument(s) to the aggregate function.) The argument
expressions preceding W THI N GROUP, if any, are called direct arguments to distinguish them from
the aggregated argumentslisted intheor der _by_cl ause. Unlikeregular aggregate arguments, direct
arguments are evaluated only once per aggregate call, not once per input row. This means that they can
contain variables only if those variables are grouped by GROUP BY; this restriction is the same as if the
direct arguments were not inside an aggregate expression at all. Direct arguments are typically used for
things like percentile fractions, which only make sense as a single value per aggregation calculation. The
direct argument list can be empty; in this case, write just () not (*) . (PostgreSQL will actually accept
either spelling, but only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is.

SELECT percentile_cont(0.5) WTH N GROUP (ORDER BY incone) FROM
househol ds;
percentil e_cont

which obtains the 50th percentile, or median, value of the i ncome column from table househol ds.
Here, 0. 5 isadirect argument; it would make no sense for the percentile fraction to be a value varying
across rows.

If FI LTER is specified, then only the input rows for whichthefi | t er _cl ause evaluates to true are
fed to the aggregate function; other rows are discarded. For example:

SELECT

count (*) AS unfiltered,

count (*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered

(1 row

The predefined aggregate functions are described in Section 9.21. Other aggregate functions can be added
by the user.

An aggregate expression can only appear in the result list or HAVI NG clause of a SELECT command.
It is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before the
results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.23), the aggregate
isnormally evaluated over the rows of the subquery. But an exception occurs if the aggregate's arguments
(and filter_cl ause if any) contain only outer-level variables: the aggregate then belongs to the

49

SQL Syntax

4.2.8.

nearest such outer level, and is evaluated over the rows of that query. The aggregate expression asawhole
is then an outer reference for the subquery it appears in, and acts as a constant over any one evaluation
of that subquery. The restriction about appearing only in the result list or HAVI NG clause applies with
respect to the query level that the aggregate belongs to.

Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of the
rows selected by a query. Unlike non-window aggregate calls, thisis not tied to grouping of the selected
rows into a single output row — each row remains separate in the query output. However the window
function has accessto all the rows that would be part of the current row's group according to the grouping
specification (PARTI TI ON BY list) of the window function call. The syntax of a window function call
is one of the following:

function_nane ([expression [, expression ...]]) [FILTER
(WHERE filter_clause)] OVER wi ndow_nane
function_nane ([expression [, expression ...]]) [FILTER

(WHERE filter_clause)] OVER (wi ndow definition)
function_nane (*) [FILTER (WHERE filter_cl ause)]
OVER wi ndow_nhane
function_nane (*) [FILTER (WHERE filter_clause)] OVER
(wi ndow definition)

wherewi ndow_def i ni ti on hasthe syntax

[existing_w ndow nane]

[PARTITION BY expression [, ...]]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST
| LAST} 1 [, ---11

[frane_cl ause]

The optional f r ane_cl ause can be one of

{ RANGE | RON5 | GROUPS } frane_start [frame_exclusion]
{ RANGE | ROAS | GROUPS } BETVEEN frane_start AND frane_end
[frane_exclusion]

wherefranme_start andf ranme_end can be one of

UNBOUNDED PRECEDI NG
of f set PRECEDI NG
CURRENT ROW

of fset FOLLOW NG
UNBOUNDED FOLLOW NG

andf rame_excl usi on can be one of

EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TI ES
EXCLUDE NO OTHERS

50

SQL Syntax

Here, expr essi on represents any value expression that does not itself contain window function calls.

wi ndow_nane is areference to a named window specification defined in the query's W NDOWCclause.
Alternatively, afull wi ndow_defi ni ti on can be given within parentheses, using the same syntax as
for defining anamed window in the W NDOWCclause; seethe SELECT reference page for details. It'sworth
pointing out that OVER wnane is not exactly equivalent to OVER (wname ...); thelatter implies
copying and modifying the window definition, and will berejected if the referenced window specification
includes a frame clause.

The PARTI TI ON BY clause groups the rows of the query into partitions, which are processed separately
by the window function. PARTI TI ON BY works similarly to a query-level GROUP BY clause, except
that its expressions are always just expressions and cannot be output-column names or numbers. Without
PARTI Tl ON BY, all rows produced by the query are treated as a single partition. The ORDER BY clause
determines the order in which the rows of a partition are processed by the window function. It works
similarly to a query-level ORDER BY clause, but likewise cannot use output-column names or numbers.
Without ORDER BY, rows are processed in an unspecified order.

Thefranme_cl ause specifies the set of rows constituting the window frame, which is a subset of the
current partition, for those window functions that act on the frame instead of the whole partition. The set
of rows in the frame can vary depending on which row is the current row. The frame can be specified in
RANGE, ROWS or GROUPS mode; in each case, it runsfromtheframe_start tothefrane_end. If
frame_end is omitted, the end defaults to CURRENT ROW

A frane_start of UNBOUNDED PRECEDI NG means that the frame starts with the first row of the
partition, and similarly af r ame_end of UNBOUNDED FOLLOW NG means that the frame ends with
the last row of the partition.

In RANGE or GROUPS mode, af r ame_st art of CURRENT ROWmeansthe frame startswith the current
row's first peer row (arow that the window's ORDER BY clause sorts as equivalent to the current row),
while af rame_end of CURRENT ROWmMmeans the frame ends with the current row's last peer row. In
ROWS5 mode, CURRENT ROWSs mply means the current row.

In the of f set PRECEDI NG and of f set FOLLOW NG frame options, the of f set must be an
expression not containing any variables, aggregate functions, or window functions. The meaning of the
of f set depends on the frame mode:

* In ROWE mode, the of f set must yield anon-null, non-negative integer, and the option means that the
frame starts or ends the specified number of rows before or after the current row.

* InGROUPS mode, the of f set again must yield anon-null, non-negative integer, and the option means
that the frame starts or ends the specified number of peer groups before or after the current row's peer
group, where a peer group is a set of rows that are equivalent in the ORDER BY ordering. (There must
be an ORDER BY clause in the window definition to use GROUPS mode.)

* In RANGE mode, these options require that the ORDER BY clause specify exactly one column. The
of f set specifies the maximum difference between the value of that column in the current row and
its value in preceding or following rows of the frame. The data type of the of f set expression varies
depending on the data type of the ordering column. For numeric ordering columnsit istypically of the
same type as the ordering column, but for datetime ordering columnsitisani nt er val . For example,
if the ordering columnisof typedat e ort i mest anp, onecould write RANGE BETVEEN ' 1 day'
PRECEDI NG AND ' 10 days' FCOLLOW NG Theof f set isstill required to be non-null and non-
negative, though the meaning of “non-negative’ depends on its data type.

In any case, the distance to the end of the frame is limited by the distance to the end of the partition, so
that for rows near the partition ends the frame might contain fewer rows than el sewhere.

51

SQL Syntax

4.2.9.

Notice that in both ROAS and GROUPS mode, 0 PRECEDI NGand 0 FOLLOW NG are equivalent to
CURRENT ROW This normally holds in RANGE mode as well, for an appropriate data-type-specific
meaning of “zero”.

Thef r ame_excl usi on option allowsrowsaround the current row to be excluded from the frame, even
if they would be included according to the frame start and frame end options. EXCLUDE CURRENT ROW
excludes the current row from the frame. EXCLUDE GROUP excludes the current row and its ordering
peers from the frame. EXCLUDE TI ES excludes any peers of the current row from the frame, but not
the current row itself. EXCLUDE NO OTHERS simply specifies explicitly the default behavior of not
excluding the current row or its peers.

The default framing option is RANGE UNBOUNDED PRECEDI NG, which is the same as RANGE
BETVEEN UNBOUNDED PRECEDI NG AND CURRENT ROW With ORDER BY, this sets the frame
to be all rows from the partition start up through the current row's last ORDER BY peer. Without ORDER
BY, this means all rows of the partition are included in the window frame, since all rows become peers
of the current row.

Restrictions are that f rane_st art cannot be UNBOUNDED FOLLOW NG, f rame_end cannot be
UNBOUNDED PRECEDI NG, and the f r ane_end choice cannot appear earlier in the above list of
frame_start andfrane_end optionsthanthef rane_st art choice does— for example RANGE
BETWEEN CURRENT ROW AND of fset PRECEDI NGis not alowed. But, for example, ROAS
BETWEEN 7 PRECEDI NG AND 8 PRECEDI NGisallowed, eventhough it would never select any rows.

If FI LTER is specified, then only the input rows for whichthefi | t er _cl ause evaluates to true are
fed to the window function; other rows are discarded. Only window functions that are aggregates accept
aFl LTER clause.

The built-in window functions are described in Table 9.60. Other window functions can be added by the
user. Also, any built-in or user-defined general-purpose or statistical aggregate can be used as a window
function. (Ordered-set and hypothetical-set aggregates cannot presently be used as window functions.)

The syntaxes using * are used for calling parameter-less aggregate functions as window functions, for
examplecount (*) OVER (PARTI TION BY x ORDER BY vy). Theasterisk (*) is customarily
not used for window-specific functions. Window-specific functions do not allow DI STI NCT or ORDER
BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5, Section 9.22, and Section 7.2.5.

Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression: :type

The CAST syntax conforms to SQL ; the syntax with : : ishistorical PostgreSQL usage.

When acast is applied to avalue expression of aknown type, it represents arun-timetype conversion. The
cast will succeed only if a suitable type conversion operation has been defined. Notice that thisis subtly
different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to an unadorned
string literal representsthe initial assignment of atypeto aliteral constant value, and so it will succeed for
any type (if the contents of the string literal are acceptable input syntax for the data type).

52

SQL Syntax

An explicit type cast can usually be omitted if there is no ambiguity asto the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply a
type cast in such cases. However, automatic casting is only done for casts that are marked “OK to apply
implicitly” inthe system catal ogs. Other casts must beinvoked with explicit casting syntax. Thisrestriction
isintended to prevent surprising conversions from being applied silently.

It isalso possible to specify atype cast using afunction-like syntax:

typenane (expression)

However, this only worksfor types whose names are also valid as function names. For example, doubl e
preci si on cannot be used this way, but the equivalent f | oat 8 can. Also, the names i nt er val ,
time,andti mest anp can only be used in this fashion if they are double-quoted, because of syntactic
conflicts. Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably
be avoided.

Note

The function-like syntax isin fact just afunction call. When one of the two standard cast syntaxes
is used to do a run-time conversion, it will internally invoke a registered function to perform the
conversion. By convention, these conversion functions have the same name as their output type,
and thus the “function-like syntax” is nothing more than a direct invocation of the underlying
conversion function. Obviously, thisis not something that a portable application should rely on.
For further details see CREATE CAST.

4.2.10. Collation Expressions

The COLLATE clause overridesthe collation of an expression. It isappended to the expression it appliesto:

expr COLLATE coll ation

where col | ati on is a possibly schema-qualified identifier. The COLLATE clause binds tighter than
operators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved in the expression, or it defaults to the default collation of the database if no column isinvolved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause,
for example:
SELECT a, b, ¢ FROMtbhl WHERE ... ORDER BY a COLLATE "C';

and overriding the collation of afunction or operator call that has local e-sensitive results, for example:

SELECT * FROM tbl WHERE a > 'foo' COLLATE "C';

Notethat in thelatter case the COLLATE clauseis attached to an input argument of the operator we wish to
affect. It doesn't matter which argument of the operator or function call the COLLATE clauseis attached to,
becausethe collation that is applied by the operator or function isderived by considering all arguments, and

53

SQL Syntax

an explicit COLLATE clause will override the collations of all other arguments. (Attaching non-matching
COLLATE clauses to more than one argument, however, is an error. For more details see Section 23.2.)
Thus, this gives the same result as the previous example;

SELECT * FROM t bl WHERE a COLLATE "C' > 'foo0';

But thisis an error:

SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C';

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable data
typebool ean.

4.2.11. Scalar Subqueries

A scalar subguery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and the
single returned value is used in the surrounding value expression. It is an error to use a query that returns
more than one row or more than one column as a scalar subquery. (But if, during a particular execution,
the subquery returns no rows, there is no error; the scalar result is taken to be null.) The subquery can
refer to variables from the surrounding query, which will act as constants during any one evaluation of the
subquery. See also Section 9.23 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT nane, (SELECT nmax(pop) FROM cities WHERE cities.state =
st at es. nane)
FROM st at es;

4.2.12. Array Constructors

An array constructor is an expression that builds an array value using values for its member elements. A
simple array constructor consists of the key word ARRAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally aright square bracket] . For example:

SELECT ARRAY[1, 2, 3+4];
array

By default, the array element type is the common type of the member expressions, determined using the
samerulesasfor UNI ONor CASE constructs (see Section 10.5). Y ou can override this by explicitly casting
the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];
array

SQL Syntax

This has the same effect as casting each expression to the array element type individually. For more on
casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In the inner constructors, the key
word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1, 2], ARRAY[3, 4]];
array

{{1,2},{3, 4}}
(1 row

SELECT ARRAY[[1,2],[3,4]];
array

{{1,2},{3, 4}}
(1 row

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce sub-
arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates automatically
to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only asub-ARRAY construct. For example:

CREATE TABLE arr(f1 int[], f2 int[]);
I NSERT | NTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]11);

SELECT ARRAY[f1, f2, '{{9,10},{11,12}} ::int[]] FROM arr
array

{{{1,2},{3,4}},{{5,6},{7,8}},{{9, 10}, {11, 12} }}
(1 row

You can construct an empty array, but since it's impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer[];
array

{}
(1 row

It is also possible to construct an array from the results of a subquery. In thisform, the array constructor
iswritten with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For example:

SELECT ARRAY(SELECT oi d FROM pg_proc WHERE pronanme LIKE 'bytea%);
array

{2011, 1954, 1948, 1952, 1951, 1244, 1950, 2005, 1949, 1953, 2006, 31, 2412}

55

SQL Syntax

(1 row

SELECT ARRAY(SELECT ARRAY[i, i*2] FROM generate_series(1,5) AS a(i));
array

{{1,2},{2,4},{3,6},{4,8},{5, 10}}

(1 row)

The subguery must return a single column. If the subquery's output column is of a non-array type, the
resulting one-dimensional array will have an element for each row in the subquery result, with an element
type matching that of the subquery's output column. If the subquery's output column is of an array type,
the result will be an array of the same type but one higher dimension; in this case al the subquery rows
must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARRAY aways begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) using values
for its member fields. A row constructor consists of the key word ROW a left parenthesis, zero or more
expressions (separated by commas) for the row field values, and finally aright parenthesis. For example:

SELECT RON1,2.5,'"this is a test');
The key word ROWis optional when there is more than one expression in the list.

A row constructor can include the syntax r owval ue. *, which will be expanded to alist of the elements
of the row value, just as occurs when the . * syntax is used at the top level of a SELECT list (see
Section 8.16.5). For example, if tablet has columnsf 1 and f 2, these are the same:

SELECT RON(t.*, 42) FROMt;
SELECT RON(t.f1, t.f2, 42) FROMt;

Note

Before PostgreSQL 8.2, the . * syntax was not expanded in row constructors, so that writing
ROWNt.*, 42) created atwo-field row whose first field was another row value. The new
behavior is usually more useful. If you need the old behavior of nested row values, write the inner
row value without . *, for instance RON(t, 42).

By default, the value created by a ROWNexpression is of an anonymous record type. If necessary, it can be
cast to anamed composite type — either the row type of atable, or acomposite type created with CREATE
TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE nytable(fl1 int, f2 float, f3 text);

CREATE FUNCTI ON get f 1(nytabl e) RETURNS int AS ' SELECT $1.f1' LANGUAGE
SQL;

56

SQL Syntax

-- No cast needed since only one getfl() exists
SELECT getf1(RON1,2.5,'this is a test'));
getfl

CREATE TYPE nyrowype AS (fl1 int, f2 text, f3 nuneric);

CREATE FUNCTI ON get f 1(myr owt ype) RETURNS int AS ' SELECT $1.f1'
LANGUAGE SQL;

-- Now we need a cast to indicate which function to call:
SELECT getf1(RON1,2.5,'this is a test'));
ERROR: function getfl(record) is not unique

SELECT getf1(RON1,2.5,'this is a test')::mytable);
getfl

SELECT getf1(CAST(ROWN11,'this is a test',2.5) AS nyrowtype));
getfl

11
(1 row

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two row
valuesor testarow with1 S NULL or I S NOT NULL, for example:

SELECT RON1,2.5,'this is a test') = RON1, 3, 'not the sanme');

SELECT RONtable.*) IS NULL FROMtable; -- detect all-null rows

For more detail see Section 9.24. Row constructors can also be used in connection with subqueries, as
discussed in Section 9.23.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressionsis not defined. In particular, theinputs of an operator or function
are not necessarily evaluated |eft-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR sonefunc();

then somef unc() would (probably) not be called at all. The same would be the case if one wrote:

SELECT sonefunc() OR true;

57

SQL Syntax

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found in
some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVI NG clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(ANDYOR/NOT combinations) in those clauses can be reorganized in any manner alowed by the laws of
Boolean algebra.

When it is essentia to force evaluation order, a CASE construct (see Section 9.18) can be used. For
example, thisis an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But thisis safe:
SELECT ... WHERE CASE WHEN x > O THEN y/x > 1.5 ELSE fal se END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done when
necessary. (In this particular example, it would be better to sidestep the problem by writingy > 1. 5*x
instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is that
it does not prevent early evaluation of constant subexpressions. As described in Section 37.7, functions
and operators marked | MMUTABLE can be evaluated when the query is planned rather than when it is
executed. Thus for example

SELECT CASE WHEN x > O THEN x ELSE 1/0 END FROM t ab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant
subexpression, even if every row in thetablehasx > 0 so that the ELSE arm would never be entered
at run time.

While that particular example might seem silly, related cases that don't obviously involve constants can
occur in queries executed within functions, since the values of function arguments and loca variables
can be inserted into queries as constants for planning purposes. Within PL/pgSQL functions, for example,
using an | F-THEN-EL SE statement to protect a risky computation is much safer than just nesting it in a
CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate expression
contained within it, because aggregate expressions are computed before other expressions in a SELECT
list or HAVI NGclause are considered. For example, the following query can cause a division-by-zero error
despite seemingly having protected against it:

SELECT CASE WHEN ni n(enpl oyees) > 0
THEN avg(expenses / enpl oyees)
END
FROM depart ment s;

Them n() andavg() aggregates are computed concurrently over all the input rows, so if any row has
enpl oyees equal to zero, the division-by-zero error will occur before there is any opportunity to test
the result of mi n() . Instead, use a WHERE or FI LTER clause to prevent problematic input rows from
reaching an aggregate function in the first place.

58

SQL Syntax

4.3. Calling Functions

4.3.1.

PostgreSQL allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functionsthat have alarge number of parameters, sinceit
makes the associations between parameters and actual arguments more explicit and reliable. In positional
notation, a function call is written with its argument values in the same order as they are defined in the
function declaration. In named notation, the arguments are matched to the function parameters by name
and can be written in any order. For each notation, also consider the effect of function argument types,
documented in Section 10.3.

In either notation, parametersthat have default values given in the function declaration need not be written
inthecall at al. But thisis particularly useful in named notation, since any combination of parameters can
be omitted; while in positional notation parameters can only be omitted from right to left.

PostgreSQL also supports mixed notation, which combines positional and named notation. In this case,
positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function
definition:

CREATE FUNCTI ON concat | ower _or _upper(a text, b text, uppercase
bool ean DEFAULT fal se)
RETURNS t ext
AS
$$
SELECT CASE
VWHEN $3 THEN UPPER($1 || ' ' || $2)
ELSE LONER(S$1 || " " || $2)
END;
$$
LANGUAGE SQL | MMUTABLE STRI CT;

Function concat _| ower _or _upper has two mandatory parameters, a and b. Additionally there is
one optional parameter upper case which defaultstof al se. Thea and b inputs will be concatenated,
and forced to either upper or lower case depending on the upper case parameter. The remaining details
of thisfunction definition are not important here (see Chapter 37 for more information).

Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL. An
exampleis:

SELECT concat | ower _or_upper('Hello', '"Wrld, true);
concat _| ower _or _upper

HELLO WORLD
(1 row)

All arguments are specified in order. The result is upper case since upper case is specified ast r ue.
Another exampleis:

59

SQL Syntax

4.3.2.

4.3.3.

SELECT concat _| ower _or_upper (' Hello', "Wrld');
concat _| ower _or _upper

hell o world

(1 row

Here, theupper case parameter is omitted, so it receivesits default value of f al se, resulting in lower
case output. In positional notation, arguments can be omitted from right to left solong asthey have defaults.

Using Named Notation

In named notation, each argument's nameis specified using => to separateit from the argument expression.
For example:

SELECT concat | ower_or_upper(a => "Hello', b => "Wrld);
concat _| ower _or _upper

hello world

(1 row

Again, the argument upper case was omitted so it isset to f al se implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat _| ower _or _upper(a => 'Hello', b => "Wrld' , uppercase =>
true);
concat _| ower _or _upper

HELLO WORLD
(1 row)

SELECT concat | ower _or_upper(a => '"Hell o', uppercase => true, b =>
"World');
concat _| ower _or _upper

HELLO WORLD
(1 row)

An older syntax based on ":=" is supported for backward compatibility:

SELECT concat _| ower _or_upper(a := "Hello', uppercase := true, b :=
"World');
concat _| ower _or _upper
HELLO WORLD

(1 row

Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

60

SQL Syntax

SELECT concat _| ower _or_upper('Hello', '"Wrld', uppercase => true);
concat _| ower _or _upper

HELLO WORLD
(1 row

In the above query, the arguments a and b are specified positionally, while upper case is specified
by name. In this example, that adds little except documentation. With a more complex function having
numerous parameters that have default values, named or mixed notation can save a great deal of writing
and reduce chances for error.

Note

Named and mixed call notations currently cannot be used when calling an aggregate function (but
they do work when an aggregate function is used as awindow function).

61

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one's data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what datais stored in the tables.
Subsequently, we discuss how tables can be organized into schemas, and how privileges can be assigned
to tables. Finally, we will briefly look at other features that affect the data storage, such as inheritance,
table partitioning, views, functions, and triggers.

5.1. Table Basics

A tablein arelational database is much like atable on paper: It consists of rows and columns. The number
and order of the columns is fixed, and each column has a name. The number of rows is variable — it
reflects how much datais stored at a given moment. SQL does not make any guarantees about the order
of the rows in atable. When atable is read, the rows will appear in an unspecified order, unless sorting
isexplicitly requested. Thisis covered in Chapter 7. Furthermore, SQL does not assign unique identifiers
to rows, so it is possible to have several completely identical rows in atable. This is a consequence of
the mathematical model that underlies SQL but is usualy not desirable. Later in this chapter we will see
how to deal with thisissue.

Each column has a data type. The data type constrains the set of possible values that can be assigned to a
column and assigns semantics to the data stored in the column so that it can be used for computations. For
instance, a column declared to be of a numerical type will not accept arbitrary text strings, and the data
stored in such a column can be used for mathematical computations. By contrast, a column declared to be
of a character string type will accept amost any kind of data but it does not lend itself to mathematical
calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also define
their own data types. Most built-in data types have obvious names and semantics, so we defer a detailed
explanation to Chapter 8. Some of the frequently used data types are i nt eger for whole numbers,
numer i ¢ for possibly fractional numbers, t ext for character strings, dat e for dates, t i ne for time-
of-day values, and t i nest anp for values containing both date and time.

To create atable, you use the aptly named CREATE TABLE command. In this command you specify at
least a name for the new table, the names of the columns and the data type of each column. For example:

CREATE TABLE ny_first_table (
first_colum text,
second_col um i nt eger

)

This creates a table named ny_first_tabl e with two columns. The first column is named
first_col um and hasadatatype of t ext ; the second column has the name second_col um and
thetypei nt eger . The table and column names follow the identifier syntax explained in Section 4.1.1.
The type names are usually also identifiers, but there are some exceptions. Note that the column list is
comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your tables
and columns that convey what kind of datathey store. So let's ook at a more realistic example:

62

Data Definition

CREATE TABLE products (
product _no i nteger,
name text,
price nunmeric

)

(Thenurer i ¢ type can store fractional components, as would be typical of monetary amounts.)

Tip

When you create many interrelated tables it is wise to choose a consistent naming pattern for the
tables and columns. For instance, thereisachoice of using singular or plural nounsfor table names,
both of which are favored by some theorist or other.

Thereisalimit on how many columns atable can contain. Depending on the column types, it is between
250 and 1600. However, defining a table with anywhere near this many columns is highly unusual and
often a questionable design.

If you no longer need atable, you can remove it using the DROP TABLE command. For example:

DROP TABLE ny_first_table;
DROP TABLE products;

Attempting to drop atable that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the script
works whether or not the table exists. (If you like, you can use the DROP TABLE | F EXI STS variant
to avoid the error messages, but thisis not standard SQL.)

If you need to modify atable that already exists, see Section 5.6 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of
this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified for
some of the columns, those columnswill befilled with their respective default values. A data manipulation
command can also request explicitly that acolumn be set to its default value, without having to know what
that valueis. (Details about data manipul ation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In atable definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric DEFAULT 9. 99

63

Data Definition

)

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for at i mest anp column to have a default of
CURRENT _TI MESTAMP, so that it gets set to the time of row insertion. Another common example is
generating a“serial number” for each row. In PostgreSQL thisistypically done by something like:

CREATE TABLE products (
product _no i nteger DEFAULT nextval (' products_product_no_seq'),

)

where the next val () function supplies successive values from a sequence object (see Section 9.17).
This arrangement is sufficiently common that there's a specia shorthand for it:

CREATE TABLE products (
product no SERI AL,

)
The SERI AL shorthand is discussed further in Section 8.1.4.

5.3. Generated Columns

A generated column is a special column that is aways computed from other columns. Thus, it is for
columnswhat aview isfor tables. There are two kinds of generated columns: stored and virtual. A stored
generated column is computed when it is written (inserted or updated) and occupies storage asif it were a
normal column. A virtual generated column occupies no storage and is computed when it isread. Thus, a
virtual generated columnissimilar to aview and astored generated columnissimilar toamaterialized view
(except that it is always updated automatically). PostgreSQL currently implements only stored generated
columns.

Tocreateagenerated column, usethe GENERATED ALWAYS AS clausein CREATE TABLE, for example:

CREATE TABLE peopl e (

hei ght _cm nuneri c,
hei ght _i n nuneri c GENERATED ALWAYS AS (height_cm/ 2.54) STORED
);

The keyword STORED must be specified to choose the stored kind of generated column. See CREATE
TABLE for more details.

A generated column cannot be written to directly. In 1| NSERT or UPDATE commands, a value cannot be
specified for agenerated column, but the keyword DEFAULT may be specified.

Consider the differences between a column with a default and a generated column. The column default is
evaluated oncewhen therow isfirst inserted if no other value was provided; agenerated column is updated
whenever the row changes and cannot be overridden. A column default may not refer to other columns of
the table; a generation expression would normally do so. A column default can use volatile functions, for
exampler andon{) or functionsreferring to the current time; thisis not allowed for generated columns.

Several restrictions apply to the definition of generated columns and tablesinvolving generated columns:

64

Data Definition

e The generation expression can only use immutable functions and cannot use subqueries or reference
anything other than the current row in any way.

» A generation expression cannot reference another generated column.
» A generation expression cannot reference a system column, except t abl eoi d.
A generated column cannot have a column default or an identity definition.

» A generated column cannot be part of a partition key.

Foreign tables can have generated columns. See CREATE FOREIGN TABLE for details.

For inheritance:

* If aparent column is agenerated column, a child column must also be a generated column using the
same expression. |n the definition of the child column, leave off the GENERATED clause, as it will
be copied from the parent.

« In case of multiple inheritance, if one parent column is a generated column, then all parent columns
must be generated columns and with the same expression.

« If aparent columnisnot agenerated column, achild column may be defined to be agenerated column
or not.

Additional considerations apply to the use of generated columns.

» Generated columns maintain access privileges separately from their underlying base columns. So, it
is possible to arrange it so that a particular role can read from a generated column but not from the
underlying base columns.

» Generated columns are, conceptually, updated after BEFORE triggers have run. Therefore, changes
made to base columns in a BEFORE trigger will be reflected in generated columns. But conversdly, it
is not allowed to access generated columns in BEFORE triggers.

5.4. Constraints

5.4.1.

Datatypesare away to limit the kind of datathat can be stored in atable. For many applications, however,
the constraint they provideistoo coarse. For example, acolumn containing aproduct price should probably
only accept positive values. But thereis no standard data type that accepts only positive numbers. Another
issueisthat you might want to constrain column datawith respect to other columns or rows. For example,
in atable containing product information, there should be only one row for each product number.

To that end, SQL alows you to define constraints on columns and tables. Constraints give you as much
control over the datain your tables as you wish. If a user attempts to store data in a column that would
violate aconstraint, an error israised. Thisapplieseven if the value came from the default value definition.

Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the valuein a certain
column must satisfy a Boolean (truth-value) expression. For instance, to require positive product prices,
you could use:

CREATE TABLE products (
product _no i nteger,
name text,

65

Data Definition

price nuneric CHECK (price > 0)
)

Asyou see, the constraint definition comes after the data type, just like default value definitions. Default
values and constraints can be listed in any order. A check constraint consists of the key word CHECK
followed by an expression in parentheses. The check constraint expression should involve the column thus
constrained, otherwise the constraint would not make too much sense.

Y ou can also give the constraint a separate name. This clarifies error messages and allows you to refer to
the constraint when you need to change it. The syntax is:

CREATE TABLE products (
product _no i nteger,
name text,
price numeri c CONSTRAI NT positive_price CHECK (price > 0)

)

So, to specify a named constraint, use the key word CONSTRAI NT followed by an identifier followed by
the constraint definition. (If you don't specify a constraint name in this way, the system chooses a name
for you.)

A check constraint can also refer to several columns. Say you store aregular price and adiscounted price,
and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric CHECK (price > 0),
di scounted_price nunmeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to
a particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible, since a column constraint is supposed
to refer to only the column it is attached to. (PostgreSQL doesn't enforce that rule, but you should follow
it if you want your table definitions to work with other database systems.) The above example could also
be written as:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,
CHECK (price > 0),
di scounted_price nuneric,
CHECK (di scounted_price > 0),
CHECK (price > discounted_price)

66

Data Definition

or even:

CREATE TABLE products (

)

product _no i nteger,

name text,

price nuneric CHECK (price > 0),

di scounted_price numeric,

CHECK (di scounted_price > 0 AND price > discounted_price)

It's a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (

)

product _no i nteger,

name text,

price nuneric,

CHECK (price > 0),

di scounted _price nuneric,

CHECK (di scounted _price > 0),

CONSTRAI NT val i d_di scount CHECK (price > discounted price)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the null
value. Since most expressions will evaluate to the null value if any operand is null, they will not prevent
null valuesin the constrained columns. To ensure that a column does not contain null values, the not-null
constraint described in the next section can be used.

Note

PostgreSQL does not support CHECK constraints that reference table data other than the new or
updated row being checked. While a CHECK constraint that violates this rule may appear to work
in simple tests, it cannot guarantee that the database will not reach a state in which the constraint
condition is false (due to subsequent changes of the other row(s) involved). This would cause a
database dump and reload to fail. The reload could fail even when the complete database state
is consistent with the constraint, due to rows not being loaded in an order that will satisfy the
constraint. If possible, use UNI QUE, EXCLUDE, or FOREI GN KEY constraints to express cross-
row and cross-table restrictions.

If what you desire is a one-time check against other rows at row insertion, rather than a
continuously-maintained consistency guarantee, a custom trigger can be used to implement that.
(This approach avoids the dump/rel oad problem because pg_dump does not reinstall triggers until
after reloading data, so that the check will not be enforced during a dump/reload.)

Note

PostgreSQL assumes that CHECK constraints' conditions are immutable, that is, they will always
give the same result for the same input row. This assumption is what justifies examining CHECK
constraints only when rows are inserted or updated, and not at other times. (The warning above
about not referencing other table dataisreally aspecial case of thisrestriction.)

67

Data Definition

An example of acommon way to break this assumption isto reference a user-defined functionina
CHECK expression, and then change the behavior of that function. PostgreSQL does not disallow
that, but it will not notice if there are rowsin the table that now violate the CHECK constraint. That
would cause a subsequent database dump and reload to fail. The recommended way to handle such
achange isto drop the constraint (using ALTER TABLE), adjust the function definition, and re-
add the constraint, thereby rechecking it against all table rows.

5.4.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product _no i nteger NOT NULL,
name text NOT NULL,
price numeric

)

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating acheck constraint CHECK (col urm_name 1S NOT NULL) , but in PostgreSQL
creating an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit
names to not-null constraints created this way.

Of course, acolumn can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (
product _no i nteger NOT NULL,
name text NOT NULL,
price nunmeric NOT NULL CHECK (price > 0)

)
The order doesn't matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column must
be null, which would surely be useless. Instead, this simply selects the default behavior that the column
might be null. The NULL constraint is not present in the SQL standard and should not be used in portable
applications. (It was only added to PostgreSQL to be compatible with some other database systems.) Some
users, however, like it because it makes it easy to toggle the constraint in a script file. For example, you
could start with:

CREATE TABLE products (
product _no integer NULL,
name text NULL,
price nunmeric NULL

)
and then insert the NOT key word where desired.

Tip

In most database designs the majority of columns should be marked not null.

68

Data Definition

5.4.3. Unique Constraints

Unique constraints ensure that the data contained in a column, or a group of columns, is unique among
all therowsin thetable. The syntax is:

CREATE TABLE products (
product _no integer UN QUE
name text,
price nuneric

)

when written as a column constraint, and:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,

UNI QUE (product_no)

);
when written as a table constraint.
To define aunique constraint for agroup of columns, write it as atable constraint with the column names

separated by commas:

CREATE TABLE exanpl e (

a i nteger,
b integer,
c integer,

UNI QUE (a, c¢)
)

This specifies that the combination of values in the indicated columns is unique across the whole table,
though any one of the columns need not be (and ordinarily isn't) unique.

Y ou can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product _no i nteger CONSTRAINT rust be different UN QUE
name text,
price nuneric

)

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A unigqueness restriction covering only some rows cannot be written as a
unique constraint, but it is possible to enforce such arestriction by creating a unique partial index.

In general, aunique constraint is violated if there is more than one row in the table where the values of all
of the columns included in the constraint are equal. However, two null values are never considered equal
in this comparison. That means even in the presence of a unique constraint it is possible to store duplicate
rows that contain a null value in at least one of the constrained columns. This behavior conforms to the

69

Data Definition

5.4.4.

5.4.5.

SQL standard, but we have heard that other SQL databases might not follow thisrule. So be careful when
developing applications that are intended to be portable.

Primary Keys

A primary key constraint indicates that a column, or group of columns, can be used as a unique identifier
for rowsin thetable. Thisrequiresthat the values be both unique and not null. So, the following two table
definitions accept the same data:

CREATE TABLE products (
product _no i nteger UN QUE NOT NULL
name text,
price nuneric

)

CREATE TABLE products (
product _no i nteger PRI MARY KEY,
name text,
price nuneric

)

Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE exampl e (

a integer,
b integer,
c integer,

PRI MARY KEY (a, c)
)

Adding aprimary key will automatically create a unique B-tree index on the column or group of columns
listed in the primary key, and will force the column(s) to be marked NOT NULL.

A table can have at most one primary key. (There can be any number of unique and not-null constraints,
which are functionally almost the same thing, but only one can beidentified asthe primary key.) Relational
database theory dictatesthat every table must have aprimary key. Thisruleisnot enforced by PostgreSQL,
but it is usually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a GUI
application that allows modifying row values probably needs to know the primary key of atable to be
able to identify rows uniquely. There are aso various ways in which the database system makes use of a
primary key if one has been declared; for example, the primary key defines the default target column(s)
for foreign keysreferencing its table.

Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between
two related tables.

Say you have the product table that we have used several times already:

70

Data Definition

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nunmeric

)

L et's al so assume you have atable storing orders of those products. We want to ensure that the orderstable
only contains orders of products that actually exist. So we define a foreign key constraint in the orders
table that references the products table:

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products (product_no),
quantity integer

)

Now it is impossible to create orders with non-NULL pr oduct _no entries that do not appear in the
products table.

We say that in this situation the orderstable isthe referencing table and the productstable is the referenced
table. Similarly, there are referencing and referenced columns.

Y ou can also shorten the above command to:

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products,
guantity integer

)

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

Y ou can assign your own name for aforeign key constraint, in the usual way.

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be written
in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (

a integer PRI MARY KEY,

b integer,

c integer,

FOREI GN KEY (b, c) REFERENCES ot her _table (cl, c2)
)

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

Sometimesit is useful for the “ other table” of aforeign key constraint to be the sametable; thisis called a
self-referential foreign key. For example, if you want rows of atable to represent nodes of atree structure,
you could write

71

Data Definition

CREATE TABLE tree (
node_i d i nteger PRI MARY KEY,
parent _id integer REFERENCES tree,
name text,

)

A top-level node would have NULL parent id, but non-NULL parent id entries would be
constrained to reference valid rows of the table.

A table can have more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to allow
one order to contain possibly many products (which the structure above did not allow). You could use
this table structure:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nuneric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order _itens (
product _no i nteger REFERENCES products,
order id integer REFERENCES orders,
qgquantity integer,
PRI MARY KEY (product_no, order _id)

)

Notice that the primary key overlaps with the foreign keysin the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what if
aproduct is removed after an order is created that references it? SQL allows you to handle that as well.
Intuitively, we have afew options:

 Disallow deleting a referenced product
» Delete the orders aswell
» Something else?

To illustrate this, let's implement the following policy on the many-to-many relationship example above:
when someone wants to remove a product that is still referenced by an order (viaor der _i t ens), we
disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nunmeric

)

72

Data Definition

5.4.6.

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order _itenms (
product _no i nteger REFERENCES products ON DELETE RESTRI CT,
order _id integer REFERENCES orders ON DELETE CASCADE,
guantity integer,
PRI MARY KEY (product_no, order_id)

)

Restricting and cascading deletes are the two most common options. RESTRI CT prevents deletion of
a referenced row. NO ACTI ON means that if any referencing rows still exist when the constraint is
checked, an error is raised; this is the default behavior if you do not specify anything. (The essential
difference between these two choices is that NO ACTI ON allows the check to be deferred until later in
the transaction, whereas RESTRI CT does not.) CASCADE specifiesthat when areferenced row is deleted,
row(s) referencing it should be automatically deleted as well. There are two other options: SET NULL
and SET DEFAULT. These cause the referencing column(s) in the referencing row(s) to be set to nulls or
their default values, respectively, when the referenced row is deleted. Note that these do not excuse you
from observing any constraints. For example, if an action specifies SET DEFAULT but the default value
would not satisfy the foreign key constraint, the operation will fail.

Analogous to ON DELETE thereis also ON UPDATE which is invoked when a referenced column is
changed (updated). The possible actions are the same. In this case, CASCADE means that the updated
values of the referenced column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing columns
arenull. If MATCH FULL isadded to the foreign key declaration, areferencing row escapes satisfying the
constraint only if all its referencing columns are null (so a mix of null and non-null values is guaranteed
to fail aMATCH FULL constraint). If you don't want referencing rows to be able to avoid satisfying the
foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint. This
means that the referenced columns always have an index (the one underlying the primary key or unique
constraint); so checks on whether a referencing row has a match will be efficient. Since a DELETE of a
row from the referenced table or an UPDATE of areferenced column will require a scan of the referencing
tablefor rows matching the old value, it is often agood ideato index the referencing columnstoo. Because
thisis not aways needed, and there are many choices available on how to index, declaration of aforeign
key constraint does not automatically create an index on the referencing columns.

More information about updating and deleting dataisin Chapter 6. Also see the description of foreign key
constraint syntax in the reference documentation for CREATE TABLE.

Exclusion Constraints

Exclusion constraints ensure that if any two rows are compared on the specified columns or expressions
using the specified operators, at least one of these operator comparisons will return false or null. The
syntax is:

CREATE TABLE circles (
c circle,

73

Data Definition

EXCLUDE USI NG gi st (¢ WTH &8)
)

Seealso CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the constraint
declaration.

5.5. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these names
cannot be used as names of user-defined columns. (Note that these restrictions are separate from whether
the nameisakey word or not; quoting a name will not allow you to escape these restrictions.) Y ou do not
really need to be concerned about these columns; just know they exist.

t abl eoi d

The OID of the table containing this row. This column is particularly handy for queries that select
from inheritance hierarchies (see Section 5.10), since without it, it's difficult to tell which individual
table a row came from. The t abl eoi d can be joined against the oi d column of pg_cl ass to
obtain the table name.

Xmn
The identity (transaction ID) of the inserting transaction for this row version. (A row version is an
individual state of arow; each update of arow creates a new row version for the same logical row.)
cmn
The command identifier (starting at zero) within the inserting transaction.
Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It is
possiblefor this column to be nonzero in avisiblerow version. That usually indicates that the del eting
transaction hasn't committed yet, or that an attempted deletion was rolled back.

cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although the ct i d can be used to
locate the row version very quickly, arow'sct i d will changeif it is updated or moved by VACUUM
FULL. Therefore ct i d is useless as a long-term row identifier. A primary key should be used to
identify logical rows.

Transaction identifiers are al so 32-bit quantities. In along-lived database it is possible for transaction IDs
to wrap around. Thisis not afatal problem given appropriate maintenance procedures; see Chapter 24 for
details. It is unwise, however, to depend on the uniqueness of transaction 1Ds over the long term (more
than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 2% (4 billion) SQL commands
within a single transaction. In practice this limit is not a problem — note that the limit is on the number
of SQL commands, not the number of rows processed. Also, only commands that actually modify the
database contents will consume a command identifier.

74

Data Definition

5.6. Modifying Tables

5.6.1.

When you create a table and you redlize that you made a mistake, or the requirements of the application
change, you can drop the table and create it again. But thisis not a convenient option if the table is already
filled with data, or if thetableisreferenced by other database objects (for instance aforeign key constraint).
Therefore PostgreSQL provides afamily of commands to make modificationsto existing tables. Note that
thisis conceptually distinct from altering the data contained in the table: here we are interested in altering
the definition, or structure, of the table.

You can:

» Add columns

* Remove columns

» Add constraints

» Remove congtraints

» Change default values
 Change column data types
* Rename columns

* Renametables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

Adding a Column

To add a column, use acommand like:

ALTER TABLE products ADD COLUWN description text;

Thenew columnisinitially filled with whatever default valueisgiven (null if you don't specify aDEFAULT
clause).

Tip

From PostgreSQL 11, adding a column with a constant default value no longer means that each
row of the table needs to be updated when the ALTER TABLE statement is executed. Instead,
the default value will be returned the next time the row is accessed, and applied when the table is
rewritten, making the ALTER TABLE very fast even on large tables.

However, if the default valueisvolatile (e.g., cl ock_ti mest anp()) each row will need to be
updated with the value calculated at thetime ALTER TABLE is executed. To avoid a potentially
lengthy update operation, particularly if you intend tofill the column with mostly nondefault values
anyway, it may be preferable to add the column with no default, insert the correct values using
UPDATE, and then add any desired default as described below.

Y ou can a so define constraints on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMWN description text CHECK (description <>
)

75

Data Definition

5.6.2.

5.6.3.

5.6.4.

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints later (see below) after you've filled in the new column correctly.

Removing a Column

To remove a column, use acommand like:

ALTER TABLE products DROP COLUWN descri ption;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will not
silently drop that constraint. Y ou can authorize dropping everything that depends on the column by adding
CASCADE:

ALTER TABLE products DROP COLUWN descri ption CASCADE;

See Section 5.14 for a description of the general mechanism behind this.

Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> '');

ALTER TABLE products ADD CONSTRAI NT some_nanme UNI QUE (product_no);

ALTER TABLE products ADD FOREI GN KEY (product_group_i d) REFERENCES
pr oduct _gr oups;

To add a not-null constraint, which cannot be written as atable constraint, use this syntax:

ALTER TABLE products ALTER COLUWN product _no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can be
added.

Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that's easy. Otherwise the
system assigned a generated name, which you need to find out. The psgl command\ d t abl enane can
be helpful here; other interfaces might also provide away to inspect table details. Then the command is:

ALTER TABLE products DROP CONSTRAI NT sone_nane;

(If you are dealing with a generated constraint name like $2, don't forget that you'll need to double-quote
it to makeit avalid identifier.)

As with dropping a column, you need to add CASCADE if you want to drop a constraint that something
else depends on. An exampleisthat aforeign key constraint depends on aunique or primary key constraint
on the referenced column(s).

Thisworks the same for all constraint types except not-null constraints. To drop a not null constraint use:

76

Data Definition

5.6.5.

5.6.6.

5.6.7.

5.6.8.

ALTER TABLE products ALTER COLUWN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

Changing a Column's Default Value

To set anew default for a column, use acommand like:

ALTER TABLE products ALTER COLUWN price SET DEFAULT 7.77;

Note that this doesn't affect any existing rows in the table, it just changes the default for future | NSERT
commands.

To remove any default value, use:

ALTER TABLE products ALTER COLUWN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop a
default where one hadn't been defined, because the default isimplicitly the null value.

Changing a Column's Data Type

To convert acolumn to a different data type, use acommand like:

ALTER TABLE products ALTER COLUWN price TYPE nureric(10, 2);

Thiswill succeed only if each existing entry in the column can be converted to the new type by an implicit
cast. If amore complex conversion is needed, you can add a USI NG clause that specifies how to compute
the new values from the old.

PostgreSQL will attempt to convert the column's default value (if any) to the new type, as well as any
constraints that involve the column. But these conversions might fail, or might produce surprising results.
It's often best to drop any constraints on the column before atering its type, and then add back suitably
modified constraints afterwards.

Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUWN product _no TO product nunber;

Renaming a Table

To rename atable:

ALTER TABLE products RENAVE TO iterns;

5.7. Privileges

77

Data Definition

When an object iscreated, it isassigned an owner. The owner isnormally therolethat executed the creation
statement. For most kinds of objects, theinitial stateisthat only the owner (or asuperuser) can do anything
with the object. To allow other rolesto useit, privileges must be granted.

There are different kinds of privileges: SELECT, | NSERT, UPDATE, DELETE, TRUNCATE,
REFERENCES, TRl GGER, CREATE, CONNECT, TEMPCORARY, EXECUTE, and USAGE. The privileges
applicableto aparticular object vary depending on the object'stype (table, function, etc). More detail about
the meanings of these privileges appears below. The following sections and chapters will aso show you
how these privileges are used.

The right to modify or destroy an object is inherent in being the object's owner, and cannot be granted
or revoked in itself. (However, like all privileges, that right can be inherited by members of the owning
role; see Section 21.3.)

An object can be assigned to anew owner with an ALTER command of the appropriate kind for the object,
for example

ALTER TABLE t abl e_nane OANER TO new_owner;

Superusers can aways do this; ordinary roles can only do it if they are both the current owner of the object
(or amember of the owning role) and a member of the new owning role.

To assign privileges, the GRANT command is used. For example, if j oe is an existing role, and
account s isan existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO j oe;
Writing ALL in place of a specific privilege grants al privileges that are relevant for the object type.

The specia “role’ name PUBLI C can be used to grant a privilege to every role on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database — for
details see Chapter 21.

To revoke a previously-granted privilege, use the fittingly named REVOKE command:

REVOKE ALL ON accounts FROM PUBLI C;

Ordinarily, only the object's owner (or a superuser) can grant or revoke privileges on an object. However,
itispossibleto grant aprivilege“with grant option”, which givestherecipient theright to grant it inturn to
others. If the grant option is subsequently revoked then all who received the privilege from that recipient
(directly or through a chain of grants) will lose the privilege. For details see the GRANT and REVOKE
reference pages.

An object's owner can choose to revoke their own ordinary privileges, for example to make a table read-
only for themselves as well as others. But owners are always treated as holding all grant options, so they
can always re-grant their own privileges.

The available privileges are:
SELECT

Allows SELECT from any column, or specific column(s), of atable, view, materialized view, or other
table-like object. Also allows use of COPY TO. This privilege is aso needed to reference existing

78

Data Definition

columnvaluesin UPDATE or DELETE. For sequences, thisprivilegealso allowsuseof thecur r val
function. For large objects, this privilege allows the object to be read.

| NSERT

Allows INSERT of anew row into atable, view, etc. Can be granted on specific column(s), in which
case only those columns may be assigned to in the | NSERT command (other columns will therefore
receive default values). Also allows use of COPY FROM.

UPDATE

Allows UPDATE of any column, or specific column(s), of a table, view, etc. (In practice, any
nontrivial UPDATE command will require SELECT privilege as well, since it must reference
table columns to determine which rows to update, and/or to compute new values for columns.)
SELECT ... FOR UPDATE and SELECT ... FOR SHARE aso require this privilege on at
least one column, in addition to the SELECT privilege. For sequences, this privilege allows use of
the next val and set val functions. For large objects, this privilege allows writing or truncating
the object.

DELETE

Allows DELETE of arow from atable, view, etc. (In practice, any nontrivial DELETE command will
require SELECT privilege as well, since it must reference table columns to determine which rows
to delete.)

TRUNCATE
Allows TRUNCATE on atable.
REFERENCES
Allows creation of aforeign key constraint referencing atable, or specific column(s) of atable.
TRI GGER
Allows creation of atrigger on atable, view, etc.
CREATE

For databases, allows new schemas and publications to be created within the database, and alows
trusted extensions to be installed within the database.

For schemas, alows new objects to be created within the schema. To rename an existing object, you
must own the object and have this privilege for the containing schema.

For tablespaces, alows tables, indexes, and temporary files to be created within the tablespace, and
allows databases to be created that have the tablespace as their default tablespace.

Note that revoking this privilege will not alter the existence or location of existing objects.
CONNECT

Allows the grantee to connect to the database. This privilege is checked at connection startup (in
addition to checking any restrictionsimposed by pg_hba. conf).

TEMPORARY

Allows temporary tables to be created while using the database.

79

Data Definition

EXECUTE

Allows calling afunction or procedure, including use of any operatorsthat are implemented on top of
the function. Thisisthe only type of privilege that is applicable to functions and procedures.

USAGCE

For procedural languages, alows use of the language for the creation of functions in that language.
Thisisthe only type of privilege that is applicable to procedural languages.

For schemas, allows access to objects contained in the schema (assuming that the objects’ own
privilege requirements are also met). Essentially this allows the grantee to “look up” objects within
the schema. Without this permission, it is still possible to see the object names, e.g., by querying
system catalogs. Also, after revoking this permission, existing sessions might have statements that
have previously performed thislookup, so thisisnot acompletely secure way to prevent object access.

For sequences, allows use of the cur r val and next val functions.

For types and domains, allows use of the type or domain in the creation of tables, functions, and other
schema objects. (Note that this privilege does not control al “usage” of the type, such asvalues of the
type appearing in queries. It only prevents objects from being created that depend on the type. The
main purpose of this privilege is controlling which users can create dependencies on a type, which
could prevent the owner from changing the type later.)

For foreign-data wrappers, allows creation of new servers using the foreign-data wrapper.

For foreign servers, allows creation of foreign tables using the server. Grantees may also create, alter,
or drop their own user mappings associated with that server.

The privileges required by other commands are listed on the reference page of the respective command.

PostgreSQL grants privileges on sometypes of objectsto PUBLI Chy default when the objects are created.
No privilegesaregrantedto PUBL I Cby default on tables, table columns, sequences, foreign datawrappers,
foreign servers, large objects, schemas, or tablespaces. For other types of objects, the default privileges
granted to PUBLI C are as follows: CONNECT and TEMPORARY (create temporary tables) privileges for
databases, EXECUTE privilege for functions and procedures; and USAGE privilege for languages and data
types (including domains). The object owner can, of course, REVOKE both default and expressly granted
privileges. (For maximum security, issue the REVOKE in the same transaction that creates the object; then
there is no window in which another user can use the object.) Also, these default privilege settings can be
overridden using the ALTER DEFAULT PRIVILEGES command.

Table 5.1 showsthe one-letter abbreviationsthat are used for these privilege typesin ACL (Access Control

List) values. You will see these lettersin the output of the psgl commands listed below, or when looking
at ACL columns of system catalogs.

Table5.1. ACL Privilege Abbreviations

Privilege Abbreviation Applicable Object Types

SELECT r (“read”) LARGE OBJECT, SEQUENCE, TABLE (and
table-like objects), table column

| NSERT a (“append”) TABLE, table column

UPDATE w (“write”) LARGE OBJECT, SEQUENCE, TABLE, table
column

DELETE d TABLE

80

Data Definition

Privilege Abbreviation Applicable Object Types

TRUNCATE D TABLE

REFERENCES X TABLE, table column

TRI GGER t TABLE

CREATE C DATABASE, SCHEVA, TABLESPACE

CONNECT c DATABASE

TEMPORARY T DATABASE

EXECUTE X FUNCTI ON, PROCEDURE

USAGE U DOVAI N, FOREI GN DATA WRAPPER,
FOREI GN SERVER, LANGUAGE, SCHEMA,
SEQUENCE, TYPE

Table 5.2 summarizes the privileges available for each type of SQL object, using the abbreviations shown
above. It also showsthe psgl command that can be used to examine privilege settings for each object type.

Table5.2. Summary of Access Privileges

Object Type All Privileges Default PUBLI C |psgl Command
Privileges
DATABASE CTc Tc \
DOVAI N U U \ dD+
FUNCTI ON or PROCEDURE X X \ df +
FOREI GN DATA WRAPPER U none \ dew+
FOREI GN SERVER U none \ des+
LANGUACE U u \dL+
LARGE OBJECT rw none
SCHENMA uc none \dn+
SEQUENCE rwJ none \dp
TABLE (and table-like objects) ar wdDxt none \dp
Table column ar wx none \dp
TABLESPACE C none \ db+
TYPE U U \dT+

The privileges that have been granted for a particular object are displayed asalist of acl i t ementries,
where each acl i t emdescribes the permissions of one grantee that have been granted by a particular
grantor. For example, cal vi n=r *w hobbes specifiesthat therolecal vi n hasthe privilege SELECT
(r) with grant option (*) as well as the non-grantable privilege UPDATE (W), both granted by the role
hobbes. If cal vi n aso has some privileges on the same object granted by a different grantor, those
would appear as aseparateacl i t ementry. An empty granteefieldinanacl i t emstandsfor PUBLI C.

As an example, suppose that user mi r i amcreates table nyt abl e and does:
GRANT SELECT ON nytable TO PUBLI C,

GRANT SELECT, UPDATE, |NSERT ON nytable TO admi n;
GRANT SELECT (col 1), UPDATE (col1) ON nytable TO miriamrw,

81

Data Definition

Then psgl's\ dp command would show:

=> \dp nytable
Access privil eges

Schema | Nane | Type | Access privil eges | Col um
privil eges | Policies
-------- o e e
o e N
public | mytable | table | mirianmrarwdDxt/miriamt| col 1:

+

| | | =r/mriam +| mriamrw=srw

mriam |

| | | admin=arw mriam |
|
(1 row)

If the “Access privileges’ column is empty for a given object, it means the object has default privileges
(that is, its privileges entry in the relevant system catalog is null). Default privileges always include all
privileges for the owner, and can include some privileges for PUBLI C depending on the object type,
as explained above. The first GRANT or REVOKE on an object will instantiate the default privileges
(producing, for example, mi r i am=ar wdDxt / mi r i an) and then modify them per the specified request.
Similarly, entries are shown in “Column privileges’ only for columns with nondefault privileges. (Note:
for this purpose, “default privileges’ always means the built-in default privileges for the object's type.
An object whose privileges have been affected by an ALTER DEFAULT PRI VI LEGES command will
always be shown with an explicit privilege entry that includes the effects of the ALTER.)

Notice that the owner's implicit grant options are not marked in the access privileges display. A * will
appear only when grant options have been explicitly granted to someone.

5.8. Row Security Policies

In addition to the SQL -standard privilege system available through GRANT, tables can have row security
policiesthat restrict, on aper-user basis, which rows can bereturned by normal queriesor inserted, updated,
or deleted by data modification commands. Thisfeature is also known as Row-Level Security. By defaullt,
tables do not have any policies, so that if a user has access privileges to a table according to the SQL
privilege system, all rows within it are equally available for querying or updating.

When row security is enabled on atable (with ALTER TABLE ... ENABLE ROW LEVEL SECURITY),
all normal access to the table for selecting rows or modifying rows must be alowed by a row security
policy. (However, the table's owner istypically not subject to row security policies.) If no policy existsfor
the table, a default-deny policy is used, meaning that no rows are visible or can be modified. Operations
that apply to the whole table, such as TRUNCATE and REFERENCES, are not subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified to
apply to ALL commands, or to SELECT, | NSERT, UPDATE, or DELETE. Multiple roles can be assigned
to agiven policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to apolicy, an expressionisrequired that returns
aBooleanresult. Thisexpression will be evaluated for each row prior to any conditionsor functionscoming
fromtheuser'squery. (Theonly exceptionstothisrulearel eakpr oof functions, which are guaranteed to
not leak information; the optimizer may choose to apply such functions ahead of the row-security check.)
Rows for which the expression does not return t r ue will not be processed. Separate expressions may be
specified to provide independent control over the rows which are visible and the rows which are allowed

82

Data Definition

to be modified. Policy expressions are run as part of the query and with the privileges of the user running
the query, although security-definer functions can be used to access data not available to the calling user.

Superusers and roles with the BYPASSRLS attribute always bypass the row security system when
accessing atable. Table owners normally bypass row security as well, though atable owner can choose to
be subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to atable, is aways the privilege of the
table owner only.

Policiesare created using the CREATE POLICY command, altered usingthe ALTER POLICY command,
and dropped using the DROP POLICY command. To enable and disable row security for a given table,
use the ALTER TABLE command.

Each policy has a name and multiple policies can be defined for atable. As policies are table-specific,
each policy for atable must have a unique name. Different tables may have policies with the same name.

When multiple policies apply to agiven query, they are combined using either OR (for permissive policies,
which are the default) or using AND (for restrictive policies). Thisis similar to the rule that a given role
has the privileges of al roles that they are a member of. Permissive vs. restrictive policies are discussed
further below.

As asimple example, here is how to create a policy on theaccount relation to allow only members of
the manager s role to access rows, and only rows of their accounts:

CREATE TABLE accounts (nmanager text, company text, contact_emil
text);

ALTER TABLE accounts ENABLE ROW LEVEL SECURITY,

CREATE POLI CY account _managers ON accounts TO managers
USI NG (manager = current_user);

The policy above implicitly providesa W TH CHECK clause identical to its USI NG clause, so that the
constraint applies both to rows selected by a command (so a manager cannot SELECT, UPDATE, or
DELETE existing rows belonging to a different manager) and to rows modified by a command (so rows
belonging to a different manager cannot be created vial NSERT or UPDATE).

If noroleis specified, or the special user name PUBLI Cis used, then the policy appliesto all users onthe
system. To alow all usersto access only their own row in auser s table, asimple policy can be used:

CREATE PCLI CY user _policy ON users
USI NG (user_name = current_user);

Thisworks similarly to the previous example.

To use adifferent policy for rowsthat are being added to the table compared to those rowsthat are visible,
multiple policies can be combined. This pair of policies would allow all users to view all rows in the
user s table, but only modify their own:

CREATE POLI CY user_sel _policy ON users
FOR SELECT
USI NG (true);

83

Data Definition

CREATE PCLI CY user _nmod_policy ON users
USI NG (user_nanme = current_user);

In a SELECT command, these two policies are combined using OR, with the net effect being that all rows
can be selected. In other command types, only the second policy applies, so that the effects are the same
as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does not
remove any policies that are defined on the table; they are simply ignored. Then all rows in the table are
visible and modifiable, subject to the standard SQL privileges system.

Below isalarger example of how thisfeature can be used in production environments. The tablepasswd
emulates a Unix password file:

-- Sinmple passwd-file based exampl e
CREATE TABLE passwd (

user _nane text UNI QUE NOT NULL,
pwhash t ext,
ui d int PRI MARY KEY,
gid int NOT NULL,
real nane text NOT NULL,
hone_phone t ext,
extra_info t ext,
home_dir text NOT NULL,
shel | text NOT NULL
)
CREATE RCLE admin; -- Admi nistrator
CREATE RCLE bob; -- Normal user
CREATE ROLE alice; -- Normal user

-- Popul ate the table
| NSERT | NTO passwd VALUES

("admn', ' xxx',0,0," Admn',"'111-222-3333" ,null,"/root','/bin/dash");
| NSERT | NTO passwd VALUES

("bob',"'xxx"',1,1,"Bob',"' 123-456-7890', null,"'/honme/bob',"'/bin/zsh');
| NSERT | NTO passwd VALUES

("alice',"xxx",2,1," Alice','098-765-4321" ,null,"/home/alice','/bin/
zsh');

-- Be sure to enable row | evel security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;

-- Create policies
-- Adm nistrator can see all rows and add any rows
CREATE PCLI CY admin_all ON passwd TO admin USING (true) WTH CHECK
(true);
-- Nornmal users can view all rows
CREATE POLI CY al | _vi ew ON passwd FOR SELECT USI NG (true);
-- Normal users can update their own records, but
-- limt which shells a normal user is allowed to set
CREATE PCLI CY user _nmod ON passwd FOR UPDATE

USI NG (current _user = user_nane)

W TH CHECK (

Data Definition

current _user = user_nanme AND
shell IN ('/bin/bash',"/bin/sh','/bin/dash','/bin/zsh',"'/bin/
tcsh')

)

-- Allow admin all normal rights
GRANT SELECT, | NSERT, UPDATE, DELETE ON passwd TO admi n;
-- Users only get select access on public col ums
GRANT SELECT
(user_name, uid, gid, real _name, home_phone, extra_info, hone_dir,
shel 1)
ON passwd TO public;
-- Allow users to update certain col ums
GRANT UPDATE
(pwhash, real name, home_phone, extra_info, shell)
ON passwd TO public;

As with any security settings, it's important to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

-- admin can view all rows and fields
post gres=> set role admn;

SET
post gres=> t abl e passwd;
user_nane | pwhash | uid | gid | real _name | home_phone
extra_info | home_dir | shel
----------- T T T I ppup R
o m e o - - o m e e e oo - T ——
adm n | xxx | 0 | 0| Admin | 111-222-3333
| /root | /bin/dash
bob | xxx | 1] 1| Bob | 123-456-7890
| /hone/ bob | /bin/zsh
alice | xxx | 2| 1| Aice | 098-765-4321
| /hone/alice | /bin/zsh
(3 rows)

-- Test what Alice is able to do
postgres=> set role alice;
SET
post gres=> t abl e passwd;
ERROR: permi ssion denied for relation passwd
post gres=> sel ect
user _nane, real _name, home_phone, extra_i nfo, hone_dir, shell from passwd;

user_nane | real _name | honme_phone | extra_info | hone_dir |
shel |
----------- Ty
.

adm n | Admin | 111-222-3333 | | /root | /
bi n/ dash

bob | Bob | 123-456-7890 | | /home/ bob | /
bi n/ zsh

alice | Alice | 098-765-4321 | | /hone/alice | /
bi n/ zsh

85

Data Definition

(3 rows)

post gr es=> update passwd set user_nane = 'joe';
ERROR: permi ssion denied for relation passwd
-- Alice is allowed to change her own real nanme, but no others

post gr es=> update passwd set real _nane = 'Alice Doe';

UPDATE 1

post gr es=> update passwd set real _nane = 'John Doe' where user_nane =
"admin';

UPDATE 0

post gr es=> update passwd set shell = '/bin/xx";

ERROR: new row vi ol ates WTH CHECK OPTION for "passwd”

post gres=> del ete from passwd;

ERROR: perm ssion denied for relation passwd

postgres=> insert into passwd (user_nane) values ('xxx');

ERROR: permi ssion denied for relation passwd

-- Alice can change her own password; RLS silently prevents updating
ot her rows

post gr es=> update passwd set pwhash = 'abc’;
UPDATE 1

All of the policies constructed thusfar have been permissive policies, meaning that when multiple policies
are applied they are combined using the “OR” Boolean operator. While permissive policies can be
constructed to only allow access to rows in the intended cases, it can be simpler to combine permissive
policies with restrictive policies (which the records must pass and which are combined using the “AND”
Boolean operator). Building on the example above, we add arestrictive policy to require the administrator
to be connected over alocal Unix socket to access the records of the passwd table:

CREATE PCLI CY admi n_Il ocal _only ON passwd AS RESTRI CTI VE TO admi n
USI NG (pg_catal og.inet_client_addr() IS NULL);

We can then see that an administrator connecting over a network will not see any records, due to the
restrictive policy:

=> SELECT current _user;
current _user

=> sel ect inet_client_addr();
i net _client_addr

127.0.0.1
(1 row

=> SELECT current _user;
current _user

=> TABLE passwd;

86

Data Definition

user_nane | pwhash | uid | gid | real _name | hone_phone | extra_info
| home_dir | shell

=> UPDATE passwd set pwhash = NULL;
UPDATE 0

Referential integrity checks, such as unique or primary key constraints and foreign key references, always
bypass row security to ensure that data integrity is maintained. Care must be taken when devel oping
schemas and row level policies to avoid “covert channel” leaks of information through such referential
integrity checks.

In some contextsit isimportant to be sure that row security is not being applied. For example, when taking
abackup, it could be disastrous if row security silently caused some rows to be omitted from the backup.
In such a situation, you can set the row_security configuration parameter to of f . This does not in itself
bypass row security; what it does is throw an error if any query's results would get filtered by a policy.
The reason for the error can then be investigated and fixed.

In the examples above, the policy expressions consider only the current values in the row to be accessed
or updated. Thisisthe simplest and best-performing case; when possible, it's best to design row security
applications to work this way. If it is necessary to consult other rows or other tables to make a policy
decision, that can be accomplished using sub-SELECTS, or functionsthat contain SELECTS, in the policy
expressions. Be aware however that such accesses can create race conditions that could alow information
leskage if care is not taken. As an example, consider the following table design:

-- definition of privilege groups
CREATE TABLE groups (group_id int PRI MARY KEY,
group_name text NOT NULL);

I NSERT | NTO gr oups VALUES

(1, "low),
(2, 'medium),
(5, "high");
GRANT ALL ON groups TO alice; -- alice is the admi nistrator

GRANT SELECT ON groups TO public;

-- definition of users' privilege |levels
CREATE TABLE users (user_nane text PRI MARY KEY,
group_id int NOT NULL REFERENCES groups);

| NSERT | NTO users VALUES
("alice', 5),
(' bob', 2),
("mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

-- table holding the information to be protected
CREATE TABLE information (info text,
group_id int NOT NULL REFERENCES groups);

87

Data Definition

I NSERT | NTO i nf or mati on VALUES
('barely secret', 1),
("slightly secret', 2),
('very secret', 5);

ALTER TABLE i nformati on ENABLE ROW LEVEL SECURI TY;

-- a row shoul d be visible to/updatable by users whose security
group_id is
-- greater than or equal to the row s group_id
CREATE PCLICY fp_s ON information FOR SELECT

USI NG (group_id <= (SELECT group_id FROM users WHERE user _nane
current _user));
CREATE POLI CY fp_u ON information FOR UPDATE

USI NG (group_id <= (SELECT group_id FROM users WHERE user _nane
current _user));

-- we rely only on RLS to protect the information table
GRANT ALL ON i nformation TO public;

Now suppose that al i ce wishesto change the “dlightly secret” information, but decides that nal | ory
should not be trusted with the new content of that row, so she does:

BEG N;

UPDATE users SET group_id =

UPDATE i nformati on SET info
2,

COW T,

1 WHERE user_nane = "mallory';
= 'secret fromnmallory' WHERE group_id =

That looks safe; there is no window wherein mal | or y should be able to see the “secret from mallory”
string. However, there isarace condition here. If mal | or y is concurrently doing, say,

SELECT * FROM i nformati on WHERE group_id = 2 FOR UPDATE;

and her transaction isin READ COVM TTED mode, it is possible for her to see “secret from mallory”.
That happensif her transaction reachesthei nf or nat i on row just after al i ce'sdoes. It blockswaiting
for al i ce's transaction to commit, then fetches the updated row contents thanks to the FOR UPDATE
clause. However, it does not fetch an updated row for the implicit SELECT from user s, because that
sub-SELECT did not have FOR UPDATE; instead the user s row is read with the snapshot taken at the
start of the query. Therefore, the policy expression tests the old value of mal | or y's privilege level and
allows her to see the updated row.

There are several ways around this problem. One simple answer isto use SELECT ... FOR SHARE
in sub-SELECTSs in row security policies. However, that requires granting UPDATE privilege on the
referenced table (hereuser s) to the affected users, which might be undesirable. (But another row security
policy could be applied to prevent them from actually exercising that privilege; or the sub-SELECT
could be embedded into a security definer function.) Also, heavy concurrent use of row share locks on
the referenced table could pose a performance problem, especially if updates of it are frequent. Another
solution, practical if updates of the referenced table are infrequent, is to take an ACCESS EXCLUSI VE
lock on the referenced table when updating it, so that no concurrent transactions could be examining old
row values. Or one could just wait for all concurrent transactions to end after committing an update of the
referenced table and before making changes that rely on the new security situation.

88

Data Definition

For additional details see CREATE POLICY and ALTER TABLE.

5.9. Schemas

5.9.1.

A PostgreSQL database cluster contains one or more named databases. Roles and afew other object types
are shared across the entire cluster. A client connection to the server can only access data in a single
database, the one specified in the connection request.

Note

Users of a cluster do not necessarily have the privilege to access every database in the cluster.
Sharing of role names means that there cannot be different roles named, say, j oe intwo databases
in the same cluster; but the system can be configured to allow j oe access to only some of the
databases.

A database contains one or more named schemas, which in turn contain tables. Schemas a so contain other
kinds of named objects, including data types, functions, and operators. The same object name can be used
in different schemas without conflict; for example, both schenal and myschenma can contain tables
named myt abl e. Unlike databases, schemas are not rigidly separated: a user can access objects in any
of the schemas in the database they are connected to, if they have privileges to do so.

There are several reasons why one might want to use schemas:
» To alow many usersto use one database without interfering with each other.
» To organize database objectsinto logical groupsto make them more manageable.

 Third-party applications can be put into separate schemas so they do not collide with the names of other
objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be nested.
Creating a Schema
To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice. For

example:

CREATE SCHEMA nyschens;

To create or access objects in a schema, write a qualified name consisting of the schema name and table
name separated by adot:

schema. tabl e

This works anywhere a table name is expected, including the table modification commands and the data
access commands discussed in the following chapters. (For brevity we will speak of tables only, but the
same ideas apply to other kinds of named objects, such as types and functions.)

Actualy, the even more general syntax

dat abase. schenn. t abl e

89

Data Definition

5.9.2.

5.9.3.

can be used too, but at present thisisjust for pro forma compliance with the SQL standard. If you write a
database name, it must be the same as the database you are connected to.

So to create atable in the new schema, use:

CREATE TABLE nyschema. nytabl e (

)

To drop aschemaif it'sempty (all objectsin it have been dropped), use:

DROP SCHEMA nyschens;

To drop a schemaincluding al contained objects, use:

DROP SCHEMA nyschena CASCADE;
See Section 5.14 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schena_name AUTHORI ZATI ON user _nane;

Y ou can even omit the schema name, in which case the schema name will be the same as the user name.
See Section 5.9.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

The Public Schema

In the previous sections we created tables without specifying any schema names. By default such tables
(and other objects) are automatically put into aschemanamed “public”’. Every new database contains such
aschema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:
CREATE TABLE public. products (...);

The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of just
the table name. The system determines which table is meant by following a search path, which isalist
of schemas to look in. The first matching table in the search path is taken to be the one wanted. If there
is no match in the search path, an error is reported, even if matching table names exist in other schemas
in the database.

90

Data Definition

The ahility to create like-named objects in different schemas complicates writing a query that references
precisely the same objects every time. It also opens up the potential for users to change the behavior of
other users queries, maliciously or accidentally. Due to the prevalence of unqualified names in queries
and their use in PostgreSQL internals, adding a schema to sear ch_pat h effectively trusts all users
having CREATE privilege on that schema. When you run an ordinary query, amalicious user ableto create
objects in a schema of your search path can take control and execute arbitrary SQL functions as though
you executed them.

Thefirst schemanamed in the search path is called the current schema. Aside from being the first schema
searched, it is also the schemain which new tableswill be created if the CREATE TABLE command does
not specify a schema name.

To show the current search path, use the following command:

SHOW sear ch_pat h;

In the default setup this returns:

search_path

"$user", public

The first element specifies that a schema with the same name as the current user is to be searched. If no
such schema exists, the entry is ignored. The second element refers to the public schema that we have
seen already.

The first schema in the search path that exists is the default location for creating new objects. That is
the reason that by default objects are created in the public schema. When objects are referenced in any
other context without schema qualification (table modification, data modification, or query commands)
the search path is traversed until a matching object is found. Therefore, in the default configuration, any
unqualified access again can only refer to the public schema.

To put our new schemain the path, we use:

SET search_path TO nyschens, publi c;

(We omit the $user here because we have no immediate need for it.) And then we can access the table
without schema qualification:

DROP TABLE nyt abl e;
Also, since nyschena isthefirst element in the path, new objects would by default be created in it.

We could also have written:

SET search_path TO nyschens;

Then we no longer have accessto the public schemawithout explicit qualification. Thereisnothing special
about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.26 for other ways to manipul ate the schema search path.

91

Data Definition

5.9.4.

5.9.5.

5.9.6.

The search path worksin the same way for data type names, function names, and operator names asit does
for table names. Data type and function names can be qualified in exactly the same way as table names. If
you need to write a qualified operator name in an expression, thereis a special provision: you must write

OPERATOR(schemma. oper at or)

Thisis needed to avoid syntactic ambiguity. An exampleis:

SELECT 3 OPERATOR(pg_catal og. +) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so ugly
asthat.

Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To alow that, the owner of the
schema must grant the USAGE privilege on the schema. To alow users to make use of the objects in the
schema, additional privileges might need to be granted, as appropriate for the object.

A user can also beallowed to create objectsin someone el se's schema. To allow that, the CREATE privilege
on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE privileges on
the schemapubl i c. Thisalowsall usersthat are able to connect to a given database to create objectsin
itspubl i ¢ schema. Some usage patterns call for revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLI C,

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second senseit isakey word, hence the different capitalization; recall the guidelinesfrom
Section 4.1.1.)

The System Catalog Schema

Inadditionto publ i ¢ and user-created schemas, each database containsapg_cat al og schema, which
containsthe system tablesand all the built-in datatypes, functions, and operators. pg_cat al og isaways
effectively part of the search path. If it is not named explicitly in the path then it is implicitly searched
before searching the path's schemas. This ensures that built-in names will always be findable. However,
you can explicitly place pg_cat al og at the end of your search path if you prefer to have user-defined
names override built-in names.

Since system table names begin with pg_, it isbest to avoid such names to ensure that you won't suffer a
conflict if somefuture version definesasystem table named the same asyour table. (With the default search
path, an unqualified reference to your table name would then be resolved as the system table instead.)
System tables will continue to follow the convention of having names beginning with pg_, so that they
will not conflict with unqualified user-table names so long as users avoid the pg__ prefix.

Usage Patterns

Schemas can be used to organize your data in many ways. A secure schema usage pattern prevents
untrusted users from changing the behavior of other users' queries. When a database does not use a secure
schema usage pattern, users wishing to securely query that database would take protective action at the
beginning of each session. Specifically, they would begin each session by setting sear ch_pat h to the
empty string or otherwise removing non-superuser-writable schemas from sear ch_pat h. Thereare a
few usage patterns easily supported by the default configuration:

92

Data Definition

5.9.7.

5.10

 Constrain ordinary users to user-private schemas. To implement this, issue REVOKE CREATE ON
SCHEMA publ i ¢ FROM PUBLI C, and create aschemafor each user with the same name asthat user.
Recall that the default search path starts with $user , which resolves to the user name. Therefore, if
each user has a separate schema, they accesstheir own schemas by default. After adopting thispatternin
adatabase where untrusted users had already logged in, consider auditing the public schemafor objects
named like objects in schemapg_cat al og. This pattern is a secure schema usage pattern unless an
untrusted user is the database owner or holds the CREATEROLE privilege, in which case no secure
schema usage pattern exists.

» Remove the public schema from the default search path, by modifying post gr esql . conf or by
issuing ALTER ROLE ALL SET search_path = "S$user". Everyone retains the ahility to
create objectsin the public schema, but only qualified nameswill choose those objects. While qualified
table references are fine, calls to functions in the public schema will be unsafe or unreliable. If you
create functions or extensions in the public schema, use the first pattern instead. Otherwise, like the
first pattern, this is secure unless an untrusted user is the database owner or holds the CREATEROLE

privilege.

» Keep the default. All users access the public schema implicitly. This simulates the situation where
schemas are not availableat all, giving asmooth transition from the non-schema-aware world. However,
thisisnever asecure pattern. It is acceptable only when the database has a single user or afew mutually-
trusting users.

For any pattern, to install shared applications (tablesto be used by everyone, additional functions provided
by third parties, etc.), put them into separate schemas. Remember to grant appropriate privilegesto allow
the other users to access them. Users can then refer to these additional objects by qualifying the names
with a schema name, or they can put the additional schemas into their search path, as they choose.

Portability

Inthe SQL standard, the notion of objectsin the same schemabeing owned by different usersdoesnot exist.
Moreover, someimplementations do not allow you to create schemasthat have a different name than their
owner. Infact, the concepts of schemaand user are nearly equivalent in a database system that implements
only the basic schema support specified in the standard. Therefore, many users consider qualified names
torealy consist of user _nane. t abl e_nane. Thisis how PostgreSQL will effectively behave if you
create a per-user schemafor every user.

Also, there is no concept of apubl i ¢ schemain the SQL standard. For maximum conformance to the
standard, you should not use the publ i ¢ schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems, then
maximum portability would be achieved by not using schemas at all.

Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers. (SQL:1999
and | ater define atypeinheritance feature, which differsin many respectsfrom the features described here.)

Let's start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular state.
This can be done by creating two tables, one for state capitals and one for cities that are not capitals.
However, what happens when we want to ask for data about a city, regardless of whether it is a capital
or not? The inheritance feature can help to resolve this problem. We define the capi t al s table so that
itinheritsfromci ti es:

93

Data Definition

CREATE TABLE cities (

name t ext,
popul ati on fl oat,
el evati on i nt -- in feet

)

CREATE TABLE capitals (
state char (2)
) INHERI TS (cities);

Inthiscase, thecapi t al s tableinherits all the columns of its parent table, ci t i es. State capitals also
have an extracolumn, st at e, that showstheir state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of atable or al rows of atable plus al of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of al cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT nane, el evation
FROM cities
VWHERE el evati on > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

nane | elevation
___________ .
Las Vegas | 2174
Mari posa | 1953
Madi son | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
elevation over 500 feet:

SELECT nane, el evation
FROM ONLY cities
VWHERE el evati on > 500;

nane | elevation
___________ .
Las Vegas | 2174
Mari posa | 1953

Here the ONLY keyword indicates that the query should apply only to ci t i es, and not any tables below
ci t i es intheinheritance hierarchy. Many of the commands that we have already discussed — SELECT,
UPDATE and DELETE — support the ONLY keyword.

Y ou can also writethetable name with atrailing * to explicitly specify that descendant tables are included:

SELECT nane, el evation
FROM ci ti es*
VWHERE el evati on > 500;

94

Data Definition

Writing * isnot necessary, since thisbehavior isawaysthe default. However, this syntax is still supported
for compatibility with older releases where the default could be changed.

In some cases you might wish to know which table a particular row originated from. There is a system
column called t abl eoi d in each table which can tell you the originating table:

SELECT c.tableoid, c.nane, c.elevation
FROM cities c
VWHERE c. el evati on > 500;

which returns:

tabl eoid | name | elevation
__________ e
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madi son | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing ajoin with
pg_cl ass you can see the actual table names:

SELECT p.rel nane, c.nane, c.elevation
FROM cities ¢, pg _class p
WHERE c. el evati on > 500 AND c.tableoid = p.oid;

which returns:

rel name | name | elevation
__________ e
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madi son | 845

Another way to get the same effect is to use ther egcl ass alias type, which will print the table OID
symbolicaly:

SELECT c. tabl eoi d: : regcl ass, c.nane, c.elevation
FROM cities c
WHERE c. el evati on > 500;

Inheritance does not automatically propagate data from | NSERT or COPY commands to other tablesin
the inheritance hierarchy. In our example, the following | NSERT statement will fail:

I NSERT I NTO cities (nanme, popul ation, elevation, state)
VALUES (' Al bany', NULL, NULL, 'NY');

We might hope that the data would somehow be routed to the capi t al s table, but this does not happen:
I NSERT alwaysinsertsinto exactly the table specified. In some casesit ispossibleto redirect theinsertion
using arule (see Chapter 40). However that does not help for the above case because theci ti es table
does not contain the column st at e, and so the command will be rejected before the rule can be applied.

95

Data Definition

All check constraints and not-null constraints on a parent table are automatically inherited by its children,
unless explicitly specified otherwise with NO | NHERI T clauses. Other types of constraints (unique,
primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns defined
by the parent tables. Any columns declared in the child table's definition are added to these. If the same
column name appears in multiple parent tables, or in both a parent table and the child's definition, then
these columnsare“ merged” so that thereisonly one such columnin the child table. To be merged, columns
must have the same datatypes, else an error israised. Inheritable check constraints and not-null constraints
are merged in asimilar fashion. Thus, for example, a merged column will be marked not-null if any one
of the column definitions it came from is marked not-null. Check constraints are merged if they have the
same name, and the merge will fail if their conditions are different.

Table inheritance is typically established when the child table is created, using the | NHERI TS clause of
the CREATE TABLE statement. Alternatively, atable which is already defined in a compatible way can
have anew parent relationship added, using thel NHERI T variant of ALTER TABLE. To do thisthe new
child table must aready include columns with the same names and types as the columns of the parent. It
must also include check constraints with the same names and check expressions as those of the parent.
Similarly an inheritance link can be removed from a child using the NO | NHERI T variant of ALTER
TABLE. Dynamically adding and removing inheritance links like this can be useful when the inheritance
relationship is being used for table partitioning (see Section 5.11).

One convenient way to create a compatible table that will later be made a new child isto use the L1 KE
clausein CREATE TABLE. This creates a new table with the same columns as the source table. If there
are any CHECK constraints defined on the source table, the | NCLUDI NG CONSTRAI NTS option to
LI KE should be specified, as the new child must have constraints matching the parent to be considered
compatible.

A parent table cannot be dropped while any of itschildren remain. Neither can columnsor check constraints
of child tables be dropped or altered if they are inherited from any parent tables. If you wish to remove a
table and al of its descendants, one easy way is to drop the parent table with the CASCADE option (see
Section 5.14).

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns that are depended on by other tablesis only possible when
using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging and
rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example, granting
UPDATE permission ontheci ti es tableimplies permission to update rowsinthecapi t al s tableas
well, when they are accessed through ci ti es. This preserves the appearance that the data is (also) in
the parent table. But the capi t al s table could not be updated directly without an additional grant. In
asimilar way, the parent table's row security policies (see Section 5.8) are applied to rows coming from
child tables during an inherited query. A child table's policies, if any, are applied only when it is the table
explicitly named in the query; and in that case, any policies attached to its parent(s) are ignored.

Foreign tables (see Section 5.12) can also be part of inheritance hierarchies, either as parent or child tables,
just as regular tables can be. If aforeign table is part of an inheritance hierarchy then any operations not
supported by the foreign table are not supported on the whole hierarchy either.

5.10.1. Caveats

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used
for data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE, most
variants of ALTER TABLE, but not | NSERT or ALTER TABLE ... RENAME) typicaly default

96

Data Definition

5.11.

to including child tables and support the ONLY notation to exclude them. Commands that do database
maintenance and tuning (e.g., REI NDEX, VACUUM) typically only work onindividual, physical tables and
do not support recursing over inheritance hierarchies. Therespective behavior of each individual command
is documented in its reference page (SQL Commands).

A seriouslimitation of theinheritance featureisthat indexes (including unique constraints) and foreign key
constraints only apply to singletables, not to their inheritance children. Thisistrue on both thereferencing
and referenced sides of aforeign key constraint. Thus, in the terms of the above example:

e If wedeclaredci ti es.nanme tobe UNI QUE or aPRI MARY KEY, thiswould not stopthecapi tal s
table from having rows with names duplicating rows in ci ti es. And those duplicate rows would
by default show up in queries from ci ti es. In fact, by default capi t al s would have no unique
congtraint at all, and so could contain multiple rows with the same name. You could add a unique
congtraint to capi t al s, but thiswould not prevent duplication comparedtoci ti es.

e Similarly, if we were to specify that ci ti es.name REFERENCES some other table, this constraint
would not automatically propagate to capi t al s. In this case you could work around it by manually
adding the same REFERENCES constraint to capi t al s.

 Specifying that another table's column REFERENCES ci ti es(nanme) would allow the other table
to contain city names, but not capital names. There is no good workaround for this case.

Some functionality not implemented for inheritance hierarchies is implemented for declarative
partitioning. Considerable careis needed in deciding whether partitioning with legacy inheritanceis useful
for your application.

Table Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement
partitioning as part of your database design.

5.11.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partitioning
can provide several benefits:

* Query performance can be improved dramatically in certain situations, particularly when most of the
heavily accessed rows of the table are in asingle partition or a small number of partitions. Partitioning
effectively substitutes for the upper tree levels of indexes, making it more likely that the heavily-used
parts of the indexes fit in memory.

» When queries or updates access alarge percentage of a single partition, performance can be improved
by using a sequential scan of that partition instead of using an index, which would require random-
access reads scattered across the whole table.

» Bulk loads and deletes can be accomplished by adding or removing partitions, if the usage pattern is
accounted for in the partitioning design. Dropping an individual partition using DROP TABLE, or doing
ALTER TABLE DETACH PARTI Tl ON, is far faster than a bulk operation. These commands also
entirely avoid the VACUUMoverhead caused by abulk DELETE.

» Seldom-used data can be migrated to cheaper and slower storage media.

These benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which atable will benefit from partitioning depends on the application, although arule of thumb
isthat the size of the table should exceed the physical memory of the database server.

97

Data Definition

PostgreSQL offers built-in support for the following forms of partitioning:
Range Partitioning

The table is partitioned into “ranges’ defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example, one might partition by date
ranges, or by ranges of identifiersfor particular business objects. Each range's bounds are understood
as being inclusive at the lower end and exclusive at the upper end. For example, if one partition's
rangeisfrom1 to 10, and the next one'srangeisfrom 10 to 20, then value 10 belongs to the second
partition not the first.

List Partitioning
Thetableis partitioned by explicitly listing which key value(s) appear in each partition.
Hash Partitioning

The table is partitioned by specifying a modulus and a remainder for each partition. Each partition
will hold the rows for which the hash value of the partition key divided by the specified modulus will
produce the specified remainder.

If your application needs to use other forms of partitioning not listed above, alternative methods such as
inheritance and UNI ON ALL views can be used instead. Such methods offer flexibility but do not have
some of the performance benefits of built-in declarative partitioning.

5.11.2. Declarative Partitioning

PostgreSQL allowsyou to declare that atableisdivided into partitions. Thetablethat isdivided isreferred
to as a partitioned table. The declaration includes the partitioning method as described above, plus alist
of columns or expressions to be used as the partition key.

The partitioned table itself isa“virtual” table having no storage of its own. Instead, the storage belongs to
partitions, which are otherwise-ordinary tables associated with the partitioned table. Each partition stores
a subset of the data as defined by its partition bounds. All rows inserted into a partitioned table will be
routed to the appropriate one of the partitions based on the values of the partition key column(s). Updating
the partition key of arow will cause it to be moved into a different partition if it no longer satisfies the
partition bounds of its original partition.

Partitions may themselves be defined as partitioned tables, resulting in sub-partitioning. Although all
partitions must have the same columns as their partitioned parent, partitions may have their own indexes,
constraints and default values, distinct from those of other partitions. See CREATE TABLE for more
details on creating partitioned tables and partitions.

It is not possible to turn a regular table into a partitioned table or vice versa. However, it is possible
to add an existing regular or partitioned table as a partition of a partitioned table, or remove a partition
from a partitioned table turning it into a standalone table; this can simplify and speed up many
maintenance processes. See ALTER TABLE to learn more about the ATTACH PARTI TI ONand DETACH
PARTI Tl ON sub-commands.

Partitions can aso be foreign tables, although they have some limitations that normal tables do not; see
CREATE FOREIGN TABLE for more information.

5.11.2.1. Example

Suppose we are constructing a database for a large ice cream company. The company measures peak
temperatures every day aswell asice cream sales in each region. Conceptually, we want atable like:

98

Data Definition

CREATE TABLE measur enent (

)

city_ id int not null,
| ogdat e date not null,
peakt enmp int,

uni t sal es i nt

We know that most querieswill accessjust the last week's, month's or quarter's data, since the main use of
thistable will beto prepare online reports for management. To reduce the amount of old data that needsto
be stored, we decide to keep only the most recent 3 years worth of data. At the beginning of each month
we will remove the oldest month's data. In this situation we can use partitioning to help us meet al of our
different requirements for the measurementstable.

To use declarative partitioning in this case, use the following steps:

1

Create the neasur enent table as a partitioned table by specifying the PARTI TI ON BY clause,
which includes the partitioning method (RANGE in this case) and the list of column(s) to use as the
partition key.

CREATE TABLE neasurenent (

city_id int not null,
| ogdat e date not null,
peakt enp i nt,

uni t sal es i nt

) PARTI TI ON BY RANCE (| ogdate);

Create partitions. Each partition's definition must specify bounds that correspond to the partitioning
method and partition key of the parent. Note that specifying bounds such that the new partition's values
would overlap with those in one or more existing partitions will cause an error.

Partitions thus created are in every way normal PostgreSQL tables (or, possibly, foreign tables). It is
possible to specify atablespace and storage parameters for each partition separately.

For our example, each partition should hold one month's worth of data, to match the requirement of
deleting one month's data at atime. So the commands might [ook like:

CREATE TABLE neasur enment _y2006n02 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2006- 02-01') TO (' 2006-03-01");

CREATE TABLE neasur enment _y2006n03 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2006-03-01') TO (' 2006-04-01");

CREATE TABLE neasur enment _y2007nl1 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2007-11-01') TO ('2007-12-01");

CREATE TABLE neasur enent _y2007nl2 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2007-12-01") TO ('2008-01-01")
TABLESPACE f astt abl espace;

CREATE TABLE neasur enent _y2008n01 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2008-01-01') TO ('2008-02-01")
WTH (paral l el _workers = 4)

99

Data Definition

TABLESPACE f astt abl espace;

(Recall that adjacent partitions can share a bound value, since range upper bounds are treated as
exclusive bounds.)

If you wish to implement sub-partitioning, again specify the PARTI Tl ON BY clausein the commands
used to create individual partitions, for example:

CREATE TABLE neasurenent _y2006n02 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2006-02-01') TO ('2006-03-01")
PARTI TI ON BY RANGE (peaktenp);

After creating partitions of neasur enent _y2006n02, any data inserted into neasur enent
that is mapped to neasurenment y2006n02 (or data that is directly inserted into
measur enent _y2006n02, which is allowed provided its partition constraint is satisfied) will be
further redirected to one of its partitions based on the peakt errp column. The partition key specified
may overlap with the parent's partition key, although care should be taken when specifying the bounds
of a sub-partition such that the set of data it accepts constitutes a subset of what the partition's own
bounds allow; the system does not try to check whether that's really the case.

Inserting data into the parent table that does not map to one of the existing partitions will cause an
error; an appropriate partition must be added manually.

It isnot necessary to manually create table constraints describing the partition boundary conditionsfor
partitions. Such constraints will be created automatically.

3. Create an index on the key column(s), aswell as any other indexes you might want, on the partitioned
table. (The key index is not strictly necessary, but in most scenariosit is helpful.) This automatically
creates a matching index on each partition, and any partitions you create or attach later will also have
such an index. An index or unique constraint declared on a partitioned table is “virtual” in the same
way that the partitioned table is: the actual dataisin child indexes on the individual partition tables.

CREATE | NDEX ON measurenent (| ogdate);
4. Ensure that the enable partition pruning configuration parameter is not disabled in
post gresql . conf . If itis, querieswill not be optimized as desired.

In the above example we would be creating a new partition each month, so it might be wise to write a
script that generates the required DDL automatically.

5.11.2.2. Partition Maintenance

Normally the set of partitions established when initially defining the table is not intended to remain static.
It is common to want to remove partitions holding old data and periodically add new partitions for new
data. One of the most important advantages of partitioning is precisely that it allows this otherwise painful
task to be executed nearly instantaneously by manipulating the partition structure, rather than physically
moving large amounts of data around.

The simplest option for removing old data is to drop the partition that is no longer necessary:

DROP TABLE neasurenent _y2006n02;

This can very quickly delete millions of records becauseit doesn't haveto individually delete every record.
Note however that the above command requirestaking an ACCESS EXCLUSI VE lock on the parent table.

100

Data Definition

Another option that is often preferableisto remove the partition from the partitioned table but retain access
toitasatableinitsown right:

ALTER TABLE neasurenment DETACH PARTI TI ON neasur enent _y2006n02;

This allows further operations to be performed on the data before it is dropped. For example, thisis often
auseful time to back up the data using COPY, pg_dump, or similar tools. It might also be a useful timeto
aggregate datainto smaller formats, perform other data manipulations, or run reports.

Similarly we can add anew partition to handle new data. We can create an empty partition inthe partitioned
table just as the origina partitions were created above:

CREATE TABLE neasur enent _y2008n02 PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2008-02-01') TO ('2008-03-01")
TABLESPACE f astt abl espace;

Asan alternative, it is sometimes more convenient to create the new table outside the partition structure,
and makeit aproper partition later. Thisallows new datato beloaded, checked, and transformed prior toit
appearing in the partitioned table. The CREATE TABLE ... LI KE optionishelpful to avoid tediously
repeating the parent table's definition:

CREATE TABLE neasur enent _y2008n0D2
(LI KE nmeasur enment | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS)
TABLESPACE f astt abl espace;

ALTER TABLE neasur enent _y2008nD2 ADD CONSTRAI NT y2008n0D2
CHECK (| ogdate >= DATE '2008-02-01' AND | ogdate < DATE
' 2008-03-01");

\ copy neasurenent _y2008n02 from ' measurenent y2008nD2'
-- possibly some other data preparation work

ALTER TABLE neasurenment ATTACH PARTI TI ON nmeasur enent _y2008nm02
FOR VALUES FROM (' 2008-02-01") TO ('2008-03-01");

The ATTACH PARTI TI ON command requires taking a SHARE UPDATE EXCLUSI VE lock on the
partitioned table.

Before running the ATTACH PARTI TI ONcommand, it isrecommended to create a CHECK constraint on
the table to be attached that matches the expected partition constraint, as illustrated above. That way, the
system will be able to skip the scan which is otherwise needed to validate the implicit partition constraint.
Without the CHECK constraint, the table will be scanned to validate the partition constraint while holding
an ACCESS EXCLUSI VE lock on that partition. It is recommended to drop the now-redundant CHECK
constraint after the ATTACH PARTI Tl ONis complete. If the table being attached is itself a partitioned
table then each of its sub-partitions will be recursively locked and scanned until either a suitable CHECK
constraint is encountered or the leaf partitions are reached.

Similarly, if the partitioned table hasaDEFAULT partition, it isrecommended to create a CHECK constraint
which excludesthe to-be-attached partition's constraint. If thisisnot done then the DEFAULT partition will
be scanned to verify that it contains no records which should be located in the partition being attached. This
operation will be performed whilst holding an ACCESS EXCLUSI VE lock onthe DEFAULT partition.
If the DEFAULT partition isitself a partitioned table then each of its partitionswill be recursively checked
in the same way as the table being attached, as mentioned above.

101

Data Definition

As explained above, it is possible to create indexes on partitioned tables so that they are applied
automatically totheentirehierarchy. Thisisvery convenient, asnot only will the existing partitionsbecome
indexed, but also any partitions that are created in the future will. One limitation is that it's not possible to
use the CONCURRENTLY qualifier when creating such a partitioned index. To avoid long lock times, it is
possibleto use CREATE | NDEX ON ONLY the partitioned table; such an index is marked invalid, and the
partitions do not get theindex applied automatically. The indexes on partitions can be created individually
using CONCURRENTLY, and then attached to the index on the parent usng ALTER | NDEX .. ATTACH
PARTI Tl ON. Once indexesfor all partitions are attached to the parent index, the parent index is marked
valid automatically. Example:

CREATE | NDEX neasur enent _usls_idx ON ONLY neasurenent (unitsales);

CREATE | NDEX neasur enent _usls_ 200602 _i dx
ON neasur enment _y2006n02 (unitsal es);
ALTER | NDEX neasur enent _usl s_i dx
ATTACH PARTI TI ON neasur enent _usl s_200602_i dx;

This technique can be used with UNI QUE and PRI MARY KEY constraints too; the indexes are created
implicitly when the constraint is created. Example:

ALTER TABLE ONLY rneasurenent ADD UNI QUE (city_id, |ogdate);

ALTER TABLE neasur enent _y2006n02 ADD UNIQUE (city_id, |ogdate);
ALTER | NDEX neasurenent _city_id_| ogdate_key
ATTACH PARTI TI ON nmeasur enent _y2006n02_city _id_| ogdate_key;

5.11.2.3. Limitations

The following limitations apply to partitioned tables:

 Unique constraints (and hence primary keys) on partitioned tables must include all the partition key
columns. Thislimitation exists becausetheindividual indexes making up the constraint can only directly
enforce uniqueness within their own partitions; therefore, the partition structure itself must guarantee
that there are not duplicatesin different partitions.

» Thereisnoway to create an exclusion constraint spanning the whole partitioned table. It isonly possible
to put such a constraint on each leaf partition individually. Again, this limitation stems from not being
able to enforce cross-partition restrictions.

* BEFORE ROWtriggerson| NSERT cannot change which partition isthe final destination for anew row.

» Mixing temporary and permanent relations in the same partition tree is not allowed. Hence, if the
partitioned tableis permanent, so must beits partitions and likewiseif the partitioned tableistemporary.
When using temporary relations, all members of the partition tree have to be from the same session.

Individual partitions are linked to their partitioned table using inheritance behind-the-scenes. However, it
isnot possible to use all of the generic features of inheritance with declaratively partitioned tables or their
partitions, as discussed below. Notably, a partition cannot have any parents other than the partitioned table
it is a partition of, nor can a table inherit from both a partitioned table and a regular table. That means
partitioned tables and their partitions never share an inheritance hierarchy with regular tables.

102

Data Definition

Since a partition hierarchy consisting of the partitioned table and its partitions is still an inheritance
hierarchy, t abl eoi d and all the normal rules of inheritance apply as described in Section 5.10, with a
few exceptions;

* Partitions cannot have columns that are not present in the parent. It is not possible to specify columns
when creating partitionswith CREATE TABLE, nor isit possibleto add columnsto partitions after-the-
fact using ALTER TABLE. Tables may be added as a partition with ALTER TABLE ... ATTACH
PARTI TI ONonly if their columns exactly match the parent.

» Both CHECK and NOT NULL constraints of a partitioned table are always inherited by all its partitions.
CHECK constraints that are marked NO | NHERI T are not allowed to be created on partitioned tables.
You cannot drop a NOT NULL constraint on a partition's column if the same constraint is present in
the parent table.

» Using ONLY to add or drop aconstraint on only the partitioned table is supported aslong asthere are no
partitions. Once partitions exist, using ONLY will result in an error. Instead, constraints on the partitions
themselves can be added and (if they are not present in the parent table) dropped.

» Asapartitioned table does not have any dataitself, attempts to use TRUNCATE ONLY on a partitioned
table will always return an error.

5.11.3. Partitioning Using Inheritance

While the built-in declarative partitioning is suitable for most common use cases, there are some
circumstances where amore flexible approach may be useful. Partitioning can be implemented using table
inheritance, which allows for several features not supported by declarative partitioning, such as:

 For declarative partitioning, partitions must have exactly the same set of columns as the partitioned
table, whereas with table inheritance, child tables may have extra columns not present in the parent.

» Tableinheritance allows for multiple inheritance.

 Declarative partitioning only supportsrange, list and hash partitioning, whereastable inheritance allows
data to be divided in a manner of the user's choosing. (Note, however, that if constraint exclusion is
unable to prune child tables effectively, query performance might be poor.)

» Some operations require a stronger lock when using declarative partitioning than when using table
inheritance. For example, removing a partition from a partitioned table requires taking an ACCESS
EXCLUSI VE lock on the parent table, whereas a SHARE UPDATE EXCLUSI VE lock is enough in
the case of regular inheritance.

5.11.3.1. Example

This example builds a partitioning structure equivalent to the declarative partitioning example above. Use
the following steps:

1. Create the “master” table, from which all of the “child” tables will inherit. This table will contain no
data. Do not define any check constraints on this table, unless you intend them to be applied equally
to all child tables. Thereis no point in defining any indexes or unique constraints on it, either. For our
example, the master table isthe measur enent table asoriginally defined:

CREATE TABLE neasurenent (

city_ id int not null,
| ogdat e date not null,
peakt enp int,

uni t sal es i nt

103

Data Definition

)

. Create severa “child” tables that each inherit from the master table. Normally, these tables will not
add any columnsto the set inherited from the master. Just as with declarative partitioning, these tables
arein every way normal PostgreSQL tables (or foreign tables).

CREATE TABLE neasur enent _y2006n02 () | NHERI TS (measurenent);
CREATE TABLE neasur enent _y2006n03 () | NHERI TS (measurenent);

CREATE TABLE neasurenent _y2007nll () I NHERI TS (measurenent);
CREATE TABLE neasurenent _y2007nl2 () I NHERI TS (measurenent);
CREATE TABLE neasurenent _y2008n01 () I NHERI TS (measurenent);
. Add non-overlapping table constraints to the child tables to define the allowed key valuesin each.

Typica exampleswould be:

CHECK (x = 1)

CHECK (county IN ('Oxfordshire', 'Buckinghanshire',
"Warwi ckshire'))

CHECK (outletID >= 100 AND outletlD < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different child tables. A common mistake is to set up range constraints like:

CHECK (outlet| D BETWEEN 100 AND 200)
CHECK (outlet| D BETWEEN 200 AND 300)

Thisiswrong sinceit isnot clear which child table the key value 200 belongsin. Instead, ranges should
be defined in this style:

CREATE TABLE measur enent _y2006n02 (

CHECK (| ogdate >= DATE ' 2006- 02-01' AND | ogdate < DATE
' 2006- 03-01")
) INHERI TS (measurenent);

CREATE TABLE measur enent _y2006n03 (

CHECK (| ogdate >= DATE ' 2006- 03-01' AND | ogdate < DATE
' 2006- 04- 01")
) INHERI TS (measurenent);

CREATE TABLE measur enent _y2007nl1 (
CHECK (| ogdate >= DATE ' 2007-11-01'" AND | ogdate < DATE
'2007-12-01")
) INHERI TS (rmeasurenent);

CREATE TABLE measur enent _y2007nl2 (
CHECK (| ogdate >= DATE ' 2007-12-01' AND | ogdate < DATE
' 2008-01-01")
) INHERI TS (rmeasurenent);

CREATE TABLE measur enent _y2008n01 (

104

Data Definition

CHECK (| ogdate >= DATE '2008-01-01' AND | ogdate < DATE
'2008- 02-01')
) INHERI TS (measurenent);
4. For each childtable, create anindex onthe key column(s), aswell asany other indexesyou might want.

CREATE | NDEX measur enent _y2006n02_| ogdat e ON neasur enent _y2006n02
(1 ogdate);

CREATE | NDEX measur enent _y2006n03_I| ogdat e ON neasur enent _y2006n03
(1 ogdate);

CREATE | NDEX neasur enent _y2007nml1_| ogdat e ON neasur enent _y2007nill
(1 ogdate);

CREATE | NDEX measur enent _y2007nml2_| ogdat e ON neasur enent _y2007ni2
(1 ogdate);

CREATE | NDEX measur enent _y2008n01_I| ogdat e ON neasur enent _y2008n01
(1 ogdate);

5. Wewant our application to beableto say | NSERT | NTO nmeasur enent . .. and havethedatabe
redirected into the appropriate child table. We can arrange that by attaching a suitable trigger function
to the master table. If data will be added only to the latest child, we can use a very simple trigger
function:

CREATE OR REPLACE FUNCTI ON neasurement _i nsert _trigger()

RETURNS TRI GGER AS $$

BEG N
I NSERT | NTO measur enment _y2008nmD1 VALUES (NEW *);
RETURN NULL;

END,

$$

LANGUAGE pl pgsql ;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRI GCGER i nsert _neasurenent _trigger
BEFORE | NSERT ON neasur enent
FOR EACH ROW EXECUTE FUNCTI ON neasur enent i nsert _trigger();

We must redefine the trigger function each month so that it always insertsinto the current child table.
The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the child table into which the
row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTI ON neasuremnent _i nsert _trigger()
RETURNS TRI GGER AS $$
BEG N
IF (NEW I ogdate >= DATE ' 2006- 02-01' AND
NEW | ogdat e < DATE ' 2006- 03-01') THEN
I NSERT | NTO neasur enment _y2006n02 VALUES (NEW *);
ELSIF (NEW | ogdate >= DATE ' 2006-03-01' AND
NEW | ogdat e < DATE ' 2006- 04-01') THEN
I NSERT | NTO neasur enment _y2006n03 VALUES (NEW *);

105

Data Definition

ELSIF (NEW I ogdate >= DATE ' 2008-01-01' AND
NEW | ogdat e < DATE ' 2008-02-01') THEN
| NSERT | NTO measur enment _y2008nm01 VALUES (NEW *);
ELSE
RAI SE EXCEPTION ' Date out of range. Fix the
measur enent _insert _trigger() function!';
END | F;
RETURN NULL;
END,
$$
LANGUAGE pl pgsal ;

The trigger definition is the same as before. Note that each | F test must exactly match the CHECK
constraint for its child table.

While thisfunction is more complex than the single-month case, it doesn't need to be updated as often,
since branches can be added in advance of being needed.

Note

In practice, it might be best to check the newest child first, if most inserts go into that child. For
simplicity, we have shown the trigger'stestsin the same order asin other parts of thisexample.

A different approach to redirecting inserts into the appropriate child table is to set up rules, instead of
atrigger, on the master table. For example:

CREATE RULE neasurenent _insert_y2006n02 AS
ON I NSERT TO measur ement WHERE
(logdate >= DATE ' 2006- 02- 01' AND | ogdate < DATE
' 2006- 03-01')
DO | NSTEAD
I NSERT | NTO neasur enment _y2006n02 VALUES (NEW *);

CREATE RULE neasurenent _insert_y2008n01 AS
ON I NSERT TO measur ement WHERE
(logdate >= DATE ' 2008-01-01'" AND | ogdate < DATE
' 2008-02-01")
DO | NSTEAD
I NSERT | NTO neasur enment _y2008n01 VALUES (NEW *);

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather
than once per row, so this method might be advantageous for bulk-insert situations. In most cases,
however, the trigger method will offer better performance.

Be aware that COPY ignores rules. If you want to use COPY to insert data, you'll need to copy into
the correct child table rather than directly into the master. COPY does fire triggers, so you can use it
normally if you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set of
rules doesn't cover the insertion date; the data will silently go into the master table instead.

. Ensurethat the constraint_exclusion configuration parameter isnot disabledinpost gr esql . conf;
otherwise child tables may be accessed unnecessarily.

106

Data Definition

Aswe can see, acomplex table hierarchy could require asubstantial amount of DDL. Inthe above example
we would be creating a new child table each month, so it might be wise to write a script that generates
the required DDL automatically.

5.11.3.2. Maintenance for Inheritance Partitioning

To remove old data quickly, simply drop the child table that is no longer necessary:

DROP TABLE neasurenent _y2006n02;

To remove the child table from the inheritance hierarchy table but retain accessto it asatablein itsown
right:

ALTER TABLE neasur enent _y2006nD2 NO | NHERI T neasur enent;

To add anew child table to handle new data, create an empty child table just asthe original children were
created above:

CREATE TABLE measur enent _y2008n02 (

CHECK (| ogdate >= DATE ' 2008-02-01' AND | ogdate < DATE
' 2008-03-01")
) INHERI TS (neasurenent);

Alternatively, one may want to create and populate the new child table before adding it to the table
hierarchy. This could allow data to be loaded, checked, and transformed before being made visible to
gueries on the parent table.

CREATE TABLE neasur enent _y2008n0D2
(LI KE nmeasuremnment | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS) ;
ALTER TABLE neasur enent _y2008n02 ADD CONSTRAI NT y2008n0D2
CHECK (| ogdate >= DATE ' 2008-02-01' AND | ogdate < DATE
'2008-03-01');
\ copy neasurenent _y2008n02 from ' measurenent y2008nD2'
-- possibly sonme other data preparation work
ALTER TABLE neasur enent _y2008n02 | NHERI T nmeasur enent ;

5.11.3.3. Caveats

The following caveats apply to partitioning implemented using inheritance:

» Thereisno automatic way to verify that all of the CHECK constraints are mutually exclusive. It is safer
to create code that generates child tables and creates and/or modifies associated objects than to write
each by hand.

* Indexes and foreign key constraints apply to single tables and not to their inheritance children, hence
they have some caveats to be aware of .

» The schemes shown here assume that the values of arow's key column(s) never change, or at least do
not change enough to require it to move to another partition. An UPDATE that attempts to do that will
fail because of the CHECK constraints. If you need to handle such cases, you can put suitable update
triggers on the child tables, but it makes management of the structure much more complicated.

* If you are using manual VACUUMor ANAL YZE commands, don't forget that you need to run them on
each child tableindividually. A command like:

107

Data Definition

ANALYZE nmeasur enent ;
will only process the master table.

* | NSERT statements with ON CONFLI CT clauses are unlikely to work as expected, as the ON
CONFLI CT action is only taken in case of unique violations on the specified target relation, not its
child relations.

» Triggersor ruleswill be neededto routerowsto thedesired child table, unlessthe applicationisexplicitly
aware of the partitioning scheme. Triggers may be complicated to write, and will be much slower than
the tuple routing performed internally by declarative partitioning.

5.11.4. Partition Pruning

Partition pruning is a query optimization technique that improves performance for declaratively
partitioned tables. As an example:

SET enabl e_partition_pruning = on; -- the default
SELECT count (*) FROM neasur enent WHERE | ogdat e >= DATE ' 2008-01-01';

Without partition pruning, the above query would scan each of the partitions of the measur enent table.
With partition pruning enabled, the planner will examine the definition of each partition and prove that the
partition need not be scanned because it could not contain any rows meeting the query's WHERE clause.
When the planner can prove this, it excludes (prunes) the partition from the query plan.

By using the EXPLAIN command and the enable_partition_pruning configuration parameter, it's possible
to show the difference between a plan for which partitions have been pruned and one for which they have
not. A typical unoptimized plan for thistype of table setup is:

SET enabl e_partition_pruning = off;
EXPLAI N SELECT count (*) FROM neasur enent WHERE | ogdat e >= DATE
' 2008-01-01';
QUERY PLAN

Aggregate (cost=188.76..188.77 rows=1 wi dt h=8)
-> Append (cost=0.00..181.05 rows=3085 wi dt h=0)
-> Seq Scan on neasurenent_ y2006n0D2 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_ y2006nD3 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

-> Seq Scan on neasurenment_ y2007nll (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent y2007nl2 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenment y2008nD1 (cost=0.00..33.12
rows=617 wi dt h=0)

108

Data Definition

Filter: (logdate >= '2008-01-01'::date)

Some or al of the partitions might use index scansinstead of full-table sequential scans, but the point here
is that there is no need to scan the older partitions at all to answer this query. When we enable partition
pruning, we get a significantly cheaper plan that will deliver the same answer:

SET enabl e_partition_pruning = on;
EXPLAI N SELECT count (*) FROM nmeasur enent WHERE | ogdat e >= DATE
' 2008-01-01';
QUERY PLAN

Aggregate (cost=37.75..37.76 rows=1 wi dt h=8)
-> Seq Scan on neasurenent_y2008n01 (cost=0.00..33.12 rows=617
wi dt h=0)
Filter: (logdate >= '2008-01-01':: date)

Note that partition pruning is driven only by the constraints defined implicitly by the partition keys, not
by the presence of indexes. Thereforeit isn't necessary to define indexes on the key columns. Whether an
index needs to be created for a given partition depends on whether you expect that queries that scan the
partition will generally scan alarge part of the partition or just a small part. Anindex will be helpful in
the latter case but not the former.

Partition pruning can be performed not only during the planning of a given query, but also during its
execution. Thisis useful asit can alow more partitions to be pruned when clauses contain expressions
whose values are not known at query planning time, for example, parameters defined in a PREPARE
statement, using a value obtained from a subquery, or using a parameterized value on the inner side of a
nested loop join. Partition pruning during execution can be performed at any of the following times:

» During initialization of the query plan. Partition pruning can be performed here for parameter values
which are known during the initialization phase of execution. Partitions which are pruned during this
stage will not show up in the query's EXPLAI N or EXPLAI N ANALYZE. It is possible to determine
the number of partitions which were removed during this phase by observing the “ Subplans Removed”
property in the EXPLAI N output.

 During actual execution of the query plan. Partition pruning may also be performed here to remove
partitions using values which are only known during actual query execution. This includes values from
subqueries and values from execution-time parameters such as those from parameterized nested loop
joins. Since the value of these parameters may change many times during the execution of the query,
partition pruning is performed whenever one of the execution parametersbeing used by partition pruning
changes. Determining if partitions were pruned during this phase requires careful inspection of the
| oops property inthe EXPLAI N ANAL YZE output. Subplans corresponding to different partitions may
have different values for it depending on how many times each of them was pruned during execution.
Some may be shown as(never execut ed) if they were pruned every time.

Partition pruning can be disabled using the enable_partition_pruning setting.

Note

Execution-time partition pruning currently only occursfor the Append and Mer geAppend node
types. It isnot yet implemented for the Modi f y Tabl e nodetype, but that islikely to be changed
in afuture release of PostgreSQL.

109

Data Definition

5.11.5. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique similar to partition pruning. While it is primarily
used for partitioning implemented using the legacy inheritance method, it can be used for other purposes,
including with declarative partitioning.

Constraint exclusionworksinavery similar way to partition pruning, except that it uses each table's CHECK
constraints— which givesit its name — whereas partition pruning uses the tabl €'s partition bounds, which
exist only in the case of declarative partitioning. Another difference is that constraint exclusion is only
applied at plan time; there is no attempt to remove partitions at execution time.

The fact that constraint exclusion uses CHECK constraints, which makes it slow compared to partition
pruning, can sometimes be used as an advantage: because constraints can be defined even on declaratively-
partitioned tables, in addition to their internal partition bounds, constraint exclusion may be able to elide
additional partitions from the query plan.

The default (and recommended) setting of constraint_exclusion isneither on nor of f , but an intermediate
setting called par ti ti on, which causes the technique to be applied only to queriesthat are likely to be
working oninheritance partitioned tables. The on setting causesthe planner to examine CHECK constraints
in al gqueries, even simple ones that are unlikely to benefit.

The following caveats apply to constraint exclusion:

 Constraint exclusion is only applied during query planning, unlike partition pruning, which can also be
applied during query execution.

» Congtraint exclusion only works when the query's WHERE clause contains constants (or externally
supplied parameters). For example, a comparison against a non-immutable function such as
CURRENT _TI MESTAMP cannot be optimized, since the planner cannot know which child table the
function's value might fall into at run time.

» Keep the partitioning constraints simple, else the planner may not be able to prove that child tables
might not need to be visited. Use simple equality conditions for list partitioning, or simple range tests
for range partitioning, asillustrated in the preceding examples. A good rule of thumb isthat partitioning
constraints should contain only comparisons of the partitioning column(s) to constants using B-tree-
indexable operators, because only B-tree-indexable column(s) are allowed in the partition key.

» All constraints on al children of the parent table are examined during constraint exclusion, so large
numbers of children are likely to increase query planning time considerably. So the legacy inheritance
based partitioning will work well with up to perhaps a hundred child tables; don't try to use many
thousands of children.

5.11.6. Best Practices for Declarative Partitioning

The choice of how to partition atable should be made carefully, as the performance of query planning and
execution can be negatively affected by poor design.

One of the most critical design decisionswill be the column or columns by which you partition your data.
Often the best choice will beto partition by the column or set of columns which most commonly appear in
WHERE clauses of queries being executed on the partitioned table. WHERE clauses that are compatible with
the partition bound constraints can be used to prune unneeded partitions. However, you may be forced
into making other decisions by requirements for the PRI MARY KEY or a UNI QUE constraint. Removal
of unwanted data is also afactor to consider when planning your partitioning strategy. An entire partition
can be detached fairly quickly, so it may be beneficial to design the partition strategy in such away that
all datato be removed at once islocated in asingle partition.

110

Data Definition

5.12

Choosing the target number of partitions that the table should be divided into is also a critical decision to
make. Not having enough partitions may mean that indexes remain too large and that datalocality remains
poor which could result in low cache hit ratios. However, dividing the table into too many partitions
can also cause issues. Too many partitions can mean longer query planning times and higher memory
consumption during both query planning and execution, as further described below. When choosing how
to partition your table, it'salso important to consider what changes may occur in the future. For example, if
you choose to have one partition per customer and you currently have a small number of large customers,
consider the implications if in several years you instead find yourself with a large number of small
customers. In this case, it may be better to choose to partition by HASH and choose a reasonable number
of partitions rather than trying to partition by L1 ST and hoping that the number of customers does not
increase beyond what it is practical to partition the data by.

Sub-partitioning can be useful to further divide partitions that are expected to become larger than other
partitions. Another option isto use range partitioning with multiple columnsin the partition key. Either of
these can easily lead to excessive numbers of partitions, so restraint is advisable.

It isimportant to consider the overhead of partitioning during query planning and execution. The query
planner is generally able to handle partition hierarchies with up to a few thousand partitions fairly well,
provided that typical queriesallow the query planner to prune all but asmall number of partitions. Planning
times become longer and memory consumption becomes higher when more partitions remain after the
planner performs partition pruning. This is particularly true for the UPDATE and DELETE commands.
Another reason to be concerned about having a large number of partitions is that the server's memory
consumption may grow significantly over time, especially if many sessions touch large humbers of
partitions. That's because each partition requires its metadata to be loaded into the local memory of each
session that touchesiit.

With data warehouse type workloads, it can make sense to use a larger number of partitions than with
an OLTP type workload. Generally, in data warehouses, query planning time is less of a concern as the
majority of processing timeis spent during query execution. With either of these two types of workload,
it isimportant to make the right decisions early, as re-partitioning large quantities of data can be painfully
slow. Simulations of the intended workload are often beneficial for optimizing the partitioning strategy.
Never just assume that more partitions are better than fewer partitions, nor vice-versa.

Foreign Data

PostgreSQL implements portions of the SQL/MED specification, allowing you to access data that resides
outside PostgreSQL using regular SQL queries. Such data is referred to as foreign data. (Note that this
usage is not to be confused with foreign keys, which are atype of constraint within the database.)

Foreign datais accessed with help from aforeign data wrapper. A foreign datawrapper isalibrary that can
communicate with an external data source, hiding the details of connecting to the data source and obtaining
datafromit. There are someforeign datawrappersavailableascont r i b modules; see Appendix F. Other
kinds of foreign data wrappers might be found as third party products. If none of the existing foreign data
wrappers suit your needs, you can write your own; see Chapter 56.

To access foreign data, you need to create a foreign server object, which defines how to connect to a
particular external data source according to the set of options used by its supporting foreign data wrapper.
Then you need to create one or more foreign tables, which define the structure of theremote data. A foreign
table can be used in queries just like a normal table, but aforeign table has no storage in the PostgreSQL
server. Whenever it is used, PostgreSQL asks the foreign data wrapper to fetch data from the external
source, or transmit data to the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can be
provided by a user mapping, which can provide additional data such as user names and passwords based
on the current PostgreSQL role.

111

Data Definition

5.13.

5.14.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER, CREATE
USER MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

Other Database Objects

Tables are the central objectsin arelationa database structure, because they hold your data. But they are
not the only objects that exist in a database. Many other kinds of objects can be created to make the use
and management of the data more efficient or convenient. They are not discussed in this chapter, but we
giveyou alist here so that you are aware of what is possible:

* Views

» Functions, procedures, and operators
» Datatypes and domains

 Triggers and rewrite rules

Detailed information on these topics appearsin Part V.

Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints, views,
triggers, functions, etc. you implicitly create a net of dependencies between the objects. For instance, a
table with aforeign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objectsthat other objects till depend on. For example, attempting to drop the products table we considered
in Section 5.4.5, with the orders table depending on it, would result in an error message like this:

DROP TABLE products;

ERROR: cannot drop table products because other objects depend on it
DETAIL: constraint orders_product_no_fkey on table orders depends on
tabl e products

H NT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting al the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objectswill be removed, aswill any objectsthat depend on them, recursively. Inthis
case, it doesn't remove the orderstable, it only removes the foreign key constraint. It stops there because
nothing depends on the foreign key constraint. (If you want to check what DROP ... CASCADE will
do, run DROP without CASCADE and read the DETAI L output.)

Almost all DROP commands in PostgreSQL support specifying CASCADE. Of course, the nature of the
possible dependencies varies with the type of the object. You can also write RESTRI CT instead of
CASCADE to get the default behavior, which isto prevent dropping objects that any other objects depend
on.

112

Data Definition

Note

According to the SQL standard, specifying either RESTRI CT or CASCADE isrequired in a DROP
command. No database system actually enforces that rule, but whether the default behavior is
RESTRI CT or CASCADE varies across systems.

If aDROP command lists multiple objects, CASCADE is only required when there are dependencies outside
the specified group. For example, when saying DROP TABLE t abl, t ab2 theexistence of aforeign
key referencingt abl1 from t ab2 would not mean that CASCADE is needed to succeed.

For user-defined functions, PostgreSQL tracks dependencies associated with afunction'sexternally-visible
properties, such as its argument and result types, but not dependencies that could only be known by
examining the function body. As an example, consider this situation:

CREATE TYPE rai nbow AS ENUM ('red', 'orange', 'vyellow,
"green', 'blue', 'purple');

CREATE TABLE ny_col ors (col or rai nbow, note text);

CREATE FUNCTI ON get _col or_note (rai nbow) RETURNS text AS
' SELECT note FROM ny_col ors WHERE col or = $1'
LANGUACE SQ.;

(See Section 37.5 for an explanation of SQL-language functions.) PostgreSQL will be aware that the
get _col or_not e function depends on the r ai nbow type: dropping the type would force dropping
the function, because its argument type would no longer be defined. But PostgreSQL will not consider
get _col or_not e todepend onthemmy_col or s table, and so will not drop the function if the tableis
dropped. While there are disadvantages to this approach, there are also benefits. The functionis still valid
in some sense if the table is missing, though executing it would cause an error; creating anew table of the
same name would allow the function to work again.

113

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it istime
to fill the tables with data. This chapter covers how to insert, update, and delete table data. The chapter
after thiswill finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When atable is created, it contains no data. The first thing to do before a database can be of much use
isto insert data. Data is conceptually inserted one row at atime. Of course you can aso insert more than
one row, but there is no way to insert less than one row. Even if you know only some column values, a
complete row must be created.

To create anew row, usethe INSERT command. The command requiresthe table name and column val ues.
For example, consider the products table from Chapter 5:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric

)

An example command to insert arow would be:

I NSERT | NTO products VALUES (1, 'Cheese', 9.99);

The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columnsin the table. To avoid
thisyou can aso list the columns explicitly. For example, both of the following commands have the same
effect as the one above:

I NSERT | NTO products (product_no, nanme, price) VALUES (1, 'Cheese',
9.99);

| NSERT | NTO products (nane, price, product_no) VALUES (' Cheese', 9.99,
1);

Many users consider it good practice to always list the column names.
If you don't have values for al the columns, you can omit some of them. In that case, the columns will

be filled with their default values. For example:

| NSERT | NTO products (product_no, name) VALUES (1, ' Cheese');
| NSERT | NTO products VALUES (1, 'Cheese');

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as are
given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

114

Data Manipulation

| NSERT | NTO products (product_no, name, price) VALUES (1, 'Cheese',
DEFAULT) ;
| NSERT | NTO products DEFAULT VALUES;

Y ou can insert multiple rows in a single command:

| NSERT | NTO products (product_no, nane, price) VALUES
(1, 'Cheese', 9.99),
(2, 'Bread, 1.99),
(3, "MIk', 2.99);

It isalso possible to insert the result of a query (which might be no rows, one row, or many rows):

I NSERT | NTO products (product_no, name, price)
SELECT product_no, nane, price FROM new products
WHERE r el ease_date = 'today';

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip

When inserting a lot of data at the same time, consider using the COPY command. It is not as
flexibleasthe INSERT command, but ismore efficient. Refer to Section 14.4 for moreinformation
on improving bulk loading performance.

6.2. Updating Data

Themodification of datathat isalready inthe databaseisreferred to asupdating. Y ou can updateindividual
rows, all the rows in atable, or a subset of al rows. Each column can be updated separately; the other
columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Thereforeit is
not always possible to directly specify which row to update. Instead, you specify which conditions a row
must meet in order to be updated. Only if you have a primary key in the table (independent of whether
you declared it or not) can you reliably address individual rows by choosing a condition that matches the
primary key. Graphical database access toolsrely on thisfact to allow you to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that does
not match any rows.

115

Data Manipulation

Let'slook at that command in detail. First is the key word UPDATE followed by the table name. Asusual,
the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key word SET
followed by the column name, an equal sign, and the new column value. The new column value can be
any scalar expression, not just a constant. For example, if you want to raise the price of all products by
10% you could use:

UPDATE products SET price = price * 1.10;

As you see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present, only
those rows that match the WHERE condition are updated. Note that the equals sign in the SET clauseisan
assignment while the one in the WHERE clause is a comparison, but this does not create any ambiguity. Of
course, the WHERE condition does not have to be an equality test. Many other operators are available (see
Chapter 9). But the expression needs to evaluate to a Boolean resullt.

Y ou can update more than one column in an UPDATE command by listing more than one assignment in
the SET clause. For example:

UPDATE nytable SET a =5, b =3, ¢ =1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add datato tables and how to change data. What remainsisto discuss how
to remove data that is no longer needed. Just as adding data is only possible in whole rows, you can only
remove entire rows from atable. In the previous section we explained that SQL does not provide a way
to directly address individual rows. Therefore, removing rows can only be done by specifying conditions
that the rows to be removed have to match. If you have a primary key in the table then you can specify
the exact row. But you can also remove groups of rows matching a condition, or you can remove all rows
in the table at once.

Y ou use the DEL ETE command to remove rows; the syntax isvery similar to the UPDATE command. For
instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

If you simply write:

DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data from Modified Rows

Sometimesit is useful to obtain datafrom modified rows while they are being manipulated. The | NSERT,
UPDATE, and DELETE commands all have an optional RETURNI NG clause that supports this. Use of
RETURNI NG avoids performing an extra database query to collect the data, and is especially valuable
when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNI NG clause are the same as a SELECT command's output list (see
Section 7.3). It can contain column names of the command's target table, or value expressions using those
columns. A common shorthand is RETURNI NG *, which selects all columns of the target table in order.

116

Data Manipulation

Inan| NSERT, thedataavailableto RETURNI NGistherow asit wasinserted. Thisisnot souseful intrivial
inserts, since it would just repeat the data provided by the client. But it can be very handy when relying
on computed default values. For example, when using aser i al column to provide unique identifiers,
RETURNI NG can return the ID assigned to a new row:

CREATE TABLE users (firstnane text, lastnane text, id serial prinmary
key);

I NSERT | NTO users (firstnane, |astnane) VALUES ('Joe', 'Cool"')
RETURNI NG i d;

The RETURNI NG clause isaso very useful with| NSERT ... SELECT.

In an UPDATE, the data available to RETURNI NGis the new content of the modified row. For example:

UPDATE products SET price = price * 1.10
WHERE price <= 99.99
RETURNI NG nane, price AS new price;

In a DELETE, the data available to RETURNI NGis the content of the deleted row. For example:

DELETE FROM product s
WHERE obsol eti on_date = 'today’
RETURNI NG *;

If there are triggers (Chapter 38) on the target table, the data available to RETURNI NG is the row as
modified by the triggers. Thus, inspecting columns computed by triggersis another common use-case for
RETURNI NG,

117

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL the
SELECT command is used to specify queries. The general syntax of the SELECT command is

[WTH with_queries] SELECT select |ist FROMtabl e_expression
[sort _specification]

Thefollowing sections describe the detail s of the select list, the table expression, and the sort specification.
W TH queries are treated last since they are an advanced feature.

A simple kind of query has the form:

SELECT * FROM t abl el;

Assuming that thereisatable called t abl el, this command would retrieve al rows and all user-defined
columnsfromt abl el. (The method of retrieval depends on the client application. For example, the psgl
program will display an ASClI-art table on the screen, while client libraries will offer functionsto extract
individual values from the query result.) The select list specification * means all columns that the table
expression happens to provide. A select list can also select a subset of the available columns or make
calculations using the columns. For example, if t abl e1 has columns named a, b, and ¢ (and perhaps
others) you can make the following query:

SELECT a, b + ¢ FROM t abl el;
(assuming that b and ¢ are of anumerical datatype). See Section 7.3 for more details.

FROM t abl el isasimplekind of table expression: it reads just one table. In general, table expressions
can be complex constructs of basetables, joins, and subqueries. But you can also omit the table expression
entirely and use the SELECT command as a calculator:

SELECT 3 * 4;
Thisis more useful if the expressions in the select list return varying results. For example, you could call

afunction this way:

SELECT random();

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROM clause that is optionally
followed by WHERE, GROUP BY, and HAVI NG clauses. Trivial table expressions smply refer to atable
on disk, a so-called base table, but more complex expressions can be used to modify or combine base
tablesin various ways.

118

Queries

The optional WHERE, GROUP BY, and HAVI NG clauses in the table expression specify a pipeline of
successive transformations performed on the table derived in the FROMclause. All these transformations
produce avirtual table that provides the rows that are passed to the select list to compute the output rows
of the query.

7.2.1. The FROMClause

The FROMclause derives atable from one or more other tables given in acomma-separated table reference
list.

FROM tabl e_reference [, table reference [, ...]]

A tablereference can be atable name (possibly schema-qualified), or aderived table such asasubquery, a
JA N construct, or complex combinations of these. If more than one table reference islisted in the FROM
clause, the tables are cross-joined (that is, the Cartesian product of their rows is formed; see below). The
result of the FROMIist is an intermediate virtua table that can then be subject to transformations by the
WHERE, GROUP BY, and HAVI NG clauses and isfinally the result of the overall table expression.

When atable reference names atabl e that isthe parent of atableinheritance hierarchy, the table reference
produces rows of not only that table but all of its descendant tables, unless the key word ONLY precedes
the table name. However, the reference produces only the columns that appear in the named table — any
columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write* after the table name to explicitly specify
that descendant tables are included. Thereis no real reason to use this syntax any more, because searching
descendant tablesis now alwaysthe default behavior. However, it issupported for compatibility with older
releases.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (rea or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of ajoined table is

Tl join_type T2 [join_condition]

Joins of all types can be chained together, or nested: either or both T1 and T2 can be joined tables.
Parentheses can be used around JO N clauses to control the join order. In the absence of parentheses,
JOA N clauses nest |eft-to-right.

Join Types

Crossjoin

Tl CROSS JAON T2

For every possible combination of rows from T1 and T2 (i.e., a Cartesian product), the joined table
will contain arow consisting of all columnsin T1 followed by all columnsin T2. If the tables have
N and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JO N T2 isequivadentto FROM T1 INNER JON T2 ON TRUE (see
below). Itisalso equivalent to FROM T1, T2.

119

Queries

Note

This latter equivalence does not hold exactly when more than two tables appear, because
JA Nbinds moretightly than comma. For example FROM T1 CROSS JO N T2 | NNER
JO N T3 ON conditionisnotthesameasFROM T1, T2 INNER JO N T3 ON
condi ti on becausethecondi ti on canreference T1 in the first case but not the second.

Qualified joins

TL { [INNER] | { LEFT | RIGHT | FULL } [OQUTER] } JON T2

ON bool ean_expressi on

TL { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JO N T2 USI NG
(join colum list)

T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OQUTER] } JON T2

The words | NNER and OQUTER are optional in al forms. | NNER is the default; LEFT, Rl GHT, and
FULL imply an outer join.

The join condition is specified in the ON or USI NG clause, or implicitly by the word NATURAL.
The join condition determines which rows from the two source tables are considered to “match”, as
explained in detail below.

The possible types of qualified join are;
I NNER JO N

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OQUTER JO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, ajoined row is added with null values in columns of T2. Thus, the joined
table aways has at least one row for each row in T1.

Rl GHT QUTER JO N

First, aninner join is performed. Then, for each row in T2 that does not satisfy the join condition
with any row in T1, ajoined row isadded with null valuesin columns of T1. Thisisthe converse
of aleft join: the result table will always have arow for each row in T2,

FULL OQUTER JO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, ajoined row is added with null valuesin columns of T2. Also, for each row
of T2 that does not satisfy the join condition with any row in T1, ajoined row with null values
in the columns of T1 is added.

The ON clause is the most general kind of join condition: it takes a Boolean value expression of the
same kind asis used in a WHERE clause. A pair of rows from T1 and T2 match if the ON expression
evaluates to true.

The USI NG clause is a shorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated list

120

Queries

of the shared column names and forms a join condition that includes an equality comparison for each
one. For example, joining T1 and T2 with USI NG (a, b) producesthejoinconditionON T1. a
= T2.a AND Tl.b = T2.b.

Furthermore, the output of JO N USI NGsuppresses redundant columns: thereisno need to print both
of the matched columns, since they must have equal values. While JO N ON produces all columns
from T1 followed by all columns from T2, JO N USI NG produces one output column for each of
the listed column pairs (in the listed order), followed by any remaining columns from T1, followed
by any remaining columns from T2.

Finally, NATURAL is a shorthand form of USI NG it forms a USI NGlist consisting of all column
names that appear in both input tables. Aswith USI NG, these columns appear only once in the output
table. If there are no common column names, NATURAL JO NbehaveslikeJO N ... ON TRUE,
producing a cross-product join.

Note

USI NGis reasonably safe from column changes in the joined relations since only the listed
columns are combined. NATURAL is considerably more risky since any schema changes to
either relation that cause a new matching column name to be present will cause the join to
combine that new column as well.

To put this together, assume we have tablest 1:

_____ N,
1] a
2| b
3] ¢

andt 2

then we get the following results for the various joins;

=> SELECT * FROMt1l CROSS JO N t 2;
num| name | num| val ue

+
I
I
I
I
I
I
I

121

Queries

31 ¢ | 31 yyy
3] c | 5| zzz
(9 rows)

=> SELECT * FROMt1 INNER JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
31 ¢ | 31 yyy

(2 rows)

=> SELECT * FROMt1 INNER JO N t2 USING (num;
num | nanme | val ue

_____ Fmm e e e e e - - -
1| a | xxx
31 ¢ | yyy

(2 rows)

=> SELECT * FROM t1 NATURAL | NNER JO N t 2;
num | nanme | val ue

_____ Fmm e e e e e - - -
1| a | xxx
31 ¢ | yyy

(2 rows)

=> SELECT * FROMt1 LEFT JON t2 ON t1. num = t2. num
num| name | num| val ue

yyy

=> SELECT * FROMt1 LEFT JO N t2 USI NG (nun;

=> SELECT * FROMt1l RIGHT JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
31 ¢ | 31 yyy

| | 51| zzz
(3 rows)

=> SELECT * FROMt1 FULL JON t2 ON t1. num = t2. num
num| name | num| val ue

122

Queries

3| ¢ | 3| yyy
| | 5| zzz

(4 rows)

Thejoin condition specified with ON can a so contain conditionsthat do not relate directly to thejoin. This
can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROMt1 LEFT JONt2 ONtl.num= t2.num AND t 2. val ue =

XXX ;
num| nanme | num| val ue
----- B T Ty
1| a | 1| xxx
2] b | |
3] ¢ | |
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROMt1 LEFT JONt2 ON t1.num = t2. num WHERE t 2. val ue =

XXX ;
num| nanme | num| val ue
----- T ey S

1| a | 1| xxx
(1 row

Thisisbecause arestriction placed in the ON clause is processed before the join, while arestriction placed
in the WHERE clause is processed after the join. That does not matter with inner joins, but it matters a
lot with outer joins.

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to the
derived table in the rest of the query. Thisiscalled atable alias.

To create atable alias, write

FROM t abl e_reference AS ali as

or

FROM t abl e_reference alias
The AS key word is optional noise. al i as can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM sone_very long_table name s JON
another fairly long nane a ON s.id = a.num

The alias becomes the new name of the table reference so far as the current query is concerned — it is not
allowed to refer to the table by the original name elsewhere in the query. Thus, thisis not valid:

123

Queries

SELECT * FROM ny_table AS m WHERE ny_table.a > 5; -- wong
Table aliases are mainly for notational convenience, but it is necessary to use them when joining a table
toitself, e.g.:
SELECT * FROM peopl e AS nother JO N people AS child ON nother.id =

chil d. mot her _i d;
Additionally, an adliasis reguired if the table reference is a subquery (see Section 7.2.1.3).
Parentheses are used to resolve ambiguities. In the following example, the first statement assignsthe alias
b to the second instance of my _t abl e, but the second statement assigns the alias to the result of the join:
SELECT * FROM ny_table AS a CROSS JON ny_table AS b ...
SELECT * FROM (ny_table AS a CROSS JON ny_table) AS b ...

Another form of table aliasing givestemporary namesto the columns of thetable, aswell asthetableitself:

FROM t abl e_reference [AS] alias (columl [, colum2 [, ...]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of a JO N clause, the alias hides the original name(s) within the
JA N. For example:
SELECT a.* FROM ny_table AS a JO N your _table AS b ON ...

isvalid SQL, but:

SELECT a.* FROM (ny_table AS a JO N your _table AS b ON...) AS c

isnot valid; thetable aliasa isnot visible outside the dlias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned atable dias
name (asin Section 7.2.1.2). For example:
FROM (SELECT * FROM tabl el) AS alias_nane

Thisexampleisequivalentto FROM t abl el AS al i as_nane. Moreinteresting cases, which cannot
be reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES (' anne', 'smith'), ('bob', 'jones'), ('joe', "blow))
AS nanes(first, |ast)

124

Queries

Again, atable aliasis required. Assigning alias names to the columns of the VALUES list is optional, but
is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar types)
or composite data types (table rows). They are used like atable, view, or subquery in the FROMclause of
a query. Columns returned by table functions can be included in SELECT, JO N, or WHERE clauses in
the same manner as columns of atable, view, or subquery.

Table functions may also be combined using the RONS FROMsyntax, with the results returned in parallel
columns; the number of result rows in this case is that of the largest function result, with smaller results
padded with null values to match.

function_call [WTH ORDI NALITY] [[AS] table_ alias [(columm_alias

[, ... DII
ROAS FROM function_call [, ...]) [WTH ORDI NALI TY]

[[AS] table alias [(colum_alias [, ... 1)11]

If the W TH ORDI NALI TY clause is specified, an additional column of type bi gi nt will be added to
thefunction result columns. This column numbersthe rows of the function result set, starting from 1. (This

is a generalization of the SQL-standard syntax for UNNEST ... W TH ORDI NALI TY.) By default,
the ordinal column is called or di nal i ty, but a different column name can be assigned to it using an
AS clause.

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, as if UNNEST (Section 9.19) had been called on each parameter
separately and combined using the ROAS FROMconstruct.

UNNEST(array_expression [, ...]) [WTH ORDI NALI TY]
[[AS] table_alias [(colum_alias [, ... 1)]]

If notabl e_al i as is specified, the function name is used as the table name; in the case of a ROAS
FROM) construct, the first function's name is used.

If column aliases are not supplied, then for afunction returning a base data type, the column nameis also
the same as the function name. For afunction returning acomposite type, the result columns get the names
of theindividual attributes of the type.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, foonanme text);

CREATE FUNCTI ON get f 0o(i nt) RETURNS SETOF foo AS $$
SELECT * FROM f oo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

SELECT * FROM f oo
WHERE f oosubid IN (
SELECT foosubi d
FROM get f oo(foo.fooid) z

125

Queries

VWHERE z.fooid = foo.fooid
)

CREATE VI EW vw_get f oo AS SELECT * FROM get f 0o(1);

SELECT * FROM vw_get f 00;

In some casesiit is useful to define table functions that can return different column sets depending on how
they areinvoked. To support this, the table function can be declared as returning the pseudo-typer ecor d
with no QUT parameters. When such a function is used in a query, the expected row structure must be
specified in the query itself, so that the system can know how to parse and plan the query. This syntax
looks like:

function_call [AS] alias (column_definition [, 1)
function_call AS [alias] (columm_definition [, ...])
ROAMS FROM ... function_call AS (colum_definition [, 1)

[, ... 1)

When not using the ROA5 FROM) syntax, the col umm_def i ni ti on list replaces the column alias
list that could otherwise be attached to the FROMitem; the names in the column definitions serve as column
aliases. When using the ROA5 FROM) syntax, acol umm_def i ni ti on list can be attached to each
member function separately; or if thereis only one member function and noW TH ORDI NALI TY clause,
acol um_defi ni ti on list can bewritten in place of acolumn aiaslist following ROAS FROM) .

Consider this example:

SELECT *
FROM dbl i nk(' dbname=nydb', ' SELECT pronane, prosrc FROM pg proc')
AS t 1(pronane nane, prosrc text)
WHERE pronane LIKE ' bytea% ;

The dblink function (part of the dblink module) executes aremote query. It isdeclared to returnr ecor d
since it might be used for any kind of query. The actual column set must be specified in the calling query
so that the parser knows, for example, what * should expand to.

This example uses ROA5 FROM

SELECT *
FROM ROA6 FROM

(
json_to_recordset('[{"a":40,"b":"fo0"},
{"a":"100","b":"bar"}]")
AS (a | NTEGER, b TEXT),
generate_series(1, 3)
) AS x (p, a, s)
ORDER BY p;

40 | foo | 1
100 | bar | 2
| | 3

126

Queries

It joins two functions into a single FROMtarget. j son_t o_recor dset () isinstructed to return two
columns, thefirsti nt eger andthesecondt ext . Theresult of gener at e_seri es() isuseddirectly.
The ORDER BY clause sorts the column values as integers.

7.2.1.5. LATERAL Subqueries

Subgueries appearing in FROM can be preceded by the key word LATERAL. This alows them to
reference columns provided by preceding FROMitems. (Without LATERAL, each subquery is evaluated
independently and so cannot cross-reference any other FROMitem.)

Table functions appearing in FROMcan also be preceded by the key word LATERAL, but for functionsthe
key word is optional; the function's arguments can contain references to columns provided by preceding
FROMitemsin any case.

A LATERAL item can appear at top level in the FROMIist, or within aJO Ntree. In the latter case it can
also refer to any items that are on the left-hand side of aJO Nthat it is on the right-hand side of .

When a FROMitem contains LATERAL cross-references, evaluation proceeds as follows: for each row of
the FROMitem providing the cross-referenced column(s), or set of rows of multiple FROMitems providing
the columns, the LATERAL item is evaluated using that row or row set's values of the columns. The
resulting row(s) are joined as usual with the rows they were computed from. Thisis repeated for each row
or set of rows from the column source table(s).

A trivial example of LATERAL is

SELECT * FROM foo, LATERAL (SELECT * FROM bar WHERE bar.id =
foo. bar_id) ss;

Thisis not especially useful since it has exactly the same result as the more conventional

SELECT * FROM foo, bar WHERE bar.id = foo.bar _id;

LATERAL is primarily useful when the cross-referenced column is necessary for computing the row(s) to
bejoined. A common applicationis providing an argument value for aset-returning function. For example,
supposing that ver t i ces(pol ygon) returns the set of vertices of a polygon, we could identify close-
together vertices of polygons stored in atable with:

SELECT pl.id, p2.id, vl, v2
FROM pol ygons pl, pol ygons p2,
LATERAL vertices(pl. poly) vi,
LATERAL vertices(p2.poly) v2
WHERE (v1 <-> v2) < 10 AND pl.id != p2.id;

This query could also be written

SELECT pl.id, p2.id, vl, v2

FROM pol ygons pl CROSS JO N LATERAL vertices(pl.poly) vi,
pol ygons p2 CRCSS JO N LATERAL vertices(p2.poly) v2

WHERE (v1 <-> v2) < 10 AND pl.id != p2.id;

or in severa other equivalent formulations. (Asalready mentioned, the LATERAL key word isunnecessary
in this example, but we useit for clarity.)

127

Queries

7.2.2.

It is often particularly handy to LEFT JO N to a LATERAL subquery, so that source rows will
appear in the result even if the LATERAL subquery produces no rows for them. For example,
if get _product nanes() returns the names of products made by a manufacturer, but some
manufacturersin our table currently produce no products, we could find out which onesthose are like this:

SELECT m nane

FROM manuf acturers m LEFT JO N LATERAL get_product_names(mid) pnane
ON true

VWHERE pnanme | S NULL;

The WHERE Clause

The syntax of the WHERE clauseis

WHERE sear ch_condition

where sear ch_condi ti on is any value expression (see Section 4.2) that returns a value of type
bool ean.

After the processing of the FROMclause is done, each row of the derived virtua table is checked against
the search condition. If the result of the condition is true, the row is kept in the output table, otherwise
(i.e., if the result is false or null) it is discarded. The search condition typically references at least one
column of the table generated in the FROMclause; thisis not required, but otherwise the WHERE clause
will befairly useless.

Note

Thejoin condition of aninner join can bewritten either in the WHERE clause or inthe JO Nclause.
For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JON b ON (a.id = b.id) WHERE b.val > 5

or perhaps even:

FROM a NATURAL JO N b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The JO N syntax in the FROMclause is
probably not as portable to other SQL database management systems, even though it isin the SQL
standard. For outer joins there is no choice: they must be done in the FROMclause. The ON or
USI NG clause of an outer join is not equivalent to a WHERE condition, because it results in the
addition of rows (for unmatched input rows) as well asthe removal of rowsin the final result.

Here are some examples of WHERE clauses:

128

Queries

7.2.3.

SELECT ... FROM fdt WHERE c1 > 5
SELECT ... FROMfdt WHERE c1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE c1 IN (SELECT c1 FROMt2)

SELECT ... FROM fdt WHERE c1 IN (SELECT c¢3 FROMt2 WHERE c2 = fdt.cl +
10)

SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT c3 FROM t 2 WHERE c2 =

fdt.cl + 10) AND 100

SELECT ... FROM fdt WHERE EXI STS (SELECT c1 FROMt2 WHERE c2 > fdt.cl)

f dt isthe table derived in the FROMclause. Rows that do not meet the search condition of the WHERE
clause are eliminated from f dt . Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how f dt is referenced
in the subqueries. Qualifying c1 asf dt. c1 isonly necessary if c1 is aso the name of a column in
the derived input table of the subquery. But qualifying the column name adds clarity even when it is not
needed. Thisexample shows how the column naming scope of an outer query extendsinto itsinner queries.

The GROUP BY and HAVI NG Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP BY
clause, and elimination of group rows using the HAVI NG clause.

SELECT select |i st
FROM . ..
[WHERE . . .]
GROUP BY groupi ng_col um_r ef erence
[, grouping _colum_reference]...

The GROUP BY clauseis used to group together those rows in atable that have the same valuesin all the
columns listed. The order in which the columns are listed does not matter. The effect is to combine each
set of rows having common values into one group row that represents all rows in the group. Thisis done
to eliminate redundancy in the output and/or compute aggregates that apply to these groups. For instance:

=> SELECT * FROM test1;

x|y
T .
al| 3
c| 2
b|] 5
al| 1
(4 rows)

=> SELECT x FROM test1 GROUP BY x;

129

Queries

(3 rows)

In the second query, we could not have written SELECT * FROM t est 1 GROUP BY X, becausethere
isno single valuefor the columny that could be associated with each group. The grouped-by columns can
be referenced in the select list since they have a single value in each group.

In general, if atableis grouped, columns that are not listed in GROUP BY cannot be referenced except in
aggregate expressions. An example with aggregate expressionsis:

=> SELECT x, sum(y) FROMtestl GROUP BY x;
X | sum

c |
(3 rows

o
~ N 01

Here sumis an aggregate function that computes a single value over the entire group. More information
about the available aggregate functions can be found in Section 9.21.

Tip

Grouping without aggregate expressions effectively calculates the set of distinct values in a
column. This can also be achieved using the DI STI NCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of all
products):

SELECT product_id, p.nanme, (sun{(s.units) * p.price) AS sales
FROM products p LEFT JO N sales s USI NG (product _id)
GROUP BY product _id, p.nane, p.price;

In this example, the columns pr oduct _i d, p. nane, and p. pri ce must bein the GROUP BY clause
since they are referenced in the query select list (but see below). The column s. uni t s does not have to
beinthe GROUP BY list sinceit isonly used in an aggregate expression (sun{ . . .)), which represents
the sales of a product. For each product, the query returns a summary row about all sales of the product.

If the products table is set up so that, say, pr oduct _i d isthe primary key, then it would be enough to
group by pr oduct _i d in the above example, since name and price would be functionally dependent
on the product 1D, and so there would be no ambiguity about which name and price value to return for
each product ID group.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends this
to also alow GROUP BY to group by columns in the select list. Grouping by value expressions instead
of simple column namesis also alowed.

If atable has been grouped using GROUP BY, but only certain groups are of interest, the HAVI NG clause
can be used, much like aVWWHERE clause, to eliminate groups from the result. The syntax is:

130

Queries

7.2.4.

SELECT select_list FROM... [WHERE ...] GROUP BY ...
HAVI NG bool ean_expressi on

Expressions in the HAVI NG clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM test1l GROUP BY x HAVI NG sun(y) > 3;
X | sum

T
a | 4
b | 5
(2 rows)

=> SELECT x, sunm(y) FROMtestl GROUP BY x HAVING x < 'c';
X | sum

T
a | 4
b | 5
(2 rows)

Again, amore reglistic example:

SELECT product _id, p.name, (sun(s.units) * (p.price - p.cost)) AS
profit
FROM products p LEFT JO N sal es s USI NG (product _id)
WHERE s. date > CURRENT_DATE - | NTERVAL '4 weeks'
GROUP BY product _id, p.nane, p.price, p.cost
HAVI NG sum(p. price * s.units) > 5000;

In the exampl e above, the WHERE clause is selecting rows by a column that is not grouped (the expression
isonly true for sales during the last four weeks), while the HAVI NG clause restricts the output to groups
with total gross sales over 5000. Note that the aggregate expressions do not necessarily need to be the
samein all parts of the query.

If aquery contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result is
asingle group row (or perhaps no rows at al, if the single row is then eliminated by HAVI NG). The same
istrueif it contains a HAVI NG clause, even without any aggregate function calls or GROUP BY clause.

GROUPI NG SETS, CUBE, and ROLLUP

More complex grouping operations than those described above are possible using the concept of grouping
sets. The data selected by the FROMand WHERE clauses is grouped separately by each specified grouping
set, aggregates computed for each group just as for simple GROUP BY clauses, and then the results
returned. For example;

=> SELECT * FROM itens_sol d;
brand | size | sales

Foo | L
Foo | M | 20

131

Queries

Bar | M | 15
Bar | L | 5
(4 rows)

=> SELECT brand, size, sun{sales) FROMitens_sold GROUP BY GROUPI NG
SETS ((brand), (size), ());
brand | size | sum

_______ .
Foo | | 30
Bar | | 20

| L | 15

| M | 35

| | 50
(5 rows)

Each sublist of GROUPI NG SETS may specify zero or more columns or expressions and isinterpreted the
same way as though it were directly in the GROUP BY clause. An empty grouping set meansthat all rows
are aggregated down to asingle group (which is output even if no input rows were present), as described
above for the case of aggregate functions with no GROUP BY clause.

References to the grouping columns or expressions are replaced by null valuesin result rows for grouping
setsin which those columns do not appear. To distinguish which grouping a particular output row resulted
from, see Table 9.59.

A shorthand notation is provided for specifying two common types of grouping set. A clause of the form
ROLLUP (el, e2, e3, ...)
represents the given list of expressions and all prefixes of the list including the empty list; thus it is

equivalent to

GROUPI NG SETS (

(el, e2, e3, ...),
.(.él, e2),
(el),

()
)

Thisis commonly used for analysis over hierarchical data; e.g., total salary by department, division, and
company-wide total.

A clause of the form

CUBE (el, e2, ...)

represents the given list and al of its possible subsets (i.e., the power set). Thus

CUBE (a, b, c)

is equivalent to

132

Queries

GROUPI NG SETS (
(a b, c),
(a b),
(a, c),
(a)
(b, ¢),
(b)
(c).
()

)

The individual elements of a CUBE or ROLLUP clause may be either individual expressions, or sublists
of elements in parentheses. In the latter case, the sublists are treated as single units for the purposes of
generating the individual grouping sets. For example:

CuBE ((a, b), (c, d))

is equivalent to

GROUPI NG SETS (
(a b, c, d),

(a b).
(c, d),
()
)
and

ROLLUP (a, (b, c), d)
isequivalent to
GROUPI NG SETS (

(a b, c, d)

(a b, c),
(a)
()
)

The CUBE and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested inside
aGROUPI NG SETS clause. If one GROUPI NG SETS clause is nested inside another, the effect is the
same asif all the elements of the inner clause had been written directly in the outer clause.

If multiple grouping items are specified in asingle GROUP BY clause, then the final list of grouping sets
isthe cross product of the individual items. For example:

GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))

is equivalent to

GROUP BY CROUPI NG SETS (

133

Queries

7.2.5.

(a, b, ¢, d, (a, b, c, e),
(a, b, d), (a, b, e),
(a, c, d), (a, c, e),

Note

The construct (a, b) isnormally recognized in expressions as a row constructor. Within the
GROUP BY clause, thisdoes not apply at thetop levels of expressions, and (a, b) isparsedasa
list of expressions as described above. If for some reason you need arow constructor in agrouping
expression, use RON a, b).

Window Function Processing

If the query contains any window functions (see Section 3.5, Section 9.22 and Section 4.2.8), these
functions are evaluated after any grouping, aggregation, and HAVI NGfiltering is performed. That is, if the
guery uses any aggregates, GROUP BY, or HAVI NG, then the rows seen by the window functions are the
group rows instead of the origina table rows from FROMWHERE.

When multiple window functions are used, al the window functions having syntactically equivalent
PARTI TI ON BY and ORDER BY clauses in their window definitions are guaranteed to be evaluated in
a single pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY does
not uniquely determine an ordering. However, no guarantees are made about the evaluation of functions
having different PARTI TI ON BY or ORDER BY specifications. (In such cases a sort step is typically
required between the passes of window function evaluations, and the sort is not guaranteed to preserve
ordering of rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions PARTI TI ON BY/ORDER BY clauses. It is not
recommended to rely on this, however. Use an explicit top-level ORDER BY clauseif you want to be sure
the results are sorted in a particular way.

7.3. Select Lists

7.3.1.

Asshown in the previous section, thetable expression in the SELECT command constructs an intermediate
virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table is finally
passed on to processing by the select list. The select list determines which columns of the intermediate
table are actually output.

Select-List Items

Thesimplest kind of select listis* which emitsall columnsthat the table expression produces. Otherwise,
a select list is a comma-separated list of value expressions (as defined in Section 4.2). For instance, it
could be alist of column names:

SELECT a, b, ¢ FROM ...

The columns names a, b, and ¢ are either the actual names of the columns of tables referenced in the
FROMclause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in

134

Queries

7.3.2.

7.3.3.

the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same
asin the HAVI NG clause.

If more than one table has a column of the same name, the table name must also be given, asin:

SELECT tbhl1l.a, thl2.a, thll.b FROM...

When working with multiple tables, it can aso be useful to ask for all the columns of a particular table:

SELECT tbl1.*, tbl2.a FROM ...
See Section 8.16.5 for more about thet abl e_nane. * notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to the
returned table. Thevalue expression isevaluated once for each result row, with the row's values substituted
for any column references. But the expressions in the select list do not have to reference any columnsin
the table expression of the FROMclause; they can be constant arithmetic expressions, for instance.

Column Labels

Theentriesin the select list can be assigned names for subsequent processing, such asfor usein an ORDER
BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM . ..

If no output column name is specified using AS, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

The AS keyword is optional, but only if the new column name does not match any PostgreSQL keyword
(see Appendix C). To avoid an accidental match to a keyword, you can double-quote the column name.
For example, VALUE is a keyword, so this does not work:

SELECT a value, b + ¢ AS sum FROM . ..

but this does:

SELECT a "value", b + ¢ AS sum FROM . ..

For protection against possible future keyword additions, it is recommended that you always either write
AS or double-quote the output column name.

Note

The naming of output columns here is different from that done in the FROM clause (see
Section 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the
select list is the one that will be passed on.

DI STI NCT

135

Queries

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DI STI NCT key word iswritten directly after SELECT to specify this:

SELECT DI STI NCT sel ect _li st

(Instead of DI STI NCT thekey word ALL can be used to specify the default behavior of retaining all rows.)

Obvioudly, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

SELECT DI STI NCT ON (expression [, expression ...]) select_list

Hereexpr essi on isanarbitrary value expression that is evaluated for all rows. A set of rowsfor which
all the expressions are equal are considered duplicates, and only the first row of the set is kept in the
output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough columns
to guarantee a unique ordering of the rows arriving at the DI STI NCT filter. (DI STI NCT ON processing
occurs after ORDER BY sorting.)

TheDI STI NCT ONclauseisnot part of the SQL standard and is sometimes considered bad style because
of the potentially indeterminate nature of its results. With judicious use of GROUP BY and subqueriesin
FROM this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

queryl UNION [ALL] query?2
queryl | NTERSECT [ALL] query2
queryl EXCEPT [ALL] query2

where quer y1 and quer y2 are queries that can use any of the features discussed up to this point.

UNI ON effectively appendstheresult of quer y2 to theresult of quer y1 (although thereis no guarantee
that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate rows
fromitsresult, in the sameway as DI STI NCT, unlessUNI ON ALL isused.

| NTERSECT returnsall rowsthat are bothintheresult of quer y1 andintheresult of quer y2. Duplicate
rows are eliminated unless| NTERSECT ALL is used.

EXCEPT returns al rows that are in the result of quer y1 but not in the result of query2. (Thisis
sometimes called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT
ALL isused.

In order to calculate the union, intersection, or difference of two queries, the two queries must be “union
compatible”, which means that they return the same number of columns and the corresponding columns
have compatible data types, as described in Section 10.5.

Set operations can be combined, for example

136

Queries

queryl UNI ON query2 EXCEPT query3

which is equivalent to

(queryl UNI ON query?2) EXCEPT query3

As shown here, you can use parentheses to control the order of evaluation. Without parentheses, UNI ON
and EXCEPT associate left-to-right, but | NTERSECT binds more tightly than those two operators. Thus

queryl UNI ON query2 | NTERSECT query3

means

gqueryl UNI ON (query2 | NTERSECT query3)

You can aso surround an individual quer y with parentheses. This is important if the quer y needs to
use any of the clauses discussed in following sections, such as LI M T. Without parentheses, you'll get
a syntax error, or else the clause will be understood as applying to the output of the set operation rather
than one of itsinputs. For example,

SELECT a FROM b UNI ON SELECT x FROMy LIMT 10

is accepted, but it means

(SELECT a FROM b UNI ON SELECT x FROMy) LIMT 10

not

SELECT a FROM b UNION (SELECT x FROMy LIM T 10)

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally be
sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order in that
case will depend on the scan and join plan types and the order on disk, but it must not be relied on. A
particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT sel ect _|i st
FROM t abl e_expr essi on
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST |
LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query's select list. An exampleis:

SELECT a, b FROM tabl el ORDER BY a + b, c;

137

Queries

When more than one expression is specified, the later values are used to sort rows that are equal according
to the earlier values. Each expression can be followed by an optional ASC or DESC keyword to set the
sort direction to ascending or descending. ASC order is the default. Ascending order puts smaller values
first, where“smaller” isdefined in terms of the < operator. Similarly, descending order is determined with
the > operator. *

TheNULLS FI RST and NULLS LAST options can be used to determine whether nulls appear before or
after non-null values in the sort ordering. By default, null values sort asif larger than any non-null value;
that is, NULLS FI RST isthe default for DESC order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESCmeans ORDER BY x ASC, y DESC, which is not the same as ORDER BY x
DESC, y DESC.

A sort_expr essi on can aso be the column label or number of an output column, asin:

SELECT a + b AS sum ¢ FROM tabl el ORDER BY sum
SELECT a, max(b) FROM tablel GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name hasto stand aone, that is,
it cannot be used in an expression — for example, thisis not correct:

SELECT a + b AS sum c¢ FROMtabl el ORDER BY sum + c; -- wong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item isasimple
name that could match either an output column name or a column from the table expression. The output
column is used in such cases. Thiswould only cause confusion if you use AS to rename an output column
to match some other table column's name.

ORDER BY can be applied to the result of a UNI QN, | NTERSECT, or EXCEPT combination, but in this
caseit is only permitted to sort by output column names or numbers, not by expressions.

7.6. LI M Tand OFFSET

LI M T and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of the
query:

SELECT sel ect _|i st
FROM t abl e_expr essi on
[ORDER BY ...]
[LIMT { nunmber | ALL }] [OFFSET number]

If alimit count is given, no more than that many rows will be returned (but possibly fewer, if the query
itself yields fewer rows). LIM T ALL is the same as omitting the LI M T clause, asisLI M T with a
NULL argument.

OFFSET saysto skip that many rows before beginning to return rows. OFFSET 0 isthe same as omitting
the OFFSET clause, asis OFFSET with aNULL argument.

1 Actualy, PostgreSQL uses the default B-tree operator class for the expression's data type to determine the sort ordering for ASC and DESC.
Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but a user-defined data type's designer
could choose to do something different.

138

Queries

If both OFFSET and LI M T appear, then OFFSET rows are skipped before starting to count theLIM T
rows that are returned.

When using LI M T, it is important to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query's rows. Y ou might be asking for
the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is unknown,
unless you specified ORDER BY.

The query optimizer takesL1 M T into account when generating query plans, so you are very likely to get
different plans (yielding different row orders) depending on what you givefor LI M T and OFFSET. Thus,
using different LI M T/OFFSET values to select different subsets of a query result will give inconsistent
results unless you enforce a predictabl e result ordering with ORDER BY. Thisisnot abug; itisaninherent
conseguence of the fact that SQL does not promise to deliver the results of aquery in any particular order
unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. VALUES Lists

VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate atable on-disk. The syntax is

VALUES (expression [, ...]1) [, ...]

Each parenthesized list of expressions generatesarow inthetable. Thelists must all have the same number
of elements (i.e., the number of columns in the table), and corresponding entries in each list must have
compatible data types. The actual data type assigned to each column of the result is determined using the
samerules asfor UNI ON (see Section 10.5).

Asan example:

VALUES (1, 'one'), (2, 'two'), (3, '"three');

will return atable of two columns and three rows. It's effectively equivalent to:

SELECT 1 AS columil, 'one' AS colum2
UNI ON ALL

SELECT 2, 'two'

UNI ON ALL

SELECT 3, 'three';

By default, PostgreSQL assignsthe namescol unml, col uim?2, etc. to the columns of a VALUES table.
The column names are not specified by the SQL standard and different database systems do it differently,
soit'susually better to override the default names with atable dliaslit, like this:

=> SELECT * FROM (VALUES (1, 'one'), (2, '"two'), (3, '"three')) AS't
(numletter);
num| letter

139

Queries

2] two
3| three
(3 rows)

Syntactically, VALUES followed by expression listsis treated as equivalent to:

SELECT sel ect _|ist FROM tabl e_expression

and can appear anywhere a SELECT can. For example, you can use it as part of a UNI ON, or attach a
sort _specificati on(ORDER BY,LI M T, and/or OFFSET) toit. VALUES is most commonly used
as the data source in an | NSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. W THQueries (Common Table
Expressions)

7.8.1.

W TH provides a way to write auxiliary statements for use in a larger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tablesthat exist just for one query. Each auxiliary statement in aW TH clause can bea SELECT, | NSERT,
UPDATE, or DELETE; and the W TH clause itself is attached to a primary statement that can also be a
SELECT, | NSERT, UPDATE, or DELETE.

SELECT in WTH

Thebasic value of SELECT in W THisto break down complicated queriesinto simpler parts. An example
is.

W TH regi onal _sales AS (
SELECT regi on, SUM anount) AS total sales
FROM or ders
GROUP BY region
), top_regions AS (
SELECT region
FROM r egi onal _sal es
WHERE total sales > (SELECT SUMtotal sales)/ 10 FROM
regi onal _sal es)
)
SELECT regi on,
product,
SUM quantity) AS product_units,
SUM amount) AS product _sal es
FROM or ders
WHERE regi on I N (SELECT regi on FROM t op_regi ons)
GROUP BY region, product;

which displays per-product salestotalsin only the top salesregions. The W TH clause definestwo auxiliary
statementsnamed r egi onal _sal es andt op_r egi ons, wherethe output of r egi onal _sal es is
used int op_r egi ons and the output of t op_r egi ons isused in the primary SELECT query. This
exampl e could have been written without W TH, but we'd have needed two levels of nested sub-SELECTS.
It'sahbit easier to follow thisway.

140

Queries

The optional RECURSI VE modifier changes W TH from a mere syntactic convenience into afeature that
accomplishes things not otherwise possiblein standard SQL. Using RECURSI VE, aW THquery can refer
to itsown output. A very simple example isthis query to sum the integers from 1 through 100:

W TH RECURSI VE t(n) AS (
VALUES (1)
UNI ON ALL
SELECT n+1 FROMt WHERE n < 100

)
SELECT sunm(n) FROM t;

The general form of a recursive W TH query is aways a non-recursive term, then UNI ON (or UNI ON
ALL), then arecursive term, where only the recursive term can contain a reference to the query's own
output. Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNI ON (but not UNI ON ALL), discard duplicate rows. Include
all remaining rows in the result of the recursive query, and also place them in a temporary working
table.

2. Solong asthe working tableis not empty, repeat these steps:

a. Evauate the recursive term, substituting the current contents of the working table for the
recursive self-reference. For UNI ON (but not UNI ON AL L), discard duplicate rows and rows
that duplicate any previous result row. Include all remaining rows in the result of the recursive
query, and also place them in atemporary intermediate table.

b. Replacethe contents of the working table with the contents of the intermediate table, then empty
the intermediate table.

Note

Strictly speaking, thisprocessisiteration not recursion, but RECURSI VE istheterminology chosen
by the SQL standards committee.

In the example above, the working table has just asingle row in each step, and it takes on the values from
1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE clause, and
so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful exampleis
this query to find all the direct and indirect sub-parts of aproduct, given only atable that showsimmediate
inclusions:

W TH RECURSI VE i ncl uded_parts(sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part =
' our _product"’
UNI ON ALL
SELECT p.sub_part, p.part, p.quantity
FROM i ncl uded_parts pr, parts p
WHERE p. part = pr.sub_part

141

Queries

)

SELECT sub_part, SUMquantity) as total _quantity
FROM i ncl uded_parts

GROUP BY sub_part

When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNI ON instead of
UNI ON ALL can accomplish this by discarding rows that duplicate previous output rows. However, often
acycle does not involve output rows that are completely duplicate: it may be necessary to check just one
or afew fields to see if the same point has been reached before. The standard method for handling such
situations is to compute an array of the already-visited values. For example, consider the following query
that searches atable gr aph using al i nk field:

W TH RECURSI VE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM gr aph ¢
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
)
SELECT * FROM search_graph;

This query will loop if the |l i nk relationships contain cycles. Because we require a “depth” output, just
changing UNI ON ALL to UNI ON'would not eliminate the looping. Instead we need to recognize whether
we have reached the same row again whilefollowing aparticular path of links. We add two columnspat h
and cycl e to the loop-prone query:

W TH RECURSI VE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY[g. i d],
fal se
FROM gr aph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || g.id,
g.id = ANY(path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle
)
SELECT * FROM sear ch_gr aph;

Aside from preventing cycles, the array value is often useful in its own right as representing the “ path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array of
rows. For example, if we needed to compare fieldsf 1 and f 2:

W TH RECURSI VE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,

ARRAY[RONg.f1, g.f2)],
fal se

142

Queries

FROM graph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || RONg.f1, g.f2),
RONg.f1, g.f2) = ANY(path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle
)
SELECT * FROM search_graph;

Tip

Omitthe RON() syntax inthe common case where only onefield needsto be checked to recognize
acycle. Thisallowsasimplearray rather than acomposite-type array to be used, gaining efficiency.

Tip

The recursive query evaluation algorithm produces its output in breadth-first search order. You
can display the results in depth-first search order by making the outer query ORDER BY a*path”
column constructed in this way.

A helpful trick for testing queries when you are not certain if they might loop isto placealLl M T in the
parent query. For example, this query would loop forever without the LI M T:

W TH RECURSI VE t(n) AS (
SELECT 1
UNI ON ALL
SELECT n+1 FROM t

)
SELECT n FROMt LIMT 100;

This works because PostgreSQL 's implementation evaluates only as many rows of a W TH query as are
actually fetched by the parent query. Using this trick in production is not recommended, because other
systems might work differently. Also, it usually won't work if you make the outer query sort the recursive
query's results or join them to some other table, because in such cases the outer query will usually try to
fetch al of the W TH query's output anyway.

A useful property of W THqueriesisthat they are normally evaluated only once per execution of the parent
query, even if they are referred to more than once by the parent query or sibling W TH queries. Thus,
expensive calculations that are needed in multiple places can be placed within a W TH query to avoid
redundant work. Another possible application is to prevent unwanted multiple evaluations of functions
with side-effects. However, the other side of this coin is that the optimizer is not able to push restrictions
from the parent query down into a multiply-referenced W TH query, since that might affect all uses of
the W TH query's output when it should affect only one. The multiply-referenced W TH query will be
evaluated as written, without suppression of rows that the parent query might discard afterwards. (But,
as mentioned above, evaluation might stop early if the reference(s) to the query demand only a limited
number of rows.)

However, if a W TH query is non-recursive and side-effect-free (that is, it is a SELECT containing no
volatile functions) then it can be folded into the parent query, allowing joint optimization of the two query

143

Queries

levels. By default, this happens if the parent query references the W TH query just once, but not if it
referencesthe W THquery morethan once. Y ou can override that decision by specifying MATERI ALI ZED
to force separate calculation of the W TH query, or by specifying NOT MATERI ALI ZED to force it to
be merged into the parent query. The latter choice risks duplicate computation of the W TH query, but it
can still give anet savings if each usage of the W TH query needs only a small part of the W TH query's
full output.

A simple example of theserulesis

WTH w AS (
SELECT * FROM bi g_table
)

SELECT * FROM w WHERE key = 123;

ThisW TH query will be folded, producing the same execution plan as

SELECT * FROM bi g_tabl e WHERE key = 123;

In particular, if there's an index on key, it will probably be used to fetch just the rows having key =
123. On the other hand, in

WTH w AS (
SELECT * FROM bi g_tabl e
)

SELECT * FROMw AS wl1 JO N w AS w2 ON wl. key = w2. ref
VWHERE w2. key = 123;

the W TH query will be materialized, producing atemporary copy of bi g_t abl e that isthenjoined with
itself — without benefit of any index. This query will be executed much more efficiently if written as

WTH w AS NOT MATERI ALI ZED (
SELECT * FROM bi g_table

)
SELECT * FROMw AS w1l JON w AS w2 ON wl. key = w2.ref

WHERE wW2. key = 123;
so that the parent query's restrictions can be applied directly to scans of bi g_t abl e.

An example where NOT MATERI ALI ZED could be undesirable is

WTH w AS (
SELECT key, very_expensive_function(val) as f FROM sone_tabl e

)
SELECT * FROMw AS w1 JON w AS w2 ON wl.f = w2.f;

Here, materialization of the W TH query ensuresthat ver y_expensi ve_functi on isevaluated only
once per table row, not twice.

The examples above only show W TH being used with SELECT, but it can be attached in the same way to
| NSERT, UPDATE, or DELETE. In each caseit effectively providestemporary table(s) that can bereferred
to in the main command.

144

Queries

7.8.2. Data-Modifying Statements in W TH

You can use data-modifying statements (I NSERT, UPDATE, or DELETE) in W TH. This allows you to
perform several different operationsin the same query. An exampleis:

W TH noved_rows AS (
DELETE FROM product s
VWHERE
"date" >= '2010-10-01' AND
"date" < '2010-11-01'
RETURNI NG *
)
| NSERT | NTO products_I og
SELECT * FROM noved rows;

This query effectively movesrowsfrom pr oduct s topr oduct s_I| og. The DELETE in W TH deletes
the specified rows from pr oduct s, returning their contents by means of its RETURNI NG clause; and
then the primary query reads that output and insertsit into pr oduct s_1 og.

A fine point of the above exampleisthat the W TH clauseis attached to the | NSERT, not the sub-SELECT
within the | NSERT. This is necessary because data-modifying statements are only allowed in W TH
clauses that are attached to the top-level statement. However, normal W TH visibility rules apply, so it is
possible to refer to the W TH statement's output from the sub-SELECT.

Data-modifying statements in W TH usually have RETURNI NG clauses (see Section 6.4), as shown in
the example above. It is the output of the RETURNI NG clause, not the target table of the data-modifying
statement, that formsthe temporary tablethat can bereferred to by therest of the query. If adata-modifying
statement in W THlacks a RETURNI NGclause, then it forms no temporary table and cannot be referred to
in the rest of the query. Such a statement will be executed nonetheless. A not-particul arly-useful example
is:

WTH t AS (
DELETE FROM f 00

)
DELETE FROM bar ;

This example would remove all rows from tablesf oo and bar . The number of affected rows reported to
the client would only include rows removed from bar .

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible to
work around this limitation by referring to the output of arecursive W TH, for example:

W TH RECURSI VE i ncl uded_parts(sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = 'our_product’
UNI ON ALL
SELECT p. sub_part, p.part
FROM i ncl uded_parts pr, parts p
WHERE p. part = pr.sub_part
)
DELETE FROM parts
WHERE part I N (SELECT part FROM i ncl uded_parts);

145

Queries

This query would remove al direct and indirect subparts of a product.

Data-modifying statementsin W TH are executed exactly once, and always to completion, independently
of whether the primary query reads all (or indeed any) of their output. Notice that this is different from
the rule for SELECT in W TH: as stated in the previous section, execution of a SELECT is carried only
asfar asthe primary query demands its output.

The sub-statementsin W THare executed concurrently with each other and with the main query. Therefore,
when using data-modifying statementsin W TH, the order in which the specified updates actually happen
isunpredictable. All the statements are executed with the same snapshot (see Chapter 13), so they cannot
“see” one another's effects on the target tables. This alleviates the effects of the unpredictability of the
actual order of row updates, and means that RETURNI NG data is the only way to communicate changes
between different W TH sub-statements and the main query. An example of thisisthat in

WTH t AS (
UPDATE products SET price = price * 1.05
RETURNI NG *

)
SELECT * FROM products;

the outer SELECT would return the original prices before the action of the UPDATE, whilein

WTH t AS (
UPDATE products SET price = price * 1.05
RETURNI NG *

)
SELECT * FROM t;

the outer SELECT would return the updated data.

Trying to update the same row twice in asingle statement is not supported. Only one of the modifications
takes place, but it is not easy (and sometimes not possible) to reliably predict which one. Thisalso applies
to deleting arow that was already updated in the same statement: only the update is performed. Therefore
you should generally avoid trying to modify a single row twice in a single statement. In particular avoid
writing W TH sub-statements that could affect the same rows changed by the main statement or a sibling
sub-statement. The effects of such a statement will not be predictable.

At present, any table used asthetarget of a data-modifying statement in W THmust not have a conditional
rule, nor an ALSOrule, nor an | NSTEAD rule that expands to multiple statements.

146

Chapter 8. Data Types

PostgreSQL has arich set of native data types available to users. Users can add new types to PostgreSQL
using the CREATE TY PE command.

Table 8.1 shows all the built-in general-purpose data types. Most of the aternative names listed in the
“Aliases’ column are the names used internally by PostgreSQL for historical reasons. In addition, some

internally used or deprecated types are available, but are not listed here.

Table8.1. Data Types

Name Aliases Description
bi gi nt int8 signed eight-byte integer
bi gseri al serial8 autoi ncrementing eight-byte integer
bit [(n)] fixed-length bit string
bit varying [(n)] var bi t variable-length bit string
[(n)]
bool ean bool logical Boolean (true/false)
box rectangular box on aplane
byt ea binary data (“ byte array”)
character [(n)] char [(n)] |fixed-length character string
character varying [(n)] var char variable-length character string
[(n)]
cidr IPv4 or IPv6 network address
circle circleon aplane
dat e calendar date (year, month, day)
doubl e precision float8 double precision floating-point number
(8 bytes)
i net IPv4 or IPv6 host address
i nt eger int,int4 signed four-byte integer
interval [fields] [(p)] time span
j son textual JSON data
j sonb binary JSON data, decomposed
line infinite line on aplane
| seg line segment on a plane
macaddr MAC (Media Access Control) address
macaddr 8 MAC (Media Access Control) address
(EUI-64 format)
noney currency amount
nuneric [(p, S)] decimal [(p, |exact numeric of selectable precision
s) |
pat h geometric path on a plane
pg_lsn PostgreSQL Log Sequence Number

147

Data Types

Name Aliases Description

pg_snapshot user-level transaction 1D snapshot

poi nt geometric point on aplane

pol ygon closed geometric path on aplane

real float4 single precision floating-point number
(4 bytes)

smal | i nt int2 signed two-byte integer

smal | seri al serial 2 autoi ncrementing two-byte integer

seri al serial4 autoincrementing four-byte integer

t ext variable-length character string

time [(p)] [without time time of day (no time zone)

zone |

time [(p)] with tine zone|tinetz time of day, including time zone

timestamp [(p)] [wthout date and time (no time zone)

tinme zone]

timestamp [(p)] with tine|tinmestanptz date and time, including time zone

zone

t squery text search query

t svect or text search document

t xi d_snapshot user-level transaction 1D snapshot
(deprecated; see pg_snapshot)

uui d universally unique identifier

xm XML data

Compatibility

The following types (or spellings thereof) are specified by SQL: bigint, bit, bit
varyi ng, bool ean, char, character varying, character, varchar, date,
doubl e precision,integer,interval, nuneric, decinal, real, snallint,
ti me (with or without time zone), t i nest anp (with or without time zone), xn .

Each data type has an external representation determined by its input and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL,
such as geometric paths, or have several possible formats, such as the date and time types. Some of the
input and output functionsare not invertible, i.e., the result of an output function might lose accuracy when
compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point numbers,
and selectable-precision decimals. Table 8.2 lists the available types.

148

Data Types

8.1.1.

8.1.2.

Table 8.2. Numeric Types

Name Storage Size | Description Range
smal | i nt 2 bytes small-range integer -32768 to +32767
i nteger 4 bytes typical choice for integer -2147483648 to
+2147483647
bi gi nt 8 bytes large-range integer -9223372036854775808 to
+9223372036854775807
deci mal variable user-specified precision, up to 131072 digits before
exact the decimal point; up to
16383 digits after the
decimal point
nuneric variable user-specified precision, up to 131072 digits before
exact the decimal point; up to
16383 digits after the
decimal point
r eal 4 bytes variable-precision, inexact |6 decimal digits precision
doubl e precision 8 bytes variable-precision, inexact |15 decimal digits precision
snal | seri al 2 bytes small autoincrementing 1to 32767
integer
seri al 4 bytes autoincrementing integer 1to 2147483647
bi gseri al 8 bytes large autoincrementing 1to 9223372036854775807
integer

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information. The
following sections describe the types in detail.

Integer Types

Thetypessnal | i nt,i nt eger,andbi gi nt storewhole numbers, that is, numberswithout fractional
components, of variousranges. Attemptsto store values outside of the allowed rangewill result in an error.

Thetypei nt eger isthe common choice, as it offers the best balance between range, storage size, and
performance. Thesnal | i nt typeisgenerally only used if disk spaceisat apremium. Thebi gi nt type
is designed to be used when the range of thei nt eger typeisinsufficient.

SQL only specifies the integer typesi nt eger (orint), smal |int, and bi gi nt. The type names
int2,int4,andi nt 8 are extensions, which are also used by some other SQL database systems.

Arbitrary Precision Numbers

Thetypenuner i ¢ can store numberswith avery large number of digits. It isespecially recommended for
storing monetary amounts and other quantities where exactnessis required. Calculations with nurnrer i ¢
valuesyield exact resultswhere possible, e.g., addition, subtraction, multiplication. However, calculations
onnurer i ¢ values are very ow compared to the integer types, or to the floating-point types described
in the next section.

We use the following terms below: The precision of anuner i ¢ isthetotal count of significant digitsin
thewhole number, that is, the number of digitsto both sides of the decimal point. The scale of anuneri ¢

149

Data Types

isthe count of decimal digitsinthefractional part, to theright of the decimal point. So the number 23.5141
has a precision of 6 and a scale of 4. Integers can be considered to have a scale of zero.

Both the maximum precision and the maximum scale of anuner i ¢ column can be configured. To declare
acolumn of type nurrer i ¢ use the syntax:

NUMERI C(pr eci si on, scal e)

The precision must be positive, the scale zero or positive. Alternatively:

NUMERI C(pr eci si on)

selects ascale of 0. Specifying:

NUMERI C

without any precision or scale creates a column in which numeric values of any precision and scale can
be stored, up to the implementation limit on precision. A column of thiskind will not coerce input values
to any particular scale, whereas nuner i ¢ columns with a declared scale will coerce input values to that
scale. (The SQL standard requires adefault scale of 0, i.e., coercion to integer precision. Wefind thisabit
useless. If you're concerned about portability, always specify the precision and scale explicitly.)

Note

The maximum allowed precision when explicitly specified in the type declaration is 1000;
NUMERI C without a specified precision is subject to the limits described in Table 8.2.

If the scale of avalue to be stored is greater than the declared scale of the column, the system will round
the value to the specified number of fractional digits. Then, if the number of digitsto theleft of the decimal
point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the nurrer i ¢ type
ismore akin to var char (n) thanto char (n).) The actual storage requirement is two bytes for each
group of four decimal digits, plus three to eight bytes overhead.

In addition to ordinary numeric values, the nuner i ¢ type allows the special value NaN, meaning “not-
a-number”. Any operation on NaN yields another NaN. When writing this value as a constant in an SQL
command, you must put quotes around it, for example UPDATE t abl e SET x = ' NaN . Oninput,
the string NaN is recognized in a case-insensitive manner.

Note

In most implementations of the “not-a-number” concept, NaNis not considered equal to any other
numeric value (including NaN). In order to allow nurrer i ¢ valuesto be sorted and used in tree-
based indexes, PostgreSQL treats NaN values as equal, and greater than al non-NaN values.

150

Data Types

8.1.3.

Thetypesdeci nal and nuneri ¢ are equivaent. Both types are part of the SQL standard.

When rounding values, the nuner i ¢ type rounds ties away from zero, while (on most machines) the
real anddoubl e preci si on typesround tiesto the nearest even number. For example:

SELECT x,

round(x: : numeric) AS numround,

round(x: : doubl e precision) AS dbl_round
FROM generate_series(-3.5, 3.5, 1) as x;

X | numround | dbl _round
______ o
-3.5 | -4 | -4
-2.5 | -3 | -2
-1.5 | -2 | -2
-0.5 | -1 | -0

0.5 | 1] 0

1.5 | 2| 2

2.5 | 3 2

3.5 | 4 | 4
(8 rows)

Floating-Point Types

The datatypesr eal and doubl e preci si on areinexact, variable-precision numeric types. On all
currently supported platforms, these types are implementations of | EEE Standard 754 for Binary Floating-
Point Arithmetic (single and double precision, respectively), to the extent that the underlying processor,
operating system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and retrieving a value might show dlight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics and
computer science and will not be discussed here, except for the following points:

« If you require exact storage and calculations (such as for monetary amounts), use the nuner i ¢ type
instead.

« If youwant to do complicated cal culationswith these typesfor anything important, especialy if yourely
on certain behavior in boundary cases (infinity, underflow), you should evaluate the implementation
carefully.

» Comparing two floating-point values for equality might not always work as expected.

Onall currently supported platforms, ther eal typehasarange of around 1E-37 to 1E+37 with aprecision
of at least 6 decimal digits. The doubl e pr eci si on type has a range of around 1E-307 to 1E+308
with a precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are not
representable as distinct from zero will cause an underflow error.

By default, floating point values are output in text form in their shortest precise decimal representation;
the decimal value produced is closer to the true stored binary value than to any other value representable
in the same binary precision. (However, the output value is currently never exactly midway between two
representable values, in order to avoid a widespread bug where input routines do not properly respect the
round-to-nearest-even rule.) Thisvalue will use at most 17 significant decimal digitsfor f | oat 8 values,
and at most 9 digitsfor f | oat 4 values.

151

Data Types

Note

This shortest-precise output format is much faster to generate than the historical rounded format.

For compatibility with output generated by older versions of PostgreSQL, and to all ow the output precision
to be reduced, the extra float_digits parameter can be used to select rounded decimal output instead.
Setting a value of O restores the previous default of rounding the value to 6 (for f | oat 4) or 15 (for
f | oat 8) significant decimal digits. Setting a negative value reduces the number of digits further; for
example -2 would round output to 4 or 13 digits respectively.

Any value of extra float_digits greater than O selects the shortest-precise format.

Note

Applicationsthat wanted precise values have historically had to set extra float_digitsto 3to obtain
them. For maximum compatibility between versions, they should continue to do so.

In addition to ordinary numeric values, the floating-point types have several specia values:

Infinity
-Infinity
NaN

These represent the IEEE 754 special vaues “infinity”, “negative infinity”, and “not-a-number”,
respectively. When writing these values as constants in an SQL command, you must put quotes around
them, for example UPDATE t abl e SET x = '-Infinity'.Oninput, these strings are recognized
in a case-insensitive manner.

Note

|EEE754 specifies that NaN should not compare equal to any other floating-point value (including
NaN). In order to alow floating-point values to be sorted and used in tree-based indexes,
PostgreSQL treats NaN values as equal, and greater than all non-NaN values.

PostgreSQL also supports the SQL-standard notations f | oat and f | oat (p) for specifying inexact
numeric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL accepts
float (1) tofl oat(24) as sdecting the real type, while fl oat (25) to fl oat (53) select
doubl e preci si on. Valuesof p outside the allowed range draw an error. f | oat with no precision
specified is taken to mean doubl e pr eci si on.

8.1.4. Serial Types

Note

This section describes a PostgreSQL -specific way to create an autoincrementing column. Another
way isto use the SQL -standard identity column feature, described at CREATE TABLE.

152

Data Types

The datatypessnal | seri al , seri al and bi gseri al are not true types, but merely a notational
conveniencefor creating uniqueidentifier columns(similar tothe AUTO | NCREMENT property supported
by some other databases). In the current implementation, specifying:

CREATE TABLE t abl enane (
col nane SERI AL

)
is equivalent to specifying:

CREATE SEQUENCE t abl ename_col name_seq AS i nteger;
CREATE TABLE t abl enane (
col name i nteger NOT NULL DEFAULT nextval ('tabl ename_col name_seq')
)
ALTER SEQUENCE t abl ename_col name_seq OANED BY t abl enamne. col nane;

Thus, we have created an integer column and arranged for its default val ues to be assigned from a sequence
generator. A NOT NULL constraint is applied to ensure that anull value cannot be inserted. (In most cases
you would also want to attach a UNI QUE or PRI MARY KEY constraint to prevent duplicate values from
being inserted by accident, but thisis not automatic.) Lastly, the sequence is marked as “owned by” the
column, so that it will be dropped if the column or table is dropped.

Note

Because smal | seri al , seri al and bi gseri al are implemented using sequences, there
may be "holes" or gaps in the sequence of values which appears in the column, even if no rows
are ever deleted. A value allocated from the sequence is still "used up” even if arow containing
that value is never successfully inserted into the table column. This may happen, for example, if
the inserting transaction rolls back. See next val () in Section 9.17 for details.

Toinsert the next value of the sequenceintotheser i al column, specify that theser i al column should
be assigned its default value. This can be done either by excluding the column from the list of columnsin
the | NSERT statement, or through the use of the DEFAULT key word.

Thetypenamesseri al andseri al 4 are equivalent: both createi nt eger columns. The type names
bi gseri al andseri al 8 work the sameway, except that they createabi gi nt column. bi gseri al
should be used if you anticipate the use of more than 2% identifiers over the lifetime of the table. The
typenamessnal | seri al andseri al 2 alsowork the sameway, except that they createasmal | i nt
column.

Thesequencecreatedforaseri al columnisautomatically dropped when the owning columnisdropped.
Y ou can drop the sequence without dropping the column, but thiswill force removal of the column default
expression.

8.2. Monetary Types

The noney type stores a currency amount with afixed fractional precision; see Table 8.3. The fractional
precision is determined by the database'slc_monetary setting. The range shown in the table assumesthere
are two fractiona digits. Input is accepted in a variety of formats, including integer and floating-point
literals, as well astypical currency formatting, such as' $1, 000. 00" . Output is generaly in the latter
form but depends on the locale.

153

Data Types

Table 8.3. Monetary Types

Name Storage Size | Description Range
noney 8 bytes currency amount -92233720368547758.08 to
+92233720368547758.07

Since the output of this datatypeislocale-sensitive, it might not work to load noney datainto a database
that has a different setting of | c_nonet ary. To avoid problems, before restoring a dump into a new
database make surel c_npnet ar y hasthe same or equivalent value as in the database that was dumped.

Vduesof thenuneri c,i nt,andbi gi nt datatypescan becasttononey. Conversion fromther eal
and doubl e preci si on datatypes can be done by casting to nuner i c first, for example:

SELECT ' 12.34'::float8::numeric::noney;

However, this is not recommended. Floating point numbers should not be used to handle money due to
the potential for rounding errors.

A nmoney vaue can be cast to numer i ¢ without loss of precision. Conversion to other types could
potentially lose precision, and must also be done in two stages:

SELECT ' 52093. 89' : : noney: : nuneric:: fl oat8;

Division of anoney value by an integer value is performed with truncation of the fractional part towards
zero. To get a rounded result, divide by a floating-point value, or cast the noney value to nuneri ¢
before dividing and back to money afterwards. (The latter is preferable to avoid risking precision 10ss.)
When anoney valueisdivided by another noney value, theresultisdoubl e preci si on (i.e, apure
number, not money); the currency units cancel each other out in the division.

8.3. Character Types

Table 8.4. Character Types

Name Description

character varying(n),varchar(n) variable-length with limit
character(n),char(n) fixed-length, blank padded
t ext variable unlimited length

Table 8.4 shows the genera -purpose character types available in PostgreSQL .

SQL definestwo primary character types: char act er varyi ng(n) andchar act er (n) ,wherenis
apositive integer. Both of these types can store strings up to n characters (not bytes) in length. An attempt
to store a longer string into a column of these types will result in an error, unless the excess characters
are all spaces, in which case the string will be truncated to the maximum length. (This somewhat bizarre
exception is required by the SQL standard.) If the string to be stored is shorter than the declared length,
values of type char act er will be space-padded; values of type char act er varyi ng will simply
store the shorter string.

If one explicitly castsavalueto char act er varyi ng(n) or charact er (n), then an over-length
value will betruncated to n characterswithout raising an error. (Thistoo isrequired by the SQL standard.)

154

Data Types

The notations var char (n) and char(n) are diases for character varying(n) and
char act er (n) , respectively. char act er without length specifier isequivalenttochar acter (1) .
If char act er varyi ng isused without length specifier, the type accepts strings of any size. The latter
is a PostgreSQL extension.

In addition, PostgreSQL providesthe t ext type, which stores strings of any length. Although the type
t ext isnotinthe SQL standard, severa other SQL database management systems have it as well.

Valuesof typechar act er arephysically padded with spacesto the specified width n, and are stored and
displayed that way. However, trailing spaces aretreated as semantically insignificant and disregarded when
comparing two values of type char act er . In collations where whitespace is significant, this behavior
can produce unexpected results; for example SELECT 'a '::CHAR(2) collate "C' < E' a
\'n':: CHAR(2) returnstrue, even though Clocale would consider a space to be greater than anewline.
Trailing spaces are removed when converting achar act er vaueto one of the other string types. Note
that trailing spaces are semantically significant inchar act er varyi ng andt ext values, and when
using pattern matching, that is LI KE and regular expressions.

The characters that can be stored in any of these data types are determined by the database character set,
which is selected when the database is created. Regardless of the specific character set, the character with
code zero (sometimes called NUL) cannot be stored. For more information refer to Section 23.3.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which includes
the space padding in the case of char act er . Longer strings have 4 bytes of overhead instead of 1. Long
strings are compressed by the system automatically, so the physical requirement on disk might be less.
Very long values are also stored in background tables so that they do not interfere with rapid access to
shorter column values. In any case, the longest possible character string that can be stored is about 1 GB.
(The maximum value that will be allowed for n in the datatype declaration isless than that. It wouldn't be
useful to change this because with multibyte character encodings the number of characters and bytes can
be quitedifferent. If you desireto store long stringswith no specific upper limit, uset ext orchar act er
var yi ng without alength specifier, rather than making up an arbitrary length limit.)

Tip

There is no performance difference among these three types, apart from increased storage space
when using the blank-padded type, and a few extra CPU cycles to check the length when storing
into a length-constrained column. While char act er (n) has performance advantages in some
other database systems, there is no such advantage in PostgreSQL ; in fact char act er (n) is
usually the slowest of the three because of its additional storage costs. In most situationst ext or
charact er varyi ng should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for information
about available operators and functions.

Example 8.1. Using the Character Types

CREATE TABLE testl (a character(4));
| NSERT | NTO test1 VALUES ('ok');
SELECT a, char_length(a) FROMtestl; --

a | char_length

155

Data Types

ok | 2

CREATE TABLE test2 (b varchar(5));

| NSERT | NTO test2 VALUES (' ok');

| NSERT | NTO test2 VALUES (' good)

I NSERT | NTO test2 VALUES ('too |long');

ERROR: value too long for type character varying(5)

I NSERT I NTO test2 VALUES ('too long' ::varchar(5)); -- explicit
truncation

SELECT b, char_Ilength(b) FROM test2;

b | char_length
_______ I,
ok | 2
good | 5
too | | 5

Thechar _| engt h function is discussed in Section 9.4.

There are two other fixed-length character types in PostgreSQL, shown in Table 8.5. The nane type
exists only for the storage of identifiersin the internal system catalogs and is not intended for use by the
general user. Itslength is currently defined as 64 bytes (63 usable characters plus terminator) but should
be referenced using the constant NAMEDATALEN in C source code. The length is set at compile time (and
istherefore adjustable for special uses); the default maximum Iength might changein afuture release. The
type" char" (note the quotes) is different from char (1) inthat it only uses one byte of storage. It is
internally used in the system catal ogs as a simplistic enumeration type.

Table 8.5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
nane 64 bytes internal type for object names

8.4. Binary Data Types

Thebyt ea datatype allows storage of binary strings; see Table 8.6.

Table 8.6. Binary Data Types

Name Storage Size Description

variable-length binary string

byt ea 1 or 4 bytes plus the actual binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character strings
in two ways. First, binary strings specifically alow storing octets of value zero and other “non-printable”
octets (usually, octets outside the decimal range 32 to 126). Character stringsdisallow zero octets, and also
disallow any other octet values and sequences of octet values that are invalid according to the database's
selected character set encoding. Second, operations on binary strings process the actual bytes, whereas
the processing of character strings depends on locale settings. In short, binary strings are appropriate for
storing data that the programmer thinks of as “raw bytes’, whereas character strings are appropriate for
storing text.

156

Data Types

8.4.1.

8.4.2.

The byt ea type supports two formats for input and output: “hex” format and PostgreSQL's historical
“escape”’ format. Both of these are always accepted on input. The output format depends on the
configuration parameter bytea output; the default is hex. (Note that the hex format was introduced in
PostgreSQL 9.0; earlier versions and some tools don't understand it.)

The SQL standard defines a different binary string type, called BLOB or Bl NARY LARGE OBJECT. The
input format is different from byt ea, but the provided functions and operators are mostly the same.

byt ea Hex Format

The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first. The
entire string is preceded by the sequence\ x (to distinguish it from the escape format). In some contexts,
theinitial backslash may need to be escaped by doubling it (see Section 4.1.2.1). For input, the hexadecimal
digits can be either upper or lower case, and whitespace is permitted between digit pairs (but not within
adigit pair nor in the starting \ x sequence). The hex format is compatible with a wide range of external
applicationsand protocols, and it tendsto be faster to convert than the escapeformat, soitsuseis preferred.

Example:

SELECT ' \ xDEADBEEF' ;

byt ea Escape Format

The “escape” format is the traditional PostgreSQL format for the byt ea type. It takes the approach of
representing a binary string as a sequence of ASCII characters, while converting those bytes that cannot
be represented as an ASCII character into special escape sequences. If, from the point of view of the
application, representing bytes as characters makes sense, then this representation can be convenient. But
in practiceit isusually confusing because it fuzzes up the distinction between binary strings and character
strings, and also the particular escape mechanism that was chosen is somewhat unwieldy. Therefore, this
format should probably be avoided for most new applications.

When entering byt ea values in escape format, octets of certain values must be escaped, while all octet
values can be escaped. In general, to escape an octet, convert it into its three-digit octal value and
precede it by a backslash. Backslash itself (octet decimal value 92) can alternatively be represented by
double backslashes. Table 8.7 shows the characters that must be escaped, and gives the alternative escape
seguences where applicable.

Table8.7. byt ea Literal Escaped Octets

Decimal Octet Description Escaped I nput Example Hex

Value Representation Representation
0 zero octet "\ 000’ "\ 000" :: bytea \ x00

39 single quote "tttor'\047 |'' ' i bytea \ x27

92 backslash "\\" or'\134" |"\\'::bytea \ x5¢

Oto 31 and 127 to |“non-printable” "\ xxx" (octd "\001'::bytea \ x01

255 octets value)

The requirement to escape non-printable octets varies depending on local e settings. In some instances you
can get away with leaving them unescaped.

Thereason that single quotes must be doubled, asshownin Table 8.7, isthat thisistruefor any string literal
in a SQL command. The generic string-literal parser consumes the outermost single quotes and reduces

157

Data Types

any pair of single quotes to one data character. What the byt ea input function sees is just one single
guote, which it treats as a plain data character. However, the byt ea input function treats backslashes as
special, and the other behaviors shown in Table 8.7 are implemented by that function.

In some contexts, backslashes must be doubled compared to what is shown above, because the generic
string-literal parser will also reduce pairs of backslashes to one data character; see Section 4.1.2.1.

Byt ea octets are output in hex format by default. If you change bytea output to escape, “non-
printable” octets are converted to their equivalent three-digit octal value and preceded by one backslash.
Most “printable” octets are output by their standard representation in the client character set, e.g.:

SET bytea output = 'escape';

SELECT ' abc \ 153\ 154\ 155 \ 052\ 251\ 124" : : byt ea;
byt ea

abc klm *\251T

The octet with decimal value 92 (backslash) is doubled in the output. Details arein Table 8.8.

Table 8.8. byt ea Output Escaped Octets

Decimal Octet Description Escaped Output |Example Output Result

Value Representation

92 backslash \\ '\134' :: bytea \\

0to 31 and 127 to |“non-printable” |\ xxx (octal "\001':: bytea \ 001

255 octets value)

32t0 126 “printable” octets |client character set|' \ 176' : : byt ea o
representation

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms of
escaping and unescaping byt ea strings. For example, you might also have to escape line feeds and
carriage returnsif your interface automatically translates these.

8.5. Date/Time Types

PostgreSQL supportsthefull set of SQL date and timetypes, shown in Table 8.9. The operations available
on these data types are described in Section 9.9. Dates are counted according to the Gregorian calendar,
even in years before that calendar was introduced (see Section B.6 for more information).

Table 8.9. Date/Time Types

Name Storage Size | Description Low Value High Value Resolution
ti mestanp |8 bytes bothdateand [4713BC 294276 AD 1 microsecond
[(p)] time (no time
[without Zone)
time
zone |
timestanp |8bytes bothdateand [4713BC 294276 AD 1 microsecond
[(p)] time, with time
zone

158

Data Types

Name Storage Size | Description Low Value High Value Resolution
with tinme
zone
date 4 bytes date (notime of {4713 BC 5874897 AD 1 day

day)
time 8 bytes time of day (no |00:00:00 24:00:00 1 microsecond
[(p)] date)
[without
time
zone |
tinme 12 bytes time of day (no |00:00:00+1559 |24:00:00-1559 |1 microsecond
[(p)] date), with time
with tine zone
zone
i nterval 16 bytes timeinterval -178000000 178000000 1 microsecond
[fields] years years
[(p)]

Note

The SQL standard requires that writing just ti mestanp be equivaent to ti nestanp
wi t hout time zone, and PostgreSQL honors that behavior. t i mest anpt z is accepted as
an abbreviationforti nestanp with tinme zone;thisisaPostgreSQL extension.

time,tinestanp, andi nterval accept an optional precision value p which specifies the number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision. The
allowed range of p isfrom 0 to 6.

Thei nt er val type has an additional option, which is to restrict the set of stored fields by writing one
of these phrases:

YEAR

MONTH

DAY

HOUR

M NUTE

SECOND

YEAR TO MONTH
DAY TO HOUR
DAY TO M NUTE
DAY TO SECOND
HOUR TO M NUTE
HOUR TO SECOND
M NUTE TO SECOND

Note that if both f i el ds and p are specified, the f i el ds must include SECOND, since the precision
applies only to the seconds.

Thetypetime with ti me zone isdefined by the SQL standard, but the definition exhibits properties
which lead to questionable usefulness. In most cases, a combination of date, ti me, ti nest anp

159

Data Types

8.5.1.

without tine zone,andtinestanp with tinme zone should provide a complete range of
date/time functionality required by any application.

Date/Time Input

Date and time input is accepted in almost any reasonable format, including 1SO 8601, SQL-compatible,
traditional POSTGRES, and others. For some formats, ordering of day, month, and year in date input is
ambiguous and there is support for specifying the expected ordering of these fields. Set the DateStyle
parameter to MDY to select month-day-year interpretation, DMY to select day-month-year interpretation, or
YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Appendix B
for the exact parsing rules of date/time input and for the recognized text fields including months, days of
the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings. Refer
to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p)] 'value

where p is an optional precision specification giving the number of fractional digitsin the seconds field.
Precision can be specified for ti me, ti mest anp, and i nt er val types, and can range from O to 6.
If no precision is specified in a constant specification, it defaults to the precision of the literal value (but
not more than 6 digits).

8.5.1.1. Dates

Table 8.10 shows some possible inputs for the dat e type.

Table 8.10. Date I nput

Example Description

1999-01-08 1SO 8601; January 8 in any mode (recommended format)

January 8, 1999 unambiguousin any dat est yl e input mode

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003 in DMY mode;
February 3, 2001 in YD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YVD mode

Jan-08-99 January 8, except error in YMD mode

19990108 1SO 8601; January 8, 1999 in any mode

990108 SO 8601; January 8, 1999 in any mode

1999.008 year and day of year

J2451187 Julian date

160

Data Types

Example Description
January 8, 99 BC year 99 BC
8.5.1.2. Times

The time-of-day typesaretine [(p)] without tinme zoneandtine [(p)] wth
time zone.tinme doneisequivalenttoti me wi thout tine zone.

Valid input for these types consists of atime of day followed by an optional time zone. (See Table8.11 and
Table8.12.) If atimezoneisspecifiedintheinputfort i me wi t hout ti nme zone,itisslentlyignored.
You can aso specify a date but it will be ignored, except when you use a time zone name that involves
a daylight-savings rule, such as Arrer i ca/ New_Yor K. In this case specifying the date is required in
order to determine whether standard or daylight-savings time applies. The appropriate time zone offset is
recordedinthetime with time zone vaue

Table8.11. Time Input

Example Description

04: 05: 06. 789 SO 8601

04: 05: 06 SO 8601

04: 05 SO 8601

040506 SO 8601

04: 05 AM same as 04:05; AM does not affect
value

04: 05 PM same as 16:05; input hour must be <= 12

04: 05: 06. 789- 8 ISO 8601, with time zone as UTC offset

04: 05: 06- 08: 00 ISO 8601, with time zone as UTC offset

04: 05-08: 00 ISO 8601, with time zone as UTC offset

040506- 08 SO 8601, with time zone as UTC offset

040506+0730 ISO 8601, with fractional-hour time
zone as UTC offset

040506+07: 30: 00 UTC offset specified to seconds (not
alowed in SO 8601)

04: 05: 06 PST time zone specified by abbreviation

2003-04-12 04: 05: 06 Americal/ New _York time zone specified by full name

Table8.12. Time Zone I nput

Example Description

PST Abbreviation (for Pacific Standard Time)

Aneri ca/ New_Yor k Full time zone name

PST8PDT POSI X -style time zone specification

-8:00: 00 UTC offset for PST

-8:00 UTC offset for PST (1SO 8601 extended format)
- 800 UTC offset for PST (1SO 8601 basic format)

161

Data Types

Example Description

-8 UTC offset for PST (1SO 8601 basic format)
zul u Military abbreviation for UTC

z Short form of zul u (asoin 1SO 8601)

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of the concatenation of a date and a time, followed by an
optional time zone, followed by an optional AD or BC. (Alternatively, ADYBC can appear before the time
zone, but thisis not the preferred ordering.) Thus:

1999-01- 08 04: 05: 06

and:

1999- 01-08 04: 05:06 -8:00

are valid values, which follow the | SO 8601 standard. In addition, the common format:

January 8 04:05:06 1999 PST
is supported.

The SQL standard differentiatest i nest anp wi t hout tinme zoneandtinestanp with tine
zone literals by the presence of a“+” or “-" symbol and time zone offset after thetime. Hence, according
to the standard,

TI MESTAMP ' 2004-10-19 10: 23: 54'

isati nestanp wi thout tine zone,while

TI MESTAMP ' 2004- 10- 19 10: 23: 54+02'

isatimestanp with tine zone. PostgreSQL never examines the content of aliteral string before
determining itstype, and therefore will treat both of theaboveast i mest anp wi t hout tine zone.
To ensurethat aliteral istreated ast i mestanp with time zone, giveit the correct explicit type:

TI MESTAMP W TH TI ME ZONE ' 2004-10- 19 10: 23: 54+02'

In aliteral that has been determined to bet i nest anp wi thout tine zone, PostgreSQL will
silently ignore any time zone indication. That is, the resulting value is derived from the date/time fields
in the input value, and is not adjusted for time zone.

For tinmestanp with tine zone, theinternaly stored value is aways in UTC (Universa
Coordinated Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an
explicit time zone specified is converted to UTC using the appropriate offset for that time zone. If no

162

Data Types

time zone is stated in the input string, then it is assumed to be in the time zone indicated by the system's
TimeZone parameter, and is converted to UTC using the offset for thet i nezone zone.

Whenati nestanp with ti me zone vaueisoutput, itisalwaysconverted from UTC to the current
ti mezone zone, and displayed as local time in that zone. To see the time in another time zone, either
changet i nezone or usethe AT Tl ME ZONE construct (see Section 9.9.3).

Conversions betweent i mestanp w thout time zoneandtinmestanp with time zone
normally assume that thet i nestanp without tinme zone vaue should be taken or given as
ti mezone loca time. A different time zone can be specified for the conversion using AT Tl ME ZONE.

8.5.1.4. Special Values

PostgreSQL supports several special date/time input values for convenience, as shown in Table 8.13. The
valuesi nfinity and-infinity are specially represented inside the system and will be displayed
unchanged; but the others are simply notational shorthands that will be converted to ordinary date/time
values when read. (In particular, now and related strings are converted to a specific time value as soon
asthey areread.) All of these values need to be enclosed in single quotes when used as constants in SQL
commands.

Table 8.13. Special Date/Time Inputs

Input String Valid Types Description

epoch date,ti nest anp 1970-01-01 00:00:00+00 (Unix
system time zero)

infinity date,ti mest anp later than all other time stamps

-infinity dat e, ti nestanp earlier than all other time stamps

now date,time,ti nestanp current transaction's start time

t oday date,ti nest anp midnight (00: 00) today

t onor r ow date,ti mest anp midnight (00: 00) tomorrow

yest er day dat e, ti nestanp midnight (00: 00) yesterday

all balls time 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value for the
corresponding data type: CURRENT_DATE, CURRENT_TI ME, CURRENT_TI MESTAMP, LOCALTI ME,
LOCALTI MESTAMP. (See Section 9.9.4.) Note that these are SQL functions and are not recognized in
datainput strings.

Caution

While theinput stringsnow, t oday, t onor r ow, andyest er day arefineto useininteractive
SQL commands, they can have surprising behavior when the command is saved to be executed
later, for example in prepared statements, views, and function definitions. The string can be
converted to a specific time value that continues to be used long after it becomes stale. Use one
of the SQL functionsinstead in such contexts. For example, CURRENT_DATE + 1 issafer than
"tonorrow :: date.

8.5.2. Date/Time Output

163

Data Types

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default isthe 1SO format. (The SQL standard
requires the use of the ISO 8601 format. The name of the “SQL" output format is a historical accident.)
Table 8.14 shows examples of each output style. The output of the dat e and t i e types is generally
only the date or time part in accordance with the given examples. However, the POSTGRES style outputs
date-only valuesin SO format.

Table 8.14. Date/Time Output Styles

Style Specification Description Example

| SO ISO 8601, SQL standard |[1997-12-17 07: 37: 16- 08

SQL traditional style 12/ 17/ 1997 07:37:16.00 PST

Post gres original style Wed Dec 17 07:37:16 1997 PST

Ger man regional style 17.12.1997 07:37:16.00 PST
Note

I SO 8601 specifiesthe use of uppercase letter T to separate the date and time. PostgreSQL accepts
that format on input, but on output it uses a space rather than T, as shown above. This is for
readability and for consistency with RFC 3339 as well as some other database systems.

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been specified,
otherwise month appears before day. (See Section 8.5.1 for how this setting also affects interpretation of
input values.) Table 8.15 shows examples.

Table 8.15. Date Order Conventions

dat est yl e Setting Input Ordering Example Output

SQL, Dw day/nont h/year 17/ 12/ 1997 15:37:16.00 CET
SQ., MY nont h/day/year 12/ 17/ 1997 07:37:16.00 PST
Post gres, DMWY day/mont h/year Wed 17 Dec 07:37:16 1997 PST

In the 1SO style, the time zone is always shown as a signed numeric offset from UTC, with positive sign
used for zones east of Greenwich. The offset will be shown as hh (hours only) if it is an integral number
of hours, else as hh:nmif it is an integral number of minutes, else as hh:mmss. (The third case is not
possiblewith any modern time zone standard, but it can appear when working with timestampsthat predate
the adoption of standardized time zones.) In the other date styles, the time zone is shown as an alphabetic
abbreviation if one isin common use in the current zone. Otherwise it appears as a signed numeric offset
in 1SO 8601 basic format (hh or hhnm).

The date/time style can be selected by the user using the SET dat est yl e command, the DateStyle
parameter in the post gr esql . conf configuration file, or the PGDATESTYLE environment variable
on the server or client.

The formatting functiont o_char (see Section 9.8) is also available as a more flexible way to format
date/time output.

8.5.3. Time Zones

164

Data Types

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900s, but continue to be prone
to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL uses the widely-used
IANA (Olson) time zone database for information about historical time zonerules. For timesin the future,
the assumptionisthat the latest known rulesfor agiven time zone will continue to be observed indefinitely
far into the future.

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

« Although the dat e type cannot have an associated time zone, thet i me type can. Time zones in the
real world have little meaning unless associated with a date as well as atime, since the offset can vary
through the year with daylight-saving time boundaries.

» The default time zone is specified as a constant numeric offset from UTC. It is therefore impossible to
adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time when
using time zones. We do not recommend using thetypeti me wi t h ti me zone (thoughitissupported
by PostgreSQL for legacy applications and for compliance with the SQL standard). PostgreSQL assumes
your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local timein the
zone specified by the TimeZone configuration parameter before being displayed to the client.

PostgreSQL allows you to specify time zones in three different forms:

A full time zone name, for example Amer i ca/ New_Yor k. The recognized time zone names arelisted
inthepg_t i mezone_nanes view (see Section 51.92). PostgreSQL usesthewidely-used IANA time
zone data for this purpose, so the same time zone names are also recognized by other software.

» A time zone abbreviation, for example PST. Such a specification merely defines a particular offset
from UTC, in contrast to full time zone names which can imply a set of daylight savings transition
rules as well. The recognized abbreviations are listed in the pg_t i nezone_abbr evs view (see
Section 51.91). Y ou cannot set the configuration parameters TimeZone or log_timezone to atime zone
abbreviation, but you can use abbreviations in date/time input values and with the AT TI ME ZONE
operator.

* In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style time zone
specifications, as described in Section B.5. Thisoption isnot normally preferable to using anamed time
zone, but it may be necessary if no suitable IANA time zone entry is available.

In short, this is the difference between abbreviations and full names: abbreviations represent a specific
offset from UTC, whereas many of the full names imply alocal daylight-savings time rule, and so have
two possible UTC offsets. As an example, 2014- 06-04 12: 00 Ameri ca/ New_Yor k represents
noon local time in New York, which for this particular date was Eastern Daylight Time (UTC-4). So
2014- 06- 04 12: 00 EDT specifiesthat sametimeinstant. But 2014- 06- 04 12: 00 EST specifies
noon Eastern Standard Time (UTC-5), regardless of whether daylight savings was nominally in effect on
that date.

To complicate matters, some jurisdictions have used the same timezone abbreviation to mean different
UTC offsets at different times; for example, in Moscow MSK has meant UTC+3 in some years and UTC
+4 in others. PostgreSQL interprets such abbreviations according to whatever they meant (or had most
recently meant) on the specified date; but, as with the EST example above, thisis not necessarily the same
aslocal civil time on that date.

165

Data Types

8.5.4.

In al cases, timezone names and abbreviations are recognized case-insensitively. (Thisis a change from
PostgreSQL versions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither timezone names nor abbreviations are hard-wired into the server; they are obtained from
configurationfilesstoredunder. . . / share/ ti mezone/ and. ../ share/ti nezoneset s/ of the
installation directory (see Section B.4).

The TimeZone configuration parameter can be set inthefilepost gr esql . conf, or in any of the other
standard ways described in Chapter 19. There are also some special waysto set it:

e The SQL command SET Tl ME ZONE setsthetime zonefor the session. Thisisan alternative spelling
of SET TI MEZONE TOwith a more SQL -spec-compatible syntax.

» The PGTZ environment variableis used by libpq clientsto send aSET TI ME ZONE command to the
Server upon connection.

Interval Input

i nt erval values can be written using the following verbose syntax:

[@ quantity unit [quantity unit...] [direction]

where quant i t y isanumber (possibly signed); uni t ismi crosecond, mi | li second, second,
m nut e, hour, day, week, nont h, year, decade, century, m | | enni um or abbreviations or
pluralsof theseunits; di r ect i on canbeago or empty. Theat sign (@ isoptional noise. The amounts of
the different units are implicitly added with appropriate sign accounting. ago negates all the fields. This
syntax is also used for interval output, if IntervalStyleisset to post gr es_ver bose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example,' 1 12:59: 10" isreadthesameas' 1 day 12 hours 59 nmin 10 sec'.Also a
combination of years and months can be specified with a dash; for example' 200- 10" isread the same
as' 200 years 10 nont hs'. (These shorter forms are in fact the only ones allowed by the SQL
standard, and are used for output when | nt er val Styl e issettosql _st andar d.)

Interval values can also be written as 1SO 8601 time intervals, using either the “format with designators’
of the standard's section 4.4.3.2 or the “aternative format” of section 4.4.3.3. The format with designators
looks like this:

P quantity unit [quantity unit ...] [T [quantity unit ...]]

The string must start with a P, and may include a T that introduces the time-of-day units. The available
unit abbreviations are given in Table 8.16. Units may be omitted, and may be specified in any order, but
units smaller than a day must appear after T. In particular, the meaning of Mdepends on whether it is
before or after T.

Table 8.16. | SO 8601 Interval Unit Abbreviations

Abbreviation M eaning

Y Years

M Months (in the date part)
w Weeks

D Days

166

Data Types

Abbreviation M eaning

H Hours

M Minutes (in the time part)
S Seconds

In the alternative format:

P [years-nonths-days] [T hours:ninutes:seconds]

the string must begin with P, and a T separates the date and time parts of theinterval. The values are given
as numbers similar to 1SO 8601 dates.

When writing an interval constant with af i el ds specification, or when assigning a string to an interval
column that was defined with af i el ds specification, the interpretation of unmarked quantities depends
onthefi el ds. For example | NTERVAL '1' YEARIisread as 1 year, whereas| NTERVAL ' 1'
means 1 second. Also, field values “to the right” of the least significant field allowed by the fi el ds
specification are silently discarded. For example, writing | NTERVAL ' 1 day 2: 03: 04' HOUR TO
M NUTE results in dropping the seconds field, but not the day field.

According tothe SQL standard all fields of aninterval value must have the same sign, so aleading negative
sign applies to al fields; for example the negative sign in the interval literal ' - 1 2: 03: 04' applies
to both the days and hour/minute/second parts. PostgreSQL allows the fields to have different signs, and
traditionally treats each field in the textual representation asindependently signed, so that the hour/minute/
second part is considered positive in thisexample. If | nt er val Styl e issettosql _st andar d then
aleading sign is considered to apply to al fields (but only if no additional signs appear). Otherwise the
traditional PostgreSQL interpretation is used. To avoid ambiguity, it's recommended to attach an explicit
sign to each field if any field is negative.

Field values can have fractional parts: for example, ' 1. 5 weeks' or' 01: 02: 03. 45' . However,
because interval internally stores only three integer units (months, days, microseconds), fractional units
must be spilled to smaller units. Fractional parts of units greater than months are truncated to be an integer
number of months, eg.' 1.5 years' becomes'1 year 6 nons' . Fractional parts of weeks and
days are computed to be an integer number of days and microseconds, assuming 30 days per month and
24 hours per day, e.g.,' 1. 75 nont hs' becomesl nmon 22 days 12: 00: 00. Only seconds will
ever be shown as fractional on output.

Table 8.17 shows some examples of valid i nt er val input.

Table8.17. Interval Input

Example Description
1-2 SQL standard format: 1 year 2 months
3 4:05: 06 SQL standard format: 3 days 4 hours 5 minutes 6

seconds

1 year 2 nmonths 3 days 4 hours 5
m nutes 6 seconds

Traditional Postgresformat: 1 year 2 months 3
days 4 hours 5 minutes 6 seconds

P1Y2MBDT4H5MBS

SO 8601 “format with designators’: same
meaning as above

PO001- 02-03T04: 05: 06

SO 8601 “alternative format” : same meaning as
above

167

Data Types

8.5.5.

Internally i nt er val values are stored as months, days, and microseconds. This is done because the
number of daysin amonth varies, and aday can have 23 or 25 hoursif adaylight savings time adjustment
is involved. The months and days fields are integers while the microseconds field can store fractional
seconds. Because intervals are usually created from constant strings or t i nest anp subtraction, this
storage method works well in most cases, but can cause unexpected results:

SELECT EXTRACT(hours from'80 mnutes'::interval);
dat e_part

SELECT EXTRACT(days from'80 hours'::interval);
dat e_part

Functions j ust i fy_days and justify_hours are available for adjusting days and hours that
overflow their normal ranges.

Interval Output

The output format of theinterval type can be set to one of the four stylessql _st andar d, post gr es,
post gres_verbose,ori so_8601, using thecommand SET i nt er val st yl e. Thedefault isthe
post gr es format. Table 8.18 shows examples of each output style.

Thesql _st andar d style produces output that conformsto the SQL standard's specification for interval
literal strings, if the interval value meets the standard's restrictions (either year-month only or day-time
only, with no mixing of positive and negative components). Otherwise the output 1ooks like a standard
year-month literal string followed by a day-time literal string, with explicit signs added to disambiguate
mixed-sign intervals.

The output of the post gr es style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to | SO.

The output of the post gr es_ver bose style matches the output of PostgreSQL releases prior to 8.4
when the Dat eSt y| e parameter was set to non-1 SO output.

The output of thei so_8601 style matches the “format with designators’ described in section 4.4.3.2 of
the 1SO 8601 standard.

Table 8.18. Interval Output Style Examples

Style Specification Year-Month Interval |Day-Time Interval Mixed Interval

sql _standard 1-2 34:05:06 -1-2 +3-4:05:06

post gres 1 year 2 mons 3 days 04:05:06 -1 year -2 mons +3 days
-04:05:06

post gres_verbose |@ 1year 2mons @ 3 days4 hours5 mins | @ 1 year 2 mons -3 days

6 secs 4 hours 5 mins 6 secs

ago

i so_8601 P1Y2M P3DT4H5M6S P-1Y-2M3D
T-4H-5M-6S

168

Data Types

8.6. Boolean Type

PostgreSQL provides the standard SQL type bool ean; see Table 8.19. The bool ean type can have
several states: “true”, “false”, and athird state, “unknown”, which is represented by the SQL null value.

Table 8.19. Boolean Data Type

Name Storage Size Description

bool ean 1 byte state of true or false

Boolean constants can be represented in SQL queries by the SQL key words TRUE, FALSE, and NULL.
The datatype input function for type bool ean accepts these string representations for the “true” state:

true
yes
on

1

and these representations for the “false” state:

fal se
no

of f

0

Unique prefixes of these strings are also accepted, for examplet or n. Leading or trailing whitespace is
ignored, and case does not matter.

The datatype output function for type bool ean aways emitseithert or f , as shown in Example 8.2.

Example 8.2. Using the bool ean Type

CREATE TABLE testl (a boolean, b text);

I NSERT | NTO testl VALUES (TRUE, 'sic est');
I NSERT | NTO testl1l VALUES (FALSE, 'non est');
SELECT * FROM test1;

a | b

t | sic est
f | non est

SELECT * FROM test1l WHERE a;
a | b

t | sic est

Thekey words TRUE and FAL SE arethe preferred (SQL -compliant) method for writing Boolean constants
in SQL queries. But you can also use the string representations by following the generic string-literal
constant syntax described in Section 4.1.2.7, for example' yes' : : bool ean.

Note that the parser automatically understands that TRUE and FALSE are of type bool ean, but thisis
not so for NULL because that can have any type. So in some contexts you might have to cast NULL to

169

Data Types

bool ean explicitly, for example NULL: : bool ean. Conversely, the cast can be omitted from a string-
literal Boolean value in contexts where the parser can deduce that the literal must be of type bool ean.

8.7. Enumerated Types

8.7.1.

8.7.2.

Enumerated (enum) types are data types that comprise a static, ordered set of values. They are equivalent
to the enumtypes supported in a number of programming languages. An example of an enum type might
be the days of the week, or a set of status values for a piece of data.

Declaration of Enumerated Types

Enum types are created using the CREATE TY PE command, for example:

CREATE TYPE mpod AS ENUM ('sad', 'ok', 'happy');

Once created, the enum type can be used in table and function definitions much like any other type:

CREATE TYPE npod AS ENUM ('sad', 'ok', 'happy');
CREATE TABLE person (
name text,
current _nood nood
)
| NSERT | NTO person VALUES (' Mbe', 'happy');
SELECT * FROM person WHERE current _nood = ' happy';
name | current_nood

______ I,
Moe | happy

(1 row

Ordering

The ordering of the values in an enum type is the order in which the values were listed when the type
was created. All standard comparison operators and related aggregate functions are supported for enums.
For example:

| NSERT | NTO person VALUES ('Larry', 'sad');

| NSERT | NTO person VALUES (' Curly', 'ok');

SELECT * FROM person WHERE current_nood > 'sad';
nane | current_nood

SELECT * FROM person WHERE current _nood > 'sad' ORDER BY current_npod;
nane | current_nood

170

Data Types

8.7.3.

8.7.4.

SELECT nane

FROM per son

WHERE current_mood = (SELECT M N(current_nood) FROM person);
name

Type Safety

Each enumerated data type is separate and cannot be compared with other enumerated types. See this
example:

CREATE TYPE happi ness AS ENUM (' happy', 'very happy', 'ecstatic');
CREATE TABLE hol i days (

num weeks i nt eger,

happi ness happi ness
)
I NSERT | NTO hol i days(num weeks, happi ness) VALUES (4, 'happy');
I NSERT | NTO hol i days(num weeks, happi ness) VALUES (6, 'very happy');
I NSERT | NTO hol i days(num weeks, happi ness) VALUES (8, 'ecstatic');
I NSERT | NTO hol i days(num weeks, happi ness) VALUES (2, 'sad');
ERROR: invalid input value for enum happi ness: "sad"
SELECT person. nane, holidays. num weeks FROM person, holidays

WHERE person. current _nood = hol i days. happi ness;

ERROR: operator does not exist: npod = happi ness

If you really need to do something like that, you can either write a custom operator or add explicit casts
to your query:

SELECT person. nane, hol i days. num weeks FROM person, holidays
WHERE per son. current _nood: :text = holidays. happi ness: :text;
nane | num weeks

Implementation Details

Enum labels are case sensitive, so ' happy' isnot the same as' HAPPY' . White space in the labels is
significant too.

Although enum types are primarily intended for static sets of values, thereis support for adding new values
to an existing enum type, and for renaming values (see ALTER TY PE). Existing values cannot be removed
from an enum type, nor can the sort ordering of such values be changed, short of dropping and re-creating
the enum type.

An enum value occupies four bytes on disk. The length of an enum value's textual label islimited by the
NANMEDATALEN setting compiled into PostgreSQL ; in standard builds this means at most 63 bytes.

The trandlations from internal enum values to textual labels are kept in the system catalog pg_enum
Querying this catalog directly can be useful.

171

Data Types

8.8. Geometric Types

Geometric data types represent two-dimensional spatial objects. Table 8.20 shows the geometric types
available in PostgreSQL.

Table 8.20. Geometric Types

8.8.1.

8.8.2.

Name Storage Size Description Representation

poi nt 16 bytes Point on a plane xy)

l'ine 32 bytes Infiniteline {A,B,C}

| seg 32 bytes Finite line segment ((x1,yD),(x2,y2))

box 32 bytes Rectangular box ((x1,yD),(x2,y2))

pat h 16+16n bytes Closed path (similar to polygon) ((x1yD),...)

pat h 16+16n bytes Open path [(x1,y1),..]

pol ygon 40+16n bytes Polygon (similar to closed path) ((x1yD),...)

circle 24 bytes Circle <(x,y),r> (center
point and radius)

A rich set of functions and operatorsis available to perform various geometric operations such as scaling,
tranglation, rotation, and determining intersections. They are explained in Section 9.11.

Points

Points are the fundamental two-dimensional building block for geometric types. Values of type poi nt
are specified using either of the following syntaxes:

(x,vy)
X,y

where x and y are the respective coordinates, as floating-point numbers.

Points are output using the first syntax.

Lines

Lines are represented by the linear equation Ax + By + C= 0, where A and B are not both zero. Values of
typel i ne areinput and output in the following form:

{ A B C}

Alternatively, any of the following forms can be used for input:

[(x1, yl) , (x2, y2)]
((x1,yl), (x2,y2))
(x1, yl) , (x2,y2)
x1, yl , X2 , y2

where (x1, y1) and (x2, y2) aretwo different pointsontheline.

172

Data Types

8.8.3.

8.8.4.

8.8.5.

8.8.6.

Line Segments

Line segments are represented by pairs of points that are the endpoints of the segment. Values of type
| seg are specified using any of the following syntaxes:

[(x1, y1) , (x2, y2)]
((x1,yl) ., (x2,y2))
(x1, yl) , (x2,y2)
x1, yl . X2 , y2

where (x1, y1) and (x2, y2) aretheend points of the line segment.

Line segments are output using the first syntax.

Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using any of the following syntaxes:

((x1, yl), (x2,y2))
(x1, yl) , (x2,y2)
x1, yl1 X2 , y2

where (x1, y1) and (x2, y2) areany two opposite corners of the box.
Boxes are output using the second syntax.

Any two opposite corners can be supplied on input, but the values will be reordered as needed to store the
upper right and lower left corners, in that order.

Paths

Paths are represented by lists of connected points. Paths can be open, where the first and last pointsin the
list are considered not connected, or closed, where the first and last points are considered connected.

Vaues of type pat h are specified using any of the following syntaxes:

[(x1, y1), ..., (xn yn)]
((x1,vy1), ..., (xn yn))
(x1, y1), ..., (xn yn)

(x1, y1 , Xn, yn)
x1, yl Xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([]) indicate
an open path, while parentheses (()) indicate aclosed path. When the outermost parentheses are omitted,
asin the third through fifth syntaxes, a closed path is assumed.

Paths are output using the first or second syntax, as appropriate.
Polygons

Polygons are represented by lists of points (the vertexes of the polygon). Polygons are very similar to
closed paths, but are stored differently and have their own set of support routines.

173

Data Types

8.8.7.

Vaues of type pol ygon are specified using any of the following syntaxes:

((xx, vy1), ... , (xn, yn))
(x2, y1) , ..., (xn, yn)
(x1, y1 y e Xn , yn)
x1, yl v e Xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.
Polygons are output using the first syntax.
Circles

Circles are represented by a center point and radius. Values of type ci r cl e are specified using any of
the following syntaxes:

~ A

—~ A~~~
X X X X
_~ = = =

where (X, y) isthe center point and r isthe radius of the circle.

Circles are output using the first syntax.

8.9. Network Address Types

8.9.1.

PostgreSQL offers datatypesto store IPv4, IPv6, and MAC addresses, as shown in Table 8.21. It is better
to use these types instead of plain text types to store network addresses, because these types offer input
error checking and specialized operators and functions (see Section 9.12).

Table 8.21. Network Address Types

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks

i net 7 or 19 bytes IPv4 and IPv6 hosts and networks
macaddr 6 bytes MAC addresses

macaddr 8 8 bytes MAC addresses (EUI-64 format)

When sortingi net or ci dr datatypes, IPv4 addresseswill always sort before | Pv6 addresses, including
| Pv4 addresses encapsul ated or mapped to |Pv6 addresses, such as ::10.2.3.4 or ::ffff:10.4.3.2.

| net

Thei net typeholdsan IPv4 or IPv6 host address, and optionally its subnet, al in one field. The subnet
is represented by the number of network address bits present in the host address (the “netmask”™). If the
netmask is 32 and the addressis | Pv4, then the value does not indicate asubnet, only asingle host. In1Pv6,
the address length is 128 bits, so 128 bits specify a unique host address. Note that if you want to accept
only networks, you should usethe ci dr typerather thani net .

The input format for thistype isaddr ess/ y where addr ess isan IPv4 or IPv6 address and y is the
number of bitsin the netmask. If the/ y portion is omitted, the netmask is taken to be 32 for IPv4 or 128

174

Data Types

8.9.2.

8.9.3.

for IPv6, so the value representsjust asingle host. On display, the/ y portion is suppressed if the netmask
specifies asingle host.

ci dr

The ci dr type holds an IPv4 or |Pv6 network specification. Input and output formats follow Classless
Internet Domain Routing conventions. The format for specifying networks is addr ess/y where
addr ess isthe network's lowest address represented as an 1Pv4 or |Pv6 address, and y is the number
of bitsin the netmask. If y is omitted, it is calculated using assumptions from the older classful network
numbering system, except it will be at least large enough to include all of the octets written in the input.
It isan error to specify a network address that has bits set to the right of the specified netmask.

Table 8.22 shows some exampl es.

Table8.22. ci dr Type Input Examples

ci dr Input ci dr Output abbrev(cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24

128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16

128.1.2 128.1.2.0/24 128.1.2/24

10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

10.1.2.3/32 10.1.2.3/32 10.1.2.3/32
2001:4f8:3:ba::/64 2001:4f8:3:ba::/64 2001:4f8:3:ba/64
2001:4f8:3:ba: 2001:4f8:3:ba: 2001:4f8:3:ba:
2e0:81ff:fe22:d1f1/128 2e0:81ff:fe22:d1f1/128 2e0:81ff:fe22:d1f1/128
::ffff:1.2.3.0/120 +ffff:1.2.3.0/120 :offff:1.2.3/120
::ffff:1.2.3.0/128 :ffff:1.2.3.0/128 ::ffff:1.2.3.0/128

| net vs. ci dr

The essential difference between i net and ci dr datatypesisthat i net accepts values with nonzero
bits to the right of the netmask, whereas ci dr does not. For example, 192. 168. 0. 1/ 24 isvalid for
i net but not for ci dr.

Tip

If you do not like the output format for i net or ci dr values, try the functions host , t ext,
and abbr ev.

175

Data Types

8.9.4. nacaddr

8.9.5.

The macaddr type stores MAC addresses, known for example from Ethernet card hardware addresses
(although MAC addresses are used for other purposes aswell). Input is accepted in the following formats:

' 08: 00: 2b: 01: 02: 03’
' 08- 00- 2b- 01- 02- 03"
' 08002b: 010203

' 08002b- 010203

' 0800. 2b01. 0203

' 0800- 2b01- 0203

' 08002b010203"

These examples all specify the same address. Upper and lower case is accepted for the digits a through
f . Output is always in the first of the forms shown.

IEEE Std 802-2001 specifies the second shown form (with hyphens) as the canonical form for MAC
addresses, and specifiesthefirst form (with colons) asthe bit-reversed notation, so that 08-00-2b-01-02-03
= 01:00:4D:08:04:0C. This convention is widely ignored nowadays, and it is relevant only for obsolete
network protocols (such as Token Ring). PostgreSQL makesno provisionsfor bit reversal, and all accepted
formats use the canonical LSB order.

The remaining five input formats are not part of any standard.

macaddr 8

The macaddr 8 type stores MAC addresses in EUI-64 format, known for example from Ethernet card
hardware addresses (although MAC addresses are used for other purposes as well). This type can accept
both 6 and 8 bytelength MAC addresses and storesthemin 8 bytelength format. MAC addressesgivenin 6
byteformat will be stored in 8 byte length format with the 4th and 5th bytes set to FF and FE, respectively.
Note that I1Pv6 uses a modified EUI-64 format where the 7th bit should be set to one after the conversion
from EUI-48. The function nacaddr 8_set 7bi t isprovided to make this change. Generally speaking,
any input which is comprised of pairs of hex digits (on byte boundaries), optionally separated consistently
by oneof " :',"-" or'."',isaccepted. The number of hex digits must be either 16 (8 bytes) or 12 (6
bytes). Leading and trailing whitespace is ignored. The following are examples of input formats that are
accepted:

' 08: 00: 2b: 01: 02: 03: 04: 05'
' 08- 00- 2b- 01- 02- 03- 04- 05'
' 08002hb: 0102030405

' 08002b- 0102030405

' 0800. 2b01. 0203. 0405'

' 0800- 2b01- 0203- 0405

' 08002b01: 02030405

' 08002b0102030405

These examples all specify the same address. Upper and lower case is accepted for the digits a through
f . Output is always in the first of the forms shown.

Thelast six input formats shown above are not part of any standard.

To convert atraditional 48 bit MAC addressin EUI-48 format to modified EUI-64 format to be included
as the host portion of an IPv6 address, use macaddr 8_set 7bi t as shown:

176

Data Types

SELECT nacaddr 8_set 7bi t (' 08: 00: 2b: 01: 02: 03") ;

macaddr 8_set 7bi t

Oa: 00: 2b: ff:fe: 01:02: 03
(1 row

8.10. Bit String Types

Bit strings are strings of 1's and 0's. They can be used to store or visualize bit masks. There are two SQL
bit types: bi t (n) andbit varyi ng(n),wheren isapositiveinteger.

bi t type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bit varyi ng datais of variable length up to the maximum length n; longer strings will be
rejected. Writing bi t without alengthisequivalenttobi t (1), whilebi t varyi ng without alength

specification means unlimited length.

Note

If one explicitly castsabit-string valueto bi t (n) , it will betruncated or zero-padded on theright
to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value to
bit varyi ng(n),itwill betruncated on theright if it ismore than n hits.

Refer to Section 4.1.2.5 for information about the syntax of bit string constants. Bit-logical operators and

string manipulation functions are available; see Section 9.6.

Example 8.3. Using the Bit String Types

CREATE TABLE test (a BIT(3), b BIT VARYINE5));
I NSERT | NTO test VALUES (B 101', B 00');
I NSERT | NTO test VALUES (B 10', B 101');

ERROR: bit string length 2 does not match type bit(3)

I NSERT | NTO test VALUES (B 10'::bit(3), B 101');
SELECT * FROM t est;

a | b
_____ [N
101 | 00
100 | 101

A hit string value requires 1 byte for each group of 8 bits, plus 5 or 8 bytes overhead depending on the
length of the string (but long values may be compressed or moved out-of-line, as explained in Section 8.3

for character strings).

8.11. Text Search Types

177

Data Types

PostgreSQL provides two data types that are designed to support full text search, which is the activity of
searching through a collection of natural-language documents to locate those that best match aquery. The
t svect or typerepresents adocument in aform optimized for text search; thet squer y type similarly
represents a text query. Chapter 12 provides a detailed explanation of this facility, and Section 9.13
summarizes the related functions and operators.

8.11.1.t svect or

A tsvect or vaueisasorted list of distinct lexemes, which are words that have been normalized to
merge different variants of the same word (see Chapter 12 for details). Sorting and duplicate-elimination
are done automatically during input, as shown in this example:

SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector;
t svect or

To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT $$t he | exene ' ' contains spaces$$::tsvector;
t svect or

‘contains' 'lexene' 'spaces' 'the'

(We use dollar-quoted string literals in this example and the next one to avoid the confusion of having to
double quote marks within the literals.) Embedded quotes and backslashes must be doubled:

SELECT $$the |l exene 'Joe''s' contains a quote$$::tsvector;
t svect or

'contains' 'lexene' 'quote' 'the'

Optionally, integer positions can be attached to lexemes:

SELECT 'a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and: 8 ate: 9 a: 10 fat: 11
rat:12'::tsvector;
t svect or

'a':1,6,10 'and':8 'ate':9 'cat':3 'fat':2,11 'mat':7 'on':5 'rat':12

A position normally indicates the source word's location in the document. Positional information can be
used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently set to
16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with a weight, which can be A, B, C, or D. Dis the
default and hence is not shown on outpult:

SELECT 'a: 1A fat: 2B, 4C cat: 5D ::tsvector;
t svect or

178

Data Types

Weights are typically used to reflect document structure, for example by marking title words differently
from body words. Text search ranking functions can assign different priorities to the different weight
markers.

It isimportant to understand that thet svect or typeitself does not perform any word normalization; it
assumes the wordsiit is given are normalized appropriately for the application. For example,

SELECT ' The Fat Rats'::tsvector;
t svect or

"Fat' 'Rats' ' The'

For most English-text-searching applications the above words would be considered non-normalized,
but t svect or doesn't care. Raw document text should usually be passed through t o_t svect or to
normalize the words appropriately for searching:

SELECT to_tsvector('english', 'The Fat Rats');
to_tsvector

Again, see Chapter 12 for more detail.

8.11.2. t squery

A t squery value stores lexemes that are to be searched for, and can combine them using the Boolean
operators & (AND), | (OR),and! (NOT), aswell asthe phrase search operator <- > (FOLLOWED BY).
Thereisalso avariant <N> of the FOLLOWED BY operator, where Nis an integer constant that specifies
the distance between the two lexemes being searched for. <- > isequivalent to <1>.

Parentheses can be used to enforce grouping of these operators. In the absence of parentheses, ! (NOT)
binds most tightly, <- > (FOLLOWED BY) next most tightly, then & (AND), with | (OR) binding the
least tightly.

Here are some examples:

SELECT 'fat & rat'::tsquery;
tsquery

SELECT 'fat & (rat | cat)'::tsquery;
t squery

SELECT 'fat & rat & ! cat'::tsquery;
tsquery

179

Data Types

8.12

"fat' & 'rat' & !'cat’

Optionally, lexemesin at squery can be labeled with one or more weight letters, which restricts them
to match only t svect or lexemes with one of those weights:

SELECT 'fat:ab & cat'::tsquery;
t squery

Also, lexemesinat squery can be labeled with * to specify prefix matching:

SELECT ' super:*'::tsquery,
tsquery

This query will match any wordinat svect or that begins with “super”.

Quoting rules for lexemes are the same as described previously for lexemesint svect or ; and, as with
t svect or, any required normalization of words must be done before converting to thet squer y type.
Thet o_t squery function is convenient for performing such normalization:

SELECT to_tsquery('Fat:ab & Cats');
to_tsquery

Note that t o_t squery will process prefixes in the same way as other words, which means this
comparison returns true:

SELECT to_tsvector('postgraduate') @to_tsquery('postgres:*');
?col um?

because post gr es gets stemmed to post gr :

SELECT to_tsvector('postgraduate'), to_tsquery('postgres:*');
to_tsvector | to_tsquery

'postgradu’ :1 | 'postgr':*

which will match the stemmed form of post gr aduat e.

UUID Type

The data type uui d stores Universally Unique Identifiers (UUID) as defined by RFC 4122, ISO/IEC
9834-8:2005, and related standards. (Some systems refer to this data type as a globally unique identifier,
or GUID, instead.) This identifier is a 128-hit quantity that is generated by an algorithm chosen to make
it very unlikely that the same identifier will be generated by anyone else in the known universe using the

180

Data Types

8.13.

same algorithm. Therefore, for distributed systems, these identifiers provide a better uniqueness guarantee
than sequence generators, which are only unique within a single database.

A UUID iswritten asasequence of lower-case hexadecimal digits, in several groups separated by hyphens,
specifically agroup of 8 digits followed by three groups of 4 digits followed by a group of 12 digits, for a
total of 32 digits representing the 128 bits. An example of aUUID in this standard form is:

a0eebc99- 9cOb- 4ef 8- bb6d- 6bb9bd380all

PostgreSQL also accepts the following alternative forms for input: use of upper-case digits, the standard
format surrounded by braces, omitting some or all hyphens, adding ahyphen after any group of four digits.
Examples are:

AOEEBC99- 9C0B- 4EF8- BB6D- 6BB9BD380A11
{a0eebc99- 9cOb- 4ef 8- bb6d- 6bb9bd380a11}
a0eebc999c0Ob4ef 8bb6d6bb9bd380all

alee- bc99- 9c0b- 4ef 8- bb6d- 6bb9- bd38- 0all
{a0eebc99- 9cOb4ef 8- bb6d6bb9- bd380all}

Output is always in the standard form.

See Section 9.14 for how to generate a UUID in PostgreSQL.

XML Type

Thexm datatype can be used to store XML data. Its advantage over storing XML datainat ext field
isthat it checkstheinput values for well-formedness, and there are support functionsto perform type-safe
operations on it; see Section 9.15. Use of this data type requires the installation to have been built with
configure --with-1ibxm .

Thexm type can store well-formed “documents’, as defined by the XML standard, as well as“ content”
fragments, which are defined by reference to the more permissive “document node’! of the XQuery and
XPath datamodel. Roughly, this meansthat content fragments can have more than onetop-level element or
character node. The expression xm val ue |'S DOCUMENT can be used to evaluate whether a particular
xm valueisafull document or only a content fragment.

Limits and compatibility notes for the xm datatype can be found in Section D.3.

8.13.1. Creating XML Values

To produce avalue of type xnml from character data, use the function xi par se:

XMLPARSE ({ DOCUMENT | CONTENT } val ue)
Examples:
XMLPARSE (DOCUMENT ' <?xm version="1. 0" ?><book><tit| e>Manual </

titl e><chapter>...</chapter></book>")
XMLPARSE (CONTENT ' abc<f oo>bar </ f oo><bar >f oo</ bar >')

1 https://www.w3.0rg/TR/2010/REC-xpath-datamodel -20101214/#DocumentNode

181

https://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/#DocumentNode
https://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/#DocumentNode

Data Types

While this is the only way to convert character strings into XML values according to the SQL standard,
the PostgreSQL -specific syntaxes:

xm ' <foo>bar </ foo>'
' <f oo>bar </ f o0>' : : xni

can also be used.

Thexm type does not validate input values against a document type declaration (DTD), even when the
input value specifiesa DTD. There is also currently no built-in support for validating against other XML
schema languages such as XML Schema.

Theinverse operation, producing a character string value from xm , usesthe function xm seri al i ze:

XMLSERI ALI ZE ({ DOCUMENT | CONTENT } val ue AS type)

type can bechar acter, character varying, ortext (or an alias for one of those). Again,
according to the SQL standard, thisisthe only way to convert between type xm and character types, but
PostgreSQL also allows you to simply cast the value.

When a character string value is cast to or from type xm without going through XM_PARSE or
XMLSERI ALI ZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the “XML
option” session configuration parameter, which can be set using the standard command:

SET XML OPTION { DOCUMENT | CONTENT };

or the more PostgreSQL -like syntax

SET xm option TO { DOCUVENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

8.13.2. Encoding Handling

Care must be taken when dealing with multiple character encodings on the client, server, and in the XML
data passed through them. When using the text mode to pass queriesto the server and query resultsto the
client (which is the normal mode), PostgreSQL converts all character data passed between the client and
the server and vice versa to the character encoding of the respective end; see Section 23.3. This includes
string representations of XML values, such as in the above examples. This would ordinarily mean that
encoding declarations contained in XML data can become invalid as the character data is converted to
other encodings while traveling between client and server, because the embedded encoding declaration is
not changed. To cope with this behavior, encoding declarations contained in character strings presented
for input to the xm type are ignored, and content is assumed to be in the current server encoding.
Consequently, for correct processing, character strings of XML data must be sent from the client in the
current client encoding. It isthe responsibility of the client to either convert documentsto the current client
encoding before sending them to the server, or to adjust the client encoding appropriately. On output,
values of type xm will not have an encoding declaration, and clients should assume all data isin the
current client encoding.

When using binary mode to pass query parameters to the server and query results back to the client, no
encoding conversion is performed, so the situation is different. In this case, an encoding declaration in the

182

Data Types

XML datawill be observed, and if it is absent, the datawill be assumed to bein UTF-8 (asrequired by the
XML standard; note that PostgreSQL does not support UTF-16). On output, data will have an encoding
declaration specifying the client encoding, unless the client encoding is UTF-8, in which case it will be
omitted.

Needless to say, processing XML datawith PostgreSQL will be less error-prone and more efficient if the
XML data encoding, client encoding, and server encoding are the same. Since XML data is internally
processed in UTF-8, computations will be most efficient if the server encoding isaso UTF-8.

Caution

Some XML -related functions may not work at all on non-ASCII data when the server encoding is
not UTF-8. Thisisknown to be anissuefor xm t abl e() and xpat h() in particular.

8.13.3. Accessing XML Values

The xm data type is unusua in that it does not provide any comparison operators. This is because
there is no well-defined and universally useful comparison algorithm for XML data. One consequence of
thisis that you cannot retrieve rows by comparing an xm column against a search value. XML values
should therefore typically be accompanied by a separate key field such as an ID. An alternative solution
for comparing XML values is to convert them to character strings first, but note that character string
comparison has little to do with a useful XML comparison method.

Since there are no comparison operatorsfor thexm datatype, it isnot possible to create an index directly
on acolumn of thistype. If speedy searchesin XML dataare desired, possible workaroundsinclude casting
the expression to a character string type and indexing that, or indexing an XPath expression. Of course,
the actual query would have to be adjusted to search by the indexed expression.

The text-search functionality in PostgreSQL can al so be used to speed up full-document searches of XML
data. The necessary preprocessing support is, however, not yet available in the PostgreSQL distribution.

JSON Types

JSON datatypes are for storing JSON (JavaScript Object Notation) data, as specified in RFC 7159°. Such
data can also be stored ast ext , but the JSON data types have the advantage of enforcing that each stored
valueisvalid according to the JSON rules. There are also assorted JSON-specific functions and operators
available for data stored in these data types; see Section 9.16.

8.14

PostgreSQL offers two types for storing JSON data: j son and j sonb. To implement efficient query
mechanisms for these data types, PostgreSQL also provides the j sonpat h data type described in
Section 8.14.6.

The j son and j sonb data types accept almost identical sets of values as input. The major practical
differenceisone of efficiency. Thej son datatype storesan exact copy of theinput text, which processing
functions must reparse on each execution; whilej sonb datais stored in adecomposed binary format that
makes it slightly slower to input due to added conversion overhead, but significantly faster to process,
since no reparsing is needed. j sonb also supports indexing, which can be a significant advantage.

Because the | son type stores an exact copy of the input text, it will preserve semantically-insignificant
white space between tokens, as well as the order of keys within JSON objects. Also, if a JSON object

2 https://tool s.ietf.org/html/rfc7159

183

https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7159

Data Types

within the value contains the same key more than once, all the key/value pairs are kept. (The processing
functions consider the last value as the operative one.) By contrast,] sonb does not preserve white space,
does not preserve the order of object keys, and does not keep duplicate object keys. If duplicate keys are
specified in the input, only the last valueis kept.

In general, most applications should prefer to store JSON dataasj sonb, unlessthere are quite specialized
needs, such aslegacy assumptions about ordering of object keys.

RFC 7159 specifies that JSON strings should be encoded in UTF8. It is therefore not possible for the
JSON typesto conform rigidly to the JSON specification unless the database encoding is UTF8. Attempts
to directly include characters that cannot be represented in the database encoding will fail; conversely,
characters that can be represented in the database encoding but not in UTF8 will be allowed.

RFC 7159 permits JSON strings to contain Unicode escape sequences denoted by \ uXXXX. In the input
function for the j son type, Unicode escapes are alowed regardless of the database encoding, and are
checked only for syntactic correctness (that is, that four hex digitsfollow \ u). However, theinput function
forj sonb isstricter: it disallows Unicode escapesfor charactersthat cannot be represented in the database
encoding. The j sonb type aso rejects \ uO000 (because that cannot be represented in PostgreSQL's
t ext type), and it insists that any use of Unicode surrogate pairs to designate characters outside the
Unicode Basic Multilingual Plane be correct. VValid Unicode escapes are converted to the equivalent single
character for storage; this includes folding surrogate pairs into a single character.

Note

Many of the JISON processing functions described in Section 9.16 will convert Unicode escapes
to regular characters, and will therefore throw the same types of errorsjust described even if their
input is of type j son not j sonb. The fact that the j son input function does not make these
checks may be considered a historical artifact, although it does allow for simple storage (without
processing) of JSON Unicode escapesin adatabase encoding that does not support the represented
characters.

When converting textual JSON input into j sonb, the primitive types described by RFC 7159 are
effectively mapped onto native PostgreSQL types, as shown in Table 8.23. Therefore, there are some
minor additional constraints on what constitutesvalidj sonb datathat do not apply tothej son type, nor
to JSON in the abstract, corresponding to limits on what can be represented by the underlying data type.
Notably, j sonb will reject numbers that are outside the range of the PostgreSQL nuner i ¢ data type,
whilej son will not. Such implementation-defined restrictions are permitted by RFC 7159. However, in
practice such problems are far more likely to occur in other implementations, asit is common to represent
JSON'snunber primitive type as | EEE 754 double precision floating point (which RFC 7159 explicitly
anticipates and alows for). When using JSON as an interchange format with such systems, the danger of
losing numeric precision compared to data originally stored by PostgreSQL should be considered.

Conversdly, as noted in the table there are some minor restrictions on the input format of JSON primitive
types that do not apply to the corresponding PostgreSQL types.

Table 8.23. JSON Primitive Types and Corresponding PostgreSQL Types

JSON primitivetype |PostgreSQL type Notes

string t ext \ u0000 isdisalowed, as are Unicode escapes
representing characters not available in the
database encoding

nunber nuneric NaNandi nfi ni ty valuesare disallowed

184

Data Types

JSON primitivetype |PostgreSQL type Notes

bool ean bool ean Only lowercaset r ue and f al se spellings are
accepted

nul | (none) SQL NULL isadifferent concept

8.14.1. JSON Input and Output Syntax

The input/output syntax for the JSON datatypesis as specified in RFC 7159.

Thefollowing are adl validj son (or j sonb) expressions:

-- Sinple scalar/primtive val ue

-- Primtive values can be nunbers, quoted strings, true, false,

nul |
SELECT '5'::json;

or

-- Array of zero or nore elenents (el enents need not be of sanme type)

SELECT '[1, 2, "foo", null]'::json;

-- (bject containing pairs of keys and val ues
-- Note that object keys nust always be quoted strings

SELECT '{"bar": "baz", "balance": 7.77, "active": false}'::json;

-- Arrays and objects can be nested arbitrarily

SELECT '{"foo": [true, "bar"], "tags": {"a": 1, "b": null}}'::json;

As previously stated, when a JSON value is input and then printed without any additional processing,
j son outputs the same text that was input, while j sonb does not preserve semantically-insignificant

details such as whitespace. For example, note the differences here:

SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::json;

j son

{"bar": "baz", "balance": 7.77, "active":false}

(1 row

SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::jsonb;
j sonb

{"bar": "baz", "active": false, "balance": 7.77}

One semantically-insignificant detail worth noting isthat inj sonb, numberswill be printed according to
the behavior of theunderlying nuner i ¢ type. In practice this means that numbers entered with E notation

will be printed without it, for example:

SELECT ' {"reading": 1.230e-5}"'::json, '{"reading": 1.230e-5}'::jsonb;

j son | j sonb

{"reading": 1.230e-5} | {"reading": 0.00001230}

185

Data Types

(1 row

However, j sonb will preservetrailing fractional zeroes, as seen in this example, even though those are
semantically insignificant for purposes such as equality checks.

For thelist of built-in functions and operators available for constructing and processing JSON values, see
Section 9.16.

8.14.2. Designing JSON Documents

Representing data as JSON can be considerably more flexible than the traditional relational data model,
which iscompelling in environments where requirements arefluid. It is quite possible for both approaches
to co-exist and complement each other within the same application. However, even for applications where
maximal flexibility is desired, it is still recommended that JSON documents have a somewhat fixed
structure. The structure is typically unenforced (though enforcing some business rules declaratively is
possible), but having a predictable structure makes it easier to write queries that usefully summarize a set
of “documents’ (datums) in atable.

JSON data is subject to the same concurrency-control considerations as any other data type when stored
in atable. Although storing large documents is practicable, keep in mind that any update acquires a row-
level lock on the whole row. Consider limiting JSON documents to a manageable sizein order to decrease
lock contention among updating transactions. Ideally, JSON documents should each represent an atomic
datum that business rules dictate cannot reasonably be further subdivided into smaller datums that could
be modified independently.

8.14.3.] sonb Containment and Existence

Testing containment is an important capability of j sonb. There is no parallel set of facilities for the
j son type. Containment tests whether onej sonb document has contained within it another one. These
examples return true except as noted:

-- Simple scalar/primtive values contain only the identical val ue:
SELECT ""foo"'::jsonb @ '"foo"'::jsonb;

-- The array on the right side is contained within the one on the
left:
SELECT '[1, 2, 3]'::jsonb @ '[1, 3]'::jsonb;

-- Order of array elements is not significant, so this is also true:
SELECT '[1, 2, 3]'::jsonb @ '[3, 1]'::jsonb;

-- Duplicate array elenents don't matter either:
SELECT '[1, 2, 3]'::jsonb @ '[1, 2, 2]'::jsonb;

-- The object with a single pair on the right side is contained
-- within the object on the left side:

SELECT ' {"product”: "PostgreSQ.", "version": 9.4, "jsonb":
true}'::jsonb @ '{"version": 9.4}'::jsonb;

-- The array on the right side is not considered contained within the
-- array on the left, even though a simlar array is nested within it:
SELECT '[1, 2, [1, 3]]'::jsonb @ '[1, 3]'::jsonb; -- yields false

186

Data Types

-- But with a layer of nesting, it is contained:
SELECT '[1, 2, [1, 3]]'::jsonb @ '[[1, 3]]'::]jsonb;

-- Simlarly, containment is not reported here:
SELECT '{"foo": {"bar": "baz"}}'::jsonb @ '{"bar": "baz"}'::jsonb;
-- yields fal se

-- Atop-level key and an enpty object is contained:
SELECT ' {"foo": {"bar": "baz"}}'::jsonb @ '{"foo": {}}'::jsonb;

The general principle is that the contained object must match the containing object as to structure and
data contents, possibly after discarding some non-matching array elements or object key/value pairs from
the containing object. But remember that the order of array elements is not significant when doing a
containment match, and duplicate array elements are effectively considered only once.

As a special exception to the general principle that the structures must match, an array may contain a
primitive value:

-- This array contains the primtive string val ue:

SELECT '["fo0", "bar"]'::jsonb @ '"bar"'::jsonb;

-- This exception is not reciprocal -- non-containment is reported
here:

SELECT '"bar"'::jsonb @ '["bar"]'::jsonb; -- yields false

j sonb aso has an existence operator, which is a variation on the theme of containment: it tests whether
astring (given asat ext value) appears as an object key or array element at the top level of thej sonb
value. These examples return true except as noted:

-- String exists as array el ement:
SELECT '["foo0", "bar", "baz"]'::jsonb ? 'bar';

-- String exists as object key:
SELECT '{"foo": "bar"}'::jsonb ? 'foo';

-- (bject values are not considered:

SELECT '{"foo": "bar"}'::jsonb ? "bar'; -- yields false

-- As with containment, existence nmust match at the top |evel:
SELECT '{"foo": {"bar": "baz"}}'::jsonb ? "bar'; -- yields fal se
-- Astring is considered to exist if it matches a primtive JSON
string:

SELECT '"foo0"'::jsonb ? 'foo';

JSON objects are better suited than arrays for testing containment or existence when there are many keys
or elements involved, because unlike arrays they are internally optimized for searching, and do not need
to be searched linearly.

Tip

Because JSON containment is nested, an appropriate query can skip explicit selection of sub-
objects. Asan example, supposethat wehaveadoc column containing objectsat thetop level, with

187

Data Types

most objects containing t ags fields that contain arrays of sub-objects. This query finds entries
in which sub-objects containing both" t er i’ ; "pari s" and"ternt': " food" appear, while
ignoring any such keysoutside thet ags array:

SELECT doc->'site_nane' FROM websites

VWHERE doc @ '{"tags":[{"ternt:"paris"}, {"ternm:"food"}]}";
One could accomplish the same thing with, say,
SELECT doc->'site_nane' FROM websites

WHERE doc->'tags' @ '[{"term':"paris"}, {"term':"food"}]";
but that approach is less flexible, and often less efficient as well.

On the other hand, the JSON existence operator is not nested: it will only look for the specified
key or array element at top level of the JSON value.

The various containment and existence operators, along with all other JSON operators and functions are
documented in Section 9.16.

8.14.4. | sonb Indexing

GIN indexes can be used to efficiently search for keys or key/value pairs occurring within alarge number
of j sonb documents (datums). Two GIN “operator classes’ are provided, offering different performance
and flexibility trade-offs.

The default GIN operator class for j sonb supports queries with top-level key-exists operators ?, ?&
and ?| operators and path/value-exists operator @ . (For details of the semantics that these operators
implement, see Table 9.45.) An example of creating an index with this operator classis:

CREATE | NDEX i dxgin ON api USING G N (jdoc);

The non-default GIN operator class j sonb_pat h_ops supports indexing the @ operator only. An
example of creating an index with this operator classis:

CREATE | NDEX i dxgi np ON api USING G N (jdoc jsonb_path_ops);

Consider the example of atablethat stores JSON documents retrieved from athird-party web service, with
a documented schema definition. A typical document is:

"guid": "9c36adcl- 7f b5- 4d5b- 83b4- 90356a46061a",
"nane": "Angela Barton",

"is_active": true,

"conpany": "Magnaf one",

"address": "178 Howard Pl ace, @ulf, Wshington, 702",
"regi stered": "2009-11-07T08:53:22 +08: 00",
“latitude": 19.793713,

188

Data Types

"l ongi tude": 86.513373,
"tags": |

"eni nt',

"al i qui p",

Ilqui n

}

We store these documents in a table named api , in aj sonb column named j doc. If a GIN index is
created on this column, queries like the following can make use of the index:

-- Find docunents in which the key "conpany" has val ue "Magnaf one"
SELECT jdoc->'guid', jdoc->' nane' FROM api WHERE jdoc @ '{"conpany":
"Magnaf one"}';

However, the index could not be used for queries like the following, because though the operator ? is
indexable, it is not applied directly to the indexed column j doc:

-- Find docunents in which the key "tags" contains key or array
el erent "qui"

SELECT jdoc->'guid', jdoc->'nane' FROM api WHERE jdoc -> 'tags' ?
‘qui’;

Still, with appropriate use of expression indexes, the above query can use an index. If querying for
particular itemswithinthe"t ags" key is common, defining an index like this may be worthwhile;

CREATE | NDEX i dxgi ntags ON api USING AN ((jdoc -> "tags'));

Now, the WHERE clausej doc -> 'tags' ? 'qui' will berecognized as an application of the
indexable operator ? to the indexed expressionj doc - > 'tags' . (Moreinformation on expression
indexes can be found in Section 11.7.)

Also, GIN index supports @@and @ operators, which perform j sonpat h matching.

SELECT jdoc->'guid', jdoc->' nane' FROM api WHERE jdoc @@'$.tags[*] ==

"qui ;

SELECT jdoc->'guid', jdoc-> nanme' FROM api WHERE jdoc @ '$.tags[*] ?
(@=="qui")";

GIN index extracts statements of following form out of j sonpat h: accessors_chai n = const.
Accessorschain may consist of . key, [*],and[i ndex] accessors.j sonb_ops additionally supports
.* and. ** accessors.

Another approach to querying isto exploit containment, for example:
-- Find docunents in which the key "tags" contains array el enent "qui"

SELECT jdoc->'guid', jdoc-> nane’ FROM api WHERE jdoc @ '{"tags":
["qui*]}";

189

Data Types

A simple GIN index on thej doc column can support this query. But note that such an index will store
copies of every key and valueinthej doc column, whereas the expression index of the previous example
stores only datafound under thet ags key. While the simple-index approach isfar more flexible (since it
supports queries about any key), targeted expression indexes are likely to be smaller and faster to search
than asimple index.

Although the j sonb_pat h_ops operator class supports only queries with the @, @@ and @
operators, it has notable performance advantages over the default operator class j sonb_ops. A
j sonb_pat h_ops index isusualy much smaller thanaj sonb_ops index over the same data, and the
specificity of searchesis better, particularly when queries contain keys that appear frequently in the data.
Therefore search operations typically perform better than with the default operator class.

Thetechnical difference betweenaj sonb_ops andaj sonb_pat h_ops GIN index isthat the former
creates independent index items for each key and value in the data, while the latter creates index items
only for each value in the data. 3 Basicaly, each j sonb_pat h_ops index item is a hash of the value
and the key(s) leading to it; for exampletoindex { " f 00" : {"bar": "baz"}}, asingleindex item
would be created incorporating all three of f 00, bar , and baz into the hash value. Thus a containment
query looking for this structure would result in an extremely specific index search; but there is no way
at all to find out whether f 00 appears as a key. On the other hand, aj sonb_ops index would create
three index items representing f 00, bar , and baz separately; then to do the containment query, it would
look for rows containing all three of these items. While GIN indexes can perform such an AND search
fairly efficiently, it will still be less specific and slower than the equivalent j sonb_pat h_ops search,
especially if there are avery large number of rows containing any single one of the three index items.

A disadvantage of the j sonb_pat h_ops approach is that it produces no index entries for JSON
structures not containing any values, suchas{"a": {}}. If asearch for documents containing such
a structure is requested, it will require a full-index scan, which is quite slow. j sonb_pat h_ops is
therefore ill-suited for applications that often perform such searches.

j sonb aso supports bt r ee and hash indexes. These are usually useful only if it'simportant to check
equality of complete JSON documents. Thebt r ee orderingfor j sonb datumsis seldom of great interest,
but for completenessit is:

hject > Array > Boolean > Nunber > String > Null
hject with n pairs > object with n - 1 pairs

Array with n elenents > array with n - 1 elenents

Objects with equal numbers of pairs are compared in the order:

key-1, value-1, key-2 ...

Note that object keys are compared in their storage order; in particular, since shorter keys are stored before
longer keys, this can lead to results that might be unintuitive, such as:

{ "aa": 1, "c": 1} >{"b": 1, "d": 1}

Similarly, arrays with equal numbers of elements are compared in the order:

3 For this purpose, the term “value” includes array elements, though JSON terminology sometimes considers array elements distinct from values

within objects.

190

Data Types

elenent-1, elenent-2 ...

Primitive JSON values are compared using the same comparison rules as for the underlying PostgreSQL
datatype. Strings are compared using the default database collation.

8.14.5. Transforms

Additional extensions are availablethat implement transformsfor thej sonb typefor different procedural
languages.

The extensionsfor PL/Perl arecalledj sonb_pl per| andj sonb_pl per | u. If youusethem, j sonb
values are mapped to Perl arrays, hashes, and scalars, as appropriate.

The extensions for PL/Python are caled jsonb_pl pyt honu, jsonb_pl pyt hon2u, and
j sonb_pl pyt hon3u (see Section 45.1 for the PL/Python naming convention). If you usethem, j sonb
values are mapped to Python dictionaries, lists, and scalars, as appropriate.

Of theseextensions, j sonb_pl per | isconsidered “trusted”, that is, it can beinstalled by non-superusers
who have CREATE privilege on the current database. The rest require superuser privilege to install.

8.14.6. jsonpath Type

Thej sonpat h type implements support for the SQL/JSON path language in PostgreSQL to efficiently
guery JSON data. It provides a binary representation of the parsed SQL/JSON path expression that
specifies the items to be retrieved by the path engine from the JSON data for further processing with the
SQL/JSON query functions.

The semantics of SQL/JSON path predicates and operators generally follow SQL. At the same time,
to provide a natural way of working with JSON data, SQL/JSON path syntax uses some JavaScript
conventions:

» Dot (.) isused for member access.
» Square brackets ([]) are used for array access.
* SQL/JSON arrays are O-relative, unlike regular SQL arraysthat start from 1.

An SQL/JSON path expression is typically written in an SQL query as an SQL character string literal,
so it must be enclosed in single quotes, and any single quotes desired within the value must be doubled
(see Section 4.1.2.1). Some forms of path expressions reguire string literals within them. These embedded
string literalsfollow JavaScript/ECM A Script conventions. they must be surrounded by doubl e quotes, and
backslash escapes may be used within them to represent otherwise-hard-to-type characters. In particular,
the way to write a double quote within an embedded string literal is\ ", and to write a backslash itsdlf,
you must write\ \ . Other specia backslash sequences include those recognized in JSON strings: \ b, \ f ,
\n,\r,\t,\v for various ASCII control characters, and \ uNNNN for a Unicode character identified
by its 4-hex-digit code point. The backslash syntax also includes two cases not allowed by JSON: \ xNN
for a character code written with only two hex digits, and\ u{ N. . . } for a character code written with
1to 6 hex digits.

A path expression consists of a sequence of path elements, which can be any of the following:
 Path literals of JSON primitive types: Unicode text, numeric, true, false, or null.

» Path variableslisted in Table 8.24.

191

Data Types

» Accessor operators listed in Table 8.25.

* j sonpat h operators and methods listed in Section 9.16.2.2.

* Parentheses, which can be used to provide filter expressions or define the order of path evaluation.

For detailson using j sonpat h expressions with SQL/JSON query functions, see Section 9.16.2.

Table8.24.] sonpat h Variables

Variable Description

$ A variable representing the JSON value being queried (the context
item).

$var nane A named variable. Its value can be set by the parameter var s of
several JSON processing functions; see Table 9.47 for details.

@ A variable representing the result of path evaluation in filter

expressions.

Table8.25.) sonpat h Accessors

Accessor Operator

Description

. key

."$var nanme"

Member accessor that returns an object member with the specified
key. If the key name matches some named variable starting with

$ or does not meet the JavaScript rules for an identifier, it must be
enclosed in double quotesto makeit a string literal.

Wildcard member accessor that returns the values of all members
located at the top level of the current object.

Recursive wildcard member accessor that processes all levels of the
JSON hierarchy of the current object and returns all the member
values, regardless of their nesting level. Thisis a PostgreSQL
extension of the SQL/JSON standard.

*{level }

**{start_level to

Like. **, but selects only the specified levels of the JISON
hierarchy. Nesting levels are specified as integers. Level zero
corresponds to the current object. To access the lowest nesting level,

end_| evel } you can usethe | ast keyword. Thisis aPostgreSQL extension of
the SQL/JSON standard.
[subscript, ...] Array element accessor. subscri pt can begivenintwo forms:

indexorstart_index to end_i ndex. Thefirst form
returns asingle array element by itsindex. The second form returns
an array dlice by the range of indexes, including the elements that
correspond to the provided st art _i ndex and end_i ndex.

The specified i ndex can be an integer, as well as an expression
returning a single numeric value, which is automatically cast to
integer. Index zero correspondsto the first array element. Y ou can
asousethel ast keyword to denote the last array element, which
isuseful for handling arrays of unknown length.

[*]

Wildcard array element accessor that returns all array elements.

8.15. Arrays

192

Data Types

PostgreSQL allows columns of atable to be defined as variable-length multidimensional arrays. Arrays of
any built-in or user-defined base type, enum type, composite type, range type, or domain can be created.

8.15.1. Declaration of Array Types

To illustrate the use of array types, we create this table:

CREATE TABLE sal _emp (

name t ext,
pay_ by quarter integer[],
schedul e text[][]

)

Asshown, an array datatypeisnamed by appending square brackets ([]) to the datatype name of thearray
elements. The above command will create atable named sal _enp with acolumn of typet ext (narme),
aone-dimensional array of typei nt eger (pay_by_quart er), which representsthe employee'ssalary
by quarter, and atwo-dimensional array of t ext (schedul e), which represents the employee's weekly
schedule.

The syntax for CREATE TABLE alowsthe exact size of arraysto be specified, for example:

CREATE TABLE tictactoe (
squar es i nteger[3][3]

)

However, the current implementation ignores any supplied array size limits, i.e., the behavior is the same
as for arrays of unspecified length.

The current implementation does not enforce the declared number of dimensions either. Arrays of a
particular element type are all considered to be of the same type, regardless of size or number of
dimensions. So, declaring the array size or number of dimensions in CREATE TABLE is simply
documentation; it does not affect run-time behavior.

An alternative syntax, which conformsto the SQL standard by using the keyword ARRAY, can be used for
one-dimensional arrays. pay_by_quart er could have been defined as:

pay_by quarter integer ARRAY[4],

Or, if no array sizeisto be specified:

pay_by quarter integer ARRAY,

As before, however, PostgreSQL does not enforce the size restriction in any case.

8.15.2. Array Value Input

To write an array value as a literal constant, enclose the element values within curly braces and separate
them by commas. (If you know C, thisis not unlike the C syntax for initializing structures.) Y ou can put
double quotes around any element value, and must do so if it contains commas or curly braces. (More
details appear below.) Thus, the general format of an array constant is the following:

193

Data Types

'{ vall delimval2 delim... }'

wheredel i misthedelimiter character for thetype, asrecordedinitspg_t ype entry. Among the standard
data types provided in the PostgreSQL distribution, all use acomma.(,), except for type box which uses
asemicolon (;). Each val is either a constant of the array element type, or a subarray. An example of
an array constant is:

"{{1,2,3},{4,5,6},{7,8,9}}'
This constant is atwo-dimensional, 3-by-3 array consisting of three subarrays of integers.

To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or lower-
case variant of NULL will do.) If you want an actual string value “NULL", you must put double quotes
around it.

(These kinds of array constants are actually only a special case of the generic type constants discussed in
Section4.1.2.7. Theconstant isinitially treated asastring and passed to the array input conversion routine.
An explicit type specification might be necessary.)

Now we can show some | NSERT statements:

| NSERT | NTO sal _enp

VALUES ('Bill",
' {10000, 10000, 10000, 10000%}',
"{{"neeting", "lunch"}, {"training", "presentation"}}');

| NSERT | NTO sal _enp
VALUES (' Carol ',
' {20000, 25000, 25000, 25000}',
"{{"breakfast", "consulting"}, {"neeting", "lunch"}}");

Theresult of the previous two inserts looks like this:

SELECT * FROM sal _enp;
name | pay_by_quarter | schedul e

Bill | {10000, 10000, 10000, 10000} | {{reeting, | unch},
{training, presentation}}

Carol | {20000, 25000, 25000, 25000} | {{breakfast, consulting},
{meeting, | unch}}
(2 rows)

Multidimensional arrays must have matching extents for each dimension. A mismatch causes an error,
for example:

| NSERT | NTO sal _enp

VALUES ('Bill",
' {10000, 10000, 10000, 10000}',
"{{"neeting", "lunch"}, {"nmeeting"}}");

ERROR: nmul tidi nensional arrays must have array expressions with
mat chi ng di mensi ons

194

Data Types

The ARRAY constructor syntax can also be used:

I NSERT | NTO sal _enp

VALUES ('Bill",
ARRAY[10000, 10000, 10000, 10000],
ARRAY[[' neeting', 'lunch'], ['training', 'presentation']]);

I NSERT | NTO sal _enp
VALUES (' Carol ',
ARRAY[20000, 25000, 25000, 25000],
ARRAY[[' breakfast', 'consulting'], ['neeting', 'lunch']]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals are
single quoted, instead of double quoted asthey would bein an array literal. The ARRAY constructor syntax
is discussed in more detail in Section 4.2.12.

8.15.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access a single element of an array.
This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT nanme FROM sal _enp WHERE pay_by_quarter[1] <> pay_by_quarter[2];

The array subscript numbers are written within square brackets. By default PostgreSQL uses a one-based
numbering convention for arrays, that is, an array of n elements starts with ar r ay[1] and ends with
array[n].

This query retrieves the third quarter pay of all employees:

SELECT pay_by quarter[3] FROM sal _enp;

pay_by_quarter

(2 rows)

Wecan also accessarbitrary rectangular slicesof anarray, or subarrays. An array sliceisdenoted by writing
| ower - bound: upper - bound for one or more array dimensions. For example, this query retrievesthe
first item on Bill's schedule for the first two days of the week:

SELECT schedul e[1: 2] [1: 1] FROM sal _enp WHERE name = 'Bill";

schedul e

{{meeting}, {training}}

195

Data Types

(1 row

If any dimension iswritten asadlice, i.e., contains a colon, then al dimensions are trested as slices. Any
dimension that has only a single number (no colon) istreated as being from 1 to the number specified. For
example, [2] istreated as[1: 2], asin thisexample:

SELECT schedul e[1: 2] [2] FROM sal _enp WHERE nanme = 'Bill";

schedul e

{{neeting, lunch}, {training, presentation}}

(1 row

To avoid confusion with the non-slice case, it's best to use dice syntax for all dimensions, e.g., [1: 2]
[1:1],not[2] [1:1].

It is possible to omit the | ower - bound and/or upper - bound of a dlice specifier; the missing bound
isreplaced by the lower or upper limit of the array's subscripts. For example:

SELECT schedul e[:2][2:] FROM sal _enp WHERE nane

"Bill';

schedul e

{1 unch}, {present ati on}}
(1 row

SELECT schedul e[:][1:1] FROM sal _enp WHERE narme = '"Bill";

schedul e
{{meeting}, {training}}
(1 row

Anarray subscript expression will return null if either the array itself or any of the subscript expressionsare
null. Also, null isreturned if asubscript is outside the array bounds (this case does not raise an error). For
example, if schedul e currently has the dimensions [1: 3] [1: 2] then referencing schedul e[3]
[3] yieldsNULL. Similarly, an array reference with the wrong number of subscripts yields a null rather
than an error.

Anarray slice expression likewiseyields null if the array itself or any of the subscript expressionsare null.
However, in other cases such as selecting an array slicethat iscompl etely outside the current array bounds,
adlice expression yields an empty (zero-dimensional) array instead of null. (This does not match non-slice
behavior and isdone for historical reasons.) If the requested slice partially overlaps the array bounds, then
itissilently reduced to just the overlapping region instead of returning null.

The current dimensions of any array value can be retrieved with the ar r ay_di ns function:

SELECT array_di ns(schedul e) FROM sal _enp WHERE nanme = 'Carol"';

array_dins

[1:2][1:2]

196

Data Types

(1 row

array_di ms producesat ext result, which is convenient for people to read but perhaps inconvenient
for programs. Dimensions can also be retrieved with ar r ay_upper and ar r ay_I| ower , which return
the upper and lower bound of a specified array dimension, respectively:

SELECT array_upper (schedule, 1) FROM sal _enp WHERE nanme = 'Carol';

array_upper

(1 row

array_| engt h will return the length of a specified array dimension:

SELECT array_| engt h(schedul e, 1) FROM sal _enp WHERE nane = 'Carol"';

array_l ength

(1 row

car di nal i ty returns the total number of elementsin an array across all dimensions. It is effectively
the number of rowsacall tounnest would yield:

SELECT cardi nality(schedul e) FROM sal _enp WHERE nanme = ' Carol';

cardinality

(1 row
8.15.4. Modifying Arrays

An array value can be replaced completely:

' {25000, 25000, 27000, 27000} "'

UPDATE sal _enp SET pay_by quarter
VWHERE nane = 'Carol';

or using the ARRAY expression syntax:

UPDATE sal _enp SET pay_by_quarter
WHERE nane = 'Carol';

ARRAY[25000, 25000, 27000, 27000]
An array can also be updated at a single element:
UPDATE sal _enp SET pay_by quarter[4] = 15000

VWHERE nanme = 'Bill";

or updated in aslice:

197

Data Types

UPDATE sal _enp SET pay_by quarter[1:2] = '{27000, 27000}"'
VWHERE nane = 'Carol';

The dlice syntaxes with omitted | ower - bound and/or upper - bound can be used too, but only when
updating an array value that is not NULL or zero-dimensional (otherwise, there is no existing subscript
limit to substitute).

A stored array value can be enlarged by assigning to elements not already present. Any positions between
those previously present and the newly assigned elements will be filled with nulls. For example, if
array nyarray currently has 4 elements, it will have six elements after an update that assigns to
nyar ray[6] ; nyar ray[5] will contain null. Currently, enlargement in this fashion is only allowed
for one-dimensional arrays, not multidimensiona arrays.

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example one
might assignto nyar r ay[- 2: 7] to create an array with subscript valuesfrom -2to 7.

New array values can also be constructed using the concatenation operator, | | :

SELECT ARRAY[1,2] || ARRAY[3,4];
?col um?

(1,234
(1 row

SELECT ARRAY[5,6] || ARRAY[[1,2],[3,4]];
?col um?

{{5.6},{1,2},{3,4}}
(1 row

The concatenation operator alows a single element to be pushed onto the beginning or end of a one-
dimensional array. It also acceptstwo N-dimensional arrays, or an N-dimensional and an N+1-dimensional

array.

When asingle element is pushed onto either the beginning or end of a one-dimensional array, theresult is
an array with the same lower bound subscript as the array operand. For example:

SELECT array dins(1 || '[0:1]1={2,3}'::int[]);
array_dins

SELECT array_di ns(ARRAY[1,2] || 3);
array_dins

When two arrays with an equal number of dimensions are concatenated, the result retains the lower bound
subscript of the left-hand operand's outer dimension. The result is an array comprising every element of
the left-hand operand followed by every element of the right-hand operand. For example:

198

Data Types

SELECT array_di ns(ARRAY[1, 2] || ARRAY[3,4,5]);
array_dins

SELECT array_di ns(ARRAY[[1,2],[3,4]] || ARRAY[[5,6],[7,8],[9,0]11);
array_dins

(s
(1 row

When an N-dimensional array is pushed onto the beginning or end of an N+1-dimensional array, the result
is analogous to the element-array case above. Each N-dimensiona sub-array is essentially an element of
the N+ 1-dimensional array's outer dimension. For example:

SELECT array_di ns(ARRAY[1,2] || ARRAY[[3,4],[5,6]]);
array_di s

(1912
(1 row

An array can aso be constructed by using the functions array_prepend, array_append,
or array_cat. The first two only support one-dimensiona arrays, but array_cat supports
multidimensional arrays. Some examples:

SELECT array_prepend(1, ARRAY[2,3]);
array_prepend

SELECT array_append(ARRAY[1, 2], 3);
array_append

SELECT array_cat (ARRAY[1, 2], ARRAY[3,4]);
array_cat

{1,234
(1 row

SELECT array_cat (ARRAY[[1,2],[3,4]], ARRAY[5,6]);
array_cat

{{1,2},{3,4},{5, 6}}
(1 row

SELECT array_cat (ARRAY[5, 6], ARRAY[[1,2],[3,4]]);
array_cat

199

Data Types

{{5,6},{1,2},{3,4}}

In simple cases, the concatenation operator discussed aboveis preferred over direct use of these functions.
However, because the concatenation operator is overloaded to serve all three cases, there are situations
where use of one of the functionsis helpful to avoid ambiguity. For example consider:

SELECT ARRAY[1, 2] || '{3, 4}'; ~-- the untyped literal is taken as an
array
?col um?

{1, 2,3, 4}

SELECT ARRAY[1, 2] || '7"; -- so is this one
ERROR: malforned array literal: "7"

SELECT ARRAY[1, 2] || NULL; -- so is an undecorated
NULL
?col um?

SELECT array_append(ARRAY[1, 2], NULL); -- this mght have been
meant
array_append

{1, 2, NULL}

In the examples above, the parser sees an integer array on one side of the concatenation operator, and a
constant of undetermined type on the other. The heuristic it usesto resolve the constant'stypeisto assume
it'sof the sametype asthe operator's other input — in this case, integer array. So the concatenati on operator
is presumed to represent ar r ay_cat , not ar r ay_append. When that's the wrong choice, it could be
fixed by casting the constant to the array's element type; but explicit use of ar r ay_append might be
apreferable solution.

8.15.5. Searching in Arrays

To search for avalue in an array, each value must be checked. This can be done manualy, if you know
the size of the array. For example:

SELECT * FROM sal _enmp WHERE pay_by quarter[1] = 10000 OR
pay by quarter[2] = 10000 OR
pay by quarter[3] = 10000 OR
pay by quarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
unknown. An alternative method is described in Section 9.24. The above query could be replaced by:

SELECT * FROM sal _enmp WHERE 10000 = ANY (pay_by quarter);

In addition, you can find rows where the array has all values equal to 10000 with:

200

Data Types

SELECT * FROM sal _enmp WHERE 10000 = ALL (pay_by_quarter);

Alternatively, thegener at e_subscri pt s function can be used. For example:

SELECT * FROM
(SELECT pay_by quarter,
generate_subscripts(pay_by quarter, 1) AS s
FROM sal _enp) AS foo
WHERE pay_ by quarter[s] = 10000;

Thisfunction is described in Table 9.62.

Y ou can a'so search an array using the && operator, which checks whether the left operand overlaps with
the right operand. For instance:

SELECT * FROM sal _enmp WHERE pay_ by quarter && ARRAY[10000];

Thisand other array operators are further described in Section 9.19. It can be accel erated by an appropriate
index, as described in Section 11.2.

You can aso search for specific values in an array using the array_position and
array_posi tions functions. The former returns the subscript of the first occurrence of avauein an
array; thelatter returnsan array with the subscriptsof al occurrencesof thevalueinthearray. For example:

SELECT

array_position(ARRAY['sun','non','tue','wed' ,'thu",'fri','sat'],
‘mon') ;

array_position

(1 row

SELECT array_positions(ARRAY[1, 4, 3, 1, 3, 4, 2, 1], 1);
array_positions

Tip

Arrays are not sets; searching for specific array elements can be a sign of database misdesign.
Consider using a separate table with arow for each item that would be an array element. Thiswill
be easier to search, and islikely to scale better for alarge number of elements.

8.15.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to the
I/0O conversion rules for the array's element type, plus decoration that indicates the array structure. The
decoration consists of curly braces ({ and }) around the array value plus delimiter characters between
adjacent items. The delimiter character isusually acomma(,) but can be something else: it is determined

201

Data Types

by the t ypdel i msetting for the array's element type. Among the standard data types provided in
the PostgreSQL distribution, all use a comma, except for type box, which uses a semicolon (;). In a
multidimensional array, each dimension (row, plane, cube, etc.) gets its own level of curly braces, and
delimiters must be written between adjacent curly-braced entities of the same level.

The array output routine will put double quotes around element values if they are empty strings, contain
curly braces, delimiter characters, double quotes, backslashes, or white space, or match the word NULL.
Double quotes and backslashes embedded in element values will be backslash-escaped. For numeric data
types it is safe to assume that double quotes will never appear, but for textual data types one should be
prepared to cope with either the presence or absence of quotes.

By default, the lower bound index value of an array's dimensions is set to one. To represent arrays with
other lower bounds, the array subscript ranges can be specified explicitly before writing the array contents.
This decoration consists of square brackets ([]) around each array dimension's lower and upper bounds,
with acolon (:) delimiter character in between. The array dimension decoration is followed by an equal
sign (=). For example:

SELECT f1[1][-2][3] AS el, f1[1][-1][5] AS e2
FROM (SELECT "[1:1][-2:-1][3:5] ={{{1,2,3},{4,56}}} ::int[] AS f1) AS
SS;

el | e2

e
1] 6

(1 row)

The array output routine will include explicit dimensions in its result only when there are one or more
lower bounds different from one.

If the value written for an element is NULL (in any case variant), the element is taken to be NULL. The
presence of any quotesor backslashesdisablesthisand allowstheliteral stringvalue“NULL” to beentered.
Also, for backward compatibility with pre-8.2 versions of PostgreSQL, the array nulls configuration
parameter can be turned of f to suppress recognition of NULL asaNULL.

As shown previously, when writing an array value you can use double quotes around any individual
array element. You must do so if the element value would otherwise confuse the array-value parser. For
exampl e, elements containing curly braces, commas (or the data type's delimiter character), double quotes,
backslashes, or leading or trailing whitespace must be double-quoted. Empty strings and strings matching
the word NULL must be quoted, too. To put a double quote or backslash in a quoted array element value,
precede it with a backslash. Alternatively, you can avoid quotes and use backslash-escaping to protect all
data characters that would otherwise be taken as array syntax.

Y ou can add whitespace before a left brace or after aright brace. Y ou can also add whitespace before or
after any individual item string. In all of these cases the whitespace will be ignored. However, whitespace
within double-quoted elements, or surrounded on both sides by non-whitespace characters of an element,
is not ignored.

Tip

The ARRAY constructor syntax (see Section 4.2.12) is often easier to work with than the array-
literal syntax when writing array valuesin SQL commands. In ARRAY, individual element values
are written the same way they would be written when not members of an array.

202

Data Types

8.16. Composite Types

A composite type represents the structure of arow or record; it is essentialy just alist of field names and
their data types. PostgreSQL allows composite types to be used in many of the same ways that smple
types can be used. For example, a column of atable can be declared to be of a composite type.

8.16.1. Declaration of Composite Types

Here are two simple examples of defining composite types:

CREATE TYPE conpl ex AS (
r doubl e preci sion,
[doubl e precision

)

CREATE TYPE inventory_item AS (

nane t ext,
supplier_id i nteger,
price numeri c

)

The syntax is comparable to CREATE TABLE, except that only field names and types can be specified;
no constraints (such as NOT NULL) can presently be included. Note that the AS keyword is essential;
without it, the system will think a different kind of CREATE TYPE command is meant, and you will get
odd syntax errors.

Having defined the types, we can use them to create tables:

CREATE TABLE on_hand (
item i nventory item
count i nt eger

)
| NSERT | NTO on_hand VALUES (ROW'fuzzy dice', 42, 1.99), 1000);

or functions:

CREATE FUNCTI ON price_extension(inventory item integer) RETURNS
nuneric
AS ' SELECT $1.price * $2' LANGUAGE SQ;

SELECT price_extension(item 10) FROM on_hand;

Whenever you create atable, a composite type is also automatically created, with the same name as the
table, to represent the table's row type. For example, had we said:

CREATE TABLE i nventory item (

name t ext,
supplier_id i nt eger REFERENCES suppl i ers,
price nuneric CHECK (price > 0)

203

Data Types

)

thenthe samei nvent ory_i t emcomposite type shown above would come into being as a byproduct,
and could be used just as above. Note however an important restriction of the current implementation:
since no constraints are associated with a composite type, the constraints shown in the table definition do
not apply to values of the composite type outside the table. (To work around this, create adomain over the
composite type, and apply the desired constraints as CHECK constraints of the domain.)

8.16.2. Constructing Composite Values

To write a composite value as aliteral constant, enclose the field values within parentheses and separate
them by commas. Y ou can put double quotes around any field value, and must do so if it contains commas
or parentheses. (More details appear below.) Thus, the general format of a composite constant is the
following:

"(vall, val2 , ...)’

Anexampleis:

"("fuzzy dice",42,1.99)"

which would be avalid value of thei nvent ory_i t emtype defined above. To make afield be NULL,
write no charactersat all initspositionin thelist. For example, this constant specifiesa NULL third field:
"("fuzzy dice",42,)"’

If you want an empty string rather than NULL, write double quotes:

] (IIII’42’)I
Here thefirst field isanon-NULL empty string, the third isNULL.

(These constants are actually only a special case of the generic type constants discussed in Section 4.1.2.7.
The constant isinitially treated as a string and passed to the composite-type input conversion routine. An
explicit type specification might be necessary to tell which type to convert the constant to.)

The ROW expression syntax can also be used to construct composite values. In most cases this is
considerably simpler to use than the string-literal syntax since you don't have to worry about multiple
layers of quoting. We aready used this method above:

RON ' fuzzy dice', 42, 1.99)

RON'', 42, NULL)

The ROW keyword is actually optional aslong as you have more than onefield in the expression, so these
can be simplified to:

('fuzzy dice', 42, 1.99)

("', 42, NULL)

The ROWexpression syntax is discussed in more detail in Section 4.2.13.

204

Data Types

8.16.3. Accessing Composite Types

To access a field of a composite column, one writes a dot and the field name, much like selecting a
field from atable name. In fact, it's so much like selecting from a table name that you often have to use
parentheses to keep from confusing the parser. For example, you might try to select some subfields from
our on_hand example table with something like:

SELECT item nane FROM on_hand WHERE item price > 9.99;

This will not work since the name i t emis taken to be a table name, not a column name of on_hand,
per SQL syntax rules. You must write it like this:

SELECT (item.name FROM on_hand WHERE (item.price > 9.99;

or if you need to use the table name aswell (for instance in a multitable query), like this:

SELECT (on_hand.item.name FROM on_hand WHERE (on_hand.item.price >
9.99;

Now the parenthesized object is correctly interpreted as a reference to the i t emcolumn, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select afield from a composite value. For instance, to select
just one field from the result of afunction that returns a composite value, you'd need to write something
like:

SELECT (my_func(...)).field FROM ...

Without the extra parentheses, thiswill generate a syntax error.

The special field name* means“al fields’, as further explained in Section 8.16.5.

8.16.4. Modifying Composite Types

Here are some examples of the proper syntax for inserting and updating composite columns. First, inserting
or updating awhole column:

| NSERT | NTO nytab (conplex_col) VALUES((1.1,2.2));
UPDATE nytab SET conplex_col = RON1.1,2.2) WHERE . . .;

The first example omits ROW the second uses it; we could have done it either way.

We can update an individual subfield of a composite column:

UPDATE nytab SET conplex_col.r = (conplex_col).r + 1 WHERE .. .;

Notice here that we don't need to (and indeed cannot) put parentheses around the column name appearing
just after SET, but we do need parentheses when referencing the same column in the expression to the
right of the equal sign.

205

Data Types

And we can specify subfields as targets for | NSERT, too:

| NSERT | NTO nytab (conpl ex_col.r, conmplex_col.i) VALUES(1l.1, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have been
filled with null values.

8.16.5. Using Composite Types in Queries

There are various special syntax rules and behaviors associated with composite types in queries. These
rules provide useful shortcuts, but can be confusing if you don't know the logic behind them.

In PostgreSQL, areference to atable name (or alias) in aquery is effectively areference to the composite
value of the table's current row. For example, if we had atablei nvent ory_i t emas shown above, we
could write:

SELECT ¢ FROM inventory_ itemc;

This query produces a single composite-valued column, so we might get output like:

("fuzzy dice",42,1.99)
(1 row

Note however that simple names are matched to column names before table names, so this example works
only because there is no column named c in the query's tables.

The ordinary qualified-column-name syntax t abl e_nane. col uim_nane can be understood as
applying field selection to the composite value of the table's current row. (For efficiency reasons, it's not
actually implemented that way.)

When we write

SELECT c.* FROM inventory_item c;

then, according to the SQL standard, we should get the contents of the table expanded into separate

columns:;

nane | supplier_id | price
____________ e
fuzzy dice | 42 | 1.99
(1 row

asif the query were

SELECT c. name, c.supplier_id, c.price FROMinventory_item c;

PostgreSQL will apply this expansion behavior to any composite-valued expression, although as shown
above, you need to write parentheses around the value that . * is applied to whenever it's not a simple

206

Data Types

table name. For example, if nyf unc() isafunction returning a composite type with columns a, b, and
¢, then these two queries have the same result:

SELECT (myfunc(x)).* FROM sone_t abl e;
SELECT (nyfunc(x)).a, (myfunc(x)).b, (nyfunc(x)).c FROM sone_tabl e;

Tip

PostgreSQL handles column expansion by actually transforming the first form into the second. So,
in this example, myf unc() would get invoked three times per row with either syntax. If it's an
expensive function you may wish to avoid that, which you can do with a query like:

SELECT m* FROM sone_tabl e, LATERAL nyfunc(x) AS m

Placing the function in a LATERAL FROMitem keeps it from being invoked more than once per
row. m * isstill expandedintom a, m b, m c, but now those variables are just references to
the output of the FROMitem. (The LATERAL keyword is optional here, but we show it to clarify
that the function is getting x fromsone_t abl e.)

Theconposi t e_val ue. * syntax results in column expansion of this kind when it appears at the top
level of a SELECT output list, aRETURNI NGlist in | NSERT/UPDATE/DELETE, a VALUES clause, or a
row constructor. In all other contexts (including when nested inside one of those constructs), attaching . *

to a composite value does not change the value, since it means “all columns’ and so the same composite
value is produced again. For example, if sonef unc() accepts a composite-valued argument, these
gueries are the same:

SELECT sonefunc(c.*) FROM inventory item c;
SELECT sonefunc(c) FROM inventory_item c;

In both cases, the current row of i nvent ory_i t emis passed to the function as a single composite-
valued argument. Even though . * does nothing in such cases, using it is good style, since it makes clear
that acomposite value isintended. In particular, the parser will consider ¢ inc. * to refer to atable name
or alias, not to a column name, so that there is no ambiguity; whereas without . * , it is not clear whether
¢ means atable name or a column name, and in fact the column-name interpretation will be preferred if
thereisacolumn named c.

Another example demonstrating these conceptsis that all these queries mean the same thing:

SELECT * FROM inventory item c ORDER BY c;
SELECT * FROM inventory itemc ORDER BY c.*;
SELECT * FROM inventory item c ORDER BY RONcC. *);

All of these ORDER BY clauses specify the row's composite value, resulting in sorting the rows according
to the rules described in Section 9.24.6. However, if i nvent ory_i t emcontained a column named c,
the first case would be different from the others, as it would mean to sort by that column only. Given the
column names previously shown, these queries are al so equivalent to those above:

SELECT * FROM inventory_ item c ORDER BY RONc. nanme, c.supplier_id,
c.price);

207

Data Types

SELECT * FROM inventory item c ORDER BY (c.nanme, c.supplier_id,
c.price);

(The last case uses arow constructor with the key word ROWomitted.)

Another special syntactical behavior associated with composite values is that we can use functional
notation for extracting a field of a composite value. The simple way to explain this is that the notations
field(table) andtabl e. fi el d areinterchangeable. For example, these queries are equivalent:

SELECT c.nane FROM inventory_itemc WHERE c. price > 1000;
SELECT nane(c) FROM inventory itemc WHERE price(c) > 1000;

Moreover, if we have a function that accepts a single argument of a composite type, we can call it with
either notation. These queries are al equivalent:

SELECT sonefunc(c) FROMinventory_ itemc;
SELECT sonefunc(c.*) FROM inventory_ item c;
SELECT c. somefunc FROM i nventory_item c;

This equivalence between functiona notation and field notation makes it possible to use functions on
composite types to implement “computed fields’. An application using the last query above wouldn't
need to be directly aware that sonmef unc isn't areal column of the table.

Tip

Because of thisbehavior, it'sunwiseto give afunction that takes a single composite-type argument
the same name as any of the fields of that composite type. If there is ambiguity, the field-name
interpretation will be chosen if field-name syntax is used, while the function will be chosen if
function-call syntax is used. However, PostgreSQL versions before 11 aways chose the field-
name interpretation, unless the syntax of the call required it to be afunction call. One way to force
the function interpretation in older versions is to schema-qualify the function name, that is, write
schema. func(conposit eval ue).

8.16.6. Composite Type Input and Output Syntax

The external text representation of acomposite value consists of itemsthat are interpreted according to the
I/0 conversion rules for the individual field types, plus decoration that indicates the composite structure.
The decoration consists of parentheses ((and)) around the whole value, plus commas (,) between
adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses it is considered
part of the field value, and might or might not be significant depending on the input conversion rules for
the field data type. For example, in:

) (42))
the whitespace will beignored if the field type isinteger, but not if it is text.

As shown previously, when writing a composite value you can write double quotes around any individual
field value. You must do so if the field value would otherwise confuse the composite-value parser. In
particular, fields containing parentheses, commas, double quotes, or backslashes must be double-quoted.
To put adouble quote or backslash in a quoted composite field value, precede it with a backslash. (Also,

208

Data Types

apair of double quotes within a double-quoted field value is taken to represent a double quote character,
analogously to the rulesfor single quotesin SQL literal strings.) Alternatively, you can avoid quoting and
use backslash-escaping to protect all data characters that would otherwise be taken as composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents a
NULL. To write avalue that is an empty string rather than NULL, write" " .

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white spaceis not
essential, but aids legibility.) Double quotes and backs ashes embedded in field values will be doubled.

Note

Remember that what you writein an SQL command will first be interpreted as astring literal, and
then as a composite. This doubles the number of backslashes you need (assuming escape string
syntax is used). For example, to insert at ext field containing a double quote and abackslash in
acomposite value, you'd need to write:

INSERT ... VALUES (' ("\"\\")");

The string-literal processor removesonelevel of backslashes, so that what arrives at the composite-
value parser looks like ("\ "\ \ ") . In turn, the string fed to the t ext data type's input routine
becomes "\ . (If we were working with a data type whose input routine also treated backslashes
specidly, byt ea for example, we might need as many as eight backslashes in the command to
get one backslash into the stored composite field.) Dollar quoting (see Section 4.1.2.4) can be used
to avoid the need to double backslashes.

Tip

The ROWconstructor syntax is usually easier to work with than the composite-literal syntax when
writing composite valuesin SQL commands. In ROW individual field values are written the same
way they would be written when not members of a composite.

8.17. Range Types

Rangetypes are datatypesrepresenting arange of values of some element type (called the range's subtype).
For instance, ranges of t i mest anp might be used to represent the ranges of time that a meeting room
isreserved. In this case the datatypeist sr ange (short for “timestamp range”’), and t i nest anp isthe
subtype. The subtype must have atotal order so that it iswell-defined whether element values are within,
before, or after arange of values.

Range types are useful because they represent many element values in a single range value, and because
concepts such as overlapping ranges can be expressed clearly. The use of time and date ranges for
scheduling purposes is the clearest example; but price ranges, measurement ranges from an instrument,
and so forth can also be useful.

8.17.1. Built-in Range Types

PostgreSQL comes with the following built-in range types:

209

Data Types

e i nt4range — Rangeof i nt eger

* i nt 8range — Range of bi gi nt

e nunr ange — Range of nuneri ¢

e tsrange —Rangeofti nestanp wi thout time zone
* tstzrange — Rangeofti mestanp with tinme zone
» dat erange — Range of dat e

In addition, you can define your own range types; see CREATE TY PE for more information.

8.17.2. Examples

CREATE TABLE reservation (roomint, during tsrange);
I NSERT | NTO reservati on VALUES
(1108, '[2010-01-01 14:30, 2010-01-01 15:30)');

-- Cont ai nnent
SELECT i nt 4range(10, 20) @ 3;

-- Overl aps
SELECT nunrange(11.1, 22.2) && nunrange(20.0, 30.0);

-- Extract the upper bound
SELECT upper (i nt 8range(15, 25));

-- Conmpute the intersection
SELECT i nt4range(10, 20) * intd4range(15, 25);

-- |Is the range enpty?
SELECT i senpty(nunrange(1, 5));

See Table 9.53 and Table 9.54 for complete lists of operators and functions on range types.

8.17.3. Inclusive and Exclusive Bounds

Every non-empty range has two bounds, the lower bound and the upper bound. All points between these
values are included in the range. An inclusive bound means that the boundary point itself isincluded in
the range as well, while an exclusive bound means that the boundary point is not included in the range.

In thetext form of arange, aninclusive lower bound isrepresented by “[" while an exclusive lower bound
isrepresented by “(. Likewise, an inclusive upper bound isrepresented by “] ", while an exclusive upper
bound is represented by “) ”. (See Section 8.17.5 for more details.)

Thefunctions| ower _i nc andupper _i nc test theinclusivity of thelower and upper bounds of arange
value, respectively.

8.17.4. Infinite (Unbounded) Ranges

Thelower bound of arange can be omitted, meaning that all valuesless than the upper bound areincluded
intherange, e.g., (, 3] . Likewise, if the upper bound of the range is omitted, then all values greater than

210

Data Types

the lower bound are included in the range. If both lower and upper bounds are omitted, all values of the
element type are considered to be in the range. Specifying a missing bound as inclusive is automatically
converted to exclusive, eg., [,] isconvertedto(,) . You canthink of these missing values as +/-infinity,
but they are special range type values and are considered to be beyond any range element type's +/-infinity
values.

Element types that have the notion of “infinity” can use them as explicit bound values. For example, with
timestamp ranges, [t oday, i nfi ni ty) excludes the specia ti nmest anp valuei nfi nity, while
[today, infinity] includeit, asdoes[t oday,) and[t oday,].

The functions | ower _i nf and upper _i nf test for infinite lower and upper bounds of a range,
respectively.

8.17.5. Range Input/Output

The input for arange value must follow one of the following patterns:

(1 ower - bound, upper - bound)
(1 ower - bound, upper - bound]
[1 ower - bound, upper - bound)
[1 ower - bound, upper - bound]

enpty

The parentheses or brackets indicate whether the lower and upper bounds are exclusive or inclusive, as
described previously. Notice that the final pattern is enpt y, which represents an empty range (a range
that contains no points).

The | ower - bound may be either a string that is valid input for the subtype, or empty to indicate no
lower bound. Likewise, upper - bound may be either astring that isvalid input for the subtype, or empty
to indicate no upper bound.

Each bound value can be quoted using " (double quote) characters. This is necessary if the bound value
contains parentheses, brackets, commas, double quotes, or backslashes, since these characters would
otherwise be taken as part of the range syntax. To put adouble quote or backslash in aquoted bound value,
precede it with a backslash. (Also, a pair of double quotes within a double-quoted bound value is taken
to represent a double quote character, analogously to the rules for single quotes in SQL literal strings.)
Alternatively, you can avoid quoting and use backslash-escaping to protect al data characters that would
otherwise be taken as range syntax. Also, to write a bound value that is an empty string, write" ", since
writing nothing means an infinite bound.

Whitespace is allowed before and after the range value, but any whitespace between the parentheses or
brackets is taken as part of the lower or upper bound value. (Depending on the element type, it might or
might not be significant.)

Note

These rules are very similar to those for writing field values in composite-type literals. See
Section 8.16.6 for additional commentary.

Examples:

211

Data Types

-- includes 3, does not include 7, and does include all points in

bet ween
SELECT '[3,7)'::intd4range;
-- does not include either 3 or 7, but includes all points in between
SELECT ' (3,7)'::intd4range;
-- includes only the single point 4
SELECT '[4,4]'::intd4range;
-- includes no points (and will be nornalized to 'enpty')
SELECT '[4,4)'::intd4range;

8.17.6. Constructing Ranges

Each range type has a constructor function with the same name as the range type. Using the constructor
function is frequently more convenient than writing a range literal constant, since it avoids the need for
extra quoting of the bound values. The constructor function accepts two or three arguments. The two-
argument form constructs arange in standard form (lower bound inclusive, upper bound exclusive), while
the three-argument form constructs a range with bounds of the form specified by the third argument. The
third argument must be one of the strings“() ", “(]1”,“[) ", or “[] ". For example:

-- The full formis: |ower bound, upper bound, and text argunent
i ndi cating

-- inclusivity/exclusivity of bounds.

SELECT nunrange(1.0, 14.0, '(]');

-- If the third argunent is omtted, '[)' is assuned.
SELECT nunr ange(1.0, 14.0);

-- Although '(]" is specified here, on display the value will be
converted to

-- canonical form since int8range is a discrete range type (see
bel ow) .

SELECT int8range(1, 14, '(]');

-- Using NULL for either bound causes the range to be unbounded on
t hat side.
SELECT nunr ange(NULL, 2.2);

8.17.7. Discrete Range Types

A discrete range is one whose element type has a well-defined “step”, such asi nt eger or dat e. In
these types two elements can be said to be adjacent, when there are no valid values between them. This
contrasts with continuous ranges, where it's always (or almost always) possible to identify other element
values between two given values. For example, arangeover thenumner i ¢ typeiscontinuous, asisarange
overti mest anp. (Eventhought i nest anp haslimited precision, and so could theoretically be treated
as discrete, it's better to consider it continuous since the step size is normally not of interest.)

Another way to think about a discrete range type is that there is a clear idea of a “next” or “previous’
value for each element value. Knowing that, it is possible to convert between inclusive and exclusive
representations of a range's bounds, by choosing the next or previous element value instead of the one

212

Data Types

originally given. For example, in aninteger rangetype[4, 8] and (3, 9) denote the same set of values,
but this would not be so for arange over numeric.

A discrete range type should have a canonicalization function that is aware of the desired step size
for the element type. The canonicalization function is charged with converting eguivalent values of the
range type to have identical representations, in particular consistently inclusive or exclusive bounds. If a
canonicalization function is not specified, then ranges with different formatting will always be treated as
unequal, even though they might represent the same set of valuesin redlity.

The built-in range types i nt 4r ange, i nt 8r ange, and dat er ange all use a canonica form that
includes the lower bound and excludes the upper bound; that is, [) . User-defined range types can use
other conventions, however.

8.17.8. Defining New Range Types

Users can define their own range types. The most common reason to do thisisto use ranges over subtypes
not provided among the built-in range types. For example, to define anew range type of subtypef | oat 8:

CREATE TYPE fl oatrange AS RANCGE (
subtype = fl oat 8,
subtype_di ff = fl oat 8mi

);
SELECT '[1.234, 5.678]'::floatrange;
Becausef | oat 8 has no meaningful “step”, we do not define acanonicalization function in this example.

Defining your own range type also alows you to specify a different subtype B-tree operator class or
collation to use, so as to change the sort ordering that determines which valuesfall into a given range.

If the subtype is considered to have discrete rather than continuous values, the CREATE TYPE command
should specify a canoni cal function. The canonicalization function takes an input range value, and
must return an equivalent range value that may have different bounds and formatting. The canonical output
for two ranges that represent the same set of values, for example the integer ranges[1, 7] and [1,
8) , must beidentical. It doesn't matter which representation you choose to be the canonical one, so long
as two equivalent values with different formattings are always mapped to the same value with the same
formatting. In addition to adjusting the inclusive/exclusive bounds format, a canonicalization function
might round off boundary values, in case the desired step size is larger than what the subtype is capable
of storing. For instance, arangetype over t i mest anp could be defined to have a step size of an hour,
in which case the canonicalization function would need to round off bounds that weren't a multiple of an
hour, or perhaps throw an error instead.

In addition, any range typethat is meant to be used with GiST or SP-Gi ST indexes should define a subtype
difference, or subt ype_di f f, function. (The index will still work without subt ype_di f f, butitis
likely to be considerably less efficient than if a difference function is provided.) The subtype difference
function takes two input values of the subtype, and returns their difference (i.e., X minus Y) represented
asafl oat 8 value. In our example above, the function f | oat 8mi that underlies the regular f | oat 8
minus operator can be used; but for any other subtype, some type conversion would be necessary. Some
creative thought about how to represent differences as numbers might be needed, too. To the greatest
extent possible, thesubt ype_di f f function should agree with the sort ordering implied by the selected
operator classand collation; that is, its result should be positive whenever itsfirst argument is greater than
its second according to the sort ordering.

A less-oversimplified example of asubt ype_di f f functionis:

213

Data Types

CREATE FUNCTION time_subtype diff(x tine, y tine) RETURNS float8 AS
' SELECT EXTRACT(EPOCH FROM (x - y))' LANGUAGE sql STRICT | MMUTABLE;

CREATE TYPE timerange AS RANGE (
subtype = tine,
subtype_diff = tinme_subtype_ diff
)

SELECT '[11:10, 23:00]'::tinerange;

See CREATE TY PE for more information about creating range types.

8.17.9. Indexing

GiST and SP-GiST indexes can be created for table columns of range types. For instance, to create aGiST
index:

CREATE | NDEX reservation_idx ON reservation USING G ST (during);

A GiST or SP-GiST index can accelerate queries involving these range operators: =, &&, <@ @, <<, >>,
- | -, &<, and &> (see Table 9.53 for more information).

In addition, B-tree and hash indexes can be created for table columns of range types. For theseindex types,
basicaly the only useful range operation is equality. There is a B-tree sort ordering defined for range
values, with corresponding < and > operators, but the ordering is rather arbitrary and not usually useful
in the real world. Range types B-tree and hash support is primarily meant to allow sorting and hashing
internally in queries, rather than creation of actual indexes.

8.17.10. Constraints on Ranges

While UNI QUE isanatural constraint for scalar values, it is usually unsuitable for range types. Instead, an
exclusion constraint is often more appropriate (see CREATE TABLE ... CONSTRAINT ... EXCLUDE).
Exclusion constraints allow the specification of constraints such as “non-overlapping” on a range type.
For example:

CREATE TABLE reservation (
during tsrange,
EXCLUDE USING G ST (during WTH &&)

)

That constraint will prevent any overlapping values from existing in the table at the same time:

| NSERT | NTO reservati on VALUES
('[2010-01-01 11:30, 2010-01-01 15:00)');
I NSERT 0 1

| NSERT | NTO reservati on VALUES
('[2010-01-01 14:45, 2010-01-01 15:45)');
ERROR: conflicting key val ue viol ates exclusion constraint
"reservation_during_excl"”

214

Data Types

8.18.

DETAIL: Key (during)=(["2010-01-01 14:45:00","2010-01-01 15:45:00"))
conflicts

with existing key (during)=(["2010-01-01 11:30: 00", "2010-01-01
15: 00: 00")).

Youcanusethebt r ee_gi st extension to define exclusion constraints on plain scalar datatypes, which
can then be combined with range exclusions for maximum flexibility. For example, after bt r ee_gi st
isinstalled, the following constraint will reject overlapping ranges only if the meeting room numbers are

equal:

CREATE EXTENSI ON btree_gi st;
CREATE TABLE room reservation (
room t ext,
during tsrange,
EXCLUDE USI NG G ST (room WTH =, during WTH &&)

)

| NSERT | NTO room reservati on VALUES
("123A", '[2010-01-01 14:00, 2010-01-01 15:00)');
I NSERT 0 1

| NSERT | NTO room reservati on VALUES
("123A", '[2010-01-01 14:30, 2010-01-01 15:30)');

ERROR: conflicting key val ue viol ates exclusi on constraint
"roomreservation_roomduring_excl"

DETAIL: Key (room during)=(123A, ["2010-01-01 14:30:00","2010-01-01
15:30:00")) conflicts

with existing key (room during)=(123A, ["2010-01-01
14:00: 00", "2010-01-01 15:00:00")).

| NSERT | NTO room reservati on VALUES
('123B', '[2010-01-01 14:30, 2010-01-01 15:30)');
I NSERT 0 1

Domain Types

A domain is a user-defined data type that is based on another underlying type. Optionaly, it can have
constraints that restrict its valid values to a subset of what the underlying type would allow. Otherwise
it behaves like the underlying type — for example, any operator or function that can be applied to the
underlying type will work on the domain type. The underlying type can be any built-in or user-defined
base type, enum type, array type, composite type, range type, or another domain.

For example, we could create a domain over integers that accepts only positive integers:

CREATE DOWVAI N posint AS integer CHECK (VALUE > 0);
CREATE TABLE nytable (id posint);

| NSERT | NTO nyt abl e VALUES(1); -- works

| NSERT | NTO nytabl e VALUES(-1); ~-- fails

When an operator or function of the underlying type is applied to a domain value, the domain is
automatically down-cast to the underlying type. Thus, for example, theresult of myt able.id - 1is
considered to be of type i nt eger not posi nt. We could write (mytabl e.id - 1)::posint

215

Data Types

8.19

to cast the result back to posi nt, causing the domain's constraints to be rechecked. In this case, that
would result in an error if the expression had been applied to an i d value of 1. Assigning a value of the
underlying type to afield or variable of the domain type is allowed without writing an explicit cast, but
the domain's constraints will be checked.

For additiona information see CREATE DOMAIN.

Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system
tables. Type oi d represents an object identifier. There are also several alias types for oi d named
r egsonet hi ng. Table 8.26 shows an overview.

Theoi d typeis currently implemented as an unsigned four-byte integer. Therefore, it is not large enough
to provide database-wide uniqueness in large databases, or even in large individual tables.

The oi d typeitself has few operations beyond comparison. It can be cast to integer, however, and then
mani pulated using the standard integer operators. (Beware of possible signed-versus-unsigned confusion
if you do this.)

TheOID aiastypeshave no operations of their own except for specialized input and output routines. These
routines are able to accept and display symbolic names for system objects, rather than the raw numeric
value that type oi d would use. The alias types allow simplified lookup of OID values for objects. For
example, to examinethepg_at t ri but e rowsrelated to atable nyt abl e, one could write:

SELECT * FROM pg_attribute WHERE attrelid = 'mytable'::regcl ass;

rather than:

SELECT * FROM pg_attribute
WHERE attrelid = (SELECT oid FROM pg_cl ass WHERE rel nane =
"nytable');

While that doesn't look all that bad by itself, it's still oversimplified. A far more complicated sub-select
would be needed to select the right OID if there are multiple tablesnamed myt abl e in different schemas.
Ther egcl ass input converter handles the table lookup according to the schema path setting, and so it
doesthe “right thing” automatically. Similarly, casting atable'sOID tor egcl ass ishandy for symbolic
display of anumeric OID.

Table 8.26. Object Identifier Types

Name References Description Value Example
oid any numeric object identifier |564182
regcl ass pg_cl ass relation name pg_type
regcol l ation pg_col lation collation name " PCSI X!
regconfig pg_ts_config text search configuration|engl i sh
regdi ctionary pg_ts_dict text search dictionary simpl e
regnamespace pg_nanespace namespace name pg_cat al og
r egoper pg_oper at or operator name +

216

Data Types

8.20.

Name References Description Value Example
r egoper at or pg_oper at or operator with argument |* (i nt eger,
types i nteger) or-

(NONE, i nt eger)

regproc pg_proc function name sum

regprocedure pg_proc function with argument |sunt(i nt 4)
types

regrol e pg_aut hid role name smit hee

regtype pg_type data type name i nt eger

All of the OID dlias types for objects grouped by namespace accept schema-qualified names, and will
display schema-qualified names on output if the object would not be found in the current search path
without being qualified. The r egpr oc and r egoper alias types will only accept input names that are
unique (not overloaded), so they are of limited use; for most usesr egpr ocedur e or r egoper at or

are more appropriate. For r egoper at or , unary operators areidentified by writing NONE for the unused
operand.

An additional property of most of the OID alias types is the creation of dependencies. If a constant
of one of these types appears in a stored expression (such as a column default expression or view),
it creates a dependency on the referenced object. For example, if a column has a default expression
nextval (' my_seq' ::regcl ass), PostgreSQL understands that the default expression depends on
the sequence ny _seq; the system will not let the sequence be dropped without first removing the default
expression. r egr ol e is the only exception for the property. Constants of this type are not allowed in
such expressions.

Note

The OID dlias types do not completely follow transaction isolation rules. The planner also treats
them as simple constants, which may result in sub-optimal planning.

Another identifier type used by the system isxi d, or transaction (abbreviated xact) identifier. Thisisthe
data type of the system columns xni n and xmax. Transaction identifiers are 32-bit quantities. In some
contexts, a 64-bit variant xi d8 isused. Unlike xi d values, xi d8 valuesincrease strictly monotonically
and cannot be reused in the lifetime of a database cluster.

A thirdidentifier typeused by the systemisci d, or command identifier. Thisisthe datatype of the system
columnscmi n and crmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the systemist i d, or tuple identifier (row identifier). Thisisthe datatype
of the system column ct i d. A tuple ID isapair (block number, tuple index within block) that identifies
the physical location of the row within its table.

(The system columns are further explained in Section 5.5.)

pPg_Isn Type

The pg_| sn data type can be used to store LSN (Log Sequence Number) data which is a pointer to
alocation in the WAL. This type is a representation of XLogRecPt r and an internal system type of

PostgreSQL.

217

Data Types

Internally, an LSN isa64-bit integer, representing abyte positionin thewrite-ahead log stream. It isprinted
as two hexadecimal numbers of up to 8 digits each, separated by a slash; for example, 16/ B374D848.
Thepg_| sn type supports the standard comparison operators, like = and >. Two L SNs can be subtracted
using the - operator; the result is the number of bytes separating those write-ahead |og locations.

8.21. Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as acolumn datatype, but it can be used to declare afunction's
argument or result type. Each of the available pseudo-types is useful in situations where a function's
behavior does not correspond to simply taking or returning avalue of a specific SQL datatype. Table 8.27
lists the existing pseudo-types.

Table 8.27. Pseudo-Types

Name Description

any Indicates that a function accepts any input data type.

anyel enent Indicates that a function accepts any data type (see Section 37.2.5).

anyarray Indicates that a function accepts any array datatype (see
Section 37.2.5).

anynonarray Indicates that a function accepts any non-array data type (see
Section 37.2.5).

anyenum Indicates that a function accepts any enum data type (see
Section 37.2.5 and Section 8.7).

anyr ange Indicates that a function accepts any range data type (see
Section 37.2.5 and Section 8.17).

anyconpati bl e Indicates that a function accepts any data type, with automatic
promotion of multiple arguments to a common data type (see
Section 37.2.5).

anyconpati bl earray Indicates that a function accepts any array data type, with automatic
promotion of multiple arguments to a common data type (see
Section 37.2.5).

anyconpati bl enonarray |Indicatesthat afunction accepts any non-array datatype, with
automatic promotion of multiple arguments to a common data type

(see Section 37.2.5).

anyconpati bl er ange Indicates that a function accepts any range data type, with automatic
promotion of multiple arguments to a common data type (see
Section 37.2.5 and Section 8.17).

cstring Indicates that a function accepts or returns a null-terminated C
string.

i nternal Indicates that a function accepts or returns a server-internal data
type.

| anguage_handl er A procedural language call handler is declared to return

| anguage_handl er.

fdw_handl er A foreign-data wrapper handler is declared to return
f dw_handl er.

t abl e_am handl er A table access method handler is declared to return
tabl e_am handl er.

218

Data Types

Name Description
i ndex_am handl er An index access method handler is declared to return
i ndex_am handl er.
t sm handl er A tablesample method handler is declared to return
tsm handl er.
record Identifies a function taking or returning an unspecified row type.
trigger A trigger function isdeclared toreturnt ri gger .
event _trigger An event trigger function isdeclared to returnevent _tri gger.
pg_ddl _comand Identifies a representation of DDL commands that is available to
event triggers.
voi d Indicates that a function returns no value.
unknown I dentifies a not-yet-resolved type, e.g., of an undecorated string
literal.

Functions coded in C (whether built-in or dynamically loaded) can be declared to accept or return any of
these pseudo-types. It is up to the function author to ensure that the function will behave safely when a
pseudo-type is used as an argument type.

Functions coded in procedural languages can use pseudo-types only as alowed by their implementation
languages. At present most procedural languages forbid use of a pseudo-type as an argument type, and
allow only voi d and r ecor d asaresult type (plust ri gger or event _tri gger when the function
is used as a trigger or event trigger). Some also support polymorphic functions using the polymorphic
pseudo-types, which are shown above and discussed in detail in Section 37.2.5.

Thei nt er nal pseudo-typeisused to declare functions that are meant only to be called internally by the
database system, and not by direct invocation in an SQL query. If afunction has at least onei nt er nal -
type argument then it cannot be called from SQL. To preserve the type safety of this restriction it is
important to follow thiscoding rule: do not create any functionthat isdeclared toreturni nt er nal unless
it hasat least onei nt er nal argument.

219

Chapter 9. Functions and Operators

PostgreSQL provides a large number of functions and operators for the built-in data types. This chapter
describes most of them, athough additional special-purpose functions appear in relevant sections of
the manual. Users can also define their own functions and operators, as described in Part V. The psgl
commands\ df and\ do can be used to list all available functions and operators, respectively.

The notation used throughout this chapter to describe the argument and result data types of a function or
operator islikethis:

repeat (text, integer) - text

which says that the function r epeat takes one text and oneinteger argument and returns aresult of type
text. Theright arrow is aso used to indicate the result of an example, thus:

repeat (' Pg', 4) - PgPgPgPg

If you are concerned about portability then note that most of the functions and operators described in this
chapter, with the exception of the most trivial arithmetic and comparison operators and some explicitly
marked functions, are not specified by the SQL standard. Some of this extended functionality is present in
other SQL database management systems, and in many casesthisfunctionality iscompatible and consistent
between the various implementations.

9.1. Logical Operators

The usual logical operators are available:

bool ean AND bool ean - bool ean
bool ean OR bool ean - bool ean
NOT bool ean - bool ean

SQL uses athree-valued logic system with true, false, and nul | , which represents “unknown”. Observe
the following truth tables:

a b aANDDb aORb
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a

TRUE FALSE

220

Functions and Operators

a NOT a
FALSE TRUE
NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operands without
affecting the result. (However, it is not guaranteed that the left operand is evaluated before the right
operand. See Section 4.2.14 for more information about the order of evaluation of subexpressions.)

9.2. Comparison Functions and Operators

The usual comparison operators are available, as shown in Table 9.1.

Table 9.1. Comparison Operators

Operator Description
dat at ype < dat at ype — bool ean Less than
dat at ype > dat at ype - bool ean Greater than
dat at ype <= dat at ype — bool ean Less than or equal to
dat at ype >=dat at ype — bool ean Greater than or equal to
dat at ype = dat at ype — bool ean Equal
dat at ype <> dat at ype — bool ean Not equal
dat at ype ! = dat at ype — bool ean Not equal
Note
<> js the standard SQL notation for “not equal”. ! = is an alias, which is converted to <> at a

very early stage of parsing. Hence, it is not possible to implement ! = and <> operators that do
different things.

These comparison operators are available for al built-in datatypes that have anatural ordering, including
numeric, string, and date/time types. In addition, arrays, composite types, and ranges can be compared if
their component data types are comparable.

It isusually possible to compare values of related data types as well; for example i nt eger > bi gi nt
will work. Some cases of this sort are implemented directly by “cross-type” comparison operators, but
if no such operator is available, the parser will coerce the less-general type to the more-general type and
apply the latter's comparison operator.

Asshown above, al comparison operators are binary operatorsthat return values of typebool ean. Thus,
expressionslikel < 2 < 3 arenot valid (because there is no < operator to compare a Boolean value
with 3). Use the BETWEEN predi cates shown below to perform range tests.

There are also some comparison predicates, as shown in Table 9.2. These behave much like operators, but
have special syntax mandated by the SQL standard.

221

Functions and Operators

Table 9.2. Comparison Predicates

Predicate
Description
Example(s)

dat at ype BETWEEN dat at ype ANDdat at ype - bool ean
Between (inclusive of the range endpoints).

2 BETWEEN 1 AND 3 -t
2 BETWEEN 3 AND 1 - f

dat at ype NOT BETWEENdat at ype ANDdat at ype — bool ean
Not between (the negation of BETVEEEN).

2 NOT BETWEEN 1 AND 3 - f

dat at ype BETVWVEEN SYMVETRI Cdat at ype ANDdat at ype - bool ean
Between, after sorting the two endpoint values.

2 BETWEEN SYMMETRIC 3 AND 1 -t

dat at ype NOT BETWEEN SYMVETRI Cdat at ype ANDdat at ype — bool ean
Not between, after sorting the two endpoint values.

2 NOT BETWEEN SYMVETRIC 3 AND 1 - f

dat atype | S DI STI NCT FROMdat at ype - bool ean
Not equal, treating null as a comparable value.

1 1S DI STINCT FROM NULL — t (rather than NULL)
NULL 1S DI STI NCT FROM NULL - f (rather than NULL)

dat atype | S NOT DI STI NCT FROMdat at ype — bool ean
Equal, treating null as a comparable value.

1 1'S NOT DI STINCT FROM NULL - f (rather than NULL)
NULL 1S NOT DI STINCT FROM NULL — t (rather than NULL)

datatype | S NULL - bool ean
Test whether value is null.

1.5 1S NULL - f

datatype | S NOT NULL - bool ean
Test whether value is not null.

"null" 1S NOT NULL -t

dat at ype | SNULL - bool ean
Test whether value is null (nonstandard syntax).

dat at ype NOTNULL — bool ean
Test whether value is not null (nonstandard syntax).

bool ean| S TRUE - bool ean
Test whether boolean expression yields true.

true IS TRUE - t
NULL: : bool ean | S TRUE - f (rather than NULL)

bool ean| S NOT TRUE - bool ean

222

Functions and Operators

Predicate
Description
Example(s)
Test whether boolean expression yields false or unknown.
true IS NOT TRUE - f

NULL: : bool ean 1S NOT TRUE - t (rather than NULL)

bool ean| S FALSE - bool ean
Test whether boolean expression yields false.

true I'S FALSE - f
NULL: : bool ean | S FALSE - f (rather than NULL)

bool ean| S NOT FALSE - bool ean
Test whether boolean expression yields true or unknown.

true IS NOT FALSE -t
NULL: : bool ean IS NOT FALSE - t (rather than NULL)

bool ean| S UNKNOWN - bool ean
Test whether boolean expression yields unknown.

true 1'S UNKNOWN - f
NULL: : bool ean | S UNKNOMN - t (rather than NULL)

bool ean1 S NOT UNKNOWN - bool ean
Test whether boolean expression yields true or false.

true 1'S NOT UNKNOM - t
NULL: : bool ean |'S NOT UNKNOWN - f (rather than NULL)

The BETWEEN predicate simplifies range tests:

a BETWEEN x AND y

isequivalent to

a > x AND a <=y

Notice that BETWEEN treats the endpoint values asincluded in therange. BETWEEN SYMVETRI Cislike
BETWEEN except there is no requirement that the argument to the left of AND be less than or equal to the
argument on the right. If it is not, those two arguments are automatically swapped, so that a nonempty
rangeisawaysimplied.

The various variants of BETWEEN are implemented in terms of the ordinary comparison operators, and
therefore will work for any data type(s) that can be compared.

Note

The use of AND in the BETWEEN syntax creates an ambiguity with the use of AND as a logical
operator. Toresolvethis, only alimited set of expression typesare allowed as the second argument
of a BETVEEEN clause. If you need to write a more complex sub-expression in BETVEEEN, write
parentheses around the sub-expression.

223

Functions and Operators

Ordinary comparison operatorsyield null (signifying “unknown”), not true or false, when either input is
null. For example, 7 = NULL yieldsnull, asdoes7 <> NULL. When this behavior is not suitable, use
thel S [NOT] DI STI NCT FROMpredicates:

a |'S DI STINCT FROM b
a |'S NOT DI STINCT FROM b

For non-null inputs, | S DI STI NCT FROMis the same as the <> operator. However, if both inputs are
null it returns false, and if only oneinput is null it returns true. Similarly, | S NOT DI STI NCT FROM
isidentical to = for non-null inputs, but it returns true when both inputs are null, and false when only one
input is null. Thus, these predicates effectively act as though null were a normal data value, rather than
“unknown”.

To check whether avalueisor is not null, use the predicates:
expression IS NULL
expression |'S NOT NULL
or the equivalent, but nonstandard, predicates:

expression | SNULL
expressi on NOTNULL

Do not writeexpr essi on = NULL because NULL isnot “equal to” NULL. (The null value represents
an unknown value, and it is not known whether two unknown values are equal.)

Tip

Some applications might expect that expr essi on = NULL returns true if expr essi on
evaluatesto thenull value. It ishighly recommended that these applications be modified to comply
with the SQL standard. However, if that cannot be done the transform_null_equals configuration
variableisavailable. If it isenabled, PostgreSQL will convert x = NULL clausestox |'S NULL.

If theexpr essi on isrow-valued, then| S NULL istrue when the row expression itself is null or when
all therow'sfieldsare null, whilel S NOT NULL istrue when the row expression itself is non-null and
all the row's fields are non-null. Because of thisbehavior, | S NULL and | S NOT NULL do not always
return inverse results for row-valued expressions; in particular, arow-valued expression that contains both
null and non-null fields will return false for both tests. In some cases, it may be preferable to write r ow
I'S DI STINCT FROM NULL orrowl S NOT DI STI NCT FROM NULL, which will simply check
whether the overall row value is null without any additional tests on the row fields.

Boolean values can also be tested using the predicates

bool ean_expression 1S TRUE

bool ean_expression 1S NOT TRUE
bool ean_expression | S FALSE

bool ean_expression 1S NOT FALSE
bool ean_expression 1S UNKNOAN
bool ean_expressi on 1S NOT UNKNOMN

224

Functions and Operators

These will always return true or false, never a null value, even when the operand is null. A null input is
treated asthelogical value“unknown”. Noticethat | S UNKNOANand | S NOT UNKNOWN are effectively
thesameas| S NULL and IS NOT NULL, respectively, except that the input expression must be of
Boolean type.

Some comparison-related functions are also available, as shown in Table 9.3.

Table 9.3. Comparison Functions

Function
Description
Example(s)

num nonnul | s (VARI ADI C"any") - i nt eger
Returns the number of non-null arguments.

num nonnul I s(1, NULL, 2) - 2

num nul | s (VARI ADI C"any") - i nt eger
Returns the number of null arguments.

num nul I s(1, NULL, 2) -1

9.3. Mathematical Functions and Operators

Mathematical operatorsare provided for many PostgreSQL types. For typeswithout standard mathematical
conventions (e.g., date/time types) we describe the actual behavior in subsequent sections.

Table 9.4 shows the mathematical operators that are available for the standard numeric types. Unless
otherwise noted, operators shown as accepting nuneri c_type are avalable for all the types
smal I 'int,integer,bigint,nuneric,real, anddoubl e precisi on. Operators shown as
accepting i nt egr al _t ype are available for the typessmal | i nt, i nt eger, and bi gi nt . Except
where noted, each form of an operator returns the same data type as its argument(s). Calls involving
multiple argument data types, such asi nt eger + nuneri c, are resolved by using the type appearing
later in theselists.

Table9.4. Mathematical Operators

Operator
Description
Example(s)

nuneric_type+nuneric_type - nuneric_type
Addition

2 +3-5

+numeric_type - nuneric_type
Unary plus (no operation)
+3.5-3.5

nuneric_type- nuneric_type - nunmeric_type
Subtraction
2-3-5-1

- nuneric_type - numneric_type
Negation

225

Functions and Operators

Operator
Description
Example(s)

- (-4) -4

nuneric_type* nunmeric_type - nunmeric_type
Multiplication
2* 3-6

nuneric_type/ numeric_type - numeric_type
Division (for integral types, division truncates the result towards zero)

5.0 / 2 - 2.5000000000000000
5/ 2.2
(-5) | 2 -2

nuneric_type %numneri c_type - numeric_type
Modulo (remainder); availablefor sral | i nt, i nt eger, bi gi nt,andnumneri c
5 %41

nunmeric” numeric - numeric

doubl e precision” doubl e precision - doubl e precision
Exponentiation
2"~3-.8
Unlike typical mathematical practice, multiple uses of * will associate |eft to right by default:
2 N3 M 35512
2 N (3" 3) 5134217728

| / doubl e precision - double precision
Square root

|/ 25.0 -5

| |/ doubl e precision - doubl e precision
Cube root

||/ 64.0 - 4

bigint! - nuneric
Factorial (deprecated, usef act ori al () instead)
51 5120

I'l bigint - numeric
Factorial as a prefix operator (deprecated, usef act ori al () instead)
Il 5,120

@nuneric_type - numeric_type
Absolute value

integral type &integral _type - integral _type
Bitwise AND
91 & 15 - 11

226

Functions and Operators

Operator
Description
Example(s)

integral type| integral type - integral type
Bitwise OR
32 | 3535

integral type#integral _type - integral _type
Bitwise exclusive OR

17 # 5 - 20

~integral type - integral type
Bitwise NOT
"'1 - - 2

integral type<<integer - integral type
Bitwise shift left
1 << 416

integral _type>>integer - integral _type
Bitwise shift right
8 > 2,2

Table 9.5 shows the available mathematical functions. Many of these functions are provided in multiple
forms with different argument types. Except where noted, any given form of a function returns the same
datatypeasitsargument(s); cross-type cases are resolved in the sameway asexplained abovefor operators.
The functions working with doubl e preci si on data are mostly implemented on top of the host
system's C library; accuracy and behavior in boundary cases can therefore vary depending on the host
system.

Table 9.5. Mathematical Functions

Function
Description
Example(s)

abs (nuneric_type) - nuneric_type
Absolute value
abs(-17.4) - 17.4

cbrt (doubl e precision) - doubl e precision
Cube root

chbrt(64.0) - 4

ceil (numeric) - numeric

ceil (doubl e precision) - doubl e precision
Nearest integer greater than or equal to argument

ceil (42.2) - 43
ceil (-42.8) - -42

ceiling(numeric) - numeric
ceiling (doubl e precision) - doubl e precision

227

Functions and Operators

Function
Description
Example(s)

Nearest integer greater than or equal to argument (sameascei |)
ceiling(95.3) - 96

degrees (doubl e precision) - doubl e precision
Converts radians to degrees

degrees(0.5) - 28.64788975654116

di v (ynumeric,xnumeric) - nuneric
Integer quotient of y/x (truncates towards zero)

div(9,4) -2

exp (nuneric) — numeric

exp (doubl e precision) - doubl e precision
Exponential (e raised to the given power)
exp(1.0) - 2.7182818284590452

factorial (bigint)- nuneric
Factorial

factorial (5) - 120

floor (numeric) - nuneric

floor (doubl e precision) - double precision
Nearest integer less than or equal to argument

floor(42.8) - 42
floor(-42.8) - -43

gcd (nuneri c_type,nunmeric_type) - nuneric_type
Greatest common divisor (the largest positive number that divides both inputs with no
remainder); returns O if both inputs are zero; availablefor i nt eger , bi gi nt , and
numeri c

gcd(1071, 462) - 21

I cm(nuneric_type,nuneric_type) - nuneric_type
L east common multiple (the smallest strictly positive number that is an integral multiple
of both inputs); returns O if either input is zero; available for i nt eger, bi gi nt, and
numeri c

lcm(1071, 462) - 23562

I n(nunmeric) - numeric

I n (doubl e precision) - doubl e precision
Natural logarithm

In(2.0) - 0.6931471805599453

| og (nuneric) - nuneric

| og (doubl e precision) - double precision
Base 10 logarithm

| 0g(100) — 2

228

Functions and Operators

Function
Description
Example(s)

| 0g10 (nuneric) - nuneric

| 0g10 (doubl e precision) - doubl e precision
Base 10 logarithm (same as| 0Q)

| 0g10(1000) - 3

| og (bnuneric,xnuneric) - nuneric
Logarithm of x to base b

log(2.0, 64.0) - 6.0000000000

m n_scal e (nuneric) - i nteger
Minimum scale (number of fractional decimal digits) needed to represent the supplied value
precisely
m n_scal e(8.4100) - 2

mod (y nuneri c_type,x nuneric_type) - nunmeric_type
Remainder of y/x; availablefor smal | i nt,i nt eger, bi gi nt,andnumneri c
nod(9,4) -1

pi () —» doubl e precision
Approximate value of Tt
pi () - 3.141592653589793

power (anuneric,bnuneric) - nuneric

power (adoubl e precision,bdouble precision) - double precision
a raised to the power of b

power (9, 3) - 729

radi ans (doubl e precision) - doubl e precision
Converts degrees to radians

radi ans(45.0) - 0.7853981633974483

round (numeric) - nuneric

round (doubl e precision) - doubl e precision

Rounds to nearest integer. For nuner i ¢, ties are broken by rounding away from zero. For
doubl e preci si on, thetie-breaking behavior is platform dependent, but “round to
nearest even” isthe most common rule.

round(42.4) - 42

round (v nuneric,sinteger) - numeric
Rounds v to s decimal places. Ties are broken by rounding away from zero.
round(42. 4382, 2) - 42.44

scal e (nuneric) - i nteger
Scale of the argument (the number of decimal digitsin the fractional part)
scal e(8.4100) - 4

sign(numeric) - numeric

229

Functions and Operators

Function
Description
Example(s)

si gn (doubl e precision) - doubl e precision
Sign of the argument (-1, 0, or +1)

sign(-8.4) - -1

sqrt (nunmeric) - nuneric

sqgrt (doubl e precision) - doubl e precision
Square root
sqrt(2) - 1.4142135623730951

trimscal e (nunmeric) - numeric
Reduces the value's scale (number of fractional decimal digits) by removing trailing zeroes

trimscal e(8.4100) - 8.41

trunc (numeric) - nuneric

trunc (doubl e precision) - doubl e precision
Truncates to integer (towards zero)

trunc(42.8) - 42
trunc(-42.8) - -42

trunc (v numeric,sinteger) - nuneric
Truncatesv to s decimal places

trunc(42.4382, 2) - 42.43

wi dt h_bucket (operand numeric,| ownuneri c, hi gh nuneric, count i nteger) -
i nt eger

wi dt h_bucket (operand doubl e preci si on,l owdoubl e preci si on, hi gh doubl e
preci si on,count i nt eger) - i nt eger
Returns the number of the bucket in which oper and fallsin a histogram having count
equal-width buckets spanning the range | owto hi gh. Returns 0 or count +1 for an input
outside that range.

wi dt h_bucket (5. 35, 0.024, 10.06, 5) - 3

wi dt h_bucket (operand anyel enent ,t hreshol ds anyarray) - i nt eger
Returns the number of the bucket in which oper and falls given an array listing the lower
bounds of the buckets. Returns 0 for an input less than the first lower bound. oper and
and the array elements can be of any type having standard comparison operators. The
t hr eshol ds array must be sorted, smallest first, or unexpected results will be obtained.
wi dt h_bucket (now(), array['yesterday', 'today',

"tonorrow]::tinestamptz[]) - 2

Table 9.6 shows functions for generating random numbers.

Table 9.6. Random Functions

Function
Description
Example(s)

random() - doubl e precision

230

Functions and Operators

Function
Description
Example(s)
Returns arandom valueintherange 0.0 <=x < 1.0
random() - 0.897124072839091

set seed (doubl e precision) - void
Sets the seed for subsequent r andont) calls; argument must be between -1.0 and 1.0,
inclusive
set seed(0. 12345)

The random() function uses a simple linear congruential algorithm. It is fast but not suitable for
cryptographic applications; see the pgcrypto module for a more secure alternative. If set seed() is
called, the series of results of subsequent r andon{) calsin the current session can be repeated by re-
issuing set seed() with the same argument.

Table 9.7 shows the available trigonometric functions. Each of these functions comesin two variants, one
that measures angles in radians and one that measures angles in degrees.

Table 9.7. Trigonometric Functions

Function
Description
Example(s)

acos (doubl e precision) - doubl e precision
Inverse cosing, result in radians

acos(1l) -0

acosd (doubl e precision) - doubl e precision
Inverse cosing, result in degrees

acosd(0.5) - 60

asi n (doubl e precision) - doubl e precision
Inverse sine, result in radians

asin(l) - 1.5707963267948966

asi nd (doubl e precision) - doubl e precision
Inverse sing, result in degrees

asind(0.5) - 30

at an (doubl e precision) - doubl e precision
Inverse tangent, result in radians

atan(1) - 0.7853981633974483

at and (doubl e precision) - doubl e precision
Inverse tangent, result in degrees

atand(1) - 45

at an2 (y doubl e precision,x doubl e precision) - doubl e precision
Inverse tangent of y/x, result in radians

atan2(1,0) - 1.5707963267948966

at an2d (y doubl e precision,x doubl e precision) - double precision

231

Functions and Operators

Function
Description
Example(s)

Inverse tangent of y/x, result in degrees
atan2d(1,0) - 90

cos (doubl e precision) - doubl e precision
Cosine, argument in radians

cos(0) -1

cosd (doubl e precision) - doubl e precision
Cosine, argument in degrees
cosd(60) - 0.5

cot (doubl e precision) - doubl e precision
Cotangent, argument in radians

cot (0.5) - 1.830487721712452

cotd (doubl e precision) - doubl e precision
Cotangent, argument in degrees

cotd(45) -1

sin (doubl e precision) - doubl e precision
Sine, argument in radians
sin(1l) - 0.8414709848078965

sind (doubl e precision) - doubl e precision
Sine, argument in degrees

sind(30) - 0.5

tan (doubl e precision) - doubl e precision
Tangent, argument in radians

tan(1) - 1.5574077246549023

tand (doubl e precision) - doubl e precision
Tangent, argument in degrees
tand(45) - 1

Note

Another way to work with angles measured in degrees is to use the unit transformation functions
radi ans() and degrees() shown earlier. However, using the degree-based trigonometric
functionsis preferred, as that way avoids round-off error for special cases such assi nd(30) .

Table 9.8 shows the available hyperbolic functions.

232

Functions and Operators

Table 9.8. Hyperbolic Functions

Function
Description
Example(s)

si nh (doubl e precision) - doubl e precision
Hyperbolic sine

sinh(1) - 1.1752011936438014

cosh (doubl e precision) - doubl e precision
Hyperbolic cosine

cosh(0) -1

tanh (doubl e precision) - doubl e precision
Hyperbolic tangent

tanh(1l) - 0.7615941559557649

asi nh (doubl e precision) - doubl e precision
Inverse hyperbolic sine

asi nh(1) - 0.881373587019543

acosh (doubl e precision) - doubl e precision
Inverse hyperbolic cosine

acosh(1) -0

at anh (doubl e precision) - doubl e precision
Inverse hyperbolic tangent

at anh(0.5) - 0.5493061443340548

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings
in this context include values of the types char act er, charact er varyi ng, andt ext . Except
where noted, these functions and operators are declared to accept and return type t ext . They will
interchangeably accept character varyi ng arguments. Vaues of type character will be
convertedto t ext before the function or operator is applied, resulting in stripping any trailing spacesin
thechar act er vaue.

SQL defines some string functionsthat use key words, rather than commas, to separate arguments. Details
are in Table 9.9. PostgreSQL also provides versions of these functions that use the regular function
invocation syntax (see Table 9.10).

Note

Before PostgreSQL 8.3, these functions would silently accept values of several non-string data
types as well, due to the presence of implicit coercions from those data types to t ext . Those
coercions have been removed because they frequently caused surprising behaviors. However, the
string concatenation operator (| |) still accepts non-string input, so long as at least one input is of
a string type, as shown in Table 9.9. For other cases, insert an explicit coercion to t ext if you
need to duplicate the previous behavior.

233

Functions and Operators

Table9.9. SQL String Functionsand Operators

Function/Operator
Description
Example(s)

text || text - text
Concatenates the two strings.

"Post' || 'greSQ.' - PostgreSQ

text | | anynonarray - text

anynonarray | | text - text
Converts the non-string input to text, then concatenates the two strings. (The non-string input
cannot be of an array type, because that would create ambiguity with the array | | operators.
If you want to concatenate an array's text equivalent, cast it tot ext explicitly.)

"Value: ' || 42 - Value: 42

t ext | S[NOT] [f or n] NORVALI ZED - bool ean
Checks whether the string isin the specified Unicode normalization form. The optional
f or mkey word specifies the form: NFC (the default), NFD, NFKC, or NFKD. This expression
can only be used when the server encoding is UTF8. Note that checking for normalization
using this expression is often faster than normalizing possibly aready normalized strings.

U&' \ 0061\ 0308bc' |I'S NFD NORMALI ZED - t

bit length(text) - integer
Returns number of bitsin the string (8 timesthe oct et _I engt h).
bit_length('jose') - 32

char _length (text) - integer

character _length (text) - integer
Returns number of characters in the string.

char_length('josé') - 4

| ower (text) - text
Convertsthe string to all lower case, according to the rules of the database's locale.

[ower (' TOM) - tom

normalize (text [,form]) - text
Converts the string to the specified Unicode normalization form. The optional f or mkey
word specifies the form: NFC (the default), NFD, NFKC, or NFKD. This function can only be
used when the server encoding is UTF8.

normal i ze(U& \ 0061\ 0308bc’', NFC) - U& \ 00OE4bc’

octet length(text) - integer
Returns number of bytesin the string.

octet _length('josé') - 5 (if server encoding is UTF8)

octet length(character) - i nteger
Returns number of bytesin the string. Since this version of the function accepts type
char act er directly, it will not strip trailing spaces.

octet _length('abc '::character(4)) - 4

234

Functions and Operators

Function/Operator
Description
Example(s)

overlay (stringtext PLACI NGnewsubstringtext FROMstart i nt eger [FOR

count i nteger]) - text

Replaces the substring of st r i ng that starts at the st ar t 'th character and extends for
count characterswith newsubst ri ng. If count isomitted, it defaultsto the length of
newsubstri ng.

overl ay(' Txxxxas' placing 'hom from2 for 4) - Thonas

position(substringtext I Nstringtext) - i nteger
Returnsfirst starting index of the specified subst ri ng within st ri ng, or zero if it's not
present.

position('om in 'Thonmas') - 3

substring (stringtext [FROMstart i nteger][FORcount i nteger]) - text
Extracts the substring of st ri ng starting at the st ar t 'th character if that is specified,
and stopping after count charactersif that is specified. Provide at least one of st art and
count .

substring(' Thomas' from2 for 3) - hom
substring(' Thonas' from 3) - onas
substring(' Thonas' for 2) - Th

substring (stringtext FROMpatterntext) - text
Extracts the first substring matching POSIX regular expression; see Section 9.7.3.

substring(' Thomas' from'...$') - nas

substring (stringtext FROMpatterntext FORescapetext) - text
Extracts the first substring matching SQL regular expression; see Section 9.7.2.

substring(' Thomas' from' %t"o_a#"_' for '#) - omm

tri m([LEADI NG| TRAI LI NG|BOTH] [characterstext]| FROMstringtext) —
t ext
Removes the longest string containing only charactersin char act er s (a space by default)
from the start, end, or both ends (BOTH is the default) of st ri ng.

trimboth 'xyz' from'yxTonxx') - Tom

tri m([LEADI NG| TRAI LI NG|BOTH] [FROM] stringtext [,characterstext]) -
t ext
Thisisanon-standard syntax fort ri m() .

trimboth from'yxTomkx', 'xyz') — Tom

upper (text) - text
Convertsthe string to all upper case, according to the rules of the database's locale.

upper('tom) - TOM

Additional string manipulation functions are available and are listed in Table 9.10. Some of them are used
internally to implement the SQL-standard string functions listed in Table 9.9.

235

Functions and Operators

Table 9.10. Other String Functions

Function
Description
Example(s)

ascii (text) - integer
Returns the numeric code of the first character of the argument. In UTF8 encoding, returns
the Unicode code point of the character. In other multibyte encodings, the argument must be
an ASCI| character.

ascii('x'") - 120

btrim(stringtext [,characterstext]) - text
Removes the longest string containing only charactersin char act er s (a space by default)
from the start and end of st ri ng.

btrim'xyxtrinyyx', 'xyz') -trim

chr (i nteger) - text
Returns the character with the given code. In UTF8 encoding the argument is treated as a
Unicode code point. In other multibyte encodings the argument must designate an ASCI|
character. chr (0) isdisallowed because text data types cannot store that character.

chr(65) - A

concat (val 1"any" [,val 2"any" [,..]]) - text
Concatenates the text representations of al the arguments. NULL arguments are ignored.

concat (' abcde', 2, NULL, 22) - abcde222

concat _ws (septext,val1"any" [,val 2"any" [,..]]) - text
Concatenates all but the first argument, with separators. The first argument is used asthe
separator string, and should not be NULL. Other NULL arguments are ignored.

concat_ws(',', 'abcde', 2, NULL, 22) - abcde, 2, 22

format (formatstr text [,formatarg"any" [,..]]) - text
Formats arguments according to aformat string; see Section 9.4.1. Thisfunction is similar to
the C functionspri nt f.

format (" Hello %, %$s', 'Wrld') - Hello Wrld, Wrld

initcap(text) - text
Convertsthe first |etter of each word to upper case and the rest to lower case. Words are
sequences of aphanumeric characters separated by non-al phanumeric characters.

initcap('hi THOVAS) - H Thomas

left (stringtext,ninteger) - text
Returnsfirst n charactersin the string, or when n is negative, returns all but last |n|
characters.

| eft('abcde', 2) - ab

I ength (text) — integer
Returns the number of charactersin the string.

length('jose') - 4

| pad (stringtext,lengthinteger [,fill text]) - text
Extendsthest ri ng tolength| engt h by prepending the charactersfi | | (aspace by
default). If thest ri ng isaready longer than| engt h then it istruncated (on the right).

236

Functions and Operators

Function
Description
Example(s)

[pad(' hi', 5, "xy') - xyxhi

Itrim(stringtext [,characterstext]) - text
Removes the longest string containing only charactersin char act er s (a space by default)
fromthe start of st ri ng.

ltrim('zzzytest', 'xyz') - test

md5 (text) - text
Computes the M D5 hash of the argument, with the result written in hexadecimal.

md5(" abc') - 900150983cd24f b0d6963f 7d28el7f 72

parse_ident (qualified_ identifiertext[,strict_nodebool ean DEFAULT
true]) - text[]
Splitsqual i fied_i dentifi er intoanarray of identifiers, removing any quoting of
individual identifiers. By default, extra characters after the last identifier are considered an
error; but if the second parameter isf al se, then such extra characters are ignored. (This
behavior is useful for parsing names for objects like functions.) Note that this function
does not truncate over-length identifiers. If you want truncation you can cast the result to
nane[].

parse_i dent (' " SomeSchema". soneTabl e') - { SomeSchems, sonet abl e}

pg_client_encoding () - nanme
Returns current client encoding name.

pg_client_encoding() - UTF8

quot e_i dent (text) —» text
Returns the given string suitably quoted to be used as an identifier in an SQL statement
string. Quotes are added only if necessary (i.e., if the string contains non-identifier characters
or would be case-folded). Embedded quotes are properly doubled. See also Example 42.1.

guote_i dent (' Foo bar') - "Foo bar”

quote literal (text) - text
Returns the given string suitably quoted to be used as a string literal in an SQL
statement string. Embedded single-quotes and backslashes are properly doubled. Note
that quot e I it eral returnsnull on null input; if the argument might be null,
guot e_nul | abl e isoften more suitable. See also Example 42.1.

quote literal (EOQ'Reilly') 'O 'Reilly’

quote literal (anyel ement) - text
Converts the given value to text and then quotesiit as aliteral. Embedded single-quotes and
backsl ashes are properly doubled.

quote literal (42.5) - "'42.5'

quote_nul | abl e (text) - text

Returns the given string suitably quoted to be used as a string literal in an SQL statement
string; or, if the argument is null, returns NULL. Embedded single-quotes and backslashes are
properly doubled. See also Example 42.1.

qguot e_nul | abl e(NULL) - NULL

quot e_nul | abl e (anyel enent) - t ext

237

Functions and Operators

Function
Description
Example(s)

Converts the given value to text and then quotesit asaliteral; or, if the argument is null,
returns NULL. Embedded single-quotes and backslashes are properly doubled.

quote_nul | abl e(42.5) - '42. 5

regexp_match (stringtext,patterntext [,flagstext]) - text[]
Returns captured substrings resulting from the first match of a POSIX regular expression to
thest ri ng; see Section 9.7.3.

regexp_mat ch(' f oobar bequebaz', ' (bar)(beque)') - {bar, beque}

regexp_matches (stringtext,patterntext [,flagstext]) - setof text[]
Returns captured substrings resulting from the first match of a POSIX regular expression to
thest ri ng, or multiple matchesif the g flag is used; see Section 9.7.3.

regexp_mat ches(' f oobar bequebaz', 'ba.', 'g") -
{bar}
{baz}
regexp_replace (stringtext,patterntext,replacenent text [,flagstext])
- text

Replaces substrings resulting from the first match of a POSIX regular expression, or multiple
substring matches if the g flag is used; see Section 9.7.3.

regexp_replace(' Thomas', '.[mM\Ja.', 'M) - ThM

regexp_split _to array (stringtext,patterntext [,flagstext]) - text[]
Splitsst ri ng using aPOSIX regular expression as the delimiter; see Section 9.7.3.

regexp_split_to_array('hello world', "\s+') - {hello,world}

regexp_split _to table(stringtext,patterntext [,flagstext]) - setof

t ext
Splitsst ri ng using a POSIX regular expression as the delimiter; see Section 9.7.3.
regexp_split _to table('hello world', '"\s+') o

hell o

wor | d

repeat (stringtext,nunber integer) - text
Repeats st r i ng the specified nunber of times.

repeat (' Pg', 4) - PgPgPgPg

replace(stringtext,fromtext,totext) - text
Replaces all occurrencesin st ri ng of substring f r omwith substring t o.

repl ace(' abcdef abcdef', 'cd', 'XX) - abXXef abXXef

reverse(text) - text
Reverses the order of the charactersin the string.

reverse(' abcde') - edcba

right (stringtext,ninteger) - text

238

Functions and Operators

Function
Description
Example(s)

Returnslast n charactersin the string, or when n is negative, returns al but first |n|
characters.

right (' abcde', 2) - de

rpad (stringtext,lengthinteger [,fill text]) - text
Extendsthest ri ng tolength | engt h by appending the charactersfi | | (aspaceby
default). If thest r i ng isaready longer than| engt h then it is truncated.

rpad(' hi', 5, "xy') - hixyx

rtrim(stringtext [,characterstext]) - text
Removes the longest string containing only charactersin char act er s (a space by default)
fromtheend of st ri ng.

rtrim’'testxxzx', 'xyz') - test

split_part (stringtext,delimter text,ninteger) - text
Splitsst ri ng at occurrencesof del i mi t er and returnsthe n'th field (counting from one).

split_part('abc~@def~@ghi', '~@', 2) - def

strpos (stringtext,substringtext) - integer
Returnsfirst starting index of the specified subst ri ng withinst ri ng, or zeroiif it's
not present. (Sameasposi ti on(substring in string), butnotethe reversed
argument order.)

strpos('high', '"ig') -2

substr (stringtext,start i nteger [,count i nteger]) - text
Extracts the substring of st r i ng starting at the st ar t 'th character, and extending for
count charactersif that is specified. (Sameassubst ri ng(string from start
for count).)
substr (' al phabet', 3) - phabet

substr (' al phabet', 3, 2) - ph

starts_with(stringtext,prefixtext) - bool ean
Returnstrueif st ri ng startswith pr ef i x.

starts_w th('al phabet', "alph') -t

to_ascii (stringtext) - text

to_ascii (stringtext,encodi ngnane) - text

to_ascii (stringtext,encodinginteger) - text
Convertsst r i ng to ASCII from another encoding, which may be identified by name or
number. If encodi ng isomitted the database encoding is assumed (which in practice is the
only useful case). The conversion consists primarily of dropping accents. Conversion isonly
supported from LATI N1, LATI N2, LATI N9, and W N1250 encodings. (See the unaccent
module for another, more flexible solution.)

to_ascii('Karél') - Karel

to_hex (integer) - text

to_hex (bigint) - text
Converts the number to its equivalent hexadecimal representation.

239

Functions and Operators

9.4.1.

Function
Description
Example(s)

to_hex(2147483647) — 7fffffff

translate(stringtext,fromtext,totext) - text
Replaces each character in st r i ng that matches a character in the f r omset with the
corresponding character inthet o set. If f r omislonger thant o, occurrences of the extra
charactersin f r omare deleted.

translate(' 12345, '143', 'ax') - a2x5

The concat, concat _ws and f or mat functions are variadic, so it is possible to pass the values to
be concatenated or formatted as an array marked with the VARI ADI C keyword (see Section 37.5.5). The
array's elements are treated as if they were separate ordinary arguments to the function. If the variadic
array argumentisNULL, concat andconcat _ws return NULL, but f or nat treatsaNULL asazero-
element array.

See also the aggregate function st r i ng_agg in Section 9.21, and the functions for converting between
strings and the byt ea typein Table 9.13.

f or mat

The function f or mat produces output formatted according to aformat string, in a style similar to the C
functionsprintf.

format (formatstr text [, formatarg "any" [, ...] 1)

f or mat st r isaformat string that specifieshow theresult should beformatted. Textintheformat stringis
copied directly to the result, except where format specifiers are used. Format specifiers act as placeholders
in the string, defining how subsequent function arguments should be formatted and inserted into the result.
Each f or mat ar g argument is converted to text according to the usual output rules for its data type, and
then formatted and inserted into the result string according to the format specifier(s).

Format specifiers are introduced by a %character and have the form

% position][flags][w dth]type
where the component fields are;
posi ti on (optional)

A string of theform n$ where n istheindex of the argument to print. Index 1 meansthe first argument
after f or mat st r. If theposi ti on isomitted, the default is to use the next argument in sequence.

fl ags (optional)

Additional options controlling how the format specifier's output is formatted. Currently the only
supported flag is a minus sign (-) which will cause the format specifier's output to be left-justified.
This has no effect unlessthewi dt h field is also specified.

wi dt h (optional)

Specifies the minimum number of charactersto useto display the format specifier's output. The output
is padded on the left or right (depending on the - flag) with spaces as needed to fill the width. A too-

240

Functions and Operators

small width does not cause truncation of the output, but issimply ignored. The width may be specified
using any of the following: a positive integer; an asterisk (*) to use the next function argument asthe
width; or astring of the form * n$ to use the nth function argument as the width.

If the width comes from a function argument, that argument is consumed before the argument that is
used for the format specifier's value. If the width argument is negative, the result isleft aligned (as if
the - flag had been specified) within afield of length abs (wi dt h).

t ype (required)

The type of format conversion to use to produce the format specifier's output. The following types
are supported:

* s formats the argument value as asimple string. A null value istreated as an empty string.

| treats the argument value as an SQL identifier, double-quoting it if necessary. It is an error for
the value to be null (equivalent to quot e_i dent).

* L quotestheargument valueasan SQL literal. A null valueisdisplayed asthe string NULL, without
quotes (equivalent to quot e_nul | abl e).

In addition to the format specifiers described above, the special sequence ¥%®%6may be used to output a
literal %character.

Here are some examples of the basic format conversions:

SELECT format('Hello %', 'Wrld');
Result: Hello Wrld

SELECT format (' Testing %, %, %, %6, 'one', 'two', 'three');
Result: Testing one, two, three, %

SELECT format (' I NSERT I NTO %4 VALUES(%.)', 'Foo bar', EOQ'Reilly');
Result: | NSERT INTO "Foo bar" VALUES(' O 'Reilly")

SELECT format (' I NSERT I NTO %4 VALUES(%.)', 'locations', 'C: \Program
Files');
Result: I NSERT INTO | ocations VALUES(' C:\Program Files')

Here are examples using wi dt h fields and the - flag:

SELECT format ('|%0s|', 'foo');
Result: | f oo|
SELECT format ('|% 10s|', 'foo');

Result: |foo |

SELECT format (' |%s|', 10, 'foo');
Result: | f oo|

SELECT format (' | %s|', -10, 'foo');
Result: |foo |

SELECT format (' | % *s|', 10, 'foo');
Result: |foo |

241

Functions and Operators

SELECT format (' | % *s|', -10, 'foo');
Result: |foo |

These examples show use of posi ti on fields:

SELECT format (' Testing ¥8%s, %@2%$s, %$s', 'one', '"two', 'three');
Result: Testing three, two, one

SELECT format (' | %2%$s|', 'foo', 10, 'bar');
Resul t: | bar |

SELECT format (' | %$*2%$s|', 'foo', 10, 'bar');
Resul t: | f oo|

Unlike the standard C function spri nt f, PostgreSQL's f or mat function alows format specifiers
with and without posi ti on fields to be mixed in the same format string. A format specifier without
aposi tion field aways uses the next argument after the last argument consumed. In addition, the
f or mat function does not require al function arguments to be used in the format string. For example:

SELECT format (' Testing ¥8%s, %®$%$s, %', 'one', 'two', 'three');
Result: Testing three, two, three

The % and %. format specifiers are particularly useful for safely constructing dynamic SQL statements.
See Example 42.1.

9.5. Binary String Functions and Operators

Thissection describes functions and operators for examining and manipul ating binary strings, that isvalues
of typebyt ea. Many of these are equivalent, in purpose and syntax, to the text-string functions described
in the previous section.

SQL defines some string functionsthat use key words, rather than commas, to separate arguments. Details
are in Table 9.11. PostgreSQL also provides versions of these functions that use the regular function
invocation syntax (see Table 9.12).

Table9.11. SQL Binary String Functions and Operators

Function/Operator
Description
Example(s)

bytea|| bytea - bytea
Concatenates the two binary strings.

"\ x123456' :: bytea || '\x789a00bcde'::bytea - \x123456789a00bcde

bit_length(bytea) — i nteger
Returns number of bitsin the binary string (8 timestheoct et _| engt h).
bit_length('\x123456':: bytea) - 24

octet length(bytea) - integer
Returns number of bytesin the binary string.
octet length('\x123456':: bytea) - 3

242

Functions and Operators

Function/Operator
Description
Example(s)

overl ay (byt es byt ea PLACI NGnewsubst ri ng byt ea FROMst art i nt eger [FOR

count integer]) - bytea
Replaces the substring of byt es that starts at the st ar t 'th byte and extends for

count byteswithnewsubst ri ng. If count isomitted, it defaults to the length of
newsubstri ng.

over |l ay('\x1234567890' ;: : bytea placing '\002\003"::bytea from?2
for 3) - \x12020390

position(substringbyteal Nbytes bytea) - i nteger
Returnsfirst starting index of the specified subst r i ng within byt es, or zero if it's not
present.

position('\x5678"::bytea in '\x1234567890' :: bytea) - 3

substring (bytes bytea[FROMstart i nteger][FORcount i nteger]) - bytea
Extracts the substring of byt es starting at the st ar t 'th byteif that is specified, and
stopping after count bytesif that is specified. Provide at least one of st art and count .

substring('\x1234567890' : : bytea from 3 for 2) - \x5678

trim([BOTH] byt esr enoved byt ea FROMbyt es byt ea) - byt ea

Removes the longest string containing only bytes appearing in byt esr enoved from the
start and end of byt es.

trim'\x9012'::bytea from'\x1234567890' : : byt ea) - \x345678

tri m([BOTH] [FROM] byt es byt ea, byt esr enoved byt ea) - byt ea
Thisisanon-standard syntax fort ri m() .

trimboth from'\x1234567890' :: bytea, '\x9012'::bytea) -
\ x345678

Additional binary string manipulation functions are available and are listed in Table 9.12. Some of them
are used internally to implement the SQL -standard string functions listed in Table 9.11.

Table 9.12. Other Binary String Functions

Function
Description
Example(s)

bt ri m(byt es byt ea, byt esrenoved byt ea) - byt ea
Removes the longest string containing only bytes appearing in byt esr enoved from the
start and end of byt es.

btrim'\x1234567890' :: bytea, '\x9012'::bytea) - \x345678

get _bit (bytes bytea,nbigint) - integer
Extracts n'th bit from binary string.
get _bit('\x1234567890' : : bytea, 30) - 1

get _byte (bytes bytea,ninteger) - integer
Extracts n'th byte from binary string.

get _byte('\x1234567890' :: bytea, 4) - 144

243

Functions and Operators

Function
Description
Example(s)

| ength (bytea) - i nteger
Returns the number of bytesin the binary string.
[engt h('\x1234567890" : : bytea) - 5

| engt h (byt es byt ea, encodi ng nane) - i nt eger
Returns the number of charactersin the binary string, assuming that it istext in the given
encodi ng.

length('jose'::bytea, 'UTF8') - 4

md5 (bytea) - t ext
Computes the M D5 hash of the binary string, with the result written in hexadecimal.

md5(' Th\ 000onmas' : : byt ea) - 8ab2d3c9689aaf 18b4958c334c82d8b1

set _bit (bytes bytea,nbigint,newal ueinteger) - bytea
Setsn'th bit in binary string to newal ue.

set _bit('\x1234567890' :: bytea, 30, 0) - \x1234563890

set _byte (bytes bytea,ninteger,newal ueinteger) - bytea
Setsn'th bytein binary string to newval ue.

set _byte('\x1234567890':: bytea, 4, 64) - \x1234567840

sha224 (bytea) - bytea
Computes the SHA-224 hash of the binary string.

sha224("' abc' :: bytea) - \x23097d223405d8228642a477hda2
55b32aadbce4bdaOb3f 7e36c9da7

sha256 (bytea) - bytea
Computes the SHA-256 hash of the binary string.

sha256("' abc' :: bytea) - \xba7816bf 8f 01lcfead414140de5dae2223
b00361a396177a9cb410f f 61f 20015ad

sha384 (bytea) - bytea
Computes the SHA-384 hash of the binary string.
sha384(' abc' :: bytea) - \xch00753f 45a35e8bb5a03d699ac65007

272c32ab0eded1631a8b605a43f f 5bed
8086072bale7cc2358baecal34c825a7

sha512 (bytea) - bytea
Computes the SHA-512 hash of the binary string.

shab512(' abc' :: bytea) - \ xddaf 35a193617abacc417349ae204131
12e6f a4e89a97ea20a9eeeeb64b55d39a
2192992a274f cla836ba3c23a3f eebbd
454d4423643ce80e2a9ac94f ab4cadof

substr (bytes bytea,start i nteger [,count integer]) - bytea
Extracts the substring of byt es starting at the st ar t 'th byte, and extending for count
bytesif that is specified. (Sameassubstri ng(bytes fromstart for count).)

substr('\x1234567890' : : bytea, 3, 2) - \x5678

244

Functions and Operators

Functions get _byt e and set byt e number the first byte of a binary string as byte 0. Functions
get _bit and set bit number bits from the right within each byte; for example bit 0 is the least
significant bit of the first byte, and bit 15 is the most significant bit of the second byte.

For historical reasons, the function md5 returns a hex-encoded value of type t ext whereas the SHA-2
functions return type byt ea. Use the functions encode and decode to convert between the two. For
example write encode(sha256(' abc'), 'hex') to get a hex-encoded text representation, or
decode(nd5("' abc'), 'hex') togetabytea vaue

Functions for converting strings between different character sets (encodings), and for representing
arbitrary binary data in textual form, are shown in Table 9.13. For these functions, an argument or result
of typet ext isexpressed in the database's default encoding, while arguments or results of type byt ea
are in an encoding named by another argument.

Table9.13. Text/Binary String Conversion Functions

Function
Description
Example(s)

convert (bytes bytea,src_encodi ng nane,dest _encodi ng nane) - byt ea
Converts a binary string representing text in encoding sr ¢_encodi ng to abinary string in
encoding dest _encodi ng (see Section 23.3.4 for available conversions).
convert('text _in utf8 , '"UTF8', 'LATINLl') -
\ Xx746578745f 696e5f 75746638

convert _from(bytes bytea,src_encodi ngnane) - text
Converts a binary string representing text in encoding sr ¢_encodi ng tot ext inthe
database encoding (see Section 23.3.4 for available conversions).

convert _from("text_in_ utf8 , "UTF8) - text _in_utf8

convert _to(stringtext,dest_encodi ng nane) - bytea
Convertsat ext string (in the database encoding) to a binary string encoded in encoding
dest _encodi ng (see Section 23.3.4 for available conversions).

convert _to('sonme_text', 'UTF8') - \x736f6d655f 74657874

encode (bytes bytea,format text) - text
Encodes binary data into atextual representation; supported f or mat values are: base64,
escape, hex.

encode(' 123\ 000\ 001', 'base64') - Ml zAAE=

decode (stringtext,format text) - bytea
Decodes binary data from atextual representation; supported f or mat values are the same as
for encode.

decode(' MIl zAAE=", 'Dbase64') - \x3132330001

Theencode and decode functions support the following textual formats:
base64

Thebase64 format isthat of RFC 2045 Section 6.8%. As per the RFC, encoded lines are broken at 76
characters. However instead of the MIME CRLF end-of-line marker, only anewlineis used for end-
of-line. Thedecode function ignores carriage-return, newline, space, and tab characters. Otherwise,

1 https://tools.ietf.org/html/rfc2045#section-6.8

245

https://tools.ietf.org/html/rfc2045#section-6.8
https://tools.ietf.org/html/rfc2045#section-6.8

Functions and Operators

an error is raised when decode is supplied invalid base64 data— including when trailing padding
isincorrect.

escape

The escape format converts zero bytes and bytes with the high bit set into octal escape sequences
(\ nnn), and it doubles backslashes. Other byte values are represented literally. Thedecode function
will raise an error if a backslash is not followed by either a second backslash or three octal digits; it
accepts other byte values unchanged.

hex

The hex format represents each 4 hits of data as one hexadecimal digit, O through f , writing the
higher-order digit of each byte first. The encode function outputs the a-f hex digitsin lower case.
Because the smallest unit of datais 8 bits, there are always an even number of characters returned by
encode. Thedecode function acceptsthe a-f charactersin either upper or lower case. An error is
raised when decode isgiveninvalid hex data— including when given an odd number of characters.

See also the aggregate function string_agg in Section 9.21 and the large object functions in
Section 34.4.

9.6. Bit String Functions and Operators

This section describes functions and operators for examining and manipulating bit strings, that is values
of thetypesbit andbit varyi ng. (Whileonly typebi t ismentioned in these tables, values of type
bit wvaryi ng can be used interchangeably.) Bit strings support the usual comparison operators shown
in Table 9.1, aswell as the operators shown in Table 9.14.

Table 9.14. Bit String Operators

Operator
Description
Example(s)

bit|]| bit - bit
Concatenation
B'10001' || B 011" - 10001011

bit &bit - bit
Bitwise AND (inputs must be of equal length)

B' 10001' & B' 01101' - 00001

bit| bit -bit
Bitwise OR (inputs must be of equal length)
B' 10001' | B 01101' - 11101

bit #bit - bit
Bitwise exclusive OR (inputs must be of equal length)

B' 10001" # B 01101' - 11100

~bit - bit
Bitwise NOT
~ B'10001' - 01110

bit <<integer - bit

246

Functions and Operators

Operator
Description
Example(s)
Bitwise shift left (string length is preserved)
B' 10001' << 3 - 01000

bit >>integer - bit
Bitwise shift right (string length is preserved)
B' 10001' >> 2 - 00100

Some of the functions available for binary strings are also available for bit strings, as shown in Table 9.15.

Table 9.15. Bit String Functions

Function
Description
Example(s)

bit length(bit) - integer
Returns number of bitsin the bit string.
bit_length(B 10111') - 5

length(bit) - integer
Returns number of bitsin the bit string.
[engt h(B 10111') - 5

octet_length(bit) - integer
Returns number of bytesin the bit string.
octet length(B 1011111011') - 2

overlay (bitsbit PLACI NGnewsubstringbit FROMstart i nt eger [FORcount
integer]) - bit
Replaces the substring of bi t s that starts at the st ar t 'th bit and extends for count bits
with newsubst ri ng. If count isomitted, it defaultsto the length of newsubst ri ng.

overl ay(B 01010101010101010' placing B 11111" from2 for 3) -
0111110101010101010

position(substringbit INbitsbhit) - integer
Returns first starting index of the specified subst ri ng withinbi t s, or zero if it's not
present.

position(B 010' in B 000001101011') - 8

substring (bitsbit [FROMstart i nteger][FORcount i nteger]) - bit
Extracts the substring of bi t s starting at the st ar t 'th bit if that is specified, and stopping
after count bitsif that is specified. Provide at least one of st art and count .

substring(B 110010111111" from 3 for 2) - 00

get _bit (bitsbhit,ninteger) - integer
Extracts n'th bit from bit string; the first (Ieftmost) bit is bit O.
get _bit (B 101010101010101010', 6) - 1

set _bit (bitsbit,ninteger,newal ueinteger) - bit
Setsn'th bit in bit string to newval ue; thefirst (Ieftmost) hit is bit 0.

247

Functions and Operators

Function
Description
Example(s)

set _bit(B 101010101010101010', 6, 0) - 101010001010101010

In addition, it is possible to cast integral values to and from type bi t . Casting an integer to bi t (n)
copies the rightmost n bits. Casting an integer to a hit string width wider than the integer itself will sign-
extend on the |eft. Some examples:

44: :bit(10) 0000101100
44: : bit(3) 100

cast(-44 as bit(12)) 111111010100
"1110'::bit(4)::integer 14

Note that casting to just “bit” means casting to bi t (1) , and so will deliver only the least significant bit
of the integer.

9.7. Pattern Matching

There are three separate approaches to pattern matching provided by PostgreSQL.: the traditional SQL
LI KE operator, the more recent SI M LAR TO operator (added in SQL:1999), and POSI X-style regular
expressions. Aside from the basic “does this string match this pattern?’ operators, functions are available
to extract or replace matching substrings and to split a string at matching locations.

Tip

If you have pattern matching needs that go beyond this, consider writing a user-defined function
in Perl or Tcl.

Caution

While most regular-expression searches can be executed very quickly, regular expressions can
be contrived that take arbitrary amounts of time and memory to process. Be wary of accepting
regular-expression search patternsfrom hostile sources. If you must do so, it is advisable to impose
a statement timeout.

Searches using SI M LAR TO patterns have the same security hazards, since SIM LAR TO
provides many of the same capabilities as POSI X -style regular expressions.

L1 KE searches, being much simpler than the other two options, are safer to use with possibly-
hostile pattern sources.

The pattern matching operators of all three kinds do not support nondeterministic collations. If required,
apply adifferent collation to the expression to work around this limitation.

9.7.1. LI KE

248

Functions and Operators

string LIKE pattern [ESCAPE escape-char act er]
string NOT LIKE pattern [ESCAPE escape-character]

TheLl KE expression returnstrueif the st r i ng matchesthe supplied pat t er n. (As expected, the NOT
LI KE expression returns false if LI KE returns true, and vice versa. An equivalent expression is NOT
(string LIKE pattern).)

If pat t er n does not contain percent signs or underscores, then the pattern only represents the string
itself; inthat case LI KE actslike the equals operator. An underscore (_) inpat t er n standsfor (matches)
any single character; a percent sign (%9 matches any sequence of zero or more characters.

Some examples:

"abc' LIKE 'abc' true
"abc' LIKE 'a% true
"abc' LIKE' b ' true
"abc' LIKE 'c' fal se

LI KE pattern matching always covers the entire string. Therefore, if it's desired to match a sequence
anywhere within a string, the pattern must start and end with a percent sign.

To match aliteral underscore or percent sign without matching other characters, the respective character
inpat t er n must be preceded by the escape character. The default escape character is the backslash but
a different one can be selected by using the ESCAPE clause. To match the escape character itself, write
two escape characters.

Note

If you have standard_conforming_strings turned off, any backslashes you write in literal string
constants will need to be doubled. See Section 4.1.2.1 for more information.

It'salso possibleto select no escape character by writing ESCAPE ' ' . Thiseffectively disablesthe escape
mechanism, which makes it impossible to turn off the special meaning of underscore and percent signs
in the pattern.

According to the SQL standard, omitting ESCAPE means there is no escape character (rather than
defaulting to a backslash), and a zero-length ESCAPE value is disallowed. PostgreSQL 's behavior in this
regard is therefore slightly nonstandard.

The key word | LI KE can be used instead of LI KE to make the match case-insensitive according to the
activelocale. Thisis not in the SQL standard but is a PostgreSQL extension.

The operator ~~ isequivalent to LI KE, and ~~* correspondsto | LI KE. Therearealso ! ~~ and ! ~~*
operatorsthat represent NOT LI KEand NOT | LI KE, respectively. All of these operators are PostgreSQL -
specific. You may see these operator names in EXPLAI N output and similar places, since the parser
actualy translates LI KE et al. to these operators.

ThephrasesLI KE, | LI KE,NOT LI KE,andNOT | LI KE aregeneraly treated asoperatorsin PostgreSQL
syntax; for example they can be used in expr essi on operat or ANY (subquery) constructs,
although an ESCAPE clause cannot be included there. In some obscure cases it may be necessary to use
the underlying operator names instead.

Also see the prefix operator * @and corresponding st art s_wi t h function, which are useful in cases
where simply matching the beginning of a string is needed.

249

Functions and Operators

9.7.2.

SI M LAR TORegular Expressions

string SIMLAR TO pattern [ESCAPE escape-character]
string NOT SIMLAR TO pattern [ESCAPE escape-character]

TheSI M LAR TOoperator returnstrue or fal se depending on whether its pattern matchesthe given string.
Itissimilar to LI KE, except that it interprets the pattern using the SQL standard's definition of aregular
expression. SQL regular expressions are a curious cross between LI KE notation and common (POSIX)
regular expression notation.

Like LI KE, the SI M LAR TO operator succeeds only if its pattern matches the entire string; this is
unlike common regular expression behavior where the pattern can match any part of the string. Also like
LI KE, SI M LAR TOuses _ and %as wildcard characters denoting any single character and any string,
respectively (these are comparableto. and. * in POSIX regular expressions).

In addition to these facilities borrowed from LI KE, SI M LAR TO supports these pattern-matching
metacharacters borrowed from POSI X regular expressions:

* | denotes alternation (either of two aternatives).
» * denotes repetition of the previous item zero or more times.
» + denotes repetition of the previous item one or more times.

 ? denotes repetition of the previous item zero or onetime.

{n} denotes repetition of the previousitem exactly mtimes.
* {m} denotes repetition of the previous item mor more times.

* {m n} denotesrepetition of the previousitem at least mand not more than n times.

Parentheses () can be used to group itemsinto asingle logical item.
» A bracket expression|[. . .] specifiesacharacter class, just asin POSIX regular expressions.
Notice that the period (.) is not a metacharacter for SI M LAR TO.

Aswith LI KE, abackslash disablesthe special meaning of any of these metacharacters. A different escape
character can be specified with ESCAPE, or the escape capability can be disabled by writing ESCAPE ' ' .

According to the SQL standard, omitting ESCAPE means there is no escape character (rather than
defaulting to a backslash), and a zero-length ESCAPE value is disallowed. PostgreSQL 's behavior in this
regard is therefore slightly nonstandard.

Another nonstandard extension is that following the escape character with aletter or digit provides access
to the escape sequences defined for POSI X regular expressions; see Table 9.20, Table9.21, and Table 9.22
below.

Some examples:

"abc' SIMLAR TO 'abc’ true
"abc' SIMLAR TO'a' fal se
"abc' SIMLAR TO '%b|d)% true

250

Functions and Operators

9.7.3.

"abc’ SIMLAR TO ' (b]c)% fal se
'-abc-' SIMLAR TO ' % nabc\ M4 true
' xabcy' SIMLAR TO ' % mabc\ M4 fal se

Thesubst ri ng function with three parameters provides extraction of a substring that matches an SQL
regular expression pattern. The function can be written according to SQL 99 syntax:

substring(string frompattern for escape-character)

or as a plain three-argument function:

substring(string, pattern, escape-character)

Aswith SI M LAR TQ, the specified pattern must match the entire data string, or else the function fails
and returns null. To indicate the part of the pattern for which the matching data sub-string is of interest,
the pattern should contain two occurrences of the escape character followed by a double quote (*). The
text matching the portion of the pattern between these separatorsis returned when the match is successful.

The escape-double-quote separators actually divide subst r i ng's pattern into three independent regular
expressions; for example, avertical bar (|) in any of the three sections affects only that section. Also, the
first and third of these regular expressions are defined to match the smallest possible amount of text, not
the largest, when there is any ambiguity about how much of the data string matches which pattern. (In
POSIX parlance, the first and third regular expressions are forced to be non-greedy.)

As an extension to the SQL standard, PostgreSQL allows there to be just one escape-double-quote

separator, in which case the third regular expression is taken as empty; or no separators, in which case the
first and third regular expressions are taken as empty.

Some examples, with #" delimiting the return string:

substring(' foobar' from' %" o _b#'% for '#') oob
substring(' foobar' from'#"'o_b#'% for '#') NULL

POSIX Regular Expressions
Table 9.16 lists the available operators for pattern matching using POSIX regular expressions.

Table 9.16. Regular Expression Match Operators

Operator
Description
Example(s)

text ~text - bool ean
String matches regular expression, case sensitively
"thomas' ~ 't.*ma' -t

text ~* text - bool ean
String matches regular expression, case insensitively
"thomas' ~* 'T.*ma' -t

text | ~text - bool ean

251

Functions and Operators

Operator
Description
Example(s)
String does not match regular expression, case sensitively
"thomas' !~ "t.*max' -t

text ! ~* text - bool ean
String does not match regular expression, case insensitively

"thomas' !'~* 'T.*ma' - f

POSIX regular expressions provide a more powerful means for pattern matching than the LI KE and
SI M LAR TOoperators. Many Unix toolssuch asegr ep, sed, or awk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (aregular
set). A string is said to match a regular expression if it is a member of the regular set described by the
regular expression. Aswith LI KE, pattern characters match string characters exactly unlessthey are special
characters in the regular expression language — but regular expressions use different specia characters
than LI KE does. Unlike L1 KE patterns, aregular expression isallowed to match anywhere within astring,
unless the regular expression is explicitly anchored to the beginning or end of the string.

Some examples:

"abcd' ~ 'bc' true

"abcd' ~ 'a.c' true —dot matches any character

"abcd' ~ 'a.*d' true —* repeats the preceding pattern item
"abcd' ~ '(b|x)" true —| neans OR, parentheses group

"abcd' ~ '7a’ true —” anchors to start of string

"abcd' ~ '"~(b|c)' false —would match except for anchoring

The POSIX pattern language is described in much greater detail below.

The subst ri ng function with two parameters, substri ng(string from pattern), provides
extraction of a substring that matches a POSIX regular expression pattern. It returns null if there is no
match, otherwise the first portion of the text that matched the pattern. But if the pattern contains any
parentheses, the portion of the text that matched the first parenthesized subexpression (the one whose left
parenthesis comes first) is returned. Y ou can put parentheses around the whole expression if you want to
use parentheses within it without triggering this exception. If you need parentheses in the pattern before
the subexpression you want to extract, see the non-capturing parentheses described below.

Some examples:

substring(' foobar' from'o.b") oob
substring(' foobar' from'o(.)b") o]

The r egexp_r epl ace function provides substitution of new text for substrings that match POSIX
regular expression patterns. It hasthe syntax r egexp_r epl ace(sour ce,pattern,repl acenent

[, fl ags]). The sour ce string is returned unchanged if there is no match to the pat t er n. If there
is a match, the sour ce string is returned with the r epl acenent string substituted for the matching
substring. Ther epl acenent string can contain \ n, where n is 1 through 9, to indicate that the source
substring matching the n'th parenthesized subexpression of the pattern should be inserted, and it can
contain \ & to indicate that the substring matching the entire pattern should be inserted. Write \ \ if you

252

Functions and Operators

need to put a literal backslash in the replacement text. The f | ags parameter is an optional text string
containing zero or more single-letter flags that change the function's behavior. Flag i specifies case-
insensitive matching, while flag g specifies replacement of each matching substring rather than only the
first one. Supported flags (though not g) are described in Table 9.24.

Some examples:

regexp_replace(' foobarbaz', 'b.."', 'X)

f ooxbaz
regexp_replace(' foobarbaz', 'b..", "X, 'g")

f ooXX
regexp_replace(' foobarbaz', "b(..)', "X\1Y', 'g")

f ooXar YXazY

Ther egexp_mat ch function returns atext array of captured substring(s) resulting from the first match
of aPOSIX regular expression patternto astring. It hasthe syntax r egexp_mat ch(stri ng,pattern
[, f1 ags]). If there is no match, the result is NULL. If a match is found, and the pat t er n contains
no parenthesized subexpressions, then the result is a single-element text array containing the substring
matching the whole pattern. If amatch isfound, and thepat t er n contains parenthesized subexpressions,
then the result is a text array whose n'th element is the substring matching the n'th parenthesized
subexpression of the patt er n (not counting “non-capturing” parentheses; see below for details). The
f | ags parameter is an optional text string containing zero or more single-letter flags that change the
function's behavior. Supported flags are described in Table 9.24.

Some examples:

SELECT regexp_mat ch(' f oobar bequebaz',
regexp_natch

{barbeque}
(1 row

bar. *que');

SELECT regexp_mat ch(' f oobar bequebaz', ' (bar) (beque)');
regexp_natch
{bar, beque}

(1 row

In the common case where you just want the whole matching substring or NULL for no match, write
something like

SELECT (regexp_match(' foobarbequebaz', 'bar.*que'))[1];
regexp_nat ch

bar beque

(1 row)

The r egexp_nat ches function returns a set of text arrays of captured substring(s) resulting from
matching aPOSIX regular expression pattern to astring. It hasthe same syntax asr egexp_mat ch. This
function returns no rows if there is no match, one row if there is a match and the g flag is not given, or
N rows if there are N matches and the g flag is given. Each returned row is a text array containing the
whole matched substring or the substrings matching parenthesized subexpressions of the pat t er n, just

253

Functions and Operators

as described above for r egexp_mat ch.r egexp_mat ches acceptsal the flags shown in Table 9.24,
plus the g flag which commandsit to return all matches, not just the first one.

Some examples:

SELECT regexp_matches('foo', 'not there');
regexp_mat ches

SELECT regexp_mat ches(' f oobar bequebazi | barf bonk', ' (b[”b]+)(b[”~b]+)",
'9');
regexp_mat ches

{bar, beque}
{bazil, barf}
(2 rows)

Tip

Inmost casesr egexp_nmat ches() should beused withtheg flag, sinceif you only want thefirst
match, it's easier and more efficient to user egexp_mat ch() . However, r egexp_mnat ch()
only existsin PostgreSQL version 10 and up. When working in older versions, acommon trick is
toplacear egexp_mat ches() cal inasub-select, for example:

SELECT col 1, (SELECT regexp_matches(col 2, ' (bar)(beque)')) FROM
t ab;

This produces a text array if there's a match, or NULL if not, the same as r egexp_mat ch()
would do. Without the sub-select, this query would produce no output at all for table rows without
amatch, which istypically not the desired behavior.

Theregexp_split_to_tabl e function splits a string using a POSIX regular expression pattern as
adelimiter. It hasthe syntax r egexp_spl it _to_tabl e(string,pattern[,fl ags]).If thereis
no match to the pat t er n, thefunction returnsthe st r i ng. If thereisat least one match, for each match
it returns the text from the end of the last match (or the beginning of the string) to the beginning of the
match. When there are no more matches, it returns the text from the end of the last match to the end of
the string. Thef | ags parameter is an optional text string containing zero or more single-letter flags that
changethefunction'sbehavior.r egexp_spl it _t o_t abl e supportstheflagsdescribed in Table 9.24.

The regexp_split_to_array function behaves the same as regexp_split_to_tabl e,
except that regexp_split_to_array returns its result as an array of t ext . It has the syntax
regexp_split_to_array(string, pattern [, fl ags]). The parameters are the same as for
regexp_split_to_table.

Some examples:

SELECT foo FROM regexp_split_to_table('the quick brown fox junps over
the lazy dog', '\s+') AS foo;

254

Functions and Operators

SELECT regexp_split_to_array('the quick brown fox junps over the |azy
dog', '\s+');
regexp_split_to_array
{t he, qui ck, br own, f ox, j unps, over, t he, | azy, dog}

(1 row

SELECT foo FROM regexp_split_to_table('the quick brown fox', "\s*') AS
f oo;

Asthelast example demonstrates, the regexp split functions ignore zero-length matches that occur at the
start or end of the string or immediately after a previous match. Thisis contrary to the strict definition of
regexp matching that is implemented by r egexp_nat ch and r egexp_mat ches, but is usualy the
most convenient behavior in practice. Other software systems such as Perl use similar definitions.

9.7.3.1. Regular Expression Details

PostgreSQL 's regular expressions are implemented using a software package written by Henry Spencer.
Much of the description of regular expressions below is copied verbatim from his manual.

Regular expressions (REs), as defined in POSIX 1003.2, come in two forms. extended REs or ERES
(roughly those of egr ep), and basic REs or BREs (roughly those of ed). PostgreSQL supports both

255

Functions and Operators

forms, and a so implements some extensions that are not in the POSI X standard, but have become widely
used due to their availability in programming languages such as Perl and Tcl. REs using these non-POSI X
extensions are called advanced REs or ARES in this documentation. ARES are amost an exact superset
of EREs, but BRES have several notational incompatibilities (as well as being much more limited). We
first describe the ARE and ERE forms, noting features that apply only to AREs, and then describe how
BREs differ.

Note

PostgreSQL always initially presumes that a regular expression follows the ARE rules. However,
the more limited ERE or BRE rules can be chosen by prepending an embedded option to the RE
pattern, as described in Section 9.7.3.4. This can be useful for compatibility with applications that
expect exactly the POSIX 1003.2 rules.

A regular expression is defined as one or more branches, separated by | . It matches anything that matches
one of the branches.

A branch is zero or more quantified atoms or constraints, concatenated. It matches a match for the first,
followed by a match for the second, etc; an empty branch matches the empty string.

A gquantified atom is an atom possibly followed by a single quantifier. Without a quantifier, it matches a
match for the atom. With a quantifier, it can match some number of matches of the atom. An atom can
be any of the possibilities shown in Table 9.17. The possible quantifiers and their meanings are shown
in Table 9.18.

A constraint matches an empty string, but matches only when specific conditions are met. A constraint can

be used where an atom could be used, except it cannot be followed by a quantifier. The simple constraints
are shown in Table 9.19; some more constraints are described later.

Table 9.17. Regular Expression Atoms

Atom Description

(re) (wherer e isany regular expression) matches a
match for r e, with the match noted for possible
reporting

(?:re) as above, but the match is not noted for reporting

(a“non-capturing” set of parentheses) (AREs only)

matches any single character

[char s] abracket expression, matching any one of the
char s (see Section 9.7.3.2 for more detail)
where k is a non-alphanumeric character) matches
\ k (wherek i aph icch) h

that character taken as an ordinary character, e.g.,
\'\ matches a backslash character

\c where ¢ is aphanumeric (possibly followed by
other characters) is an escape, see Section 9.7.3.3
(AREs only; in EREs and BRES, this matches c)

{ when followed by a character other than a digit,
matches the | eft-brace character { ; when followed
by adigit, it isthe beginning of abound (see
below)

256

Functions and Operators

Atom

Description

where x isasingle character with no other
significance, matches that character

An RE cannot end with abackslash (\).

Note

If you have standard_conforming_strings turned off, any backslashes you write in literal string
constants will need to be doubled. See Section 4.1.2.1 for more information.

Table 9.18. Regular Expression Quantifiers

Quantifier Matches

* a sequence of 0 or more matches of the atom

+ a sequence of 1 or more matches of the atom

? a sequence of 0 or 1 matches of the atom

{n} a sequence of exactly mmatches of the atom

{m} a sequence of mor more matches of the atom

{m n} a sequence of mthrough n (inclusive) matches of
the atom; mcannot exceed n

*? non-greedy version of *

+? non-greedy version of +

?? non-greedy version of ?

{m? non-greedy version of { n}

{m}? non-greedy version of { m }

{mn}? non-greedy version of { m n}

Theformsusing{ . . . } areknown as bounds. The numbers mand n within abound are unsigned decimal
integers with permissible values from 0 to 255 inclusive.

Non-greedy quantifiers (available in AREs only) match the same possibilities as their corresponding
normal (greedy) counterparts, but prefer the smallest number rather than the largest number of matches.

See Section 9.7.3.5 for more detail.

Note

A quantifier cannot immediately follow another quantifier, e.g., * * isinvalid. A quantifier cannot
begin an expression or subexpression or follow ” or | .

Table 9.19. Regular Expression Constraints

Constraint

Description

AN

matches at the beginning of the string

257

Functions and Operators

Constraint Description
$ matches at the end of the string
(?=re) positive lookahead matches at any point where a

substring matching r e begins (AREs only)

(?'re) negative |lookahead matches at any point where no
substring matching r e begins (AREs only)

(?<=re) positive lookbehind matches at any point where a
substring matching r e ends (AREs only)

(?<!re) negative |ookbehind matches at any point where no
substring matching r e ends (AREs only)

Lookahead and lookbehind constraints cannot contain back references (see Section 9.7.3.3), and all
parentheses within them are considered non-capturing.

9.7.3.2. Bracket Expressions

A bracket expressionisalist of charactersenclosed in[] . It normally matches any single character from
thelist (but see below). If thelist beginswith#, it matches any single character not from therest of thelist.
If two charactersin the list are separated by - , this is shorthand for the full range of characters between
those two (inclusive) in the collating sequence, e.g., [0- 9] in ASCII matches any decimal digit. It is
illegal for two ranges to share an endpoint, e.g., a- c- e. Ranges are very collating-sequence-dependent,
so portable programs should avoid relying on them.

Toinclude aliteral] in thelist, make it the first character (after ~, if that is used). To include alitera -,
make it thefirst or last character, or the second endpoint of arange. To usealiteral - asthefirst endpoint
of arange, encloseitin[. and.] tomakeit acollating element (see below). With the exception of these
characters, some combinations using [(see next paragraphs), and escapes (AREs only), all other special
characters lose their special significance within a bracket expression. In particular, \ is not special when
following ERE or BRE rules, though it is special (as introducing an escape) in ARES.

Within a bracket expression, a collating element (a character, a multiple-character sequence that collates
asif it were a single character, or a collating-sequence name for either) enclosed in[. and .] stands
for the sequence of characters of that collating element. The sequence is treated as a single element of
the bracket expression's list. This allows a bracket expression containing a multiple-character collating
element to match more than one character, e.g., if the collating sequence includes ach collating element,
thenthe RE[[. ch.]] * c matchesthefirst five characters of chchcc.

Note

PostgreSQL currently does not support multi-character collating elements. This information
describes possible future behavior.

Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class, standing
for the sequences of characters of all collating elements equivalent to that one, including itself. (If there
are no other equivalent collating elements, the treatment isasif the enclosing delimiterswere[. and.] .)
For example, if o and~ are the members of an equivalenceclass, then[[=0=]],[[="=]],and [0"]
are al synonymous. An equivalence class cannot be an endpoint of arange.

Within a bracket expression, the name of a character classenclosed in[: and:] standsfor thelist of all
characters belonging to that class. A character class cannot be used as an endpoint of arange. The POSIX

258

Functions and Operators

standard definesthese character class names: al num(lettersand numeric digits), al pha (letters), bl ank
(spaceandtab), cnt r | (control characters), di gi t (numeric digits), gr aph (printable characters except
space), | ower (lower-case letters), pri nt (printable charactersincluding space), punct (punctuation),
space (any white space), upper (upper-case letters), and xdi gi t (hexadecimal digits). The behavior
of these standard character classesis generally consistent across platformsfor charactersin the 7-bit ASCI|
set. Whether a given non-ASCII character is considered to belong to one of these classes depends on the
collation that is used for the regular-expression function or operator (see Section 23.2), or by default onthe
database’'s LC_CTYPE locale setting (see Section 23.1). The classification of non-ASCII characters can
vary across platforms even in similarly-named locales. (But the C locale never considers any non-ASCI|
characters to belong to any of these classes.) In addition to these standard character classes, PostgreSQL
definestheasci i character class, which contains exactly the 7-bit ASCI| set.

There are two special cases of bracket expressions: the bracket expressions[[: <:]] and[[:>:]] are
constraints, matching empty strings at the beginning and end of aword respectively. A word is defined as
a sequence of word characters that is neither preceded nor followed by word characters. A word character
isan al numcharacter (as defined by the POSIX character class described above) or an underscore. This
is an extension, compatible with but not specified by POSIX 1003.2, and should be used with caution
in software intended to be portable to other systems. The constraint escapes described below are usually
preferable; they are no more standard, but are easier to type.

9.7.3.3. Regular Expression Escapes

Escapes are special sequences beginning with\ followed by an al phanumeric character. Escapes comein
several varieties: character entry, class shorthands, constraint escapes, and back references. A\ followed
by an aphanumeric character but not constituting avalid escapeisillegal in AREs. In EREs, there are no
escapes. outside a bracket expression, a\ followed by an aphanumeric character merely stands for that
character as an ordinary character, and inside a bracket expression, \ isan ordinary character. (The latter
is the one actual incompatibility between EREs and ARES.)

Character-entry escapes exist to make it easier to specify non-printing and other inconvenient characters
in REs. They are shown in Table 9.20.

Class-shorthand escapes provide shorthandsfor certain commonly-used character classes. They are shown
in Table9.21.

A constraint escape is a constraint, matching the empty string if specific conditions are met, written as
an escape. They are shown in Table 9.22.

A back reference (\ n) matches the same string matched by the previous parenthesized subexpression
specified by the number n (see Table 9.23). For example, ([bc])\ 1 matches bb or cc but not bc or
ch. The subexpression must entirely precede the back reference in the RE. Subexpressions are numbered
in the order of their leading parentheses. Non-capturing parentheses do not define subexpressions.

Table 9.20. Regular Expression Character-Entry Escapes

Escape Description

\a aert (bell) character, asin C

\b backspace, asin C

\B synonym for backslash (\) to help reduce the need
for backslash doubling

\cX (where X is any character) the character whose
low-order 5 bits are the same as those of X, and
whose other bitsare all zero

259

Functions and Operators

Escape Description

\e the character whose collating-sequence nameis
ESC, or failing that, the character with octal value
033

\ f formfeed, asin C

\n newling, asin C

\r carriage return, asin C

\'t horizontal tab, asin C

\ uwxyz (wherewxyz is exactly four hexadecimal digits)
the character whose hexadecimal value is Oxwxy z

\ Ust uvwxyz (where st uvwxyz isexactly eight hexadecimal
digits) the character whose hexadecimal value is
Oxst uvwxyz

\'v vertical tab, asinC

\ xhhh (where hhh is any sequence of hexadecimal
digits) the character whose hexadecimal valueis
Oxhhh (asingle character no matter how many
hexadecimal digits are used)

\0 the character whose value is 0 (the null byte)

\ xy (where xy is exactly two octal digits, and isnot a
back reference) the character whose octal valueis
Oxy

\ xyz (where xyz is exactly three octal digits, and is not
aback reference) the character whose octal value
isOxyz

Hexadecimal digitsare 0-9, a-f , and A-F. Octal digitsare 0-7.

Numeric character-entry escapes specifying values outside the ASCII range (0-127) have meanings
dependent on the database encoding. When the encoding isUTF-8, escape val ues are equivalent to Unicode
code points, for example\ ul1234 meansthe character U+1234. For other multibyte encodings, character-
entry escapes usually just specify the concatenation of the byte valuesfor the character. If the escape value
does not correspond to any legal character in the database encoding, no error will be raised, but it will
never match any data.

The character-entry escapes are always taken as ordinary characters. For example, \ 135 is] in ASCII,
but \ 135 does not terminate a bracket expression.

Table 9.21. Regular Expression Class-Shorthand Escapes

Escape Description

\d [[:digit:]]

\'s [[:space:]]

\'w [[:al num] _] (noteunderscoreisincluded)
\D [~M:digit:]]

\'S [~ :space:]]

\'W [~ :al num] _] (noteunderscoreisincluded)

260

Functions and Operators

Within bracket expressions, \ d, \' s, and \ w lose their outer brackets, and \ D, \ S, and \ Ware illegal.
(So, for example, [a- c\ d] isequivalentto[a-c[:digit:]].Also,[a-c\D],whichisequivaent
to[a-cM[:digit:]],isillegal.)

Table 9.22. Regular Expression Constraint Escapes

Escape Description

VA matches only at the beginning of the string (see
Section 9.7.3.5 for how this differsfrom *)

\'m matches only at the beginning of aword

\M matches only at the end of aword

\y matches only at the beginning or end of aword

\'Y matches only at a point that is not the beginning or
end of aword

\Z matches only at the end of the string (see
Section 9.7.3.5 for how this differs from $)

A word isdefined asinthe specificationof [[: <:]] and[[: >:]] above. Constraint escapesareillegal
within bracket expressions.

Table 9.23. Regular Expression Back References

Escape Description

\'m (where mis anonzero digit) a back reference to the
nith subexpression

\'mn (where misanonzero digit, and nn is some
more digits, and the decimal value rmn is not
greater than the number of closing capturing
parentheses seen so far) a back reference to the
mmn'th subexpression

Note

Thereis an inherent ambiguity between octal character-entry escapes and back references, which
isresolved by the following heuristics, as hinted at above. A leading zero alwaysindicates an octal
escape. A single non-zero digit, not followed by another digit, is always taken as a back reference.
A multi-digit sequence not starting with a zero is taken as a back reference if it comes after a
suitable subexpression (i.e., the number isin the legal range for a back reference), and otherwise
istaken as octal.

9.7.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous syntactic
facilities available.

An RE can begin with one of two special director prefixes. If an RE begins with ***: | the rest of the
RE istaken as an ARE. (This normally has no effect in PostgreSQL, since RESs are assumed to be AREs;
but it does have an effect if ERE or BRE mode had been specified by the f | ags parameter to a regex

261

Functions and Operators

function.) If an RE beginswith * * * =, the rest of the RE is taken to be a literal string, with all characters
considered ordinary characters.

An ARE can begin with embedded options: a sequence (?xyz) (where xyz is one or more a phabetic
characters) specifiesoptions affecting therest of the RE. These options override any previously determined
options — in particular, they can override the case-sensitivity behavior implied by a regex operator, or
thef | ags parameter to aregex function. The available option letters are shown in Table 9.24. Note that
these same option lettersare used in the f | ags parameters of regex functions.

Table9.24. ARE Embedded-Option Letters

Option Description

b rest of REisaBRE

c case-sensitive matching (overrides operator type)

e rest of RE isan ERE

i case-insensitive matching (see Section 9.7.3.5)
(overrides operator type)

m historical synonym for n

n newline-sensitive matching (see Section 9.7.3.5)

p partial newline-sensitive matching (see
Section 9.7.3.5)

q rest of RE isaliteral (“quoted”) string, all ordinary
characters

s non-newline-sensitive matching (default)

t tight syntax (default; see below)

w inverse partial newline-sensitive (“weird”)
matching (see Section 9.7.3.5)

X expanded syntax (see below)

Embedded options take effect at the) terminating the sequence. They can appear only at the start of an
ARE (after the***: director if any).

In addition to the usua (tight) RE syntax, in which all characters are significant, there is an expanded
syntax, available by specifying the embedded x option. In the expanded syntax, white-space charactersin
the RE are ignored, as are all characters between a # and the following newline (or the end of the RE).
This permits paragraphing and commenting a complex RE. There are three exceptions to that basic rule;

» awhite-space character or # preceded by \ isretained
 white space or # within a bracket expression is retained
* white space and comments cannot appear within multi-character symbols, such as (?:

For this purpose, white-space characters are blank, tab, newline, and any character that belongs to the
space character class.

Finally, in an ARE, outside bracket expressions, the sequence (?#ttt) (wherettt isany text not
containing a)) is a comment, completely ignored. Again, thisis not allowed between the characters of
multi-character symbols, like (?: . Such comments are more ahistorical artifact than auseful facility, and
their use is deprecated; use the expanded syntax instead.

262

Functions and Operators

None of these metasyntax extensions is available if an initial * ** = director has specified that the user's
input be treated as a literal string rather than as an RE.

9.7.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the one
starting earliest in the string. If the RE could match more than one substring starting at that point, either
the longest possible match or the shortest possible match will be taken, depending on whether the RE is
greedy or non-greedy.

Whether an RE is greedy or not is determined by the following rules:

* Most atoms, and all constraints, have no greediness attribute (because they cannot match variable
amounts of text anyway).

» Adding parentheses around an RE does not change its greediness.

* A quantified atom with a fixed-repetition quantifier ({ n} or { n} ?) has the same greediness (possibly
none) as the atom itself.

¢ A quantified atom with other normal quantifiers (including{ m n} with mequal to n) isgreedy (prefers
longest match).

» A quantified atom with a non-greedy quantifier (including { m n} ? with mequal to n) is non-greedy
(prefers shortest match).

» A branch — that is, an RE that has no top-level | operator — has the same greediness as the first
quantified atom in it that has a greediness attribute.

» An RE consisting of two or more branches connected by the | operator is aways greedy.

Theaboverulesassociate greediness attributes not only with individual quantified atoms, but with branches
and entire REs that contain quantified atoms. What that means is that the matching is done in such away
that the branch, or whole RE, matchesthe longest or shortest possible substring asa whole. Oncethe length
of the entire match is determined, the part of it that matches any particular subexpression is determined
on the basis of the greediness attribute of that subexpression, with subexpressions starting earlier in the
RE taking priority over ones starting later.

An example of what this means:

SELECT SUBSTRI NG&(' XY1234Z', '"Y*([0-9]{1,3})");

Result: 123
SELECT SUBSTRI NG(' XY1234Z', 'Y*?([0-9]{1,3})");
Result: 1

Inthefirst case, the RE asawholeis greedy because Y* isgreedy. It can match beginning at the Y, and it
matches the longest possible string starting there, i.e., Y123. The output is the parenthesized part of that,
or 123. In the second case, the RE as a whole is non-greedy because Y* ? is non-greedy. It can match
beginning at the Y, and it matches the shortest possible string starting there, i.e., Y1. The subexpression
[0-9] {1, 3} isgreedy but it cannot change the decision as to the overall match length; so it is forced
to match just 1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is either
aslong aspossibleor as short as possibl e, according to the attribute assigned to thewhole RE. The attributes
assigned to the subexpressions only affect how much of that match they are allowed to “eat” relative to
each other.

263

Functions and Operators

The quantifiers{ 1, 1} and{ 1, 1} ? can be used to force greediness or non-greediness, respectively, on
a subexpression or awhole RE. Thisis useful when you need the whole RE to have a greediness attribute
different from what's deduced from its elements. As an example, suppose that we are trying to separate
a string containing some digits into the digits and the parts before and after them. We might try to do
that like this:

SELECT regexp_match('abc01234xyz', '(.*)(\d+)(.*)");
Resul t: {abc0123, 4, xyz}

That didn't work: thefirst . * isgreedy so it “eats’ as much asit can, leaving the\ d+ to match at the last
possible place, the last digit. We might try to fix that by making it non-greedy:

SELECT regexp_mat ch(' abc01234xyz', '(.*?)(\d+)(.*)");
Result: {abc,0,""}

That didn't work either, because now the RE as awhole is non-greedy and so it ends the overall match as
soon as possible. We can get what we want by forcing the RE as awhole to be greedy:

SELECT regexp_match(' abc01234xyz', ' (?2:(.*?)(\d+)(.*)){1,1}");
Resul t: {abc, 01234, xyz}

Controlling the RE's overall greediness separately from its components' greediness allows great flexibility
in handling variable-length patterns.

When deciding what is alonger or shorter match, match lengths are measured in characters, not collating
elements. An empty string is considered longer than no match at al. For example: bb* matches the
three middle characters of abbbc; (week| wee) (ni ght | kni ght s) matches al ten characters of
weekni ght s; when (. *).* is matched against abc the parenthesized subexpression matches all
three characters; and when (a*) * is matched against bc both the whole RE and the parenthesized
subexpression match an empty string.

If case-independent matching is specified, the effect ismuch asif all case distinctions had vanished from
the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character outside a
bracket expression, it is effectively transformed into a bracket expression containing both cases, e.g., x
becomes [xX] . When it appears inside a bracket expression, all case counterparts of it are added to the
bracket expression, e.g., [X] becomes[xX] and[*x] becomes[*xX] .

If newline-sensitive matching is specified, . and bracket expressionsusing ™ will never match the newline
character (so that matches will never cross newlines unless the RE explicitly arranges it) and » and $
will match the empty string after and before a newline respectively, in addition to matching at beginning
and end of string respectively. But the ARE escapes\ A and \ Z continue to match beginning or end of
string only.

If partial newline-sensitive matching is specified, this affects. and bracket expressions as with newline-
sensitive matching, but not » and $.

If inverse partial newline-sensitive matching is specified, this affects * and $ as with newline-sensitive
matching, but not . and bracket expressions. Thisisn't very useful but is provided for symmetry.

9.7.3.6. Limits and Compatibility

No particular limit isimposed on thelength of REsin thisimplementation. However, programsintended to
be highly portable should not employ REs longer than 256 bytes, as a POSI X-compliant implementation
can refuse to accept such REs.

264

Functions and Operators

Theonly feature of AREsthat isactually incompatible with POSIX EREsisthat\ doesnot loseits special
significanceinside bracket expressions. All other ARE features use syntax whichisillegal or hasundefined
or unspecified effectsin POSIX EREs; the* * * syntax of directors likewise is outside the POSIX syntax
for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them up,
and a few Perl extensions are not present. Incompatibilities of note include \ b, \ B, the lack of special
treatment for atrailing newline, the addition of complemented bracket expressionsto the things affected by
newline-sensitive matching, the restrictions on parentheses and back references in |ookahead/| ookbehind
constraints, and the longest/shortest-match (rather than first-match) matching semantics.

Two significant incompatibilities exist between AREs and the ERE syntax recognized by pre-7.4 releases
of PostgreSQL:

* In AREs, \ followed by an aphanumeric character is either an escape or an error, while in previous
releases, it was just another way of writing the alphanumeric. This should not be much of a problem
because there was no reason to write such a sequence in earlier releases.

* INAREs, \ remains a special character within [], so aliteral \ within a bracket expression must be
written\ \ .

9.7.3.7. Basic Regular Expressions

BREs differ from EREs in several respects. In BREs, | , +, and ? are ordinary characters and there is no
equivaent for their functionality. The delimiters for boundsare\ { and\ }, with{ and} by themselves
ordinary characters. The parenthesesfor nested subexpressionsare\ (and\) ,with (and) by themselves
ordinary characters. ~ is an ordinary character except at the beginning of the RE or the beginning of
a parenthesized subexpression, $ is an ordinary character except at the end of the RE or the end of a
parenthesized subexpression, and * is an ordinary character if it appears at the beginning of the RE or
the beginning of a parenthesized subexpression (after a possible leading *). Finaly, single-digit back
referencesare available, and\ <and\ > aresynonymsfor[[: <:]] and[[: >:]] respectively; no other
escapes are available in BRES.

9.7.3.8. Differences from XQuery (LI KE_REGEX)

Since SQL:2008, the SQL standard includes a L1 KE_REGEX operator that performs pattern matching
according to the XQuery regular expression standard. PostgreSQL does not yet implement this operator,
but you can get very similar behavior using the r egexp_mat ch() function, since XQuery regular
expressions are quite close to the ARE syntax described above.

Notable differences between the existing POSIX-based regular-expression feature and XQuery regular
expressions include;

* XQuery character class subtraction is not supported. An example of this feature is using the following
to match only English consonants: [a- z- [aei ou]] .

» XQuery character class shorthands\ ¢,\ C,\'i ,and\ | are not supported.

e XQuery character class elements using \p{Uni codeProperty} or the inverse
\ P{ Uni codePr operty} arenot supported.

e POSIX interpretscharacter classes such as\ w(see Table9.21) according to the prevailing locale (which
you can control by attaching a COLLATE clause to the operator or function). XQuery specifies these
classes by reference to Unicode character properties, so equivalent behavior is obtained only with a
locale that follows the Unicode rules.

265

Functions and Operators

e The SQL standard (not XQuery itself) attempts to cater for more variants of “newline” than POSIX
does. The newline-sensitive matching options described above consider only ASCII NL (\ n) to be a
newline, but SQL would have ustreat CR (\ r), CRLF (\ r\ n) (a Windows-style newline), and some
Unicode-only characters like LINE SEPARATOR (U+2028) as newlines as well. Notably, . and\ s
should count \ r \ n as one character not two according to SQL.

» Of the character-entry escapes described in Table 9.20, XQuery supportsonly\ n,\ r,and\ t .
» XQuery does not support the[: nane:] syntax for character classes within bracket expressions.

» XQuery does not have lookahead or lookbehind constraints, nor any of the constraint escapes described
in Table 9.22.

* The metasyntax forms described in Section 9.7.3.4 do not exist in XQuery.

» Theregular expression flag |etters defined by X Query arerelated to but not the same asthe option letters
for POSIX (Table 9.24). Whilethei and g options behave the same, others do not:

e XQuery'ss (allow dot to match newline) and m(alow ~ and $ to match at newlines) flags provide
access to the same behaviors as POSIX's n, p and w flags, but they do not match the behavior of
POSIX's s and mflags. Notein particular that dot-matches-newline is the default behavior in POSIX
but not XQuery.

¢ XQuery'sx (ignore whitespace in pattern) flag is noticeably different from POSIX's expanded-mode
flag. POSIX's x flag also allows # to begin a comment in the pattern, and POSIX will not ignore a
whitespace character after a backslash.

9.8. Data Type Formatting Functions

The PostgreSQL formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted strings
to specific data types. Table 9.25 lists them. These functions al follow a common calling convention: the
first argument is the value to be formatted and the second argument is a template that defines the output
or input format.

Table 9.25. Formatting Functions

Function
Description
Example(s)

to_char (timestanp,text) - text

to_char (tinmestanp with time zone,text) - text
Converts time stamp to string according to the given format.
to_char(timestanp '2002-04-20 17:31:12.66', 'HH12:M:SS') -
05: 31: 12

to_char (interval,text) - text
Convertsinterval to string according to the given format.

to_char(interval '15h 2m 12s', 'HHR4:M:SS') - 15:02:12

to_char (nuneric_type,text) - text
Converts number to string according to the given format; available for i nt eger , bi gi nt,
nuneric,real ,doubl e preci sion.

to_char (125, '999') - 125

266

Functions and Operators

Function
Description
Example(s)
to_char(125.8::real, '999D9') - 125.8
to_char(-125.8, '999D99S) - 125. 80-

to date(text,text) - date
Converts string to date according to the given format.

to_date(' 05 Dec 2000', 'DD Mon YYYY') - 2000- 12- 05

to_nunber (text,text) - numeric
Converts string to numeric according to the given format.

to_number (' 12, 454.8-', ' 99G999D9S) - 12454. 8

to_tinestamp (text,text) - tinestanp with tinme zone
Converts string to time stamp according to the given format. (See also
to_tinestanp(doubl e precision) inTable9.32)
to_tinmestanp(' 05 Dec 2000', 'DD Mon YYYY') - 2000-12-05
00: 00: 00- 05

Tip
to_timestanpandt o_dat e exist to handle input formats that cannot be converted by ssmple
casting. For most standard date/time formats, simply casting the source string to the required

datatype works, and is much easier. Similarly, t o_nunber isunnecessary for standard numeric
representations.

Inato_char output template string, there are certain patterns that are recognized and replaced with
appropriately-formatted data based on the given value. Any text that is not a template pattern is simply
copied verbatim. Similarly, in an input template string (for the other functions), template patterns identify
the valuesto be supplied by the input data string. If there are charactersin the template string that are not
template patterns, the corresponding characters in the input data string are simply skipped over (whether
or not they are equal to the template string characters).

Table 9.26 shows the template patterns available for formatting date and time values.

Table 9.26. Template Patternsfor Date/Time Formatting

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

M minute (00-59)

SS second (00-59)

VB millisecond (000-999)

us microsecond (000000—-999999)
FF1 tenth of second (0-9)

FF2 hundredth of second (00-99)

267

Functions and Operators

Pattern Description

FF3 millisecond (000-999)

FF4 tenth of amillisecond (0000-9999)

FF5 hundredth of a millisecond (00000—99999)
FF6 microsecond (000000-999999)

SSSS, SSSSS seconds past midnight (0-86399)

AM am PMor pm

meridiem indicator (without periods)

AM,a.m,P.M orp.m

meridiem indicator (with periods)

Y, YYY year (4 or more digits) with comma

YYYY year (4 or more digits)

YYY last 3 digits of year

YY last 2 digits of year

Y last digit of year

I YYY I SO 8601 week-numbering year (4 or more digits)

1YY