
GnuTLS
Transport Layer Security Library for the GNU system

for version 3.3.29, 23 March 2015

Nikos Mavrogiannopoulos
Simon Josefsson (bugs@gnutls.org)

mailto:bugs@gnutls.org

This manual is last updated 23 March 2015 for version 3.3.29 of GnuTLS.

Copyright c© 2001-2013 Free Software Foundation, Inc.\\ Copyright c© 2001-2013 Nikos
Mavrogiannopoulos

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

i

Table of Contents

1 Preface . 1

2 Introduction to GnuTLS . 2
2.1 Downloading and installing . 2
2.2 Overview . 3

3 Introduction to TLS and DTLS 4
3.1 TLS layers . 4
3.2 The transport layer . 4
3.3 The TLS record protocol . 5

3.3.1 Encryption algorithms used in the record layer 5
3.3.2 Compression algorithms used in the record layer 7
3.3.3 Weaknesses and countermeasures . 7
3.3.4 On record padding . 7

3.4 The TLS alert protocol . 8
3.5 The TLS handshake protocol . 9

3.5.1 TLS ciphersuites . 9
3.5.2 Authentication . 10
3.5.3 Client authentication . 10
3.5.4 Resuming sessions . 10

3.6 TLS extensions . 10
3.6.1 Maximum fragment length negotiation . 10
3.6.2 Server name indication . 11
3.6.3 Session tickets . 11
3.6.4 HeartBeat . 11
3.6.5 Safe renegotiation . 12
3.6.6 OCSP status request . 13
3.6.7 SRTP . 14
3.6.8 Application Layer Protocol Negotiation (ALPN) 15

3.7 How to use TLS in application protocols . 15
3.7.1 Separate ports . 15
3.7.2 Upward negotiation . 16

3.8 On SSL 2 and older protocols . 17

4 Authentication methods . 18
4.1 Certificate authentication . 18

4.1.1 X.509 certificates . 19
4.1.1.1 X.509 certificate structure . 20
4.1.1.2 Importing an X.509 certificate . 23
4.1.1.3 X.509 distinguished names . 23
4.1.1.4 Accessing public and private keys . 25
4.1.1.5 Verifying X.509 certificate paths . 25

ii

4.1.1.6 Verifying a certificate in the context of TLS session . . 30
4.1.2 OpenPGP certificates . 31

4.1.2.1 OpenPGP certificate structure . 33
4.1.2.2 Verifying an OpenPGP certificate . 34
4.1.2.3 Verifying a certificate in the context of a TLS session

. 34
4.1.3 Advanced certificate verification . 35

4.1.3.1 Verifying a certificate using trust on first use
authentication . 35

4.1.3.2 Verifying a certificate using DANE (DNSSEC) 35
4.1.4 Digital signatures . 36

4.1.4.1 Trading security for interoperability 37
4.2 More on certificate authentication . 37

4.2.1 PKCS #10 certificate requests . 37
4.2.2 PKIX certificate revocation lists . 40
4.2.3 OCSP certificate status checking . 43
4.2.4 Managing encrypted keys . 48
4.2.5 Invoking certtool . 53
4.2.6 Invoking ocsptool . 63
4.2.7 Invoking danetool . 67

4.3 Shared-key and anonymous authentication . 71
4.3.1 SRP authentication . 71

4.3.1.1 Authentication using SRP . 71
4.3.1.2 Invoking srptool . 72

4.3.2 PSK authentication . 74
4.3.2.1 Authentication using PSK . 74
4.3.2.2 Invoking psktool . 75

4.3.3 Anonymous authentication . 76
4.4 Selecting an appropriate authentication method 77

4.4.1 Two peers with an out-of-band channel 77
4.4.2 Two peers without an out-of-band channel 77
4.4.3 Two peers and a trusted third party . 77

5 Hardware security modules and abstract key
types . 79

5.1 Abstract key types . 79
5.1.1 Public keys . 79
5.1.2 Private keys . 81
5.1.3 Operations . 83

5.2 Smart cards and HSMs . 85
5.2.1 Initialization . 86
5.2.2 Accessing objects that require a PIN . 87
5.2.3 Reading objects . 88
5.2.4 Writing objects . 91
5.2.5 Using a PKCS #11 token with TLS . 92
5.2.6 Invoking p11tool . 93

5.3 Trusted Platform Module (TPM) . 96
5.3.1 Keys in TPM . 96

iii

5.3.2 Key generation . 97
5.3.3 Using keys . 98
5.3.4 Invoking tpmtool . 99

6 How to use GnuTLS in applications 102
6.1 Introduction . 102

6.1.1 General idea . 102
6.1.2 Error handling . 103
6.1.3 Common types . 103
6.1.4 Debugging and auditing . 104
6.1.5 Thread safety . 104
6.1.6 Callback functions . 105

6.2 Preparation . 105
6.2.1 Headers . 105
6.2.2 Initialization . 106
6.2.3 Version check . 106
6.2.4 Building the source . 106

6.3 Session initialization . 107
6.4 Associating the credentials . 108

6.4.1 Certificates . 108
6.4.2 SRP . 113
6.4.3 PSK . 115
6.4.4 Anonymous . 116

6.5 Setting up the transport layer . 116
6.5.1 Asynchronous operation . 119
6.5.2 DTLS sessions . 120

6.6 TLS handshake . 121
6.7 Data transfer and termination . 122
6.8 Buffered data transfer . 125
6.9 Handling alerts . 125
6.10 Priority strings . 127
6.11 Selecting cryptographic key sizes . 132
6.12 Advanced topics . 134

6.12.1 Session resumption . 134
6.12.2 Certificate verification . 136

6.12.2.1 Trust on first use . 136
6.12.2.2 DANE verification . 138

6.12.3 Parameter generation . 139
6.12.4 Keying material exporters . 140
6.12.5 Channel bindings . 140
6.12.6 Interoperability . 141
6.12.7 Compatibility with the OpenSSL library 141

iv

7 GnuTLS application examples 143
7.1 Client examples . 143

7.1.1 Simple client example with X.509 certificate support 143
7.1.2 Simple client example with SSH-style certificate verification

. 147
7.1.3 Simple client example with anonymous authentication . . . 150
7.1.4 Simple datagram TLS client example . 152
7.1.5 Obtaining session information . 155
7.1.6 Using a callback to select the certificate to use 158
7.1.7 Verifying a certificate . 164
7.1.8 Using a smart card with TLS . 167
7.1.9 Client with resume capability example 171
7.1.10 Simple client example with SRP authentication 174
7.1.11 Simple client example using the C++ API 177
7.1.12 Helper functions for TCP connections 179
7.1.13 Helper functions for UDP connections 181

7.2 Server examples . 182
7.2.1 Echo server with X.509 authentication 182
7.2.2 Echo server with OpenPGP authentication 186
7.2.3 Echo server with SRP authentication . 190
7.2.4 Echo server with anonymous authentication 194
7.2.5 DTLS echo server with X.509 authentication 197

7.3 OCSP example . 207
7.4 Miscellaneous examples . 214

7.4.1 Checking for an alert . 214
7.4.2 X.509 certificate parsing example . 215
7.4.3 Listing the ciphersuites in a priority string 217
7.4.4 PKCS #12 structure generation example 219

7.5 XSSL examples . 222
7.5.1 Example client with X.509 certificate authentication 222
7.5.2 Example client with X.509 certificate authentication and

TOFU . 224

8 Using GnuTLS as a cryptographic library
. 227

8.1 Symmetric algorithms . 227
8.2 Public key algorithms . 227
8.3 Hash and HMAC functions . 227
8.4 Random number generation . 228

9 Other included programs . 229
9.1 Invoking gnutls-cli . 229
9.2 Invoking gnutls-serv . 234
9.3 Invoking gnutls-cli-debug . 238

v

10 Internal Architecture of GnuTLS 242
10.1 The TLS Protocol . 242
10.2 TLS Handshake Protocol . 242
10.3 TLS Authentication Methods . 243
10.4 TLS Extension Handling . 244
10.5 Cryptographic Backend . 250

Appendix A Upgrading from previous versions
. 253

Appendix B Support . 255
B.1 Getting Help . 255
B.2 Commercial Support . 255
B.3 Bug Reports . 255
B.4 Contributing . 256
B.5 Certification . 256

Appendix C Error Codes and Descriptions . . 258

Appendix D Supported Ciphersuites 265

Appendix E API reference . 271
E.1 Core TLS API . 271
E.2 High level TLS API . 351
E.3 Datagram TLS API . 351
E.4 X.509 certificate API . 354
E.5 OCSP API . 432
E.6 OpenPGP API . 442
E.7 PKCS 12 API . 462
E.8 Hardware token via PKCS 11 API . 468
E.9 TPM API . 480
E.10 Abstract key API . 482
E.11 DANE API . 506
E.12 Cryptographic API . 510
E.13 Compatibility API . 517

Appendix F Copying Information 527

Bibliography . 535

Function and Data Index . 539

Concept Index . 548

Chapter 1: Preface 1

1 Preface

This document demonstrates and explains the GnuTLS library API. A brief introduction to
the protocols and the technology involved is also included so that an application programmer
can better understand the GnuTLS purpose and actual offerings. Even if GnuTLS is a typical
library software, it operates over several security and cryptographic protocols which require
the programmer to make careful and correct usage of them. Otherwise it is likely to only
obtain a false sense of security. The term of security is very broad even if restricted to
computer software, and cannot be confined to a single cryptographic library. For that
reason, do not consider any program secure just because it uses GnuTLS; there are several
ways to compromise a program or a communication line and GnuTLS only helps with some
of them.

Although this document tries to be self contained, basic network programming and public
key infrastructure (PKI) knowledge is assumed in most of it. A good introduction to
networking can be found in [STEVENS], to public key infrastructure in [GUTPKI] and to
security engineering in [ANDERSON].

Updated versions of the GnuTLS software and this document will be available from http://

www.gnutls.org/.

http://www.gnutls.org/
http://www.gnutls.org/

Chapter 2: Introduction to GnuTLS 2

2 Introduction to GnuTLS

In brief GnuTLS can be described as a library which offers an API to access secure commu-
nication protocols. These protocols provide privacy over insecure lines, and were designed
to prevent eavesdropping, tampering, or message forgery.

Technically GnuTLS is a portable ANSI C based library which implements the protocols
ranging from SSL 3.0 to TLS 1.2 (see Chapter 3 [Introduction to TLS], page 4, for a detailed
description of the protocols), accompanied with the required framework for authentication
and public key infrastructure. Important features of the GnuTLS library include:

• Support for TLS 1.2, TLS 1.1, TLS 1.0 and SSL 3.0 protocols.

• Support for Datagram TLS 1.0 and 1.2.

• Support for handling and verification of X.509 and OpenPGP certificates.

• Support for password authentication using TLS-SRP.

• Support for keyed authentication using TLS-PSK.

• Support for TPM, PKCS #11 tokens and smart-cards.

The GnuTLS library consists of three independent parts, namely the “TLS protocol part”,
the “Certificate part”, and the “Cryptographic back-end” part. The “TLS protocol part” is
the actual protocol implementation, and is entirely implemented within the GnuTLS library.
The “Certificate part” consists of the certificate parsing, and verification functions and it
uses functionality from the libtasn1 library. The “Cryptographic back-end” is provided by
the nettle and gmplib libraries.

2.1 Downloading and installing

GnuTLS is available for download at: http://www.gnutls.org/download.html

GnuTLS uses a development cycle where even minor version numbers indicate a stable
release and a odd minor version number indicate a development release. For example,
GnuTLS 1.6.3 denote a stable release since 6 is even, and GnuTLS 1.7.11 denote a devel-
opment release since 7 is odd.

GnuTLS depends on nettle and gmplib, and you will need to install it before installing
GnuTLS. The nettle library is available from http://www.lysator.liu.se/~nisse/

nettle/, while gmplib is available from http://www.gmplib.org/. Don’t forget to verify
the cryptographic signature after downloading source code packages.

The package is then extracted, configured and built like many other packages that use
Autoconf. For detailed information on configuring and building it, refer to the INSTALL file
that is part of the distribution archive. Typically you invoke ./configure and then make

check install. There are a number of compile-time parameters, as discussed below.

Several parts of GnuTLS require ASN.1 functionality, which is provided by a library called
libtasn1. A copy of libtasn1 is included in GnuTLS. If you want to install it separately
(e.g., to make it possibly to use libtasn1 in other programs), you can get it from http://

www.gnu.org/software/libtasn1/.

The compression library, libz, the PKCS #11 helper library p11-kit, as well as the TPM
library trousers, are optional dependencies. You may get libz from http://www.zlib.

http://www.gnutls.org/download.html
http://www.lysator.liu.se/~nisse/nettle/
http://www.lysator.liu.se/~nisse/nettle/
http://www.gmplib.org/
http://www.gnu.org/software/libtasn1/
http://www.gnu.org/software/libtasn1/
http://www.zlib.net/

Chapter 2: Introduction to GnuTLS 3

net/, p11-kit from http://p11-glue.freedesktop.org/ and trousers from http://

trousers.sourceforge.net/.

A few configure options may be relevant, summarized below. They disable or enable
particular features, to create a smaller library with only the required features. Note however,
that although a smaller library is generated, the included programs are not guaranteed to
compile if some of these options are given.

--disable-srp-authentication

--disable-psk-authentication

--disable-anon-authentication

--disable-openpgp-authentication

--disable-dhe

--disable-ecdhe

--disable-openssl-compatibility

--disable-dtls-srtp-support

--disable-alpn-support

--disable-heartbeat-support

--disable-libdane

--without-p11-kit

--without-tpm

--without-zlib

For the complete list, refer to the output from configure --help.

2.2 Overview

In this document we present an overview of the supported security protocols in Chapter 3
[Introduction to TLS], page 4, and continue by providing more information on the certifi-
cate authentication in Section 4.1 [Certificate authentication], page 18, and shared-key as
well anonymous authentication in Section 4.3 [Shared-key and anonymous authentication],
page 71. We elaborate on certificate authentication by demonstrating advanced usage of
the API in Section 4.2 [More on certificate authentication], page 37. The core of the TLS
library is presented in Chapter 6 [How to use GnuTLS in applications], page 102 and ex-
ample applications are listed in Chapter 7 [GnuTLS application examples], page 143. In
Chapter 9 [Other included programs], page 229 the usage of few included programs that
may assist debugging is presented. The last chapter is Chapter 10 [Internal architecture of
GnuTLS], page 242 that provides a short introduction to GnuTLS’ internal architecture.

http://www.zlib.net/
http://www.zlib.net/
http://p11-glue.freedesktop.org/
http://trousers.sourceforge.net/
http://trousers.sourceforge.net/

Chapter 3: Introduction to TLS and DTLS 4

3 Introduction to TLS and DTLS

TLS stands for “Transport Layer Security” and is the successor of SSL, the Secure Sockets
Layer protocol [SSL3] designed by Netscape. TLS is an Internet protocol, defined by IETF1,
described in [RFC5246]. The protocol provides confidentiality, and authentication layers
over any reliable transport layer. The description, above, refers to TLS 1.0 but applies to
all other TLS versions as the differences between the protocols are not major.

The DTLS protocol, or “Datagram TLS” [RFC4347] is a protocol with identical goals as
TLS, but can operate under unreliable transport layers such as UDP. The discussions below
apply to this protocol as well, except when noted otherwise.

3.1 TLS layers

TLS is a layered protocol, and consists of the record protocol, the handshake protocol and
the alert protocol. The record protocol is to serve all other protocols and is above the
transport layer. The record protocol offers symmetric encryption, data authenticity, and
optionally compression. The alert protocol offers some signaling to the other protocols.
It can help informing the peer for the cause of failures and other error conditions. See
[The Alert Protocol], page 8, for more information. The alert protocol is above the record
protocol.

The handshake protocol is responsible for the security parameters’ negotiation, the initial
key exchange and authentication. See [The Handshake Protocol], page 9, for more informa-
tion about the handshake protocol. The protocol layering in TLS is shown in 〈undefined〉
[fig-tls-layers], page 〈undefined〉.

Transport Layer

TLS Record
Protocol

TLS Alert
Protocol

TLS Handshake
Protocol

Application
Protocol

Figure 3.1: The TLS protocol layers.

1 IETF, or Internet Engineering Task Force, is a large open international community of network designers,
operators, vendors, and researchers concerned with the evolution of the Internet architecture and the smooth
operation of the Internet. It is open to any interested individual.

Chapter 3: Introduction to TLS and DTLS 5

3.2 The transport layer

TLS is not limited to any transport layer and can be used above any transport layer,
as long as it is a reliable one. DTLS can be used over reliable and unreliable transport
layers. GnuTLS supports TCP and UDP layers transparently using the Berkeley sockets
API. However, any transport layer can be used by providing callbacks for GnuTLS to access
the transport layer (for details see Section 6.5 [Setting up the transport layer], page 116).

3.3 The TLS record protocol

The record protocol is the secure communications provider. Its purpose is to encrypt,
authenticate and —optionally— compress packets. The record layer functions can be called
at any time after the handshake process is finished, when there is need to receive or send
data. In DTLS however, due to re-transmission timers used in the handshake out-of-order
handshake data might be received for some time (maximum 60 seconds) after the handshake
process is finished.

The functions to access the record protocol are limited to send and receive functions, which
might, given the importance of this protocol in TLS, seem awkward. This is because the
record protocol’s parameters are all set by the handshake protocol. The record protocol
initially starts with NULL parameters, which means no encryption, and no MAC is used.
Encryption and authentication begin just after the handshake protocol has finished.

3.3.1 Encryption algorithms used in the record layer

Confidentiality in the record layer is achieved by using symmetric block encryption al-
gorithms like 3DES, AES or stream algorithms like ARCFOUR_128. Ciphers are encryption
algorithms that use a single, secret, key to encrypt and decrypt data. Block algorithms in
CBC mode also provide protection against statistical analysis of the data. Thus, if you’re
using the TLS protocol, a random number of blocks will be appended to data, to prevent
eavesdroppers from guessing the actual data size.

The supported in GnuTLS ciphers and MAC algorithms are shown in Table 3.1 and Table 3.2.

Chapter 3: Introduction to TLS and DTLS 6

Algorithm Description
3DES CBC This is the DES block cipher algorithm used with triple en-

cryption (EDE). Has 64 bits block size and is used in CBC
mode.

ARCFOUR 128 ARCFOUR 128 is a compatible algorithm with RSA’s RC4
algorithm, which is considered to be a trade secret. It is a
fast cipher but considered weak today.

AES CBC AES or RIJNDAEL is the block cipher algorithm that replaces
the old DES algorithm. Has 128 bits block size and is used in
CBC mode.

AES GCM This is the AES algorithm in the authenticated encryption
GCMmode. This mode combines message authentication and
encryption and can be extremely fast on CPUs that support
hardware acceleration.

CAMELLIA -
CBC

This is an 128-bit block cipher developed by Mitsubishi and
NTT. It is one of the approved ciphers of the European
NESSIE and Japanese CRYPTREC projects.

Table 3.1: Supported ciphers.

Algorithm Description
MAC MD5 This is an HMAC based on MD5 a cryptographic hash algo-

rithm designed by Ron Rivest. Outputs 128 bits of data.

MAC SHA1 An HMAC based on the SHA1 cryptographic hash algorithm
designed by NSA. Outputs 160 bits of data.

MAC SHA256 An HMAC based on SHA256. Outputs 256 bits of data.

MAC AEAD This indicates that an authenticated encryption algorithm,
such as GCM, is in use.

Table 3.2: Supported MAC algorithms.

3.3.2 Compression algorithms used in the record layer

The TLS record layer also supports compression. The algorithms implemented in GnuTLS

can be found in the table below. The included algorithms perform really good when text,
or other compressible data are to be transferred, but offer nothing on already compressed
data, such as compressed images, zipped archives etc. These compression algorithms, may

Chapter 3: Introduction to TLS and DTLS 7

be useful in high bandwidth TLS tunnels, and in cases where network usage has to be
minimized. It should be noted however that compression increases latency.

The record layer compression in GnuTLS is implemented based on [RFC3749]. The sup-
ported algorithms are shown below.

GNUTLS_COMP_UNKNOWN

Unknown compression method.

GNUTLS_COMP_NULL

The NULL compression method (no compression).

GNUTLS_COMP_DEFLATE

The DEFLATE compression method from zlib.

GNUTLS_COMP_ZLIB

Same as GNUTLS_COMP_DEFLATE .

Figure 3.2: Supported compression algorithms

Note that compression enables attacks such as traffic analysis, or even plaintext recovery
under certain circumstances. To avoid some of these attacks GnuTLS allows each record
to be compressed independently (i.e., stateless compression), by using the "%STATE-
LESS COMPRESSION" priority string, in order to be used in cases where the attacker
controlled data are pt in separate records.

3.3.3 Weaknesses and countermeasures

Some weaknesses that may affect the security of the record layer have been found in TLS

1.0 protocol. These weaknesses can be exploited by active attackers, and exploit the facts
that

1. TLS has separate alerts for “decryption failed” and “bad record mac”

2. The decryption failure reason can be detected by timing the response time.

3. The IV for CBC encrypted packets is the last block of the previous encrypted packet.

Those weaknesses were solved in TLS 1.1 [RFC4346] which is implemented in GnuTLS. For
this reason we suggest to always negotiate the highest supported TLS version with the
peer2. For a detailed discussion of the issues see the archives of the TLS Working Group
mailing list and [CBCATT].

3.3.4 On record padding

The TLS protocol allows for extra padding of records in CBC ciphers, to prevent statistical
analysis based on the length of exchanged messages (see [RFC5246] section 6.2.3.2).
GnuTLS appears to be one of few implementations that take advantage of this feature:
the user can provide some plaintext data with a range of lengths she wishes to hide, and
GnuTLS adds extra padding to make sure the attacker cannot tell the real plaintext
length is in a range smaller than the user-provided one. Use [gnutls record send range],
page 326 to send length-hidden messages and [gnutls record can use length hiding],
page 324 to check whether the current session supports length hiding. Using the standard
[gnutls record send], page 326 will only add minimal padding.

2 If this is not possible then please consult Section 6.12.6 [Interoperability], page 141.

Chapter 3: Introduction to TLS and DTLS 8

The TLS implementation in the Symbian operating system, frequently used by Nokia and
Sony-Ericsson mobile phones, cannot handle non-minimal record padding. What happens
when one of these clients handshake with a GnuTLS server is that the client will fail to
compute the correct MAC for the record. The client sends a TLS alert (bad_record_mac)
and disconnects. Typically this will result in error messages such as ’A TLS fatal alert has
been received’, ’Bad record MAC’, or both, on the GnuTLS server side.

If compatibility with such devices is a concern, not sending length-hidden messages solves
the problem by using minimal padding.

If you implement an application that has a configuration file, we recommend that you make
it possible for users or administrators to specify a GnuTLS protocol priority string, which
is used by your application via [gnutls priority set], page 318. To allow the best flexibility,
make it possible to have a different priority string for different incoming IP addresses.

3.4 The TLS alert protocol

The alert protocol is there to allow signals to be sent between peers. These signals are
mostly used to inform the peer about the cause of a protocol failure. Some of these signals
are used internally by the protocol and the application protocol does not have to cope with
them (e.g. GNUTLS_A_CLOSE_NOTIFY), and others refer to the application protocol solely
(e.g. GNUTLS_A_USER_CANCELLED). An alert signal includes a level indication which may be
either fatal or warning. Fatal alerts always terminate the current connection, and prevent
future re-negotiations using the current session ID. All alert messages are summarized in
the table below.

The alert messages are protected by the record protocol, thus the information that is in-
cluded does not leak. You must take extreme care for the alert information not to leak to
a possible attacker, via public log files etc.

Alert ID Description
GNUTLS A CLOSE NOTIFY 0 Close notify
GNUTLS A UNEXPECTED MESSAGE 10 Unexpected message
GNUTLS A BAD RECORD MAC 20 Bad record MAC
GNUTLS A DECRYPTION FAILED 21 Decryption failed
GNUTLS A RECORD OVERFLOW 22 Record overflow
GNUTLS A DECOMPRESSION FAILURE 30 Decompression failed
GNUTLS A HANDSHAKE FAILURE 40 Handshake failed
GNUTLS A SSL3 NO CERTIFICATE 41 No certificate (SSL 3.0)
GNUTLS A BAD CERTIFICATE 42 Certificate is bad
GNUTLS A UNSUPPORTED CERTIFICATE 43 Certificate is not

supported

GNUTLS A CERTIFICATE REVOKED 44 Certificate was revoked
GNUTLS A CERTIFICATE EXPIRED 45 Certificate is expired
GNUTLS A CERTIFICATE UNKNOWN 46 Unknown certificate
GNUTLS A ILLEGAL PARAMETER 47 Illegal parameter
GNUTLS A UNKNOWN CA 48 CA is unknown
GNUTLS A ACCESS DENIED 49 Access was denied
GNUTLS A DECODE ERROR 50 Decode error

Chapter 3: Introduction to TLS and DTLS 9

GNUTLS A DECRYPT ERROR 51 Decrypt error
GNUTLS A EXPORT RESTRICTION 60 Export restriction
GNUTLS A PROTOCOL VERSION 70 Error in protocol version
GNUTLS A INSUFFICIENT SECURITY 71 Insufficient security
GNUTLS A INTERNAL ERROR 80 Internal error
GNUTLS A USER CANCELED 90 User canceled
GNUTLS A NO RENEGOTIATION 100 No renegotiation is

allowed

GNUTLS A UNSUPPORTED EXTENSION 110 An unsupported exten-
sion was sent

GNUTLS A CERTIFICATE UNOBTAINABLE 111 Could not retrieve the
specified certificate

GNUTLS A UNRECOGNIZED NAME 112 The server name sent
was not recognized

GNUTLS A UNKNOWN PSK IDENTITY 115 The SRP/PSK username
is missing or not known

GNUTLS A NO APPLICATION PROTOCOL 120 No supported applica-
tion protocol could be
negotiated

3.5 The TLS handshake protocol

The handshake protocol is responsible for the ciphersuite negotiation, the initial key ex-
change, and the authentication of the two peers. This is fully controlled by the application
layer, thus your program has to set up the required parameters. The main handshake func-
tion is [gnutls handshake], page 303. In the next paragraphs we elaborate on the handshake
protocol, i.e., the ciphersuite negotiation.

3.5.1 TLS ciphersuites

The handshake protocol of TLS negotiates cipher suites of a special form illustrated by the
TLS_DHE_RSA_WITH_3DES_CBC_SHA cipher suite name. A typical cipher suite contains these
parameters:

• The key exchange algorithm. DHE_RSA in the example.

• The Symmetric encryption algorithm and mode 3DES_CBC in this example.

• The MAC3 algorithm used for authentication. MAC_SHA is used in the above example.

The cipher suite negotiated in the handshake protocol will affect the record protocol, by
enabling encryption and data authentication. Note that you should not over rely on TLS

to negotiate the strongest available cipher suite. Do not enable ciphers and algorithms that
you consider weak.

All the supported ciphersuites are listed in [ciphersuites], page 265.

3.5.2 Authentication

The key exchange algorithms of the TLS protocol offer authentication, which is a prerequisite
for a secure connection. The available authentication methods in GnuTLS follow.

3 MAC stands for Message Authentication Code. It can be described as a keyed hash algorithm. See RFC2104.

Chapter 3: Introduction to TLS and DTLS 10

• Certificate authentication: Authenticated key exchange using public key infrastructure
and certificates (X.509 or OpenPGP).

• SRP authentication: Authenticated key exchange using a password.

• PSK authentication: Authenticated key exchange using a pre-shared key.

• Anonymous authentication: Key exchange without peer authentication.

3.5.3 Client authentication

In the case of ciphersuites that use certificate authentication, the authentication of the
client is optional in TLS. A server may request a certificate from the client using the
[gnutls certificate server set request], page 278 function. We elaborate in Section 6.4.1
[Certificate credentials], page 108.

3.5.4 Resuming sessions

The TLS handshake process performs expensive calculations and a busy server might easily
be put under load. To reduce the load, session resumption may be used. This is a feature of
the TLS protocol which allows a client to connect to a server after a successful handshake,
without the expensive calculations. This is achieved by re-using the previously established
keys, meaning the server needs to store the state of established connections (unless session
tickets are used – Section 3.6.3 [Session tickets], page 11).

Session resumption is an integral part of GnuTLS, and Section 6.12.1 [Session resumption],
page 134, 〈undefined〉 [ex-resume-client], page 〈undefined〉 illustrate typical uses of it.

3.6 TLS extensions

A number of extensions to the TLS protocol have been proposed mainly in [TLSEXT]. The
extensions supported in GnuTLS are discussed in the subsections that follow.

3.6.1 Maximum fragment length negotiation

This extension allows a TLS implementation to negotiate a smaller value for record packet
maximum length. This extension may be useful to clients with constrained capabilities.
The functions shown below can be used to control this extension.

size_t [gnutls_record_get_max_size], page 325 (gnutls_session_t session)

ssize_t [gnutls_record_set_max_size], page 327 (gnutls_session_t session,

size_t size)

3.6.2 Server name indication

A common problem in HTTPS servers is the fact that the TLS protocol is not aware of the
hostname that a client connects to, when the handshake procedure begins. For that reason
the TLS server has no way to know which certificate to send.

This extension solves that problem within the TLS protocol, and allows a client to send
the HTTP hostname before the handshake begins within the first handshake packet. The
functions [gnutls server name set], page 330 and [gnutls server name get], page 329 can be
used to enable this extension, or to retrieve the name sent by a client.

Chapter 3: Introduction to TLS and DTLS 11

int [gnutls_server_name_set], page 330 (gnutls_session_t session,

gnutls_server_name_type_t type, const void * name, size_t name_length)

int [gnutls_server_name_get], page 329 (gnutls_session_t session, void *

data, size_t * data_length, unsigned int * type, unsigned int indx)

3.6.3 Session tickets

To resume a TLS session, the server normally stores session parameters. This complicates
deployment, and can be avoided by delegating the storage to the client. Because session
parameters are sensitive they are encrypted and authenticated with a key only known to
the server and then sent to the client. The Session Tickets extension is described in RFC
5077 [TLSTKT].

A disadvantage of session tickets is that they eliminate the effects of forward secrecy when a
server uses the same key for long time. That is, the secrecy of all sessions on a server using
tickets depends on the ticket key being kept secret. For that reason server keys should be
rotated and discarded regularly.

Since version 3.1.3 GnuTLS clients transparently support session tickets.

3.6.4 HeartBeat

This is a TLS extension that allows to ping and receive confirmation from the peer, and is
described in [RFC6520]. The extension is disabled by default and [gnutls heartbeat enable],
page 306 can be used to enable it. A policy may be negotiated to only allow sending
heartbeat messages or sending and receiving. The current session policy can be checked with
[gnutls heartbeat allowed], page 305. The requests coming from the peer result to GNUTLS_

E_HERTBEAT_PING_RECEIVED being returned from the receive function. Ping requests to
peer can be send via [gnutls heartbeat ping], page 306.

int [gnutls_heartbeat_allowed], page 305 (gnutls_session_t session, unsigned

int type)

void [gnutls_heartbeat_enable], page 306 (gnutls_session_t session, unsigned

int type)

int [gnutls_heartbeat_ping], page 306 (gnutls_session_t session, size_t

data_size, unsigned int max_tries, unsigned int flags)

int [gnutls_heartbeat_pong], page 307 (gnutls_session_t session, unsigned int

flags)

void [gnutls_heartbeat_set_timeouts], page 307 (gnutls_session_t session,

unsigned int retrans_timeout, unsigned int total_timeout)

unsigned int [gnutls_heartbeat_get_timeout], page 306 (gnutls_session_t

session)

3.6.5 Safe renegotiation

TLS gives the option to two communicating parties to renegotiate and update their secu-
rity parameters. One useful example of this feature was for a client to initially connect
using anonymous negotiation to a server, and the renegotiate using some authenticated
ciphersuite. This occurred to avoid having the client sending its credentials in the clear.

However this renegotiation, as initially designed would not ensure that the party one is
renegotiating is the same as the one in the initial negotiation. For example one server could

Chapter 3: Introduction to TLS and DTLS 12

forward all renegotiation traffic to an other server who will see this traffic as an initial
negotiation attempt.

This might be seen as a valid design decision, but it seems it was not widely known or
understood, thus today some application protocols use the TLS renegotiation feature in a
manner that enables a malicious server to insert content of his choice in the beginning of a
TLS session.

The most prominent vulnerability was with HTTPS. There servers request a renegotiation
to enforce an anonymous user to use a certificate in order to access certain parts of a web
site. The attack works by having the attacker simulate a client and connect to a server, with
server-only authentication, and send some data intended to cause harm. The server will
then require renegotiation from him in order to perform the request. When the proper client
attempts to contact the server, the attacker hijacks that connection and forwards traffic to
the initial server that requested renegotiation. The attacker will not be able to read the
data exchanged between the client and the server. However, the server will (incorrectly)
assume that the initial request sent by the attacker was sent by the now authenticated
client. The result is a prefix plain-text injection attack.

The above is just one example. Other vulnerabilities exists that do not rely on the TLS
renegotiation to change the client’s authenticated status (either TLS or application layer).

While fixing these application protocols and implementations would be one natural reaction,
an extension to TLS has been designed that cryptographically binds together any renego-
tiated handshakes with the initial negotiation. When the extension is used, the attack is
detected and the session can be terminated. The extension is specified in [RFC5746].

GnuTLS supports the safe renegotiation extension. The default behavior is as follows.
Clients will attempt to negotiate the safe renegotiation extension when talking to servers.
Servers will accept the extension when presented by clients. Clients and servers will permit
an initial handshake to complete even when the other side does not support the safe renego-
tiation extension. Clients and servers will refuse renegotiation attempts when the extension
has not been negotiated.

Note that permitting clients to connect to servers when the safe renegotiation extension
is not enabled, is open up for attacks. Changing this default behavior would prevent in-
teroperability against the majority of deployed servers out there. We will reconsider this
default behavior in the future when more servers have been upgraded. Note that it is easy
to configure clients to always require the safe renegotiation extension from servers.

To modify the default behavior, we have introduced some new priority strings (see
Section 6.10 [Priority Strings], page 127). The %UNSAFE_RENEGOTIATION priority string
permits (re-)handshakes even when the safe renegotiation extension was not negotiated.
The default behavior is %PARTIAL_RENEGOTIATION that will prevent renegotiation with
clients and servers not supporting the extension. This is secure for servers but leaves clients
vulnerable to some attacks, but this is a trade-off between security and compatibility with
old servers. The %SAFE_RENEGOTIATION priority string makes clients and servers require
the extension for every handshake. The latter is the most secure option for clients, at the
cost of not being able to connect to legacy servers. Servers will also deny clients that do
not support the extension from connecting.

Chapter 3: Introduction to TLS and DTLS 13

It is possible to disable use of the extension completely, in both clients and servers, by using
the %DISABLE_SAFE_RENEGOTIATION priority string however we strongly recommend you to
only do this for debugging and test purposes.

The default values if the flags above are not specified are:

Server: %PARTIAL RENEGOTIATION

Client: %PARTIAL RENEGOTIATION

For applications we have introduced a new API related to safe renegotiation. The
[gnutls safe renegotiation status], page 328 function is used to check if the extension has
been negotiated on a session, and can be used both by clients and servers.

3.6.6 OCSP status request

The Online Certificate Status Protocol (OCSP) is a protocol that allows the client to verify
the server certificate for revocation without messing with certificate revocation lists. Its
drawback is that it requires the client to connect to the server’s CA OCSP server and
request the status of the certificate. This extension however, enables a TLS server to
include its CA OCSP server response in the handshake. That is an HTTPS server may
periodically run ocsptool (see Section 4.2.6 [ocsptool Invocation], page 63) to obtain its
certificate revocation status and serve it to the clients. That way a client avoids an additional
connection to the OCSP server.

void [gnutls_certificate_set_ocsp_status_request_function], page 279

(gnutls_certificate_credentials_t sc, gnutls_status_request_ocsp_func

ocsp_func, void * ptr)

int [gnutls_certificate_set_ocsp_status_request_file], page 279

(gnutls_certificate_credentials_t sc, const char * response_file, unsigned

int flags)

int [gnutls_ocsp_status_request_enable_client], page 311 (gnutls_session_t

session, gnutls_datum_t * responder_id, size_t responder_id_size,

gnutls_datum_t * extensions)

int [gnutls_ocsp_status_request_is_checked], page 311 (gnutls_session_t

session, unsigned int flags)

A server is required to provide the OCSP server’s response using the
[gnutls certificate set ocsp status request file], page 279. The response may be
obtained periodically using the following command.

ocsptool --ask --load-cert server_cert.pem --load-issuer the_issuer.pem

--load-signer the_issuer.pem --outfile ocsp.response

Since version 3.1.3 GnuTLS clients transparently support the certificate status request.

3.6.7 SRTP

The TLS protocol was extended in [RFC5764] to provide keying material to the Secure RTP
(SRTP) protocol. The SRTP protocol provides an encapsulation of encrypted data that is
optimized for voice data. With the SRTP TLS extension two peers can negotiate keys using
TLS or DTLS and obtain keying material for use with SRTP. The available SRTP profiles
are listed below.

Chapter 3: Introduction to TLS and DTLS 14

GNUTLS_SRTP_AES128_CM_HMAC_SHA1_80

128 bit AES with a 80 bit HMAC-SHA1

GNUTLS_SRTP_AES128_CM_HMAC_SHA1_32

128 bit AES with a 32 bit HMAC-SHA1

GNUTLS_SRTP_NULL_HMAC_SHA1_80

NULL cipher with a 80 bit HMAC-SHA1

GNUTLS_SRTP_NULL_HMAC_SHA1_32

NULL cipher with a 32 bit HMAC-SHA1

Figure 3.3: Supported SRTP profiles

To enable use the following functions.

int [gnutls_srtp_set_profile], page 343 (gnutls_session_t session,

gnutls_srtp_profile_t profile)

int [gnutls_srtp_set_profile_direct], page 344 (gnutls_session_t session,

const char * profiles, const char ** err_pos)

To obtain the negotiated keys use the function below.

[Function]int gnutls_srtp_get_keys (gnutls session t session, void *
key_material, unsigned int key_material_size, gnutls datum t *
client_key, gnutls datum t * client_salt, gnutls datum t *
server_key, gnutls datum t * server_salt)

session: is a gnutls_session_t structure.

key material: Space to hold the generated key material

key material size: The maximum size of the key material

client key : The master client write key, pointing inside the key material

client salt: The master client write salt, pointing inside the key material

server key : The master server write key, pointing inside the key material

server salt: The master server write salt, pointing inside the key material

This is a helper function to generate the keying material for SRTP. It requires the
space of the key material to be pre-allocated (should be at least 2x the maximum key
size and salt size). The client_key , client_salt , server_key and server_salt

are convenience datums that point inside the key material. They may be NULL .

Returns: On success the size of the key material is returned, otherwise, GNUTLS_E_
SHORT_MEMORY_BUFFER if the buffer given is not sufficient, or a negative error code.

Since 3.1.4

Other helper functions are listed below.

int [gnutls_srtp_get_selected_profile], page 343 (gnutls_session_t session,

gnutls_srtp_profile_t * profile)

const char * [gnutls_srtp_get_profile_name], page 343 (gnutls_srtp_profile_t

profile)

int [gnutls_srtp_get_profile_id], page 342 (const char * name,

gnutls_srtp_profile_t * profile)

Chapter 3: Introduction to TLS and DTLS 15

3.6.8 Application Layer Protocol Negotiation (ALPN)

The TLS protocol was extended in draft-ietf-tls-applayerprotoneg-00 to provide the
application layer a method of negotiating the application protocol version. This allows
for negotiation of the application protocol during the TLS handshake, thus reducing round-
trips. The application protocol is described by an opaque string. To enable, use the following
functions.

int [gnutls_alpn_set_protocols], page 272 (gnutls_session_t session, const

gnutls_datum_t * protocols, unsigned protocols_size, unsigned int flags)

int [gnutls_alpn_get_selected_protocol], page 272 (gnutls_session_t session,

gnutls_datum_t * protocol)

Note that these functions are intended to be used with protocols that are registered in the
Application Layer Protocol Negotiation IANA registry. While you can use them for other
protocols (at the risk of collisions), it is preferable to register them.

3.7 How to use TLS in application protocols

This chapter is intended to provide some hints on how to use TLS over simple custom made
application protocols. The discussion below mainly refers to the TCP/IP transport layer
but may be extended to other ones too.

3.7.1 Separate ports

Traditionally SSL was used in application protocols by assigning a new port number for
the secure services. By doing this two separate ports were assigned, one for the non-secure
sessions, and one for the secure sessions. This method ensures that if a user requests a
secure session then the client will attempt to connect to the secure port and fail otherwise.
The only possible attack with this method is to perform a denial of service attack. The
most famous example of this method is “HTTP over TLS” or HTTPS protocol [RFC2818].

Despite its wide use, this method has several issues. This approach starts the TLS Hand-
shake procedure just after the client connects on the —so called— secure port. That way
the TLS protocol does not know anything about the client, and popular methods like the
host advertising in HTTP do not work4. There is no way for the client to say “I connected
to YYY server” before the Handshake starts, so the server cannot possibly know which
certificate to use.

Other than that it requires two separate ports to run a single service, which is unnecessary
complication. Due to the fact that there is a limitation on the available privileged ports,
this approach was soon deprecated in favor of upward negotiation.

3.7.2 Upward negotiation

Other application protocols5 use a different approach to enable the secure layer. They use
something often called as the “TLS upgrade” method. This method is quite tricky but it
is more flexible. The idea is to extend the application protocol to have a “STARTTLS”
request, whose purpose it to start the TLS protocols just after the client requests it. This

4 See also the Server Name Indication extension on [serverind], page 11.
5 See LDAP, IMAP etc.

Chapter 3: Introduction to TLS and DTLS 16

approach does not require any extra port to be reserved. There is even an extension to
HTTP protocol to support this method [RFC2817].

The tricky part, in this method, is that the “STARTTLS” request is sent in the clear, thus
is vulnerable to modifications. A typical attack is to modify the messages in a way that the
client is fooled and thinks that the server does not have the “STARTTLS” capability. See
a typical conversation of a hypothetical protocol:

(client connects to the server)

CLIENT: HELLO I’M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

SERVER: OK

*** TLS STARTS

CLIENT: HERE ARE SOME CONFIDENTIAL DATA

And an example of a conversation where someone is acting in between:

(client connects to the server)

CLIENT: HELLO I’M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

(here someone inserts this message)

SERVER: SORRY I DON’T HAVE THIS CAPABILITY

CLIENT: HERE ARE SOME CONFIDENTIAL DATA

As you can see above the client was fooled, and was näive enough to send the confidential
data in the clear, despite the server telling the client that it does not support “STARTTLS”.

How do we avoid the above attack? As you may have already noticed this situation is easy
to avoid. The client has to ask the user before it connects whether the user requests TLS

or not. If the user answered that he certainly wants the secure layer the last conversation
should be:

(client connects to the server)

CLIENT: HELLO I’M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

(here someone inserts this message)

SERVER: SORRY I DON’T HAVE THIS CAPABILITY

CLIENT: BYE

(the client notifies the user that the secure connection was not possible)

This method, if implemented properly, is far better than the traditional method, and the
security properties remain the same, since only denial of service is possible. The benefit is
that the server may request additional data before the TLS Handshake protocol starts, in
order to send the correct certificate, use the correct password file, or anything else!

Chapter 3: Introduction to TLS and DTLS 17

3.8 On SSL 2 and older protocols

One of the initial decisions in the GnuTLS development was to implement the known security
protocols for the transport layer. Initially TLS 1.0 was implemented since it was the latest
at that time, and was considered to be the most advanced in security properties. Later the
SSL 3.0 protocol was implemented since it is still the only protocol supported by several
servers and there are no serious security vulnerabilities known.

One question that may arise is why we didn’t implement SSL 2.0 in the library. There are
several reasons, most important being that it has serious security flaws, unacceptable for a
modern security library. Other than that, this protocol is barely used by anyone these days
since it has been deprecated since 1996. The security problems in SSL 2.0 include:

• Message integrity compromised. The SSLv2 message authentication uses the MD5
function, and is insecure.

• Man-in-the-middle attack. There is no protection of the handshake in SSLv2, which
permits a man-in-the-middle attack.

• Truncation attack. SSLv2 relies on TCP FIN to close the session, so the attacker can
forge a TCP FIN, and the peer cannot tell if it was a legitimate end of data or not.

• Weak message integrity for export ciphers. The cryptographic keys in SSLv2 are used
for both message authentication and encryption, so if weak encryption schemes are
negotiated (say 40-bit keys) the message authentication code uses the same weak key,
which isn’t necessary.

Other protocols such as Microsoft’s PCT 1 and PCT 2 were not implemented because they
were also abandoned and deprecated by SSL 3.0 and later TLS 1.0.

Chapter 4: Authentication methods 18

4 Authentication methods

The initial key exchange of the TLS protocol performs authentication of the peers. In
typical scenarios the server is authenticated to the client, and optionally the client to the
server.

While many associate TLS with X.509 certificates and public key authentication, the pro-
tocol supports various authentication methods, including pre-shared keys, and passwords.
In this chapter a description of the existing authentication methods is provided, as well as
some guidance on which use-cases each method can be used at.

4.1 Certificate authentication

The most known authentication method of TLS are certificates. The PKIX [PKIX] public
key infrastructure is daily used by anyone using a browser today. GnuTLS supports both
X.509 certificates [PKIX] and OpenPGP certificates using a common API.

The key exchange algorithms supported by certificate authentication are shown in Table 4.1.

Chapter 4: Authentication methods 19

Key exchange Description

RSA The RSA algorithm is used to encrypt a key and send it to
the peer. The certificate must allow the key to be used for
encryption.

DHE RSA The RSA algorithm is used to sign ephemeral Diffie-Hellman
parameters which are sent to the peer. The key in the certifi-
cate must allow the key to be used for signing. Note that key
exchange algorithms which use ephemeral Diffie-Hellman pa-
rameters, offer perfect forward secrecy. That means that even
if the private key used for signing is compromised, it cannot
be used to reveal past session data.

ECDHE RSA The RSA algorithm is used to sign ephemeral elliptic curve
Diffie-Hellman parameters which are sent to the peer. The key
in the certificate must allow the key to be used for signing. It
also offers perfect forward secrecy. That means that even if
the private key used for signing is compromised, it cannot be
used to reveal past session data.

DHE DSS The DSA algorithm is used to sign ephemeral Diffie-Hellman
parameters which are sent to the peer. The certificate must
contain DSA parameters to use this key exchange algorithm.
DSA is the algorithm of the Digital Signature Standard
(DSS).

ECDHE ECDSA The Elliptic curve DSA algorithm is used to sign ephemeral
elliptic curve Diffie-Hellman parameters which are sent to the
peer. The certificate must contain ECDSA parameters (i.e.,
EC and marked for signing) to use this key exchange algo-
rithm.

Table 4.1: Supported key exchange algorithms.

4.1.1 X.509 certificates

The X.509 protocols rely on a hierarchical trust model. In this trust model Certification
Authorities (CAs) are used to certify entities. Usually more than one certification authorities
exist, and certification authorities may certify other authorities to issue certificates as well,
following a hierarchical model.

Chapter 4: Authentication methods 20

Alice Bob

Root CA

CA I CA II

Web Server

Figure 4.1: An example of the X.509 hierarchical trust model.

One needs to trust one or more CAs for his secure communications. In that case only the
certificates issued by the trusted authorities are acceptable. The framework is illustrated
on 〈undefined〉 [fig-x509], page 〈undefined〉.

4.1.1.1 X.509 certificate structure

An X.509 certificate usually contains information about the certificate holder, the signer, a
unique serial number, expiration dates and some other fields [PKIX] as shown in Table 4.2.

Chapter 4: Authentication methods 21

Field Description

version The field that indicates the version of the certificate.

serialNumber This field holds a unique serial number per certificate.

signature The issuing authority’s signature.

issuer Holds the issuer’s distinguished name.

validity The activation and expiration dates.

subject The subject’s distinguished name of the certificate.

extensions The extensions are fields only present in version 3 certificates.

Table 4.2: X.509 certificate fields.

The certificate’s subject or issuer name is not just a single string. It is a Distinguished name
and in the ASN.1 notation is a sequence of several object identifiers with their corresponding
values. Some of available OIDs to be used in an X.509 distinguished name are defined in
gnutls/x509.h.

The Version field in a certificate has values either 1 or 3 for version 3 certificates. Version
1 certificates do not support the extensions field so it is not possible to distinguish a CA
from a person, thus their usage should be avoided.

The validity dates are there to indicate the date that the specific certificate was activated
and the date the certificate’s key would be considered invalid.

In GnuTLS the X.509 certificate structures are handled using the gnutls_x509_crt_t type
and the corresponding private keys with the gnutls_x509_privkey_t type. All the avail-
able functions for X.509 certificate handling have their prototypes in gnutls/x509.h. An
example program to demonstrate the X.509 parsing capabilities can be found in 〈undefined〉
[ex-x509-info], page 〈undefined〉.

4.1.1.2 Importing an X.509 certificate

The certificate structure should be initialized using [gnutls x509 crt init], page 403, and a
certificate structure can be imported using [gnutls x509 crt import], page 403.

int [gnutls_x509_crt_init], page 403 (gnutls_x509_crt_t * cert)

int [gnutls_x509_crt_import], page 403 (gnutls_x509_crt_t cert, const

gnutls_datum_t * data, gnutls_x509_crt_fmt_t format)

void [gnutls_x509_crt_deinit], page 384 (gnutls_x509_crt_t cert)

In several functions an array of certificates is required. To assist in initialization and import
the following two functions are provided.

Chapter 4: Authentication methods 22

int [gnutls_x509_crt_list_import], page 403 (gnutls_x509_crt_t * certs,

unsigned int * cert_max, const gnutls_datum_t * data, gnutls_x509_crt_fmt_t

format, unsigned int flags)

int [gnutls_x509_crt_list_import2], page 404 (gnutls_x509_crt_t ** certs,

unsigned int * size, const gnutls_datum_t * data, gnutls_x509_crt_fmt_t

format, unsigned int flags)

In all cases after use a certificate must be deinitialized using [gnutls x509 crt deinit],
page 384. Note that although the functions above apply to gnutls_x509_crt_t structure,
similar functions exist for the CRL structure gnutls_x509_crl_t.

4.1.1.3 X.509 distinguished names

The “subject” of an X.509 certificate is not described by a single name, but rather with a
distinguished name. This in X.509 terminology is a list of strings each associated an ob-
ject identifier. To make things simple GnuTLS provides [gnutls x509 crt get dn2], page 388
which follows the rules in [RFC4514] and returns a single string. Access to each string by in-
dividual object identifiers can be accessed using [gnutls x509 crt get dn by oid], page 389.

[Function]int gnutls_x509_crt_get_dn2 (gnutls x509 crt t cert,
gnutls datum t * dn)

cert: should contain a gnutls_x509_crt_t structure

dn: a pointer to a structure to hold the name

This function will allocate buffer and copy the name of the Certificate. The name will
be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC4514. The output
string will be ASCII or UTF-8 encoded, depending on the certificate data.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. and a negative error code on error.

Since: 3.1.10

int [gnutls_x509_crt_get_dn], page 388 (gnutls_x509_crt_t cert, char * buf,

size_t * buf_size)

int [gnutls_x509_crt_get_dn_by_oid], page 389 (gnutls_x509_crt_t cert, const

char * oid, int indx, unsigned int raw_flag, void * buf, size_t * buf_size)

int [gnutls_x509_crt_get_dn_oid], page 389 (gnutls_x509_crt_t cert, int indx,

void * oid, size_t * oid_size)

Similar functions exist to access the distinguished name of the issuer of the certificate.

Chapter 4: Authentication methods 23

int [gnutls_x509_crt_get_issuer_dn], page 394 (gnutls_x509_crt_t cert, char *

buf, size_t * buf_size)

int [gnutls_x509_crt_get_issuer_dn2], page 394 (gnutls_x509_crt_t cert,

gnutls_datum_t * dn)

int [gnutls_x509_crt_get_issuer_dn_by_oid], page 394 (gnutls_x509_crt_t

cert, const char * oid, int indx, unsigned int raw_flag, void * buf, size_t *

buf_size)

int [gnutls_x509_crt_get_issuer_dn_oid], page 395 (gnutls_x509_crt_t cert,

int indx, void * oid, size_t * oid_size)

int [gnutls_x509_crt_get_issuer], page 392 (gnutls_x509_crt_t cert,

gnutls_x509_dn_t * dn)

The more powerful [gnutls x509 crt get subject], page 400 and [gnutls x509 dn get rdn ava],
page 416 provide efficient but low-level access to the contents of the distinguished name
structure.

int [gnutls_x509_crt_get_subject], page 400 (gnutls_x509_crt_t cert,

gnutls_x509_dn_t * dn)

int [gnutls_x509_crt_get_issuer], page 392 (gnutls_x509_crt_t cert,

gnutls_x509_dn_t * dn)

[Function]int gnutls_x509_dn_get_rdn_ava (gnutls x509 dn t dn, int irdn, int
iava, gnutls x509 ava st * ava)

dn: a pointer to DN

irdn: index of RDN

iava: index of AVA.

ava: Pointer to structure which will hold output information.

Get pointers to data within the DN. The format of the ava structure is shown below.

struct gnutls x509 ava st { gnutls datum t oid; gnutls datum t value; unsigned long
value tag; };

The X.509 distinguished name is a sequence of sequences of strings and this is what
the irdn and iava indexes model.

Note that ava will contain pointers into the dn structure which in turns points to the
original certificate. Thus you should not modify any data or deallocate any of those.

This is a low-level function that requires the caller to do the value conversions when
necessary (e.g. from UCS-2).

Returns: Returns 0 on success, or an error code.

4.1.1.4 X.509 extensions

X.509 version 3 certificates include a list of extensions that can be used to obtain additional
information on the subject or the issuer of the certificate. Those may be e-mail addresses,
flags that indicate whether the belongs to a CA etc. All the supported X.509 version 3
extensions are shown in Table 4.3.

The certificate extensions access is split into two parts. The first requires to retrieve the
extension, and the second is the parsing part.

To enumerate and retrieve the DER-encoded extension data available in a certificate the
following two functions are available.

Chapter 4: Authentication methods 24

int [gnutls_x509_crt_get_extension_info], page 391 (gnutls_x509_crt_t cert,

int indx, void * oid, size_t * oid_size, unsigned int * critical)

int 〈undefined〉 [gnutls_x509_crt_get_extension_data2], page 〈undefined〉
(gnutls_x509_crt_t cert, unsigned indx, gnutls_datum_t * data)

int 〈undefined〉 [gnutls_x509_crt_get_extension_by_oid2], page 〈undefined〉
(gnutls_x509_crt_t cert, const char * oid, int indx, gnutls_datum_t * output,

unsigned int * critical)

After a supported DER-encoded extension is retrieved it can be parsed using the APIs in
x509-ext.h. Complex extensions may require initializing an intermediate structure that
holds the parsed extension data. Examples of simple parsing functions are shown below.

int 〈undefined〉 [gnutls_x509_ext_import_basic_constraints], page 〈undefined〉
(const gnutls_datum_t * ext, unsigned int * ca, int * pathlen)

int 〈undefined〉 [gnutls_x509_ext_export_basic_constraints], page 〈undefined〉
(unsigned int ca, int pathlen, gnutls_datum_t * ext)

int 〈undefined〉 [gnutls_x509_ext_import_key_usage], page 〈undefined〉 (const
gnutls_datum_t * ext, unsigned int * key_usage)

int 〈undefined〉 [gnutls_x509_ext_export_key_usage], page 〈undefined〉
(unsigned int usage, gnutls_datum_t * ext)

More complex extensions, such as Name Constraints, require an intermediate structure, in
that case gnutls_x509_name_constraints_t to be initialized in order to store the parsed
extension data.

int 〈undefined〉 [gnutls_x509_ext_import_name_constraints], page 〈undefined〉
(const gnutls_datum_t * ext, gnutls_x509_name_constraints_t nc, unsigned int

flags)

int 〈undefined〉 [gnutls_x509_ext_export_name_constraints], page 〈undefined〉
(gnutls_x509_name_constraints_t nc, gnutls_datum_t * ext)

After the name constraints are extracted in the structure, the following functions can be
used to access them.

Chapter 4: Authentication methods 25

int 〈undefined〉 [gnutls_x509_name_constraints_get_permitted],
page 〈undefined〉 (gnutls_x509_name_constraints_t nc, unsigned idx, unsigned *

type, gnutls_datum_t * name)

int 〈undefined〉 [gnutls_x509_name_constraints_get_excluded], page 〈undefined〉
(gnutls_x509_name_constraints_t nc, unsigned idx, unsigned * type,

gnutls_datum_t * name)

int 〈undefined〉 [gnutls_x509_name_constraints_add_permitted],
page 〈undefined〉 (gnutls_x509_name_constraints_t nc,

gnutls_x509_subject_alt_name_t type, const gnutls_datum_t * name)

int 〈undefined〉 [gnutls_x509_name_constraints_add_excluded], page 〈undefined〉
(gnutls_x509_name_constraints_t nc, gnutls_x509_subject_alt_name_t type,

const gnutls_datum_t * name)

unsigned 〈undefined〉 [gnutls_x509_name_constraints_check], page 〈undefined〉
(gnutls_x509_name_constraints_t nc, gnutls_x509_subject_alt_name_t type,

const gnutls_datum_t * name)

unsigned 〈undefined〉 [gnutls_x509_name_constraints_check_crt],
page 〈undefined〉 (gnutls_x509_name_constraints_t nc,

gnutls_x509_subject_alt_name_t type, gnutls_x509_crt_t cert)

Other utility functions are listed below.

int 〈undefined〉 [gnutls_x509_name_constraints_init], page 〈undefined〉
(gnutls_x509_name_constraints_t * nc)

void 〈undefined〉 [gnutls_x509_name_constraints_deinit], page 〈undefined〉
(gnutls_x509_name_constraints_t nc)

Similar functions exist for all of the other supported extensions, listed in Table 4.3.

Chapter 4: Authentication methods 26

Extension OID Description

Subject key id 2.5.29.14 An identifier of the key of the sub-
ject.

Key usage 2.5.29.15 Constraints the key’s usage of the
certificate.

Private key usage period 2.5.29.16 Constraints the validity time of
the private key.

Subject alternative name 2.5.29.17 Alternative names to subject’s
distinguished name.

Issuer alternative name 2.5.29.18 Alternative names to the issuer’s
distinguished name.

Basic constraints 2.5.29.19 Indicates whether this is a CA
certificate or not, and specify the
maximum path lengths of certifi-
cate chains.

Name constraints 2.5.29.30 A field in CA certificates that re-
stricts the scope of the name of
issued certificates.

CRL distribution points 2.5.29.31 This extension is set by the CA, in
order to inform about the issued
CRLs.

Certificate policy 2.5.29.32 This extension is set to indicate
the certificate policy as object
identifier and may contain a de-
scriptive string or URL.

Authority key identifier 2.5.29.35 An identifier of the key of the is-
suer of the certificate. That is
used to distinguish between differ-
ent keys of the same issuer.

Extended key usage 2.5.29.37 Constraints the purpose of the
certificate.

Authority information
access

1.3.6.1.5.5.7.1.1 Information on services by the is-
suer of the certificate.

Proxy Certification
Information

1.3.6.1.5.5.7.1.14 Proxy Certificates includes this
extension that contains the OID
of the proxy policy language used,
and can specify limits on the max-
imum lengths of proxy chains.
Proxy Certificates are specified in
[RFC3820].

Table 4.3: Supported X.509 certificate extensions.

Chapter 4: Authentication methods 27

Note, that there are also direct APIs to access extensions that may be simpler to use for
non-complex extensions. They are available in x509.h and some examples are listed below.

int [gnutls_x509_crt_get_basic_constraints], page 387 (gnutls_x509_crt_t

cert, unsigned int * critical, unsigned int * ca, int * pathlen)

int [gnutls_x509_crt_set_basic_constraints], page 406 (gnutls_x509_crt_t

crt, unsigned int ca, int pathLenConstraint)

int [gnutls_x509_crt_get_key_usage], page 397 (gnutls_x509_crt_t cert,

unsigned int * key_usage, unsigned int * critical)

int [gnutls_x509_crt_set_key_usage], page 410 (gnutls_x509_crt_t crt,

unsigned int usage)

4.1.1.5 Accessing public and private keys

Each X.509 certificate contains a public key that corresponds to a private key. To get a
unique identifier of the public key the [gnutls x509 crt get key id], page 396 function is
provided. To export the public key or its parameters you may need to convert the X.509
structure to a gnutls_pubkey_t. See Section 5.1.1 [Abstract public keys], page 79 for more
information.

[Function]int gnutls_x509_crt_get_key_id (gnutls x509 crt t crt, unsigned
int flags, unsigned char * output_data, size t * output_data_size)

crt: Holds the certificate

flags: should be 0 for now

output data: will contain the key ID

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will return a unique ID that depends on the public key parameters. This
ID can be used in checking whether a certificate corresponds to the given private key.

If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS E SHORT MEMORY BUFFER will be returned. The
output will normally be a SHA-1 hash output, which is 20 bytes.

Returns: In case of failure a negative error code will be returned, and 0 on success.

The private key parameters may be directly accessed by using one of the following functions.

int [gnutls_x509_privkey_get_pk_algorithm2], page 422 (gnutls_x509_privkey_t

key, unsigned int * bits)

int [gnutls_x509_privkey_export_rsa_raw2], page 421 (gnutls_x509_privkey_t

key, gnutls_datum_t * m, gnutls_datum_t * e, gnutls_datum_t * d, gnutls_datum_t

Chapter 4: Authentication methods 28

* p, gnutls_datum_t * q, gnutls_datum_t * u, gnutls_datum_t * e1,

gnutls_datum_t * e2)

int [gnutls_x509_privkey_export_ecc_raw], page 419 (gnutls_x509_privkey_t

key, gnutls_ecc_curve_t * curve, gnutls_datum_t * x, gnutls_datum_t * y,

gnutls_datum_t * k)

int [gnutls_x509_privkey_export_dsa_raw], page 419 (gnutls_x509_privkey_t

key, gnutls_datum_t * p, gnutls_datum_t * q, gnutls_datum_t * g, gnutls_datum_t

* y, gnutls_datum_t * x)

int [gnutls_x509_privkey_get_key_id], page 422 (gnutls_x509_privkey_t key,

unsigned int flags, unsigned char * output_data, size_t * output_data_size)

4.1.1.6 Verifying X.509 certificate paths

Verifying certificate paths is important in X.509 authentication. For this purpose the fol-
lowing functions are provided.

[Function]int gnutls_x509_trust_list_add_cas (gnutls x509 trust list t
list, const gnutls x509 crt t * clist, unsigned clist_size, unsigned int
flags)

list: The structure of the list

clist: A list of CAs

clist size: The length of the CA list

flags: should be 0 or an or’ed sequence of GNUTLS_TL options.

This function will add the given certificate authorities to the trusted list. The list of
CAs must not be deinitialized during this structure’s lifetime.

If the flag GNUTLS_TL_NO_DUPLICATES is specified, then the provided clist entries
that are duplicates will not be added to the list and will be deinitialized.

Returns: The number of added elements is returned.

Since: 3.0.0

[Function]int gnutls_x509_trust_list_add_named_crt
(gnutls x509 trust list t list, gnutls x509 crt t cert, const void * name,
size t name_size, unsigned int flags)

list: The structure of the list

cert: A certificate

name: An identifier for the certificate

name size: The size of the identifier

flags: should be 0.

This function will add the given certificate to the trusted list and associate it with a
name. The certificate will not be be used for verification with gnutls_x509_trust_

list_verify_crt() but only with gnutls_x509_trust_list_verify_named_crt()

.

In principle this function can be used to set individual "server" certificates that are
trusted by the user for that specific server but for no other purposes.

The certificate must not be deinitialized during the lifetime of the trusted list.

Chapter 4: Authentication methods 29

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0.0

[Function]int gnutls_x509_trust_list_add_crls (gnutls x509 trust list t
list, const gnutls x509 crl t * crl_list, int crl_size, unsigned int flags,
unsigned int verification_flags)

list: The structure of the list

crl list: A list of CRLs

crl size: The length of the CRL list

flags: if GNUTLS TL VERIFY CRL is given the CRLs will be verified before being
added.

verification flags: gnutls certificate verify flags if flags specifies GNUTLS TL VERIFY CRL

This function will add the given certificate revocation lists to the trusted list. The
list of CRLs must not be deinitialized during this structure’s lifetime.

This function must be called after gnutls_x509_trust_list_add_cas() to allow
verifying the CRLs for validity. If the flag GNUTLS_TL_NO_DUPLICATES is given, then
any provided CRLs that are a duplicate, will be deinitialized and not added to the list
(that assumes that gnutls_x509_trust_list_deinit() will be called with all=1).

Returns: The number of added elements is returned.

Since: 3.0

[Function]int gnutls_x509_trust_list_verify_crt (gnutls x509 trust list t
list, gnutls x509 crt t * cert_list, unsigned int cert_list_size,
unsigned int flags, unsigned int * voutput, gnutls verify output function
func)

list: The structure of the list

cert list: is the certificate list to be verified

cert list size: is the certificate list size

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls certificate verify flags enumerations.

voutput: will hold the certificate verification output.

func: If non-null will be called on each chain element verification with the output.

This function will try to verify the given certificate and return its status. The verify
parameter will hold an OR’ed sequence of gnutls_certificate_status_t flags.

Additionally a certificate verification profile can be specified from the ones in gnutls_

certificate_verification_profiles_t by ORing the result of GNUTLS_PROFILE_
TO_VFLAGS() to the verification flags.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

Chapter 4: Authentication methods 30

[Function]int gnutls_x509_trust_list_verify_crt2 (gnutls x509 trust list t
list, gnutls x509 crt t * cert_list, unsigned int cert_list_size,
gnutls typed vdata st * data, unsigned int elements, unsigned int flags,
unsigned int * voutput, gnutls verify output function func)

list: The structure of the list

cert list: is the certificate list to be verified

cert list size: is the certificate list size

data: an array of typed data

elements: the number of data elements

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls certificate verify flags enumerations.

voutput: will hold the certificate verification output.

func: If non-null will be called on each chain element verification with the output.

This function will try to verify the given certificate and return its status. The verify
parameter will hold an OR’ed sequence of gnutls_certificate_status_t flags.

Additionally a certificate verification profile can be specified from the ones in gnutls_

certificate_verification_profiles_t by ORing the result of GNUTLS_PROFILE_
TO_VFLAGS() to the verification flags.

The acceptable data types are GNUTLS_DT_DNS_HOSTNAME and GNUTLS_DT_KEY_

PURPOSE_OID . The former accepts as data a null-terminated hostname, and the latter
a null-terminated object identifier (e.g., GNUTLS_KP_TLS_WWW_SERVER). If a DNS
hostname is provided then this function will compare the hostname in the certificate
against the given. If names do not match the GNUTLS_CERT_UNEXPECTED_OWNER

status flag will be set. If a key purpose OID is provided and the end-certificate
contains the extended key usage PKIX extension, it will be required to be have the
provided key purpose or be marked for any purpose, otherwise verification will fail
with GNUTLS_CERT_SIGNER_CONSTRAINTS_FAILURE status.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. Note that verification failure will not result to an error code, only voutput

will be updated.

Since: 3.3.8

[Function]int gnutls_x509_trust_list_verify_named_crt
(gnutls x509 trust list t list, gnutls x509 crt t cert, const void * name,
size t name_size, unsigned int flags, unsigned int * voutput,
gnutls verify output function func)

list: The structure of the list

cert: is the certificate to be verified

name: is the certificate’s name

name size: is the certificate’s name size

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls certificate verify flags enumerations.

voutput: will hold the certificate verification output.

Chapter 4: Authentication methods 31

func: If non-null will be called on each chain element verification with the output.

This function will try to find a certificate that is associated with the provided name –
see gnutls_x509_trust_list_add_named_crt() . If a match is found the certificate
is considered valid. In addition to that this function will also check CRLs. The
voutput parameter will hold an OR’ed sequence of gnutls_certificate_status_t
flags.

Additionally a certificate verification profile can be specified from the ones in gnutls_

certificate_verification_profiles_t by ORing the result of GNUTLS_PROFILE_
TO_VFLAGS() to the verification flags.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0.0

[Function]int gnutls_x509_trust_list_add_trust_file
(gnutls x509 trust list t list, const char * ca_file, const char * crl_file,
gnutls x509 crt fmt t type, unsigned int tl_flags, unsigned int tl_vflags)

list: The structure of the list

ca file: A file containing a list of CAs (optional)

crl file: A file containing a list of CRLs (optional)

type: The format of the certificates

tl flags: GNUTLS TL *

tl vflags: gnutls certificate verify flags if flags specifies GNUTLS TL VERIFY CRL

This function will add the given certificate authorities to the trusted list. PKCS 11

URLs are also accepted, instead of files, by this function. A PKCS 11 URL implies
a trust database (a specially marked module in p11-kit); the URL "pkcs11:" implies
all trust databases in the system. Only a single URL specifying trust databases can
be set; they cannot be stacked with multiple calls.

Returns: The number of added elements is returned.

Since: 3.1

[Function]int gnutls_x509_trust_list_add_trust_mem
(gnutls x509 trust list t list, const gnutls datum t * cas, const
gnutls datum t * crls, gnutls x509 crt fmt t type, unsigned int tl_flags,
unsigned int tl_vflags)

list: The structure of the list

cas: A buffer containing a list of CAs (optional)

crls: A buffer containing a list of CRLs (optional)

type: The format of the certificates

tl flags: GNUTLS TL *

tl vflags: gnutls certificate verify flags if flags specifies GNUTLS TL VERIFY CRL

This function will add the given certificate authorities to the trusted list.

Returns: The number of added elements is returned.

Since: 3.1

Chapter 4: Authentication methods 32

[Function]int gnutls_x509_trust_list_add_system_trust
(gnutls x509 trust list t list, unsigned int tl_flags, unsigned int
tl_vflags)

list: The structure of the list

tl flags: GNUTLS TL *

tl vflags: gnutls certificate verify flags if flags specifies GNUTLS TL VERIFY CRL

This function adds the system’s default trusted certificate authorities to
the trusted list. Note that on unsupported systems this function returns
GNUTLS_E_UNIMPLEMENTED_FEATURE .

This function implies the flag GNUTLS_TL_NO_DUPLICATES .

Returns: The number of added elements or a negative error code on error.

Since: 3.1

The verification function will verify a given certificate chain against a list of certificate au-
thorities and certificate revocation lists, and output a bit-wise OR of elements of the gnutls_
certificate_status_t enumeration shown in Figure 4.2. The GNUTLS_CERT_INVALID flag
is always set on a verification error and more detailed flags will also be set when appropriate.

Chapter 4: Authentication methods 33

GNUTLS_CERT_INVALID

The certificate is not signed by one of the known authorities or the signa-
ture is invalid (deprecated by the flags GNUTLS_CERT_SIGNATURE_FAILURE and
GNUTLS_CERT_SIGNER_NOT_FOUND).

GNUTLS_CERT_REVOKED

Certificate is revoked by its authority. In X.509 this will be set only if CRLs
are checked.

GNUTLS_CERT_SIGNER_NOT_FOUND

The certificate’s issuer is not known. This is the case if the issuer is not included
in the trusted certificate list.

GNUTLS_CERT_SIGNER_NOT_CA

The certificate’s signer was not a CA. This may happen if this was a version 1
certificate, which is common with some CAs, or a version 3 certificate without
the basic constrains extension.

GNUTLS_CERT_INSECURE_ALGORITHM

The certificate was signed using an insecure algorithm such as MD2 or MD5.
These algorithms have been broken and should not be trusted.

GNUTLS_CERT_NOT_ACTIVATED

The certificate is not yet activated.

GNUTLS_CERT_EXPIRED

The certificate has expired.

GNUTLS_CERT_SIGNATURE_FAILURE

The signature verification failed.

GNUTLS_CERT_REVOCATION_DATA_SUPERSEDED

The revocation data are old and have been superseded.

GNUTLS_CERT_UNEXPECTED_OWNER

The owner is not the expected one.

GNUTLS_CERT_REVOCATION_DATA_ISSUED_IN_FUTURE

The revocation data have a future issue date.

GNUTLS_CERT_SIGNER_CONSTRAINTS_FAILURE

The certificate’s signer constraints were violated.

GNUTLS_CERT_MISMATCH

The certificate presented isn’t the expected one (TOFU)

Figure 4.2: The gnutls_certificate_status_t enumeration.

An example of certificate verification is shown in 〈undefined〉 [ex-verify2], page 〈un-
defined〉. It is also possible to have a set of certificates that are trusted for
a particular server but not to authorize other certificates. This purpose is
served by the functions [gnutls x509 trust list add named crt], page 428 and
[gnutls x509 trust list verify named crt], page 432.

Chapter 4: Authentication methods 34

4.1.1.7 Verifying a certificate in the context of TLS session

When operating in the context of a TLS session, the trusted certificate authority list may
also be set using:

int [gnutls_certificate_set_x509_trust_file], page 287

(gnutls_certificate_credentials_t cred, const char * cafile,

gnutls_x509_crt_fmt_t type)

int 〈undefined〉 [gnutls_certificate_set_x509_trust_dir], page 〈undefined〉
(gnutls_certificate_credentials_t cred, const char * ca_dir,

gnutls_x509_crt_fmt_t type)

int [gnutls_certificate_set_x509_crl_file], page 282

(gnutls_certificate_credentials_t res, const char * crlfile,

gnutls_x509_crt_fmt_t type)

int [gnutls_certificate_set_x509_system_trust], page 286

(gnutls_certificate_credentials_t cred)

These functions allow the specification of the trusted certificate authorities, either via a
file, a directory or use the system-specified certificate authories. Unless the authorities
are application specific, it is generally recommended to use the system trust storage (see
[gnutls certificate set x509 system trust], page 286).

Unlike the previous section it is not required to setup a trusted list, and the function
[gnutls certificate verify peers3], page 289 is used to verify the peer’s certificate chain and
identity. The reported verification status is identical to the verification functions described
in the previous section. Note that in certain cases it is required to check the marked purpose
of the end certificate (e.g. GNUTLS_KP_TLS_WWW_SERVER); in these cases the more advanced
〈undefined〉 [gnutls certificate verify peers], page 〈undefined〉 should be used instead.

There is also the possibility to pass some input to the verification functions in the form
of flags. For 〈undefined〉 [gnutls x509 trust list verify crt2], page 〈undefined〉 the flags
are passed directly, but for [gnutls certificate verify peers3], page 289, the flags are set
using [gnutls certificate set verify flags], page 281. All the available flags are part of the
enumeration gnutls_certificate_verify_flags shown in Figure 4.3.

Chapter 4: Authentication methods 35

GNUTLS_VERIFY_DISABLE_CA_SIGN

If set a signer does not have to be a certificate authority. This flag should
normally be disabled, unless you know what this means.

GNUTLS_VERIFY_DO_NOT_ALLOW_SAME

If a certificate is not signed by anyone trusted but exists in the trusted CA list
do not treat it as trusted.

GNUTLS_VERIFY_ALLOW_ANY_X509_V1_CA_CRT

Allow CA certificates that have version 1 (both root and intermediate). This
might be dangerous since those haven’t the basicConstraints extension.

GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD2

Allow certificates to be signed using the broken MD2 algorithm.

GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5

Allow certificates to be signed using the broken MD5 algorithm.

GNUTLS_VERIFY_DISABLE_TIME_CHECKS

Disable checking of activation and expiration validity periods of certificate
chains. Don’t set this unless you understand the security implications.

GNUTLS_VERIFY_DISABLE_TRUSTED_TIME_CHECKS

If set a signer in the trusted list is never checked for expiration or activation.

GNUTLS_VERIFY_DO_NOT_ALLOW_X509_V1_CA_CRT

Do not allow trusted CA certificates that have version 1. This option is to be
used to deprecate all certificates of version 1.

GNUTLS_VERIFY_DISABLE_CRL_CHECKS

Disable checking for validity using certificate revocation lists or the available
OCSP data.

GNUTLS_VERIFY_ALLOW_UNSORTED_CHAIN

A certificate chain is tolerated if unsorted (the case with many TLS servers out
there). This is the default since GnuTLS 3.1.4.

GNUTLS_VERIFY_DO_NOT_ALLOW_UNSORTED_CHAIN

Do not tolerate an unsorted certificate chain.

GNUTLS_VERIFY_DO_NOT_ALLOW_WILDCARDS

When including a hostname check in the verification, do not consider any wild-
cards.

Figure 4.3: The gnutls_certificate_verify_flags enumeration.

4.1.1.8 Verifying a certificate using PKCS #11

Some systems provide a system wide trusted certificate storage accessible using the PKCS
#11 API. That is, the trusted certificates are queried and accessed using the PKCS #11

Chapter 4: Authentication methods 36

API, and trusted certificate properties, such as purpose, are marked using attached exten-
sions. One example is the p11-kit trust module1.

These special PKCS #11 modules can be used for GnuTLS certificate verification if
marked as trust policy modules, i.e., with trust-policy: yes in the p11-kit module
file. The way to use them is by specifying to the file verification function (e.g.,
[gnutls certificate set x509 trust file], page 287), a pkcs11 URL, or simply pkcs11: to use
all the marked with trust policy modules.

The trust modules of p11-kit assign a purpose to trusted authorities using the extended key
usage object identifiers. The common purposes are shown in 〈undefined〉 [tab:purposes],
page 〈undefined〉. Note that typically according to [RFC5280] the extended key usage object
identifiers apply to end certificates. Their application to CA certificates is an extension used
by the trust modules.

Purpose OID Description

GNUTLS KP TLS WWW SERVER1.3.6.1.5.5.7.3.1 The certificate is to be used for TLS WWW authen-
tication. When in a CA certificate, it indicates that
the CA is allowed to sign certificates for TLS WWW
authentication.

GNUTLS KP TLS WWW CLIENT1.3.6.1.5.5.7.3.2 The certificate is to be used for TLS WWW client
authentication. When in a CA certificate, it indi-
cates that the CA is allowed to sign certificates for
TLS WWW client authentication.

GNUTLS KP CODE SIGNING1.3.6.1.5.5.7.3.3 The certificate is to be used for code signing. When
in a CA certificate, it indicates that the CA is al-
lowed to sign certificates for code signing.

GNUTLS KP EMAIL PROTECTION1.3.6.1.5.5.7.3.4 The certificate is to be used for email protection.
When in a CA certificate, it indicates that the CA
is allowed to sign certificates for email users.

GNUTLS KP OCSP SIGNING1.3.6.1.5.5.7.3.9 The certificate is to be used for signing OCSP re-
sponses. When in a CA certificate, it indicates that
the CA is allowed to sign certificates which sign
OCSP reponses.

GNUTLS KP ANY 2.5.29.37.0 The certificate is to be used for any purpose. When
in a CA certificate, it indicates that the CA is al-
lowed to sign any kind of certificates.

Table 4.4: Key purpose object identifiers.

1 see http://p11-glue.freedesktop.org/trust-module.html.

http://p11-glue.freedesktop.org/trust-module.html

Chapter 4: Authentication methods 37

With such modules, it is recommended to use the verification functions 〈un-
defined〉 [gnutls x509 trust list verify crt2], page 〈undefined〉, or 〈undefined〉
[gnutls certificate verify peers], page 〈undefined〉, which allow to explicitly specify the key
purpose. The other verification functions which do not allow setting a purpose, would
operate as if GNUTLS_KP_TLS_WWW_SERVER was requested from the trusted authorities.

4.1.2 OpenPGP certificates

The OpenPGP key authentication relies on a distributed trust model, called the “web of
trust”. The “web of trust” uses a decentralized system of trusted introducers, which are
the same as a CA. OpenPGP allows anyone to sign anyone else’s public key. When Alice
signs Bob’s key, she is introducing Bob’s key to anyone who trusts Alice. If someone trusts
Alice to introduce keys, then Alice is a trusted introducer in the mind of that observer.
For example in 〈undefined〉 [fig-openpgp], page 〈undefined〉, David trusts Alice to be an
introducer and Alice signed Bob’s key thus Dave trusts Bob’s key to be the real one.

Alice

Bob

Dave

{Trust}

Charlie

Kevin

{Trust}

Figure 4.4: An example of the OpenPGP trust model.

There are some key points that are important in that model. In the example Alice has to
sign Bob’s key, only if she is sure that the key belongs to Bob. Otherwise she may also
make Dave falsely believe that this is Bob’s key. Dave has also the responsibility to know
who to trust. This model is similar to real life relations.

Just see how Charlie behaves in the previous example. Although he has signed Bob’s key
- because he knows, somehow, that it belongs to Bob - he does not trust Bob to be an
introducer. Charlie decided to trust only Kevin, for some reason. A reason could be that
Bob is lazy enough, and signs other people’s keys without being sure that they belong to
the actual owner.

Chapter 4: Authentication methods 38

Field Description

version The field that indicates the version of the OpenPGP structure.

user ID An RFC 2822 string that identifies the owner of the key. There
may be multiple user identifiers in a key.

public key The main public key of the certificate.

expiration The expiration time of the main public key.

public subkey An additional public key of the certificate. There may be
multiple subkeys in a certificate.

public subkey
expiration

The expiration time of the subkey.

Table 4.5: OpenPGP certificate fields.

4.1.2.1 OpenPGP certificate structure

In GnuTLS the OpenPGP certificate structures [RFC2440] are handled using the gnutls_

openpgp_crt_t type. A typical certificate contains the user ID, which is an RFC 2822
mail and name address, a public key, possibly a number of additional public keys (called
subkeys), and a number of signatures. The various fields are shown in Table 4.4.

The additional subkeys may provide key for various different purposes, e.g. one key to
encrypt mail, and another to sign a TLS key exchange. Each subkey is identified by a
unique key ID. The keys that are to be used in a TLS key exchange that requires signatures
are called authentication keys in the OpenPGP jargon. The mapping of TLS key exchange
methods to public keys is shown in Table 4.5.

Key exchange Public key requirements

RSA An RSA public key that allows encryption.

DHE RSA An RSA public key that is marked for authentication.

ECDHE RSA An RSA public key that is marked for authentication.

DHE DSS A DSA public key that is marked for authentication.

Table 4.6: The types of (sub)keys required for the various TLS key exchange methods.

The corresponding private keys are stored in the gnutls_openpgp_privkey_t type. All the
prototypes for the key handling functions can be found in gnutls/openpgp.h.

Chapter 4: Authentication methods 39

4.1.2.2 Verifying an OpenPGP certificate

The verification functions of OpenPGP keys, included in GnuTLS, are simple ones, and do
not use the features of the “web of trust”. For that reason, if the verification needs are
complex, the assistance of external tools like GnuPG and GPGME2 is recommended.

In GnuTLS there is a verification function for OpenPGP certificates, the
[gnutls openpgp crt verify ring], page 453. This checks an OpenPGP key against
a given set of public keys (keyring) and returns the key status. The key verification status
is the same as in X.509 certificates, although the meaning and interpretation are different.
For example an OpenPGP key may be valid, if the self signature is ok, even if no signers
were found. The meaning of verification status flags is the same as in the X.509 certificates
(see Figure 4.3).

[Function]int gnutls_openpgp_crt_verify_ring (gnutls openpgp crt t key,
gnutls openpgp keyring t keyring, unsigned int flags, unsigned int *
verify)

key : the structure that holds the key.

keyring : holds the keyring to check against

flags: unused (should be 0)

verify : will hold the certificate verification output.

Verify all signatures in the key, using the given set of keys (keyring).

The key verification output will be put in verify and will be one or more of the
gnutls_certificate_status_t enumerated elements bitwise or’d.

Note that this function does not verify using any "web of trust". You may use GnuPG
for that purpose, or any other external PGP application.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

[Function]int gnutls_openpgp_crt_verify_self (gnutls openpgp crt t key,
unsigned int flags, unsigned int * verify)

key : the structure that holds the key.

flags: unused (should be 0)

verify : will hold the key verification output.

Verifies the self signature in the key. The key verification output will be put in verify

and will be one or more of the gnutls certificate status t enumerated elements bitwise
or’d.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

4.1.2.3 Verifying a certificate in the context of a TLS session

Similarly with X.509 certificates, one needs to specify the OpenPGP keyring
file in the credentials structure. The certificates in this file will be used by
[gnutls certificate verify peers3], page 289 to verify the signatures in the certificate sent
by the peer.

2 http://www.gnupg.org/related_software/gpgme/

http://www.gnupg.org/related_software/gpgme/

Chapter 4: Authentication methods 40

[Function]int gnutls_certificate_set_openpgp_keyring_file
(gnutls certificate credentials t c, const char * file, gnutls openpgp crt fmt t
format)

c: A certificate credentials structure

file: filename of the keyring.

format: format of keyring.

The function is used to set keyrings that will be used internally by various OpenPGP
functions. For example to find a key when it is needed for an operations. The keyring
will also be used at the verification functions.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

4.1.3 Advanced certificate verification

The verification of X.509 certificates in the HTTPS and other Internet protocols is
typically done by loading a trusted list of commercial Certificate Authorities (see
[gnutls certificate set x509 system trust], page 286), and using them as trusted anchors.
However, there are several examples (eg. the Diginotar incident) where one of these
authorities was compromised. This risk can be mitigated by using in addition to CA
certificate verification, other verification methods. In this section we list the available in
GnuTLS methods.

4.1.3.1 Verifying a certificate using trust on first use
authentication

It is possible to use a trust on first use (TOFU) authentication method in GnuTLS. That
is the concept used by the SSH programs, where the public key of the peer is not verified,
or verified in an out-of-bound way, but subsequent connections to the same peer require
the public key to remain the same. Such a system in combination with the typical CA
verification of a certificate, and OCSP revocation checks, can help to provide multiple
factor verification, where a single point of failure is not enough to compromise the system.
For example a server compromise may be detected using OCSP, and a CA compromise can
be detected using the trust on first use method. Such a hybrid system with X.509 and trust
on first use authentication is shown in Section 7.1.2 [Simple client example with SSH-style
certificate verification], page 147.

See Section 6.12.2 [Certificate verification], page 136 on how to use the available function-
ality.

4.1.3.2 Verifying a certificate using DANE (DNSSEC)

The DANE protocol is a protocol that can be used to verify TLS certificates using the
DNS (or better DNSSEC) protocols. The DNS security extensions (DNSSEC) provide an
alternative public key infrastructure to the commercial CAs that are typically used to sign
TLS certificates. The DANE protocol takes advantage of the DNSSEC infrastructure to
verify TLS certificates. This can be in addition to the verification by CA infrastructure
or may even replace it where DNSSEC is fully deployed. Note however, that DNSSEC
deployment is fairly new and it would be better to use it as an additional verification
method rather than the only one.

Chapter 4: Authentication methods 41

The DANE functionality is provided by the libgnutls-dane library that is shipped with
GnuTLS and the function prototypes are in gnutls/dane.h. See Section 6.12.2 [Certificate
verification], page 136 for information on how to use the library.

Note however, that the DANE RFC mandates the verification methods one should use in
addition to the validation via DNSSEC TLSA entries. GnuTLS doesn’t follow that RFC
requirement, and the term DANE verification in this manual refers to the TLSA entry
verification. In GnuTLS any other verification methods can be used (e.g., PKIX or TOFU)
on top of DANE.

4.1.4 Digital signatures

In this section we will provide some information about digital signatures, how they work,
and give the rationale for disabling some of the algorithms used.

Digital signatures work by using somebody’s secret key to sign some arbitrary data. Then
anybody else could use the public key of that person to verify the signature. Since the data
may be arbitrary it is not suitable input to a cryptographic digital signature algorithm. For
this reason and also for performance cryptographic hash algorithms are used to preprocess
the input to the signature algorithm. This works as long as it is difficult enough to generate
two different messages with the same hash algorithm output. In that case the same signature
could be used as a proof for both messages. Nobody wants to sign an innocent message of
donating 1 euro to Greenpeace and find out that they donated 1.000.000 euros to Bad Inc.

For a hash algorithm to be called cryptographic the following three requirements must hold:

1. Preimage resistance. That means the algorithm must be one way and given the output
of the hash function H(x), it is impossible to calculate x.

2. 2nd preimage resistance. That means that given a pair x, y with y = H(x) it is
impossible to calculate an x′ such that y = H(x′).

3. Collision resistance. That means that it is impossible to calculate random x and x′

such H(x′) = H(x).

The last two requirements in the list are the most important in digital signatures. These
protect against somebody who would like to generate two messages with the same hash out-
put. When an algorithm is considered broken usually it means that the Collision resistance
of the algorithm is less than brute force. Using the birthday paradox the brute force attack
takes 2(hash size)/2 operations. Today colliding certificates using the MD5 hash algorithm
have been generated as shown in [WEGER].

There has been cryptographic results for the SHA-1 hash algorithms as well, although they
are not yet critical. Before 2004, MD5 had a presumed collision strength of 264, but it
has been showed to have a collision strength well under 250. As of November 2005, it is
believed that SHA-1’s collision strength is around 263. We consider this sufficiently hard so
that we still support SHA-1. We anticipate that SHA-256/386/512 will be used in publicly-
distributed certificates in the future. When 263 can be considered too weak compared to
the computer power available sometime in the future, SHA-1 will be disabled as well. The
collision attacks on SHA-1 may also get better, given the new interest in tools for creating
them.

Chapter 4: Authentication methods 42

4.1.4.1 Trading security for interoperability

If you connect to a server and use GnuTLS’ functions to verify the certificate chain, and
get a GNUTLS_CERT_INSECURE_ALGORITHM validation error (see Section 4.1.1.5 [Verifying
X.509 certificate paths], page 25), it means that somewhere in the certificate chain there is
a certificate signed using RSA-MD2 or RSA-MD5. These two digital signature algorithms are
considered broken, so GnuTLS fails verifying the certificate. In some situations, it may be
useful to be able to verify the certificate chain anyway, assuming an attacker did not utilize
the fact that these signatures algorithms are broken. This section will give help on how to
achieve that.

It is important to know that you do not have to enable any of the flags discussed here
to be able to use trusted root CA certificates self-signed using RSA-MD2 or RSA-MD5. The
certificates in the trusted list are considered trusted irrespective of the signature.

If you are using [gnutls certificate verify peers3], page 289 to verify the certificate chain,
you can call [gnutls certificate set verify flags], page 281 with the flags:

• GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD2

• GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5

as in the following example:

gnutls_certificate_set_verify_flags (x509cred,

GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5);

This will signal the verifier algorithm to enable RSA-MD5 when verifying the certificates.

If you are using [gnutls x509 crt verify], page 414 or [gnutls x509 crt list verify], page 404,
you can pass the GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5 parameter directly in the flags

parameter.

If you are using these flags, it may also be a good idea to warn the user when verification
failure occur for this reason. The simplest is to not use the flags by default, and only fall back
to using them after warning the user. If you wish to inspect the certificate chain yourself,
you can use [gnutls certificate get peers], page 278 to extract the raw server’s certificate
chain, [gnutls x509 crt list import], page 403 to parse each of the certificates, and then
[gnutls x509 crt get signature algorithm], page 400 to find out the signing algorithm used
for each certificate. If any of the intermediary certificates are using GNUTLS_SIGN_RSA_MD2

or GNUTLS_SIGN_RSA_MD5, you could present a warning.

4.2 More on certificate authentication

Certificates are not the only structures involved in a public key infrastructure. Several
other structures that are used for certificate requests, encrypted private keys, revocation
lists, GnuTLS abstract key structures, etc., are discussed in this chapter.

4.2.1 PKCS #10 certificate requests

A certificate request is a structure, which contain information about an applicant of a
certificate service. It usually contains a private key, a distinguished name and secondary
data such as a challenge password. GnuTLS supports the requests defined in PKCS #10
[RFC2986]. Other formats of certificate requests are not currently supported.

Chapter 4: Authentication methods 43

A certificate request can be generated by associating it with a private key, setting the
subject’s information and finally self signing it. The last step ensures that the requester is
in possession of the private key.

int [gnutls_x509_crq_set_version], page 382 (gnutls_x509_crq_t crq, unsigned

int version)

int [gnutls_x509_crq_set_dn], page 379 (gnutls_x509_crq_t crq, const char *

dn, const char ** err)

int [gnutls_x509_crq_set_dn_by_oid], page 380 (gnutls_x509_crq_t crq, const

char * oid, unsigned int raw_flag, const void * data, unsigned int sizeof_data)

int [gnutls_x509_crq_set_key_usage], page 381 (gnutls_x509_crq_t crq,

unsigned int usage)

int [gnutls_x509_crq_set_key_purpose_oid], page 380 (gnutls_x509_crq_t crq,

const void * oid, unsigned int critical)

int [gnutls_x509_crq_set_basic_constraints], page 379 (gnutls_x509_crq_t

crq, unsigned int ca, int pathLenConstraint)

The [gnutls x509 crq set key], page 380 and [gnutls x509 crq sign2], page 382 functions
associate the request with a private key and sign it. If a request is to be signed with a
key residing in a PKCS #11 token it is recommended to use the signing functions shown in
Section 5.1 [Abstract key types], page 79.

[Function]int gnutls_x509_crq_set_key (gnutls x509 crq t crq,
gnutls x509 privkey t key)

crq: should contain a gnutls_x509_crq_t structure

key : holds a private key

This function will set the public parameters from the given private key to the request.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

[Function]int gnutls_x509_crq_sign2 (gnutls x509 crq t crq,
gnutls x509 privkey t key, gnutls digest algorithm t dig, unsigned int flags)

crq: should contain a gnutls_x509_crq_t structure

key : holds a private key

dig : The message digest to use, i.e., GNUTLS_DIG_SHA1

flags: must be 0

This function will sign the certificate request with a private key. This must be the
same key as the one used in gnutls_x509_crt_set_key() since a certificate request
is self signed.

This must be the last step in a certificate request generation since all the previously
set parameters are now signed.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code. GNUTLS_E_
ASN1_VALUE_NOT_FOUND is returned if you didn’t set all information in the certificate
request (e.g., the version using gnutls_x509_crq_set_version()).

The following example is about generating a certificate request, and a private key. A
certificate request can be later be processed by a CA which should return a signed certificate.

Chapter 4: Authentication methods 44

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <gnutls/gnutls.h>

#include <gnutls/x509.h>

#include <gnutls/abstract.h>

#include <time.h>

/* This example will generate a private key and a certificate

* request.

*/

int main(void)

{

gnutls_x509_crq_t crq;

gnutls_x509_privkey_t key;

unsigned char buffer[10 * 1024];

size_t buffer_size = sizeof(buffer);

unsigned int bits;

gnutls_global_init();

/* Initialize an empty certificate request, and

* an empty private key.

*/

gnutls_x509_crq_init(&crq);

gnutls_x509_privkey_init(&key);

/* Generate an RSA key of moderate security.

*/

bits =

gnutls_sec_param_to_pk_bits(GNUTLS_PK_RSA,

GNUTLS_SEC_PARAM_MEDIUM);

gnutls_x509_privkey_generate(key, GNUTLS_PK_RSA, bits, 0);

/* Add stuff to the distinguished name

*/

gnutls_x509_crq_set_dn_by_oid(crq, GNUTLS_OID_X520_COUNTRY_NAME,

0, "GR", 2);

Chapter 4: Authentication methods 45

gnutls_x509_crq_set_dn_by_oid(crq, GNUTLS_OID_X520_COMMON_NAME,

0, "Nikos", strlen("Nikos"));

/* Set the request version.

*/

gnutls_x509_crq_set_version(crq, 1);

/* Set a challenge password.

*/

gnutls_x509_crq_set_challenge_password(crq,

"something to remember here");

/* Associate the request with the private key

*/

gnutls_x509_crq_set_key(crq, key);

/* Self sign the certificate request.

*/

gnutls_x509_crq_sign2(crq, key, GNUTLS_DIG_SHA1, 0);

/* Export the PEM encoded certificate request, and

* display it.

*/

gnutls_x509_crq_export(crq, GNUTLS_X509_FMT_PEM, buffer,

&buffer_size);

printf("Certificate Request: \n%s", buffer);

/* Export the PEM encoded private key, and

* display it.

*/

buffer_size = sizeof(buffer);

gnutls_x509_privkey_export(key, GNUTLS_X509_FMT_PEM, buffer,

&buffer_size);

printf("\n\nPrivate key: \n%s", buffer);

gnutls_x509_crq_deinit(crq);

gnutls_x509_privkey_deinit(key);

return 0;

}

Chapter 4: Authentication methods 46

4.2.2 PKIX certificate revocation lists

A certificate revocation list (CRL) is a structure issued by an authority periodically con-
taining a list of revoked certificates serial numbers. The CRL structure is signed with the
issuing authorities’ keys. A typical CRL contains the fields as shown in Table 4.6. Certifi-
cate revocation lists are used to complement the expiration date of a certificate, in order to
account for other reasons of revocation, such as compromised keys, etc.

Each CRL is valid for limited amount of time and is required to provide, except for the
current issuing time, also the issuing time of the next update.

Field Description

version The field that indicates the version of the CRL structure.

signature A signature by the issuing authority.

issuer Holds the issuer’s distinguished name.

thisUpdate The issuing time of the revocation list.

nextUpdate The issuing time of the revocation list that will update that
one.

revokedCertificates List of revoked certificates serial numbers.

extensions Optional CRL structure extensions.

Table 4.7: Certificate revocation list fields.

The basic CRL structure functions follow.

int [gnutls_x509_crl_init], page 365 (gnutls_x509_crl_t * crl)

int [gnutls_x509_crl_import], page 365 (gnutls_x509_crl_t crl, const

gnutls_datum_t * data, gnutls_x509_crt_fmt_t format)

int [gnutls_x509_crl_export], page 358 (gnutls_x509_crl_t crl,

gnutls_x509_crt_fmt_t format, void * output_data, size_t * output_data_size)

int [gnutls_x509_crl_export], page 358 (gnutls_x509_crl_t crl,

gnutls_x509_crt_fmt_t format, void * output_data, size_t * output_data_size)

Reading a CRL

The most important function that extracts the certificate revocation information from a
CRL is [gnutls x509 crl get crt serial], page 360. Other functions that return other fields
of the CRL structure are also provided.

[Function]int gnutls_x509_crl_get_crt_serial (gnutls x509 crl t crl, int
indx, unsigned char * serial, size t * serial_size, time t * t)

crl: should contain a gnutls_x509_crl_t structure

indx: the index of the certificate to extract (starting from 0)

Chapter 4: Authentication methods 47

serial: where the serial number will be copied

serial size: initially holds the size of serial

t: if non null, will hold the time this certificate was revoked

This function will retrieve the serial number of the specified, by the index, revoked
certificate.

Note that this function will have performance issues in large sequences of revoked
certificates. In that case use gnutls_x509_crl_iter_crt_serial() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

int [gnutls_x509_crl_get_version], page 364 (gnutls_x509_crl_t crl)

int [gnutls_x509_crl_get_issuer_dn], page 362 (const gnutls_x509_crl_t crl,

char * buf, size_t * sizeof_buf)

int [gnutls_x509_crl_get_issuer_dn2], page 362 (gnutls_x509_crl_t crl,

gnutls_datum_t * dn)

time_t [gnutls_x509_crl_get_this_update], page 364 (gnutls_x509_crl_t crl)

time_t [gnutls_x509_crl_get_next_update], page 363 (gnutls_x509_crl_t crl)

int [gnutls_x509_crl_get_crt_count], page 360 (gnutls_x509_crl_t crl)

Generation of a CRL

The following functions can be used to generate a CRL.

int [gnutls_x509_crl_set_version], page 368 (gnutls_x509_crl_t crl, unsigned

int version)

int [gnutls_x509_crl_set_crt_serial], page 367 (gnutls_x509_crl_t crl, const

void * serial, size_t serial_size, time_t revocation_time)

int [gnutls_x509_crl_set_crt], page 367 (gnutls_x509_crl_t crl,

gnutls_x509_crt_t crt, time_t revocation_time)

int [gnutls_x509_crl_set_next_update], page 367 (gnutls_x509_crl_t crl,

time_t exp_time)

int [gnutls_x509_crl_set_this_update], page 368 (gnutls_x509_crl_t crl,

time_t act_time)

The [gnutls x509 crl sign2], page 368 and [gnutls x509 crl privkey sign], page 505 func-
tions sign the revocation list with a private key. The latter function can be used to sign
with a key residing in a PKCS #11 token.

[Function]int gnutls_x509_crl_sign2 (gnutls x509 crl t crl, gnutls x509 crt t
issuer, gnutls x509 privkey t issuer_key, gnutls digest algorithm t dig,
unsigned int flags)

crl: should contain a gnutls x509 crl t structure

issuer: is the certificate of the certificate issuer

issuer key : holds the issuer’s private key

dig : The message digest to use. GNUTLS DIG SHA1 is the safe choice unless you
know what you’re doing.

flags: must be 0

Chapter 4: Authentication methods 48

This function will sign the CRL with the issuer’s private key, and will copy the issuer’s
information into the CRL.

This must be the last step in a certificate CRL since all the previously set parameters
are now signed.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

[Function]int gnutls_x509_crl_privkey_sign (gnutls x509 crl t crl,
gnutls x509 crt t issuer, gnutls privkey t issuer_key,
gnutls digest algorithm t dig, unsigned int flags)

crl: should contain a gnutls x509 crl t structure

issuer: is the certificate of the certificate issuer

issuer key : holds the issuer’s private key

dig : The message digest to use. GNUTLS DIG SHA1 is the safe choice unless you
know what you’re doing.

flags: must be 0

This function will sign the CRL with the issuer’s private key, and will copy the issuer’s
information into the CRL.

This must be the last step in a certificate CRL since all the previously set parameters
are now signed.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since 2.12.0

Few extensions on the CRL structure are supported, including the CRL number extension
and the authority key identifier.

int [gnutls_x509_crl_set_number], page 367 (gnutls_x509_crl_t crl, const void

* nr, size_t nr_size)

int [gnutls_x509_crl_set_authority_key_id], page 366 (gnutls_x509_crl_t crl,

const void * id, size_t id_size)

4.2.3 OCSP certificate status checking

Certificates may be revoked before their expiration time has been reached. There are several
reasons for revoking certificates, but a typical situation is when the private key associated
with a certificate has been compromised. Traditionally, Certificate Revocation Lists (CRLs)
have been used by application to implement revocation checking, however, several problems
with CRLs have been identified [RIVESTCRL].

The Online Certificate Status Protocol, or OCSP [RFC2560], is a widely implemented pro-
tocol which performs certificate revocation status checking. An application that wish to
verify the identity of a peer will verify the certificate against a set of trusted certificates
and then check whether the certificate is listed in a CRL and/or perform an OCSP check
for the certificate.

Note that in the context of a TLS session the server may provide an OCSP response that
will be used during the TLS certificate verification (see [gnutls certificate verify peers2],
page 289). You may obtain this response using [gnutls ocsp status request get], page 311.

Chapter 4: Authentication methods 49

Before performing the OCSP query, the application will need to figure out the address of
the OCSP server. The OCSP server address can be provided by the local user in manual
configuration or may be stored in the certificate that is being checked. When stored in a
certificate the OCSP server is in the extension field called the Authority Information Access
(AIA). The following function extracts this information from a certificate.

int [gnutls_x509_crt_get_authority_info_access], page 385 (gnutls_x509_crt_t

crt, unsigned int seq, int what, gnutls_datum_t * data, unsigned int *

critical)

There are several functions in GnuTLS for creating and manipulating OCSP requests and
responses. The general idea is that a client application creates an OCSP request object,
stores some information about the certificate to check in the request, and then exports the
request in DER format. The request will then need to be sent to the OCSP responder, which
needs to be done by the application (GnuTLS does not send and receive OCSP packets).
Normally an OCSP response is received that the application will need to import into an
OCSP response object. The digital signature in the OCSP response needs to be verified
against a set of trust anchors before the information in the response can be trusted.

The ASN.1 structure of OCSP requests are briefly as follows. It is useful to review the
structures to get an understanding of which fields are modified by GnuTLS functions.

OCSPRequest ::= SEQUENCE {

tbsRequest TBSRequest,

optionalSignature [0] EXPLICIT Signature OPTIONAL }

TBSRequest ::= SEQUENCE {

version [0] EXPLICIT Version DEFAULT v1,

requestorName [1] EXPLICIT GeneralName OPTIONAL,

requestList SEQUENCE OF Request,

requestExtensions [2] EXPLICIT Extensions OPTIONAL }

Request ::= SEQUENCE {

reqCert CertID,

singleRequestExtensions [0] EXPLICIT Extensions OPTIONAL }

CertID ::= SEQUENCE {

hashAlgorithm AlgorithmIdentifier,

issuerNameHash OCTET STRING, -- Hash of Issuer’s DN

issuerKeyHash OCTET STRING, -- Hash of Issuers public key

serialNumber CertificateSerialNumber }

The basic functions to initialize, import, export and deallocate OCSP requests are the
following.

Chapter 4: Authentication methods 50

int [gnutls_ocsp_req_init], page 435 (gnutls_ocsp_req_t * req)

void [gnutls_ocsp_req_deinit], page 433 (gnutls_ocsp_req_t req)

int [gnutls_ocsp_req_import], page 435 (gnutls_ocsp_req_t req, const

gnutls_datum_t * data)

int [gnutls_ocsp_req_export], page 433 (gnutls_ocsp_req_t req, gnutls_datum_t

* data)

int [gnutls_ocsp_req_print], page 435 (gnutls_ocsp_req_t req,

gnutls_ocsp_print_formats_t format, gnutls_datum_t * out)

To generate an OCSP request the issuer name hash, issuer key hash, and the checked
certificate’s serial number are required. There are two interfaces available for setting those
in an OCSP request. The is a low-level function when you have the issuer name hash, issuer
key hash, and certificate serial number in binary form. The second is more useful if you
have the certificate (and its issuer) in a gnutls_x509_crt_t type. There is also a function
to extract this information from existing an OCSP request.

int [gnutls_ocsp_req_add_cert_id], page 433 (gnutls_ocsp_req_t req,

gnutls_digest_algorithm_t digest, const gnutls_datum_t * issuer_name_hash,

const gnutls_datum_t * issuer_key_hash, const gnutls_datum_t * serial_number)

int [gnutls_ocsp_req_add_cert], page 432 (gnutls_ocsp_req_t req,

gnutls_digest_algorithm_t digest, gnutls_x509_crt_t issuer,

gnutls_x509_crt_t cert)

int [gnutls_ocsp_req_get_cert_id], page 433 (gnutls_ocsp_req_t req, unsigned

indx, gnutls_digest_algorithm_t * digest, gnutls_datum_t * issuer_name_hash,

gnutls_datum_t * issuer_key_hash, gnutls_datum_t * serial_number)

Each OCSP request may contain a number of extensions. Extensions are identified by an
Object Identifier (OID) and an opaque data buffer whose syntax and semantics is implied
by the OID. You can extract or set those extensions using the following functions.

int [gnutls_ocsp_req_get_extension], page 434 (gnutls_ocsp_req_t req,

unsigned indx, gnutls_datum_t * oid, unsigned int * critical, gnutls_datum_t *

data)

int [gnutls_ocsp_req_set_extension], page 436 (gnutls_ocsp_req_t req, const

char * oid, unsigned int critical, const gnutls_datum_t * data)

A common OCSP Request extension is the nonce extension (OID 1.3.6.1.5.5.7.48.1.2), which
is used to avoid replay attacks of earlier recorded OCSP responses. The nonce extension
carries a value that is intended to be sufficiently random and unique so that an attacker
will not be able to give a stale response for the same nonce.

int [gnutls_ocsp_req_get_nonce], page 434 (gnutls_ocsp_req_t req, unsigned

int * critical, gnutls_datum_t * nonce)

int [gnutls_ocsp_req_set_nonce], page 436 (gnutls_ocsp_req_t req, unsigned

int critical, const gnutls_datum_t * nonce)

int [gnutls_ocsp_req_randomize_nonce], page 436 (gnutls_ocsp_req_t req)

The OCSP response structures is a complex structure. A simplified overview of it is in
Table 4.7. Note that a response may contain information on multiple certificates.

Chapter 4: Authentication methods 51

Field Description

version The OCSP response version number (typically 1).

responder ID An identifier of the responder (DN name or a hash of its key).

issue time The time the response was generated.

thisUpdate The issuing time of the revocation information.

nextUpdate The issuing time of the revocation information that will up-
date that one.

Revoked certificates

certificate status The status of the certificate.

certificate serial The certificate’s serial number.

revocationTime The time the certificate was revoked.

revocationReason The reason the certificate was revoked.

Table 4.8: The most important OCSP response fields.

We provide basic functions for initialization, importing, exporting and deallocating OCSP
responses.

int [gnutls_ocsp_resp_init], page 441 (gnutls_ocsp_resp_t * resp)

void [gnutls_ocsp_resp_deinit], page 437 (gnutls_ocsp_resp_t resp)

int [gnutls_ocsp_resp_import], page 440 (gnutls_ocsp_resp_t resp, const

gnutls_datum_t * data)

int [gnutls_ocsp_resp_export], page 437 (gnutls_ocsp_resp_t resp,

gnutls_datum_t * data)

int [gnutls_ocsp_resp_print], page 441 (gnutls_ocsp_resp_t resp,

gnutls_ocsp_print_formats_t format, gnutls_datum_t * out)

The utility function that extracts the revocation as well as other information from a response
is shown below.

[Function]int gnutls_ocsp_resp_get_single (gnutls ocsp resp t resp,
unsigned indx, gnutls digest algorithm t * digest, gnutls datum t *
issuer_name_hash, gnutls datum t * issuer_key_hash, gnutls datum t *
serial_number, unsigned int * cert_status, time t * this_update,
time t * next_update, time t * revocation_time, unsigned int *
revocation_reason)

resp: should contain a gnutls_ocsp_resp_t structure

Chapter 4: Authentication methods 52

indx: Specifies response number to get. Use (0) to get the first one.

digest: output variable with gnutls_digest_algorithm_t hash algorithm

issuer name hash: output buffer with hash of issuer’s DN

issuer key hash: output buffer with hash of issuer’s public key

serial number: output buffer with serial number of certificate to check

cert status: a certificate status, a gnutls_ocsp_cert_status_t enum.

this update: time at which the status is known to be correct.

next update: when newer information will be available, or (time t)-1 if unspecified

revocation time: when cert_status is GNUTLS_OCSP_CERT_REVOKED , holds time of
revocation.

revocation reason: revocation reason, a gnutls_x509_crl_reason_t enum.

This function will return the certificate information of the indx ’ed response in the
Basic OCSP Response resp . The information returned corresponds to the OCSP
SingleResponse structure except the final singleExtensions.

Each of the pointers to output variables may be NULL to indicate that the caller is
not interested in that value.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned. If you have reached the last CertID available GNUTLS_E_REQUESTED_
DATA_NOT_AVAILABLE will be returned.

The possible revocation reasons available in an OCSP response are shown below.

Chapter 4: Authentication methods 53

GNUTLS_X509_CRLREASON_UNSPECIFIED

Unspecified reason.

GNUTLS_X509_CRLREASON_KEYCOMPROMISE

Private key compromised.

GNUTLS_X509_CRLREASON_CACOMPROMISE

CA compromised.

GNUTLS_X509_CRLREASON_AFFILIATIONCHANGED

Affiliation has changed.

GNUTLS_X509_CRLREASON_SUPERSEDED

Certificate superseded.

GNUTLS_X509_CRLREASON_CESSATIONOFOPERATION

Operation has ceased.

GNUTLS_X509_CRLREASON_CERTIFICATEHOLD

Certificate is on hold.

GNUTLS_X509_CRLREASON_REMOVEFROMCRL

Will be removed from delta CRL.

GNUTLS_X509_CRLREASON_PRIVILEGEWITHDRAWN

Privilege withdrawn.

GNUTLS_X509_CRLREASON_AACOMPROMISE

AA compromised.

Figure 4.5: The revocation reasons

Note, that the OCSP response needs to be verified against some set of trust anchors before
it can be relied upon. It is also important to check whether the received OCSP response
corresponds to the certificate being checked.

int [gnutls_ocsp_resp_verify], page 441 (gnutls_ocsp_resp_t resp,

gnutls_x509_trust_list_t trustlist, unsigned int * verify, unsigned int flags)

int [gnutls_ocsp_resp_verify_direct], page 442 (gnutls_ocsp_resp_t resp,

gnutls_x509_crt_t issuer, unsigned int * verify, unsigned int flags)

int [gnutls_ocsp_resp_check_crt], page 436 (gnutls_ocsp_resp_t resp, unsigned

int indx, gnutls_x509_crt_t crt)

4.2.4 Managing encrypted keys

Transferring or storing private keys in plain may not be a good idea, since any compromise
is irreparable. Storing the keys in hardware security modules (see Section 5.2 [Smart cards
and HSMs], page 85) could solve the storage problem but it is not always practical or
efficient enough. This section describes ways to store and transfer encrypted private keys.

There are methods for key encryption, namely the PKCS #8, PKCS #12 and OpenSSL’s
custom encrypted private key formats. The PKCS #8 and the OpenSSL’s method allow
encryption of the private key, while the PKCS #12 method allows, in addition, the bundling

Chapter 4: Authentication methods 54

of accompanying data into the structure. That is typically the corresponding certificate, as
well as a trusted CA certificate.

High level functionality

Generic and higher level private key import functions are available, that import plain or
encrypted keys and will auto-detect the encrypted key format.

[Function]int gnutls_privkey_import_x509_raw (gnutls privkey t pkey, const
gnutls datum t * data, gnutls x509 crt fmt t format, const char *
password, unsigned int flags)

pkey : The private key

data: The private key data to be imported

format: The format of the private key

password: A password (optional)

flags: an ORed sequence of gnutls pkcs encrypt flags t

This function will import the given private key to the abstract gnutls_privkey_t

structure.

The supported formats are basic unencrypted key, PKCS8, PKCS12, and the openssl
format.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

[Function]int gnutls_x509_privkey_import2 (gnutls x509 privkey t key, const
gnutls datum t * data, gnutls x509 crt fmt t format, const char *
password, unsigned int flags)

key : The structure to store the parsed key

data: The DER or PEM encoded key.

format: One of DER or PEM

password: A password (optional)

flags: an ORed sequence of gnutls pkcs encrypt flags t

This function will import the given DER or PEM encoded key, to the native gnutls_
x509_privkey_t format, irrespective of the input format. The input format is auto-
detected.

The supported formats are basic unencrypted key, PKCS8, PKCS12, and the openssl
format.

If the provided key is encrypted but no password was given, then GNUTLS_E_

DECRYPTION_FAILED is returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Any keys imported using those functions can be imported to a certificate credentials struc-
ture using [gnutls certificate set key], page 482, or alternatively they can be directly im-
ported using [gnutls certificate set x509 key file2], page 284.

Chapter 4: Authentication methods 55

PKCS #8 structures

PKCS #8 keys can be imported and exported as normal private keys using the functions
below. An addition to the normal import functions, are a password and a flags argument.
The flags can be any element of the gnutls_pkcs_encrypt_flags_t enumeration. Note
however, that GnuTLS only supports the PKCS #5 PBES2 encryption scheme. Keys
encrypted with the obsolete PBES1 scheme cannot be decrypted.

int [gnutls_x509_privkey_import_pkcs8], page 424 (gnutls_x509_privkey_t key,

const gnutls_datum_t * data, gnutls_x509_crt_fmt_t format, const char *

password, unsigned int flags)

int [gnutls_x509_privkey_export_pkcs8], page 420 (gnutls_x509_privkey_t key,

gnutls_x509_crt_fmt_t format, const char * password, unsigned int flags, void *

output_data, size_t * output_data_size)

int [gnutls_x509_privkey_export2_pkcs8], page 418 (gnutls_x509_privkey_t

key, gnutls_x509_crt_fmt_t format, const char * password, unsigned int flags,

gnutls_datum_t * out)

GNUTLS_PKCS_PLAIN

Unencrypted private key.

GNUTLS_PKCS_PKCS12_3DES

PKCS-12 3DES.

GNUTLS_PKCS_PKCS12_ARCFOUR

PKCS-12 ARCFOUR.

GNUTLS_PKCS_PKCS12_RC2_40

PKCS-12 RC2-40.

GNUTLS_PKCS_PBES2_3DES

PBES2 3DES.

GNUTLS_PKCS_PBES2_AES_128

PBES2 AES-128.

GNUTLS_PKCS_PBES2_AES_192

PBES2 AES-192.

GNUTLS_PKCS_PBES2_AES_256

PBES2 AES-256.

GNUTLS_PKCS_NULL_PASSWORD

Some schemas distinguish between an empty and a NULL password.

GNUTLS_PKCS_PBES2_DES

PBES2 single DES.

Figure 4.6: Encryption flags

PKCS #12 structures

A PKCS #12 structure [PKCS12] usually contains a user’s private keys and certificates.
It is commonly used in browsers to export and import the user’s identities. A file con-

Chapter 4: Authentication methods 56

taining such a key can be directly imported to a certificate credentials structure by using
[gnutls certificate set x509 simple pkcs12 file], page 285.

In GnuTLS the PKCS #12 structures are handled using the gnutls_pkcs12_t type. This
is an abstract type that may hold several gnutls_pkcs12_bag_t types. The bag types are
the holders of the actual data, which may be certificates, private keys or encrypted data.
A bag of type encrypted should be decrypted in order for its data to be accessed.

To reduce the complexity in parsing the structures the simple helper function
[gnutls pkcs12 simple parse], page 467 is provided. For more advanced uses, manual
parsing of the structure is required using the functions below.

int [gnutls_pkcs12_get_bag], page 466 (gnutls_pkcs12_t pkcs12, int indx,

gnutls_pkcs12_bag_t bag)

int [gnutls_pkcs12_verify_mac], page 468 (gnutls_pkcs12_t pkcs12, const char

* pass)

int [gnutls_pkcs12_bag_decrypt], page 462 (gnutls_pkcs12_bag_t bag, const

char * pass)

int [gnutls_pkcs12_bag_get_count], page 463 (gnutls_pkcs12_bag_t bag)

[Function]int gnutls_pkcs12_simple_parse (gnutls pkcs12 t p12, const char *
password, gnutls x509 privkey t * key, gnutls x509 crt t ** chain, unsigned
int * chain_len, gnutls x509 crt t ** extra_certs, unsigned int *
extra_certs_len, gnutls x509 crl t * crl, unsigned int flags)

p12: should contain a gnutls pkcs12 t structure

password: optional password used to decrypt the structure, bags and keys.

key : a structure to store the parsed private key.

chain: the corresponding to key certificate chain (may be NULL)

chain len: will be updated with the number of additional (may be NULL)

extra certs: optional pointer to receive an array of additional certificates found in the
PKCS12 structure (may be NULL).

extra certs len: will be updated with the number of additional certs (may be NULL).

crl: an optional structure to store the parsed CRL (may be NULL).

flags: should be zero or one of GNUTLS PKCS12 SP *

This function parses a PKCS12 structure in pkcs12 and extracts the private key, the
corresponding certificate chain, any additional certificates and a CRL.

The extra_certs and extra_certs_len parameters are optional and both may be
set to NULL . If either is non-NULL , then both must be set. The value for extra_certs
is allocated using gnutls_malloc() .

Encrypted PKCS12 bags and PKCS8 private keys are supported, but only with pass-
word based security and the same password for all operations.

Note that a PKCS12 structure may contain many keys and/or certificates, and there
is no way to identify which key/certificate pair you want. For this reason this function
is useful for PKCS12 files that contain only one key/certificate pair and/or one CRL.

If the provided structure has encrypted fields but no password is provided then this
function returns GNUTLS_E_DECRYPTION_FAILED .

Chapter 4: Authentication methods 57

Note that normally the chain constructed does not include self signed certificates, to
comply with TLS’ requirements. If, however, the flag GNUTLS_PKCS12_SP_INCLUDE_

SELF_SIGNED is specified then self signed certificates will be included in the chain.

Prior to using this function the PKCS 12 structure integrity must be verified using
gnutls_pkcs12_verify_mac() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

int [gnutls_pkcs12_bag_get_data], page 463 (gnutls_pkcs12_bag_t bag, int

indx, gnutls_datum_t * data)

int [gnutls_pkcs12_bag_get_key_id], page 463 (gnutls_pkcs12_bag_t bag, int

indx, gnutls_datum_t * id)

int [gnutls_pkcs12_bag_get_friendly_name], page 463 (gnutls_pkcs12_bag_t

bag, int indx, char ** name)

The functions below are used to generate a PKCS #12 structure. An example of their usage
is shown at Section 7.4.4 [PKCS12 structure generation example], page 219.

int [gnutls_pkcs12_set_bag], page 467 (gnutls_pkcs12_t pkcs12,

gnutls_pkcs12_bag_t bag)

int [gnutls_pkcs12_bag_encrypt], page 462 (gnutls_pkcs12_bag_t bag, const

char * pass, unsigned int flags)

int [gnutls_pkcs12_generate_mac], page 466 (gnutls_pkcs12_t pkcs12, const

char * pass)

int [gnutls_pkcs12_bag_set_data], page 464 (gnutls_pkcs12_bag_t bag,

gnutls_pkcs12_bag_type_t type, const gnutls_datum_t * data)

int [gnutls_pkcs12_bag_set_crl], page 464 (gnutls_pkcs12_bag_t bag,

gnutls_x509_crl_t crl)

int [gnutls_pkcs12_bag_set_crt], page 464 (gnutls_pkcs12_bag_t bag,

gnutls_x509_crt_t crt)

int [gnutls_pkcs12_bag_set_key_id], page 465 (gnutls_pkcs12_bag_t bag, int

indx, const gnutls_datum_t * id)

int [gnutls_pkcs12_bag_set_friendly_name], page 465 (gnutls_pkcs12_bag_t

bag, int indx, const char * name)

OpenSSL encrypted keys

Unfortunately the structures discussed in the previous sections are not the only struc-
tures that may hold an encrypted private key. For example the OpenSSL library offers
a custom key encryption method. Those structures are also supported in GnuTLS with
[gnutls x509 privkey import openssl], page 424.

[Function]int gnutls_x509_privkey_import_openssl (gnutls x509 privkey t
key, const gnutls datum t * data, const char * password)

key : The structure to store the parsed key

data: The DER or PEM encoded key.

password: the password to decrypt the key (if it is encrypted).

Chapter 4: Authentication methods 58

This function will convert the given PEM encrypted to the native
gnutls x509 privkey t format. The output will be stored in key .

The password should be in ASCII. If the password is not provided or wrong then
GNUTLS_E_DECRYPTION_FAILED will be returned.

If the Certificate is PEM encoded it should have a header of "PRIVATE KEY" and
the "DEK-Info" header.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

4.2.5 Invoking certtool

Tool to parse and generate X.509 certificates, requests and private keys. It can be used
interactively or non interactively by specifying the template command line option.

The tool accepts files or URLs supported by GnuTLS. In case PIN is required for the
URL access you can provide it using the environment variables GNUTLS PIN and
GNUTLS SO PIN.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the certtool program. This software is released under the GNU General
Public License, version 3 or later.

certtool help/usage (--help)

This is the automatically generated usage text for certtool.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

certtool - GnuTLS certificate tool

Usage: certtool [-<flag> [<val>] | --<name>[{=| }<val>]]...

-d, --debug=num Enable debugging

- it must be in the range:

0 to 9999

-V, --verbose More verbose output

- may appear multiple times

--infile=file Input file

- file must pre-exist

--outfile=str Output file

-s, --generate-self-signed Generate a self-signed certificate

-c, --generate-certificate Generate a signed certificate

--generate-proxy Generates a proxy certificate

--generate-crl Generate a CRL

-u, --update-certificate Update a signed certificate

-p, --generate-privkey Generate a private key

--provable Generate a private key or parameters from a seed using a provable method

--verify-provable-privkey Verify a private key generated from a seed using a provable method

Chapter 4: Authentication methods 59

--seed=str When generating a private key use the given hex-encoded seed

-q, --generate-request Generate a PKCS #10 certificate request

- prohibits the option ’infile’

-e, --verify-chain Verify a PEM encoded certificate chain

--verify Verify a PEM encoded certificate chain using a trusted list

--verify-crl Verify a CRL using a trusted list

- requires the option ’load-ca-certificate’

--verify-hostname=str Specify a hostname to be used for certificate chain verification

--verify-email=str Specify a email to be used for certificate chain verification

- prohibits the option ’verify-hostname’

--verify-purpose=str Specify a purpose OID to be used for certificate chain verification

--verify-allow-broken Allow broken algorithms, such as MD5 for verification

--generate-dh-params Generate PKCS #3 encoded Diffie-Hellman parameters

--get-dh-params Get the included PKCS #3 encoded Diffie-Hellman parameters

--dh-info Print information PKCS #3 encoded Diffie-Hellman parameters

--load-privkey=str Loads a private key file

--load-pubkey=str Loads a public key file

--load-request=str Loads a certificate request file

--load-certificate=str Loads a certificate file

--load-ca-privkey=str Loads the certificate authority’s private key file

--load-ca-certificate=str Loads the certificate authority’s certificate file

--load-crl=str Loads the provided CRL

--load-data=str Loads auxiliary data

--password=str Password to use

--null-password Enforce a NULL password

--empty-password Enforce an empty password

--hex-numbers Print big number in an easier format to parse

--cprint In certain operations it prints the information in C-friendly format

-i, --certificate-info Print information on the given certificate

--fingerprint Print the fingerprint of the given certificate

--key-id Print the key ID of the given certificate

--certificate-pubkey Print certificate’s public key

--pgp-certificate-info Print information on the given OpenPGP certificate

--pgp-ring-info Print information on the given OpenPGP keyring structure

-l, --crl-info Print information on the given CRL structure

--crq-info Print information on the given certificate request

--no-crq-extensions Do not use extensions in certificate requests

--p12-info Print information on a PKCS #12 structure

--p12-name=str The PKCS #12 friendly name to use

--p7-generate Generate a PKCS #7 structure

--p7-sign Signs using a PKCS #7 structure

--p7-detached-sign Signs using a detached PKCS #7 structure

--p7-include-cert The signer’s certificate will be included in the cert list.

- disabled as ’--no-p7-include-cert’

- enabled by default

--p7-time Will include a timestamp in the PKCS #7 structure

- disabled as ’--no-p7-time’

Chapter 4: Authentication methods 60

--p7-show-data Will show the embedded data in the PKCS #7 structure

- disabled as ’--no-p7-show-data’

--p7-info Print information on a PKCS #7 structure

--p7-verify Verify the provided PKCS #7 structure

--p8-info Print information on a PKCS #8 structure

--smime-to-p7 Convert S/MIME to PKCS #7 structure

-k, --key-info Print information on a private key

--pgp-key-info Print information on an OpenPGP private key

--pubkey-info Print information on a public key

--v1 Generate an X.509 version 1 certificate (with no extensions)

--to-p12 Generate a PKCS #12 structure

--to-p8 Generate a PKCS #8 structure

-8, --pkcs8 Use PKCS #8 format for private keys

--rsa Generate RSA key

--dsa Generate DSA key

--ecc Generate ECC (ECDSA) key

--ecdsa an alias for the ’ecc’ option

--hash=str Hash algorithm to use for signing

--inder Use DER format for input certificates, private keys, and DH parameters

- disabled as ’--no-inder’

--inraw an alias for the ’inder’ option

--outder Use DER format for output certificates, private keys, and DH parameters

- disabled as ’--no-outder’

--outraw an alias for the ’outder’ option

--bits=num Specify the number of bits for key generate

--curve=str Specify the curve used for EC key generation

--sec-param=str Specify the security level [low, legacy, medium, high, ultra]

--disable-quick-random No effect

--template=str Template file to use for non-interactive operation

--stdout-info Print information to stdout instead of stderr

--ask-pass Enable interaction for entering password when in batch mode.

--pkcs-cipher=str Cipher to use for PKCS #8 and #12 operations

--provider=str Specify the PKCS #11 provider library

-v, --version[=arg] output version information and exit

-h, --help display extended usage information and exit

-!, --more-help extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single

hyphen and the flag character.

Tool to parse and generate X.509 certificates, requests and private keys.

It can be used interactively or non interactively by specifying the

template command line option.

The tool accepts files or URLs supported by GnuTLS. In case PIN is

required for the URL access you can provide it using the environment

variables GNUTLS_PIN and GNUTLS_SO_PIN.

Chapter 4: Authentication methods 61

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the

debug level.

generate-request option (-q)

This is the “generate a pkcs #10 certificate request” option.

This option has some usage constraints. It:

• must not appear in combination with any of the following options: infile.

Will generate a PKCS #10 certificate request. To specify a private key use –load-privkey.

verify-chain option (-e)

This is the “verify a pem encoded certificate chain” option. The last certificate in the chain

must be a self signed one.

verify option

This is the “verify a pem encoded certificate chain using a trusted list” option. The trusted

certificate list can be loaded with –load-ca-certificate. If no certificate list is provided, then

the system’s certificate list is used.

verify-crl option

This is the “verify a crl using a trusted list” option.

This option has some usage constraints. It:

• must appear in combination with the following options: load-ca-certificate.

The trusted certificate list must be loaded with –load-ca-certificate.

get-dh-params option

This is the “get the included pkcs #3 encoded diffie-hellman parameters” option. Returns

stored DH parameters in GnuTLS. Those parameters are used in the SRP protocol. The

parameters returned by fresh generation are more efficient since GnuTLS 3.0.9.

load-privkey option

This is the “loads a private key file” option. This option takes a string argument. This can

be either a file or a PKCS #11 URL

load-pubkey option

This is the “loads a public key file” option. This option takes a string argument. This can

be either a file or a PKCS #11 URL

load-request option

This is the “loads a certificate request file” option. This option takes a string argument.

This option can be used with a file

Chapter 4: Authentication methods 62

load-certificate option

This is the “loads a certificate file” option. This option takes a string argument. This

option can be used with a file

load-ca-privkey option

This is the “loads the certificate authority’s private key file” option. This option takes a

string argument. This can be either a file or a PKCS #11 URL

load-ca-certificate option

This is the “loads the certificate authority’s certificate file” option. This option takes a

string argument. This option can be used with a file

password option

This is the “password to use” option. This option takes a string argument. You can use this

option to specify the password in the command line instead of reading it from the tty. Note,

that the command line arguments are available for view in others in the system. Specifying

password as ” is the same as specifying no password.

null-password option

This is the “enforce a null password” option. This option enforces a NULL password. This

is different than the empty or no password in schemas like PKCS #8.

empty-password option

This is the “enforce an empty password” option. This option enforces an empty password.

This is different than the NULL or no password in schemas like PKCS #8.

cprint option

This is the “in certain operations it prints the information in c-friendly format” option. In

certain operations it prints the information in C-friendly format, suitable for including into

C programs.

p12-name option

This is the “the pkcs #12 friendly name to use” option. This option takes a string argument.

The name to be used for the primary certificate and private key in a PKCS #12 file.

pubkey-info option

This is the “print information on a public key” option. The option combined with –load-

request, –load-pubkey, –load-privkey and –load-certificate will extract the public key of the

object in question.

to-p12 option

This is the “generate a pkcs #12 structure” option.

This option has some usage constraints. It:

Chapter 4: Authentication methods 63

• must appear in combination with the following options: load-certificate.

It requires a certificate, a private key and possibly a CA certificate to be specified.

rsa option

This is the “generate rsa key” option. When combined with –generate-privkey generates

an RSA private key.

dsa option

This is the “generate dsa key” option. When combined with –generate-privkey generates a

DSA private key.

ecc option

This is the “generate ecc (ecdsa) key” option. When combined with –generate-privkey

generates an elliptic curve private key to be used with ECDSA.

ecdsa option

This is an alias for the ecc option, see [certtool ecc], page 57.

hash option

This is the “hash algorithm to use for signing” option. This option takes a string argument.

Available hash functions are SHA1, RMD160, SHA256, SHA384, SHA512.

inder option

This is the “use der format for input certificates, private keys, and dh parameters ” option.

This option has some usage constraints. It:

• can be disabled with –no-inder.

The input files will be assumed to be in DER or RAW format. Unlike options that in PEM

input would allow multiple input data (e.g. multiple certificates), when reading in DER

format a single data structure is read.

inraw option

This is an alias for the inder option, see [certtool inder], page 57.

outder option

This is the “use der format for output certificates, private keys, and dh parameters” option.

This option has some usage constraints. It:

• can be disabled with –no-outder.

The output will be in DER or RAW format.

outraw option

This is an alias for the outder option, see [certtool outder], page 57.

Chapter 4: Authentication methods 64

curve option

This is the “specify the curve used for ec key generation” option. This option takes a string

argument. Supported values are secp192r1, secp224r1, secp256r1, secp384r1 and secp521r1.

sec-param option

This is the “specify the security level [low, legacy, medium, high, ultra]” option. This option

takes a string argument Security parameter. This is alternative to the bits option.

ask-pass option

This is the “enable interaction for entering password when in batch mode.” option. This

option will enable interaction to enter password when in batch mode. That is useful when

the template option has been specified.

pkcs-cipher option

This is the “cipher to use for pkcs #8 and #12 operations” option. This option takes a

string argument Cipher. Cipher may be one of 3des, 3des-pkcs12, aes-128, aes-192, aes-256,

rc2-40, arcfour.

provider option

This is the “specify the pkcs #11 provider library” option. This option takes a string

argument. This will override the default options in /etc/gnutls/pkcs11.conf

certtool exit status

One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

certtool See Also

p11tool (1)

certtool Examples

Generating private keys

To create an RSA private key, run:

$ certtool --generate-privkey --outfile key.pem --rsa

To create a DSA or elliptic curves (ECDSA) private key use the above command combined
with ’dsa’ or ’ecc’ options.

Chapter 4: Authentication methods 65

Generating certificate requests

To create a certificate request (needed when the certificate is issued by another party), run:

certtool --generate-request --load-privkey key.pem \

--outfile request.pem

If the private key is stored in a smart card you can generate a request by specifying the
private key object URL.

$./certtool --generate-request --load-privkey "pkcs11:..." \

--load-pubkey "pkcs11:..." --outfile request.pem

Generating a self-signed certificate

To create a self signed certificate, use the command:

$ certtool --generate-privkey --outfile ca-key.pem

$ certtool --generate-self-signed --load-privkey ca-key.pem \

--outfile ca-cert.pem

Note that a self-signed certificate usually belongs to a certificate authority, that signs other
certificates.

Generating a certificate

To generate a certificate using the previous request, use the command:

$ certtool --generate-certificate --load-request request.pem \

--outfile cert.pem --load-ca-certificate ca-cert.pem \

--load-ca-privkey ca-key.pem

To generate a certificate using the private key only, use the command:

$ certtool --generate-certificate --load-privkey key.pem \

--outfile cert.pem --load-ca-certificate ca-cert.pem \

--load-ca-privkey ca-key.pem

Certificate information

To view the certificate information, use:

$ certtool --certificate-info --infile cert.pem

PKCS #12 structure generation

To generate a PKCS #12 structure using the previous key and certificate, use the command:

$ certtool --load-certificate cert.pem --load-privkey key.pem \

--to-p12 --outder --outfile key.p12

Some tools (reportedly web browsers) have problems with that file because it does not
contain the CA certificate for the certificate. To work around that problem in the tool, you
can use the –load-ca-certificate parameter as follows:

$ certtool --load-ca-certificate ca.pem \

--load-certificate cert.pem --load-privkey key.pem \

--to-p12 --outder --outfile key.p12

Chapter 4: Authentication methods 66

Diffie-Hellman parameter generation

To generate parameters for Diffie-Hellman key exchange, use the command:

$ certtool --generate-dh-params --outfile dh.pem --sec-param medium

Proxy certificate generation

Proxy certificate can be used to delegate your credential to a temporary, typically short-
lived, certificate. To create one from the previously created certificate, first create a tem-
porary key and then generate a proxy certificate for it, using the commands:

$ certtool --generate-privkey > proxy-key.pem

$ certtool --generate-proxy --load-ca-privkey key.pem \

--load-privkey proxy-key.pem --load-certificate cert.pem \

--outfile proxy-cert.pem

Certificate revocation list generation

To create an empty Certificate Revocation List (CRL) do:

$ certtool --generate-crl --load-ca-privkey x509-ca-key.pem \

--load-ca-certificate x509-ca.pem

To create a CRL that contains some revoked certificates, place the certificates in a file and
use --load-certificate as follows:

$ certtool --generate-crl --load-ca-privkey x509-ca-key.pem \

--load-ca-certificate x509-ca.pem --load-certificate revoked-certs.pem

To verify a Certificate Revocation List (CRL) do:

$ certtool --verify-crl --load-ca-certificate x509-ca.pem < crl.pem

certtool Files

Certtool’s template file format

A template file can be used to avoid the interactive questions of certtool. Initially create a
file named ’cert.cfg’ that contains the information about the certificate. The template can
be used as below:

$ certtool --generate-certificate --load-privkey key.pem \

--template cert.cfg --outfile cert.pem \

--load-ca-certificate ca-cert.pem --load-ca-privkey ca-key.pem

An example certtool template file that can be used to generate a certificate request or a self
signed certificate follows.

X.509 Certificate options

#

DN options

The organization of the subject.

organization = "Koko inc."

The organizational unit of the subject.

unit = "sleeping dept."

Chapter 4: Authentication methods 67

The locality of the subject.

locality =

The state of the certificate owner.

state = "Attiki"

The country of the subject. Two letter code.

country = GR

The common name of the certificate owner.

cn = "Cindy Lauper"

A user id of the certificate owner.

#uid = "clauper"

Set domain components

#dc = "name"

#dc = "domain"

If the supported DN OIDs are not adequate you can set

any OID here.

For example set the X.520 Title and the X.520 Pseudonym

by using OID and string pairs.

#dn_oid = 2.5.4.12 Dr.

#dn_oid = 2.5.4.65 jackal

This is deprecated and should not be used in new

certificates.

pkcs9_email = "none@none.org"

An alternative way to set the certificate’s distinguished name directly

is with the "dn" option. The attribute names allowed are:

C (country), street, O (organization), OU (unit), title, CN (common name),

L (locality), ST (state), placeOfBirth, gender, countryOfCitizenship,

countryOfResidence, serialNumber, telephoneNumber, surName, initials,

generationQualifier, givenName, pseudonym, dnQualifier, postalCode, name,

businessCategory, DC, UID, jurisdictionOfIncorporationLocalityName,

jurisdictionOfIncorporationStateOrProvinceName,

jurisdictionOfIncorporationCountryName, XmppAddr, and numeric OIDs.

#dn = "cn=Nik,st=Attiki,C=GR,surName=Mavrogiannopoulos,2.5.4.9=Arkadias"

The serial number of the certificate

Comment the field for a time-based serial number.

serial = 007

Chapter 4: Authentication methods 68

In how many days, counting from today, this certificate will expire.

Use -1 if there is no expiration date.

expiration_days = 700

Alternatively you may set concrete dates and time. The GNU date string

formats are accepted. See:

http://www.gnu.org/software/tar/manual/html_node/Date-input-formats.html

#activation_date = "2004-02-29 16:21:42"

#expiration_date = "2025-02-29 16:24:41"

X.509 v3 extensions

A dnsname in case of a WWW server.

#dns_name = "www.none.org"

#dns_name = "www.morethanone.org"

A subject alternative name URI

#uri = "http://www.example.com"

An IP address in case of a server.

#ip_address = "192.168.1.1"

An email in case of a person

email = "none@none.org"

Challenge password used in certificate requests

challenge_password = 123456

Password when encrypting a private key

#password = secret

An URL that has CRLs (certificate revocation lists)

available. Needed in CA certificates.

#crl_dist_points = "http://www.getcrl.crl/getcrl/"

Whether this is a CA certificate or not

#ca

Subject Unique ID (in hex)

#subject_unique_id = 00153224

Issuer Unique ID (in hex)

#issuer_unique_id = 00153225

for microsoft smart card logon

key_purpose_oid = 1.3.6.1.4.1.311.20.2.2

Chapter 4: Authentication methods 69

Other predefined key purpose OIDs

Whether this certificate will be used for a TLS client

#tls_www_client

Whether this certificate will be used for a TLS server

#tls_www_server

Whether this certificate will be used to sign data (needed

in TLS DHE ciphersuites).

signing_key

Whether this certificate will be used to encrypt data (needed

in TLS RSA ciphersuites). Note that it is preferred to use different

keys for encryption and signing.

encryption_key

Whether this key will be used to sign other certificates.

#cert_signing_key

Whether this key will be used to sign CRLs.

#crl_signing_key

Whether this key will be used to sign code.

#code_signing_key

Whether this key will be used to sign OCSP data.

#ocsp_signing_key

Whether this key will be used for time stamping.

#time_stamping_key

Whether this key will be used for IPsec IKE operations.

#ipsec_ike_key

end of key purpose OIDs

When generating a certificate from a certificate

request, then honor the extensions stored in the request

and store them in the real certificate.

#honor_crq_extensions

Path length contraint. Sets the maximum number of

certificates that can be used to certify this certificate.

(i.e. the certificate chain length)

#path_len = -1

Chapter 4: Authentication methods 70

#path_len = 2

OCSP URI

ocsp_uri = http://my.ocsp.server/ocsp

CA issuers URI

ca_issuers_uri = http://my.ca.issuer

Certificate policies

#policy1 = 1.3.6.1.4.1.5484.1.10.99.1.0

#policy1_txt = "This is a long policy to summarize"

#policy1_url = http://www.example.com/a-policy-to-read

#policy2 = 1.3.6.1.4.1.5484.1.10.99.1.1

#policy2_txt = "This is a short policy"

#policy2_url = http://www.example.com/another-policy-to-read

Name constraints

DNS

#nc_permit_dns = example.com

#nc_exclude_dns = test.example.com

EMAIL

#nc_permit_email = "nmav@ex.net"

Exclude subdomains of example.com

#nc_exclude_email = .example.com

Exclude all e-mail addresses of example.com

#nc_exclude_email = example.com

Options for proxy certificates

#proxy_policy_language = 1.3.6.1.5.5.7.21.1

Options for generating a CRL

The number of days the next CRL update will be due.

next CRL update will be in 43 days

#crl_next_update = 43

this is the 5th CRL by this CA

Comment the field for a time-based number.

#crl_number = 5

Chapter 4: Authentication methods 71

4.2.6 Invoking ocsptool

Ocsptool is a program that can parse and print information about OCSP requests/responses,
generate requests and verify responses.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the ocsptool program. This software is released under the GNU General
Public License, version 3 or later.

ocsptool help/usage (--help)

This is the automatically generated usage text for ocsptool.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

ocsptool - GnuTLS OCSP tool

Usage: ocsptool [-<flag> [<val>] | --<name>[{=| }<val>]]...

-d, --debug=num Enable debugging

- it must be in the range:

0 to 9999

-V, --verbose More verbose output

- may appear multiple times

--infile=file Input file

- file must pre-exist

--outfile=str Output file

--ask[=arg] Ask an OCSP/HTTP server on a certificate validity

- requires these options:

load-cert

load-issuer

-e, --verify-response Verify response

-i, --request-info Print information on a OCSP request

-j, --response-info Print information on a OCSP response

-q, --generate-request Generate an OCSP request

--nonce Use (or not) a nonce to OCSP request

- disabled as ’--no-nonce’

--load-issuer=file Read issuer certificate from file

- file must pre-exist

--load-cert=file Read certificate to check from file

- file must pre-exist

--load-trust=file Read OCSP trust anchors from file

- prohibits the option ’load-signer’

- file must pre-exist

--load-signer=file Read OCSP response signer from file

- prohibits the option ’load-trust’

- file must pre-exist

--inder Use DER format for input certificates and private keys

Chapter 4: Authentication methods 72

- disabled as ’--no-inder’

-Q, --load-request=file Read DER encoded OCSP request from file

- file must pre-exist

-S, --load-response=file Read DER encoded OCSP response from file

- file must pre-exist

-v, --version[=arg] output version information and exit

-h, --help display extended usage information and exit

-!, --more-help extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single

hyphen and the flag character.

Ocsptool is a program that can parse and print information about OCSP

requests/responses, generate requests and verify responses.

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the

debug level.

ask option

This is the “ask an ocsp/http server on a certificate validity” option. This option takes an
optional string argument server name|url.

This option has some usage constraints. It:

• must appear in combination with the following options: load-cert, load-issuer.

Connects to the specified HTTP OCSP server and queries on the validity of the loaded

certificate.

ocsptool exit status

One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

ocsptool See Also

certtool (1)

ocsptool Examples

Print information about an OCSP request

To parse an OCSP request and print information about the content, the -i or --request-
info parameter may be used as follows. The -Q parameter specify the name of the file

Chapter 4: Authentication methods 73

containing the OCSP request, and it should contain the OCSP request in binary DER
format.

$ ocsptool -i -Q ocsp-request.der

The input file may also be sent to standard input like this:

$ cat ocsp-request.der | ocsptool --request-info

Print information about an OCSP response

Similar to parsing OCSP requests, OCSP responses can be parsed using the -j or --

response-info as follows.

$ ocsptool -j -Q ocsp-response.der

$ cat ocsp-response.der | ocsptool --response-info

Generate an OCSP request

The -q or --generate-request parameters are used to generate an OCSP request. By
default the OCSP request is written to standard output in binary DER format, but can be
stored in a file using --outfile. To generate an OCSP request the issuer of the certificate
to check needs to be specified with --load-issuer and the certificate to check with --

load-cert. By default PEM format is used for these files, although --inder can be used
to specify that the input files are in DER format.

$ ocsptool -q --load-issuer issuer.pem --load-cert client.pem \

--outfile ocsp-request.der

When generating OCSP requests, the tool will add an OCSP extension containing a nonce.
This behaviour can be disabled by specifying --no-nonce.

Verify signature in OCSP response

To verify the signature in an OCSP response the -e or --verify-response parameter is
used. The tool will read an OCSP response in DER format from standard input, or from
the file specified by --load-response. The OCSP response is verified against a set of
trust anchors, which are specified using --load-trust. The trust anchors are concatenated
certificates in PEM format. The certificate that signed the OCSP response needs to be in
the set of trust anchors, or the issuer of the signer certificate needs to be in the set of trust
anchors and the OCSP Extended Key Usage bit has to be asserted in the signer certificate.

$ ocsptool -e --load-trust issuer.pem \

--load-response ocsp-response.der

The tool will print status of verification.

Verify signature in OCSP response against given certificate

It is possible to override the normal trust logic if you know that a certain certificate is
supposed to have signed the OCSP response, and you want to use it to check the signature.
This is achieved using --load-signer instead of --load-trust. This will load one certifi-
cate and it will be used to verify the signature in the OCSP response. It will not check the
Extended Key Usage bit.

$ ocsptool -e --load-signer ocsp-signer.pem \

--load-response ocsp-response.der

Chapter 4: Authentication methods 74

This approach is normally only relevant in two situations. The first is when the OCSP
response does not contain a copy of the signer certificate, so the --load-trust code would
fail. The second is if you want to avoid the indirect mode where the OCSP response signer
certificate is signed by a trust anchor.

Real-world example

Here is an example of how to generate an OCSP request for a certificate and to verify the
response. For illustration we’ll use the blog.josefsson.org host, which (as of writing)
uses a certificate from CACert. First we’ll use gnutls-cli to get a copy of the server
certificate chain. The server is not required to send this information, but this particular
one is configured to do so.

$ echo | gnutls-cli -p 443 blog.josefsson.org --print-cert > chain.pem

Use a text editor on chain.pem to create three files for each separate certificates, called
cert.pem for the first certificate for the domain itself, secondly issuer.pem for the inter-
mediate certificate and root.pem for the final root certificate.

The domain certificate normally contains a pointer to where the OCSP responder is located,
in the Authority Information Access Information extension. For example, from certtool

-i < cert.pem there is this information:

Authority Information Access Information (not critical):

Access Method: 1.3.6.1.5.5.7.48.1 (id-ad-ocsp)

Access Location URI: http://ocsp.CAcert.org/

This means the CA support OCSP queries over HTTP. We are now ready to create a OCSP
request for the certificate.

$ ocsptool --ask ocsp.CAcert.org --load-issuer issuer.pem \

--load-cert cert.pem --outfile ocsp-response.der

The request is sent via HTTP to the OCSP server address specified. If the address is
ommited ocsptool will use the address stored in the certificate.

4.2.7 Invoking danetool

Tool to generate and check DNS resource records for the DANE protocol.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the danetool program. This software is released under the GNU General
Public License, version 3 or later.

danetool help/usage (--help)

This is the automatically generated usage text for danetool.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

danetool - GnuTLS DANE tool

Usage: danetool [-<flag> [<val>] | --<name>[{=| }<val>]]...

Chapter 4: Authentication methods 75

-d, --debug=num Enable debugging

- it must be in the range:

0 to 9999

-V, --verbose More verbose output

- may appear multiple times

--infile=file Input file

- file must pre-exist

--outfile=str Output file

--load-pubkey=str Loads a public key file

--load-certificate=str Loads a certificate file

--dlv=str Sets a DLV file

--hash=str Hash algorithm to use for signing

--check=str Check a host’s DANE TLSA entry

--check-ee Check only the end-entity’s certificate

--check-ca Check only the CA’s certificate

--tlsa-rr Print the DANE RR data on a certificate or public key

- requires the option ’host’

--host=str Specify the hostname to be used in the DANE RR

--proto=str The protocol set for DANE data (tcp, udp etc.)

--port=str The port or service to connect to, for DANE data

--app-proto=str an alias for the ’starttls-proto’ option

--starttls-proto=str The application protocol to be used to obtain the server’s certificate

(https, ftp, smtp, imap, ldap, xmpp)

--ca Whether the provided certificate or public key is a Certificate

Authority

--x509 Use the hash of the X.509 certificate, rather than the public key

--local an alias for the ’domain’ option

- enabled by default

--domain The provided certificate or public key is issued by the local domain

- disabled as ’--no-domain’

- enabled by default

--local-dns Use the local DNS server for DNSSEC resolving

- disabled as ’--no-local-dns’

--insecure Do not verify any DNSSEC signature

--inder Use DER format for input certificates and private keys

- disabled as ’--no-inder’

--inraw an alias for the ’inder’ option

--print-raw Print the received DANE data in raw format

- disabled as ’--no-print-raw’

--quiet Suppress several informational messages

-v, --version[=arg] output version information and exit

-h, --help display extended usage information and exit

-!, --more-help extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single

hyphen and the flag character.

Chapter 4: Authentication methods 76

Tool to generate and check DNS resource records for the DANE protocol.

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the

debug level.

load-pubkey option

This is the “loads a public key file” option. This option takes a string argument. This can

be either a file or a PKCS #11 URL

load-certificate option

This is the “loads a certificate file” option. This option takes a string argument. This can

be either a file or a PKCS #11 URL

dlv option

This is the “sets a dlv file” option. This option takes a string argument. This sets a DLV

file to be used for DNSSEC verification.

hash option

This is the “hash algorithm to use for signing” option. This option takes a string argument.

Available hash functions are SHA1, RMD160, SHA256, SHA384, SHA512.

check option

This is the “check a host’s dane tlsa entry” option. This option takes a string argument.

Obtains the DANE TLSA entry from the given hostname and prints information. Note that

the actual certificate of the host can be provided using –load-certificate, otherwise danetool

will connect to the server to obtain it. The exit code on verification success will be zero.

check-ee option

This is the “check only the end-entity’s certificate” option. Checks the end-entity’s certifi-

cate only. Trust anchors or CAs are not considered.

check-ca option

This is the “check only the ca’s certificate” option. Checks the trust anchor’s and CA’s

certificate only. End-entities are not considered.

tlsa-rr option

This is the “print the dane rr data on a certificate or public key” option.

This option has some usage constraints. It:

• must appear in combination with the following options: host.

This command prints the DANE RR data needed to enable DANE on a DNS server.

Chapter 4: Authentication methods 77

host option

This is the “specify the hostname to be used in the dane rr” option. This option takes a

string argument Hostname. This command sets the hostname for the DANE RR.

proto option

This is the “the protocol set for dane data (tcp, udp etc.)” option. This option takes a

string argument Protocol. This command specifies the protocol for the service set in the

DANE data.

app-proto option

This is the “the application protocol to be used to obtain the server’s certificate (https, ftp,

smtp, imap)” option. This option takes a string argument. When the server’s certificate

isn’t provided danetool will connect to the server to obtain the certificate. In that case

it is required to known the protocol to talk with the server prior to initiating the TLS

handshake.

ca option

This is the “whether the provided certificate or public key is a certificate authority” option.

Marks the DANE RR as a CA certificate if specified.

x509 option

This is the “use the hash of the x.509 certificate, rather than the public key” option. This

option forces the generated record to contain the hash of the full X.509 certificate. By

default only the hash of the public key is used.

local option

This is an alias for the domain option, see [danetool domain], page 70.

domain option

This is the “the provided certificate or public key is issued by the local domain” option.

This option has some usage constraints. It:

• can be disabled with –no-domain.

• It is enabled by default.

DANE distinguishes certificates and public keys offered via the DNSSEC to trusted and

local entities. This flag indicates that this is a domain-issued certificate, meaning that

there could be no CA involved.

local-dns option

This is the “use the local dns server for dnssec resolving” option.

This option has some usage constraints. It:

• can be disabled with –no-local-dns.

Chapter 4: Authentication methods 78

This option will use the local DNS server for DNSSEC. This is disabled by default due to

many servers not allowing DNSSEC.

insecure option

This is the “do not verify any dnssec signature” option. Ignores any DNSSEC signature

verification results.

inder option

This is the “use der format for input certificates and private keys” option.

This option has some usage constraints. It:

• can be disabled with –no-inder.

The input files will be assumed to be in DER or RAW format. Unlike options that in PEM

input would allow multiple input data (e.g. multiple certificates), when reading in DER

format a single data structure is read.

inraw option

This is an alias for the inder option, see [danetool inder], page 69.

print-raw option

This is the “print the received dane data in raw format” option.

This option has some usage constraints. It:

• can be disabled with –no-print-raw.

This option will print the received DANE data.

quiet option

This is the “suppress several informational messages” option. In that case on the exit code

can be used as an indication of verification success

danetool exit status

One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

danetool See Also

certtool (1)

danetool Examples

Chapter 4: Authentication methods 79

DANE TLSA RR generation

To create a DANE TLSA resource record for a certificate (or public key) that was issued
localy and may or may not be signed by a CA use the following command.

$ danetool --tlsa-rr --host www.example.com --load-certificate cert.pem

To create a DANE TLSA resource record for a CA signed certificate, which will be marked
as such use the following command.

$ danetool --tlsa-rr --host www.example.com --load-certificate cert.pem \

--no-domain

The former is useful to add in your DNS entry even if your certificate is signed by a CA.
That way even users who do not trust your CA will be able to verify your certificate using
DANE.

In order to create a record for the CA signer of your certificate use the following.

$ danetool --tlsa-rr --host www.example.com --load-certificate cert.pem \

--ca --no-domain

To read a server’s DANE TLSA entry, use:

$ danetool --check www.example.com --proto tcp --port 443

To verify a server’s DANE TLSA entry, use:

$ danetool --check www.example.com --proto tcp --port 443 --load-certificate chain.pem

4.3 Shared-key and anonymous authentication

In addition to certificate authentication, the TLS protocol may be used with password,
shared-key and anonymous authentication methods. The rest of this chapter discusses
details of these methods.

4.3.1 SRP authentication

4.3.1.1 Authentication using SRP

GnuTLS supports authentication via the Secure Remote Password or SRP protocol (see
[RFC2945,TOMSRP] for a description). The SRP key exchange is an extension to the
TLS protocol, and it provides an authenticated with a password key exchange. The peers
can be identified using a single password, or there can be combinations where the client is
authenticated using SRP and the server using a certificate.

The advantage of SRP authentication, over other proposed secure password authentication
schemes, is that SRP is not susceptible to off-line dictionary attacks. Moreover, SRP does
not require the server to hold the user’s password. This kind of protection is similar to the
one used traditionally in the UNIX /etc/passwd file, where the contents of this file did not
cause harm to the system security if they were revealed. The SRP needs instead of the plain
password something called a verifier, which is calculated using the user’s password, and if
stolen cannot be used to impersonate the user.

Typical conventions in SRP are a password file, called tpasswd that holds the SRP verifiers
(encoded passwords) and another file, tpasswd.conf, which holds the allowed SRP pa-
rameters. The included in GnuTLS helper follow those conventions. The srptool program,
discussed in the next section is a tool to manipulate the SRP parameters.

Chapter 4: Authentication methods 80

The implementation in GnuTLS is based on [TLSSRP]. The supported key exchange meth-
ods are shown below.

SRP: Authentication using the SRP protocol.

SRP_DSS: Client authentication using the SRP protocol. Server is authenticated using a
certificate with DSA parameters.

SRP_RSA: Client authentication using the SRP protocol. Server is authenticated using a
certificate with RSA parameters.

[Function]int gnutls_srp_verifier (const char * username, const char *
password, const gnutls datum t * salt, const gnutls datum t * generator,
const gnutls datum t * prime, gnutls datum t * res)

username: is the user’s name

password: is the user’s password

salt: should be some randomly generated bytes

generator: is the generator of the group

prime: is the group’s prime

res: where the verifier will be stored.

This function will create an SRP verifier, as specified in RFC2945. The prime and
generator should be one of the static parameters defined in gnutls/gnutls.h or may
be generated.

The verifier will be allocated with gnutls_malloc () and will be stored in res using
binary format.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

int [gnutls_srp_base64_encode_alloc], page 338 (const gnutls_datum_t * data,

gnutls_datum_t * result)

int [gnutls_srp_base64_decode_alloc], page 338 (const gnutls_datum_t *

b64_data, gnutls_datum_t * result)

4.3.1.2 Invoking srptool

Simple program that emulates the programs in the Stanford SRP (Secure Remote Pass-
word) libraries using GnuTLS. It is intended for use in places where you don’t expect SRP
authentication to be the used for system users.

In brief, to use SRP you need to create two files. These are the password file that holds
the users and the verifiers associated with them and the configuration file to hold the group
parameters (called tpasswd.conf).

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the srptool program. This software is released under the GNU General
Public License, version 3 or later.

srptool help/usage (--help)

This is the automatically generated usage text for srptool.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a

Chapter 4: Authentication methods 81

pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

srptool - GnuTLS SRP tool

Usage: srptool [-<flag> [<val>] | --<name>[{=| }<val>]]...

-d, --debug=num Enable debugging

- it must be in the range:

0 to 9999

-i, --index=num specify the index of the group parameters in tpasswd.conf to use

-u, --username=str specify a username

-p, --passwd=str specify a password file

-s, --salt=num specify salt size

--verify just verify the password.

-v, --passwd-conf=str specify a password conf file.

--create-conf=str Generate a password configuration file.

-v, --version[=arg] output version information and exit

-h, --help display extended usage information and exit

-!, --more-help extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single

hyphen and the flag character.

Simple program that emulates the programs in the Stanford SRP (Secure

Remote Password) libraries using GnuTLS. It is intended for use in places

where you don’t expect SRP authentication to be the used for system users.

In brief, to use SRP you need to create two files. These are the password

file that holds the users and the verifiers associated with them and the

configuration file to hold the group parameters (called tpasswd.conf).

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the

debug level.

verify option

This is the “just verify the password.” option. Verifies the password provided against the

password file.

passwd-conf option (-v)

This is the “specify a password conf file.” option. This option takes a string argument.

Specify a filename or a PKCS #11 URL to read the CAs from.

Chapter 4: Authentication methods 82

create-conf option

This is the “generate a password configuration file.” option. This option takes a string argu-

ment. This generates a password configuration file (tpasswd.conf) containing the required

for TLS parameters.

srptool exit status

One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

srptool See Also

gnutls-cli-debug (1), gnutls-serv (1), srptool (1), psktool (1), certtool (1)

srptool Examples

To create tpasswd.conf which holds the g and n values for SRP protocol (generator and a
large prime), run:

$ srptool --create-conf /etc/tpasswd.conf

This command will create /etc/tpasswd and will add user ’test’ (you will also be prompted
for a password). Verifiers are stored by default in the way libsrp expects.

$ srptool --passwd /etc/tpasswd --passwd-conf /etc/tpasswd.conf -u test

This command will check against a password. If the password matches the one in
/etc/tpasswd you will get an ok.

$ srptool --passwd /etc/tpasswd --passwd\-conf /etc/tpasswd.conf --verify -u test

4.3.2 PSK authentication

4.3.2.1 Authentication using PSK

Authentication using Pre-shared keys is a method to authenticate using usernames and
binary keys. This protocol avoids making use of public key infrastructure and expensive
calculations, thus it is suitable for constraint clients.

The implementation in GnuTLS is based on [TLSPSK]. The supported PSK key exchange
methods are:

PSK: Authentication using the PSK protocol.

DHE-PSK: Authentication using the PSK protocol and Diffie-Hellman key exchange. This
method offers perfect forward secrecy.

ECDHE-PSK:

Authentication using the PSK protocol and Elliptic curve Diffie-Hellman key
exchange. This method offers perfect forward secrecy.

RSA-PSK: Authentication using the PSK protocol for the client and an RSA certificate for
the server.

Chapter 4: Authentication methods 83

Helper functions to generate and maintain PSK keys are also included in GnuTLS.

int [gnutls_key_generate], page 308 (gnutls_datum_t * key, unsigned int

key_size)

int [gnutls_hex_encode], page 308 (const gnutls_datum_t * data, char * result,

size_t * result_size)

int [gnutls_hex_decode], page 307 (const gnutls_datum_t * hex_data, void *

result, size_t * result_size)

4.3.2.2 Invoking psktool

Program that generates random keys for use with TLS-PSK. The keys are stored in hex-
adecimal format in a key file.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the psktool program. This software is released under the GNU General
Public License, version 3 or later.

psktool help/usage (--help)

This is the automatically generated usage text for psktool.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

psktool - GnuTLS PSK tool

Usage: psktool [-<flag> [<val>] | --<name>[{=| }<val>]]...

-d, --debug=num Enable debugging

- it must be in the range:

0 to 9999

-s, --keysize=num specify the key size in bytes

- it must be in the range:

0 to 512

-u, --username=str specify a username

-p, --passwd=str specify a password file

-v, --version[=arg] output version information and exit

-h, --help display extended usage information and exit

-!, --more-help extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single

hyphen and the flag character.

Program that generates random keys for use with TLS-PSK. The keys are

stored in hexadecimal format in a key file.

Chapter 4: Authentication methods 84

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the

debug level.

psktool exit status

One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

psktool See Also

gnutls-cli-debug (1), gnutls-serv (1), srptool (1), certtool (1)

psktool Examples

To add a user ’psk identity’ in passwd.psk for use with GnuTLS run:

$./psktool -u psk_identity -p passwd.psk

Generating a random key for user ’psk_identity’

Key stored to passwd.psk

$ cat psks.txt

psk_identity:88f3824b3e5659f52d00e959bacab954b6540344

$

This command will create passwd.psk if it does not exist and will add user ’psk identity’
(you will also be prompted for a password).

4.3.3 Anonymous authentication

The anonymous key exchange offers encryption without any indication of the peer’s identity.
This kind of authentication is vulnerable to a man in the middle attack, but can be used
even if there is no prior communication or shared trusted parties with the peer. It is useful
to establish a session over which certificate authentication will occur in order to hide the
indentities of the participants from passive eavesdroppers.

Unless in the above case, it is not recommended to use anonymous authentication. In the
cases where there is no prior communication with the peers, an alternative with better
properties, such as key continuity, is trust on first use (see Section 4.1.3.1 [Verifying a
certificate using trust on first use authentication], page 35).

The available key exchange algorithms for anonymous authentication are shown below, but
note that few public servers support them, and they have to be explicitly enabled.

ANON_DH: This algorithm exchanges Diffie-Hellman parameters.

ANON_ECDH:

This algorithm exchanges elliptic curve Diffie-Hellman parameters. It is more
efficient than ANON DH on equivalent security levels.

Chapter 4: Authentication methods 85

4.4 Selecting an appropriate authentication method

This section provides some guidance on how to use the available authentication methods in
GnuTLS in various scenarios.

4.4.1 Two peers with an out-of-band channel

Let’s consider two peers who need to communicate over an untrusted channel (the Internet),
but have an out-of-band channel available. The latter channel is considered safe from
eavesdropping and message modification and thus can be used for an initial bootstrapping
of the protocol. The options available are:

• Pre-shared keys (see Section 4.3.2 [PSK authentication], page 74). The server and a
client communicate a shared randomly generated key over the trusted channel and use
it to negotiate further sessions over the untrusted channel.

• Passwords (see Section 4.3.1 [SRP authentication], page 71). The client communicates
to the server its username and password of choice and uses it to negotiate further
sessions over the untrusted channel.

• Public keys (see Section 4.1 [Certificate authentication], page 18). The client and the
server exchange their public keys (or fingerprints of them) over the trusted channel. On
future sessions over the untrusted channel they verify the key being the same (similar to
Section 4.1.3.1 [Verifying a certificate using trust on first use authentication], page 35).

Provided that the out-of-band channel is trusted all of the above provide a similar level
of protection. An out-of-band channel may be the initial bootstrapping of a user’s PC
in a corporate environment, in-person communication, communication over an alternative
network (e.g. the phone network), etc.

4.4.2 Two peers without an out-of-band channel

When an out-of-band channel is not available a peer cannot be reliably authenticated. What
can be done, however, is to allow some form of registration of users connecting for the first
time and ensure that their keys remain the same after that initial connection. This is termed
key continuity or trust on first use (TOFU).

The available option is to use public key authentication (see Section 4.1 [Certificate authen-
tication], page 18). The client and the server store each other’s public keys (or fingerprints
of them) and associate them with their identity. On future sessions over the untrusted chan-
nel they verify the keys being the same (see Section 4.1.3.1 [Verifying a certificate using
trust on first use authentication], page 35).

To mitigate the uncertainty of the information exchanged in the first connection other
channels over the Internet may be used, e.g., DNSSEC (see Section 4.1.3.2 [Verifying a
certificate using DANE], page 35).

4.4.3 Two peers and a trusted third party

When a trusted third party is available (or a certificate authority) the most suitable option is
to use certificate authentication (see Section 4.1 [Certificate authentication], page 18). The
client and the server obtain certificates that associate their identity and public keys using a
digital signature by the trusted party and use them to on the subsequent communications
with each other. Each party verifies the peer’s certificate using the trusted third party’s

Chapter 4: Authentication methods 86

signature. The parameters of the third party’s signature are present in its certificate which
must be available to all communicating parties.

While the above is the typical authentication method for servers in the Internet by using the
commercial CAs, the users that act as clients in the protocol rarely possess such certificates.
In that case a hybrid method can be used where the server is authenticated by the client
using the commercial CAs and the client is authenticated based on some information the
client provided over the initial server-authenticated channel. The available options are:

• Passwords (see Section 4.3.1 [SRP authentication], page 71). The client communicates
to the server its username and password of choice on the initial server-authenticated
connection and uses it to negotiate further sessions. This is possible because the SRP
protocol allows for the server to be authenticated using a certificate and the client using
the password.

• Public keys (see Section 4.1 [Certificate authentication], page 18). The client sends its
public key to the server (or a fingerprint of it) over the initial server-authenticated con-
nection. On future sessions the client verifies the server using the third party certificate
and the server verifies that the client’s public key remained the same (see Section 4.1.3.1
[Verifying a certificate using trust on first use authentication], page 35).

Chapter 5: Hardware security modules and abstract key types 87

5 Hardware security modules and abstract key
types

In several cases storing the long term cryptographic keys in a hard disk or even in memory
poses a significant risk. Once the system they are stored is compromised the keys must be
replaced as the secrecy of future sessions is no longer guarranteed. Moreover, past sessions
that were not protected by a perfect forward secrecy offering ciphersuite are also to be
assumed compromised.

If such threats need to be addressed, then it may be wise storing the keys in a security
module such as a smart card, an HSM or the TPM chip. Those modules ensure the pro-
tection of the cryptographic keys by only allowing operations on them and preventing their
extraction. The purpose of the abstract key API is to provide an API that will allow the
handle of keys in memory and files, as well as keys stored in such modules.

In GnuTLS the approach is to handle all keys transparently by the high level API, e.g.,
the API that loads a key or certificate from a file. The high-level API will accept URIs in
addition to files that specify keys on an HSM or in TPM, and a callback function will be used
to obtain any required keys. The URI format is defined in [TPMURI] and [PKCS11URI],
and is in the process of being standardized across systems.

More information on the API is provided in the next sections. Examples of a URI of a
certificate stored in an HSM, as well as a key stored in the TPM chip are shown below.
To discover the URIs of the objects the p11tool (see Section 5.2.6 [p11tool Invocation],
page 93), or tpmtool (see Section 5.3.4 [tpmtool Invocation], page 99) may be used.

pkcs11:token=Nikos;serial=307521161601031;model=PKCS%2315; \

manufacturer=EnterSafe;object=test1;objecttype=cert

tpmkey:uuid=42309df8-d101-11e1-a89a-97bb33c23ad1;storage=user

5.1 Abstract key types

Since there are many forms of a public or private keys supported by GnuTLS such as X.509,
OpenPGP, PKCS #11 or TPM it is desirable to allow common operations on them. For
these reasons the abstract gnutls_privkey_t and gnutls_pubkey_t were introduced in
gnutls/abstract.h header. Those types are initialized using a specific type of key and
then can be used to perform operations in an abstract way. For example in order to sign
an X.509 certificate with a key that resides in a token the following steps can be used.

#inlude <gnutls/abstract.h>

void sign_cert(gnutls_x509_crt_t to_be_signed)

{

gnutls_x509_crt_t ca_cert;

gnutls_privkey_t abs_key;

/* initialize the abstract key */

gnutls_privkey_init(&abs_key);

/* keys stored in tokens are identified by URLs */

gnutls_privkey_import_url(abs_key, key_url);

Chapter 5: Hardware security modules and abstract key types 88

gnutls_x509_crt_init(&ca_cert);

gnutls_x509_crt_import_pkcs11_url(&ca_cert, cert_url);

/* sign the certificate to be signed */

gnutls_x509_crt_privkey_sign(to_be_signed, ca_cert, abs_key,

GNUTLS_DIG_SHA256, 0);

}

5.1.1 Public keys

An abstract gnutls_pubkey_t can be initialized using the functions below. It can be
imported through an existing structure like gnutls_x509_crt_t, or through an ASN.1
encoding of the X.509 SubjectPublicKeyInfo sequence.

int [gnutls_pubkey_import_x509], page 501 (gnutls_pubkey_t key,

gnutls_x509_crt_t crt, unsigned int flags)

int [gnutls_pubkey_import_openpgp], page 498 (gnutls_pubkey_t key,

gnutls_openpgp_crt_t crt, unsigned int flags)

int [gnutls_pubkey_import_pkcs11], page 499 (gnutls_pubkey_t key,

gnutls_pkcs11_obj_t obj, unsigned int flags)

int [gnutls_pubkey_import_url], page 501 (gnutls_pubkey_t key, const char *

url, unsigned int flags)

int [gnutls_pubkey_import_privkey], page 500 (gnutls_pubkey_t key,

gnutls_privkey_t pkey, unsigned int usage, unsigned int flags)

int [gnutls_pubkey_import], page 497 (gnutls_pubkey_t key, const

gnutls_datum_t * data, gnutls_x509_crt_fmt_t format)

int [gnutls_pubkey_export], page 493 (gnutls_pubkey_t key,

gnutls_x509_crt_fmt_t format, void * output_data, size_t * output_data_size)

[Function]int gnutls_pubkey_export2 (gnutls pubkey t key,
gnutls x509 crt fmt t format, gnutls datum t * out)

key : Holds the certificate

format: the format of output params. One of PEM or DER.

out: will contain a certificate PEM or DER encoded

This function will export the public key to DER or PEM format. The contents of the
exported data is the SubjectPublicKeyInfo X.509 structure.

The output buffer will be allocated using gnutls_malloc() .

If the structure is PEM encoded, it will have a header of "BEGIN CERTIFICATE".

Returns: In case of failure a negative error code will be returned, and 0 on success.

Since: 3.1.3

Other helper functions that allow directly importing from raw X.509 or OpenPGP structures
are shown below.

Chapter 5: Hardware security modules and abstract key types 89

int [gnutls_pubkey_import_x509_raw], page 502 (gnutls_pubkey_t pkey, const

gnutls_datum_t * data, gnutls_x509_crt_fmt_t format, unsigned int flags)

int [gnutls_pubkey_import_openpgp_raw], page 499 (gnutls_pubkey_t pkey, const

gnutls_datum_t * data, gnutls_openpgp_crt_fmt_t format, const

gnutls_openpgp_keyid_t keyid, unsigned int flags)

An important function is [gnutls pubkey import url], page 501 which will import public
keys from URLs that identify objects stored in tokens (see Section 5.2 [Smart cards and
HSMs], page 85 and Section 5.3 [Trusted Platform Module], page 96). A function to check
for a supported by GnuTLS URL is [gnutls url is supported], page 350.

[Function]int gnutls_url_is_supported (const char * url)
url: A PKCS 11 url

Check whether url is supported. Depending on the system libraries GnuTLS may
support pkcs11 or tpmkey URLs.

Returns: return non-zero if the given URL is supported, and zero if it is not known.

Since: 3.1.0

Additional functions are available that will return information over a public key, such as
a unique key ID, as well as a function that given a public key fingerprint would provide a
memorable sketch.

Note that [gnutls pubkey get key id], page 493 calculates a SHA1 digest of the public key
as a DER-formatted, subjectPublicKeyInfo object. Other implementations use different
approaches, e.g., some use the “common method” described in section 4.2.1.2 of [RFC5280]
which calculates a digest on a part of the subjectPublicKeyInfo object.

int [gnutls_pubkey_get_pk_algorithm], page 495 (gnutls_pubkey_t key, unsigned

int * bits)

int [gnutls_pubkey_get_preferred_hash_algorithm], page 496 (gnutls_pubkey_t

key, gnutls_digest_algorithm_t * hash, unsigned int * mand)

int [gnutls_pubkey_get_key_id], page 493 (gnutls_pubkey_t key, unsigned int

flags, unsigned char * output_data, size_t * output_data_size)

int [gnutls_random_art], page 323 (gnutls_random_art_t type, const char *

key_type, unsigned int key_size, void * fpr, size_t fpr_size, gnutls_datum_t *

art)

To export the key-specific parameters, or obtain a unique key ID the following functions
are provided.

int 〈undefined〉 [gnutls_pubkey_export_rsa_raw], page 〈undefined〉
(gnutls_pubkey_t key, gnutls_datum_t * m, gnutls_datum_t * e)

int 〈undefined〉 [gnutls_pubkey_export_dsa_raw], page 〈undefined〉
(gnutls_pubkey_t key, gnutls_datum_t * p, gnutls_datum_t * q, gnutls_datum_t *

g, gnutls_datum_t * y)

int 〈undefined〉 [gnutls_pubkey_export_ecc_raw], page 〈undefined〉
(gnutls_pubkey_t key, gnutls_ecc_curve_t * curve, gnutls_datum_t * x,

gnutls_datum_t * y)

int 〈undefined〉 [gnutls_pubkey_export_ecc_x962], page 〈undefined〉
(gnutls_pubkey_t key, gnutls_datum_t * parameters, gnutls_datum_t * ecpoint)

Chapter 5: Hardware security modules and abstract key types 90

5.1.2 Private keys

An abstract gnutls_privkey_t can be initialized using the functions below. It can be
imported through an existing structure like gnutls_x509_privkey_t, but unlike public
keys it cannot be exported. That is to allow abstraction over keys stored in hardware that
makes available only operations.

int [gnutls_privkey_import_x509], page 490 (gnutls_privkey_t pkey,

gnutls_x509_privkey_t key, unsigned int flags)

int [gnutls_privkey_import_openpgp], page 487 (gnutls_privkey_t pkey,

gnutls_openpgp_privkey_t key, unsigned int flags)

int [gnutls_privkey_import_pkcs11], page 488 (gnutls_privkey_t pkey,

gnutls_pkcs11_privkey_t key, unsigned int flags)

Other helper functions that allow directly importing from raw X.509 or OpenPGP structures
are shown below. Again, as with public keys, private keys can be imported from a hardware
module using URLs.

int [gnutls_privkey_import_x509_raw], page 490 (gnutls_privkey_t pkey, const

gnutls_datum_t * data, gnutls_x509_crt_fmt_t format, const char * password,

unsigned int flags)

int [gnutls_privkey_import_openpgp_raw], page 488 (gnutls_privkey_t pkey,

const gnutls_datum_t * data, gnutls_openpgp_crt_fmt_t format, const

gnutls_openpgp_keyid_t keyid, const char * password)

[Function]int gnutls_privkey_import_url (gnutls privkey t key, const char *
url, unsigned int flags)

key : A key of type gnutls_privkey_t

url: A PKCS 11 url

flags: should be zero

This function will import a PKCS11 or TPM URL as a private key. The supported
URL types can be checked using gnutls_url_is_supported() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

int [gnutls_privkey_get_pk_algorithm], page 486 (gnutls_privkey_t key,

unsigned int * bits)

gnutls_privkey_type_t [gnutls_privkey_get_type], page 486 (gnutls_privkey_t

key)

int [gnutls_privkey_status], page 492 (gnutls_privkey_t key)

In order to support cryptographic operations using an external API, the following function
is provided. This allows for a simple extensibility API without resorting to PKCS #11.

[Function]int gnutls_privkey_import_ext2 (gnutls privkey t pkey,
gnutls pk algorithm t pk, void * userdata, gnutls privkey sign func
sign_func, gnutls privkey decrypt func decrypt_func,
gnutls privkey deinit func deinit_func, unsigned int flags)

pkey : The private key

Chapter 5: Hardware security modules and abstract key types 91

pk: The public key algorithm

userdata: private data to be provided to the callbacks

sign func: callback for signature operations

decrypt func: callback for decryption operations

deinit func: a deinitialization function

flags: Flags for the import

This function will associate the given callbacks with the gnutls_privkey_t structure.
At least one of the two callbacks must be non-null. If a deinitialization function is
provided then flags is assumed to contain GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE .

Note that the signing function is supposed to "raw" sign data, i.e., without any
hashing or preprocessing. In case of RSA the DigestInfo will be provided, and the
signing function is expected to do the PKCS 1 1.5 padding and the exponentiation.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1

5.1.3 Operations

The abstract key types can be used to access signing and signature verification operations
with the underlying keys.

[Function]int gnutls_pubkey_verify_data2 (gnutls pubkey t pubkey,
gnutls sign algorithm t algo, unsigned int flags, const gnutls datum t *
data, const gnutls datum t * signature)

pubkey : Holds the public key

algo: The signature algorithm used

flags: Zero or one of gnutls_pubkey_flags_t

data: holds the signed data

signature: contains the signature

This function will verify the given signed data, using the parameters from the certifi-
cate.

Returns: In case of a verification failure GNUTLS_E_PK_SIG_VERIFY_FAILED is re-
turned, and zero or positive code on success.

Since: 3.0

[Function]int gnutls_pubkey_verify_hash2 (gnutls pubkey t key,
gnutls sign algorithm t algo, unsigned int flags, const gnutls datum t *
hash, const gnutls datum t * signature)

key : Holds the public key

algo: The signature algorithm used

flags: Zero or one of gnutls_pubkey_flags_t

hash: holds the hash digest to be verified

signature: contains the signature

Chapter 5: Hardware security modules and abstract key types 92

This function will verify the given signed digest, using the parameters from the public
key. Note that unlike gnutls_privkey_sign_hash() , this function accepts a signa-
ture algorithm instead of a digest algorithm. You can use gnutls_pk_to_sign() to
get the appropriate value.

Returns: In case of a verification failure GNUTLS_E_PK_SIG_VERIFY_FAILED is re-
turned, and zero or positive code on success.

Since: 3.0

[Function]int gnutls_pubkey_encrypt_data (gnutls pubkey t key, unsigned int
flags, const gnutls datum t * plaintext, gnutls datum t * ciphertext)

key : Holds the public key

flags: should be 0 for now

plaintext: The data to be encrypted

ciphertext: contains the encrypted data

This function will encrypt the given data, using the public key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

[Function]int gnutls_privkey_sign_data (gnutls privkey t signer,
gnutls digest algorithm t hash, unsigned int flags, const gnutls datum t *
data, gnutls datum t * signature)

signer: Holds the key

hash: should be a digest algorithm

flags: Zero or one of gnutls_privkey_flags_t

data: holds the data to be signed

signature: will contain the signature allocate with gnutls_malloc()

This function will sign the given data using a signature algorithm supported by the
private key. Signature algorithms are always used together with a hash functions.
Different hash functions may be used for the RSA algorithm, but only the SHA
family for the DSA keys.

You may use gnutls_pubkey_get_preferred_hash_algorithm() to determine the
hash algorithm.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

[Function]int gnutls_privkey_sign_hash (gnutls privkey t signer,
gnutls digest algorithm t hash_algo, unsigned int flags, const
gnutls datum t * hash_data, gnutls datum t * signature)

signer: Holds the signer’s key

hash algo: The hash algorithm used

flags: Zero or one of gnutls_privkey_flags_t

hash data: holds the data to be signed

Chapter 5: Hardware security modules and abstract key types 93

signature: will contain newly allocated signature

This function will sign the given hashed data using a signature algorithm supported by
the private key. Signature algorithms are always used together with a hash functions.
Different hash functions may be used for the RSA algorithm, but only SHA-XXX for
the DSA keys.

You may use gnutls_pubkey_get_preferred_hash_algorithm() to determine the
hash algorithm.

Note that if GNUTLS_PRIVKEY_SIGN_FLAG_TLS1_RSA flag is specified this function will
ignore hash_algo and perform a raw PKCS1 signature.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

[Function]int gnutls_privkey_decrypt_data (gnutls privkey t key, unsigned
int flags, const gnutls datum t * ciphertext, gnutls datum t *
plaintext)

key : Holds the key

flags: zero for now

ciphertext: holds the data to be decrypted

plaintext: will contain the decrypted data, allocated with gnutls_malloc()

This function will decrypt the given data using the algorithm supported by the private
key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

Signing existing structures, such as certificates, CRLs, or certificate requests, as well as
associating public keys with structures is also possible using the key abstractions.

[Function]int gnutls_x509_crq_set_pubkey (gnutls x509 crq t crq,
gnutls pubkey t key)

crq: should contain a gnutls_x509_crq_t structure

key : holds a public key

This function will set the public parameters from the given public key to the request.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

[Function]int gnutls_x509_crt_set_pubkey (gnutls x509 crt t crt,
gnutls pubkey t key)

crt: should contain a gnutls_x509_crt_t structure

key : holds a public key

This function will set the public parameters from the given public key to the request.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

Chapter 5: Hardware security modules and abstract key types 94

int [gnutls_x509_crt_privkey_sign], page 506 (gnutls_x509_crt_t crt,

gnutls_x509_crt_t issuer, gnutls_privkey_t issuer_key,

gnutls_digest_algorithm_t dig, unsigned int flags)

int [gnutls_x509_crl_privkey_sign], page 505 (gnutls_x509_crl_t crl,

gnutls_x509_crt_t issuer, gnutls_privkey_t issuer_key,

gnutls_digest_algorithm_t dig, unsigned int flags)

int [gnutls_x509_crq_privkey_sign], page 505 (gnutls_x509_crq_t crq,

gnutls_privkey_t key, gnutls_digest_algorithm_t dig, unsigned int flags)

5.2 Smart cards and HSMs

In this section we present the smart-card and hardware security module (HSM) support in
GnuTLS using PKCS #11 [PKCS11]. Hardware security modules and smart cards provide
a way to store private keys and perform operations on them without exposing them. This
decouples cryptographic keys from the applications that use them and provide an additional
security layer against cryptographic key extraction. Since this can also be achieved in
software components such as in Gnome keyring, we will use the term security module to
describe any cryptographic key separation subsystem.

PKCS #11 is plugin API allowing applications to access cryptographic operations on a
security module, as well as to objects residing on it. PKCS #11 modules exist for hardware
tokens such as smart cards1, cryptographic tokens, as well as for software modules like
Gnome Keyring. The objects residing on a security module may be certificates, public keys,
private keys or secret keys. Of those certificates and public/private key pairs can be used
with GnuTLS. PKCS #11’s main advantage is that it allows operations on private key
objects such as decryption and signing without exposing the key. In GnuTLS the PKCS
#11 functionality is available in gnutls/pkcs11.h.

Moreover PKCS #11 can be (ab)used to allow all applications in the same operating system
to access shared cryptographic keys and certificates in a uniform way, as in 〈undefined〉 [fig-
pkcs11-vision], page 〈undefined〉. That way applications could load their trusted certificate
list, as well as user certificates from a common PKCS #11 module. Such a provider is the
p11-kit trust storage module2.

1 http://www.opensc-project.org
2 http://p11-glue.freedesktop.org/trust-module.html

http://www.opensc-project.org
http://p11-glue.freedesktop.org/trust-module.html

Chapter 5: Hardware security modules and abstract key types 95

User
Application

GnuTLS

Gnome Keyring
Daemon

Smart card

Other crypto
package

PKCS #11
Provider

PKCS #11
Provider

PKCS #11
Provider

Trusted Platform
Module

Figure 5.1: PKCS #11 module usage.

5.2.1 Initialization

To allow all GnuTLS applications to transparently access smard cards and tokens, PKCS

#11 is automatically initialized during the global initialization (see [gnutls global init],
page 301). The initialization function, to select which modules to load reads certain module
configuration files. Those are stored in /etc/pkcs11/modules/ and are the configuration
files of p11-kit3. For example a file that will load the OpenSC module, could be named
/etc/pkcs11/modules/opensc.module and contain the following:

module: /usr/lib/opensc-pkcs11.so

If you use these configuration files, then there is no need for other initialization in GnuTLS,
except for the PIN and token functions (see next section). In several cases, however, it is
desirable to limit badly behaving modules (e.g., modules that add an unacceptable delay
on initialization) to single applications. That can be done using the “enable-in:” option
followed by the base name of applications that this module should be used.

In all cases, you can also manually initialize the PKCS #11 subsystem if the default
settings are not desirable. To completely disable PKCS #11 support you need to
call [gnutls pkcs11 init], page 470 with the flag GNUTLS_PKCS11_FLAG_MANUAL prior to
[gnutls global init], page 301.

[Function]int gnutls_pkcs11_init (unsigned int flags, const char *
deprecated_config_file)

flags: An ORed sequence of GNUTLS_PKCS11_FLAG_ *

deprecated config file: either NULL or the location of a deprecated configuration file

This function will initialize the PKCS 11 subsystem in gnutls. It will read configu-
ration files if GNUTLS_PKCS11_FLAG_AUTO is used or allow you to independently load
PKCS 11 modules using gnutls_pkcs11_add_provider() if GNUTLS_PKCS11_FLAG_
MANUAL is specified.

Normally you don’t need to call this function since it is being called when the first
PKCS 11 operation is requested using the GNUTLS_PKCS11_FLAG_AUTO flag. If an-

3 http://p11-glue.freedesktop.org/

http://p11-glue.freedesktop.org/

Chapter 5: Hardware security modules and abstract key types 96

other flags are required then it must be called independently prior to any PKCS 11
operation.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

Note that PKCS #11 modules must be reinitialized on the child processes after a fork. In
older versions of GnuTLS it was required to call [gnutls pkcs11 reinit], page 477; since 3.3.0
this is no longer required, as reinitialization occurs automatically.

5.2.2 Accessing objects that require a PIN

Objects stored in token such as a private keys are typically protected from access by a PIN
or password. This PIN may be required to either read the object (if allowed) or to perform
operations with it. To allow obtaining the PIN when accessing a protected object, as well
as probe the user to insert the token the following functions allow to set a callback.

void [gnutls_pkcs11_set_token_function], page 477

(gnutls_pkcs11_token_callback_t fn, void * userdata)

void [gnutls_pkcs11_set_pin_function], page 477 (gnutls_pin_callback_t fn,

void * userdata)

int [gnutls_pkcs11_add_provider], page 468 (const char * name, const char *

params)

gnutls_pin_callback_t [gnutls_pkcs11_get_pin_function], page 470 (void **

userdata)

The callback is of type gnutls_pin_callback_t and will have as input the provided user-
data, the PIN attempt number, a URL describing the token, a label describing the object
and flags. The PIN must be at most of pin_max size and must be copied to pin variable.
The function must return 0 on success or a negative error code otherwise.

typedef int (*gnutls_pin_callback_t) (void *userdata, int attempt,

const char *token_url,

const char *token_label,

unsigned int flags,

char *pin, size_t pin_max);

The flags are of gnutls_pin_flag_t type and are explained below.

Chapter 5: Hardware security modules and abstract key types 97

GNUTLS_PIN_USER

The PIN for the user.

GNUTLS_PIN_SO

The PIN for the security officer (admin).

GNUTLS_PIN_FINAL_TRY

This is the final try before blocking.

GNUTLS_PIN_COUNT_LOW

Few tries remain before token blocks.

GNUTLS_PIN_CONTEXT_SPECIFIC

The PIN is for a specific action and key like signing.

GNUTLS_PIN_WRONG

Last given PIN was not correct.

Figure 5.2: The gnutls_pin_flag_t enumeration.

Note that due to limitations of PKCS #11 there are issues when multiple libraries are
sharing a module. To avoid this problem GnuTLS uses p11-kit that provides a middleware
to control access to resources over the multiple users.

To avoid conflicts with multiple registered callbacks for PIN functions,
[gnutls pkcs11 get pin function], page 470 may be used to check for any previ-
ously set functions. In addition context specific PIN functions are allowed, e.g., by using
functions below.

void [gnutls_certificate_set_pin_function], page 280

(gnutls_certificate_credentials_t cred, gnutls_pin_callback_t fn, void *

userdata)

void [gnutls_pubkey_set_pin_function], page 503 (gnutls_pubkey_t key,

gnutls_pin_callback_t fn, void * userdata)

void [gnutls_privkey_set_pin_function], page 491 (gnutls_privkey_t key,

gnutls_pin_callback_t fn, void * userdata)

void [gnutls_pkcs11_obj_set_pin_function], page 474 (gnutls_pkcs11_obj_t

obj, gnutls_pin_callback_t fn, void * userdata)

void [gnutls_x509_crt_set_pin_function], page 410 (gnutls_x509_crt_t crt,

gnutls_pin_callback_t fn, void * userdata)

5.2.3 Reading objects

All PKCS #11 objects are referenced by GnuTLS functions by URLs as described
in [PKCS11URI]. This allows for a consistent naming of objects across systems and
applications in the same system. For example a public key on a smart card may be
referenced as:

pkcs11:token=Nikos;serial=307521161601031;model=PKCS%2315; \

manufacturer=EnterSafe;object=test1;objecttype=public;\

id=32f153f3e37990b08624141077ca5dec2d15faed

while the smart card itself can be referenced as:

Chapter 5: Hardware security modules and abstract key types 98

pkcs11:token=Nikos;serial=307521161601031;model=PKCS%2315;manufacturer=EnterSafe

Objects stored in a PKCS #11 token can be extracted if they are not marked as sensitive.
Usually only private keys are marked as sensitive and cannot be extracted, while certificates
and other data can be retrieved. The functions that can be used to access objects are shown
below.

int [gnutls_pkcs11_obj_import_url], page 472 (gnutls_pkcs11_obj_t obj, const

char * url, unsigned int flags)

int [gnutls_pkcs11_obj_export_url], page 472 (gnutls_pkcs11_obj_t obj,

gnutls_pkcs11_url_type_t detailed, char ** url)

[Function]int gnutls_pkcs11_obj_get_info (gnutls pkcs11 obj t obj,
gnutls pkcs11 obj info t itype, void * output, size t * output_size)

obj: should contain a gnutls_pkcs11_obj_t structure

itype: Denotes the type of information requested

output: where output will be stored

output size: contains the maximum size of the output and will be overwritten with
actual

This function will return information about the PKCS11 certificate such as the label,
id as well as token information where the key is stored. When output is text it returns
null terminated string although output_size contains the size of the actual data only.

Returns: GNUTLS_E_SUCCESS (0) on success or a negative error code on error.

Since: 2.12.0

int [gnutls_x509_crt_import_pkcs11], page 479 (gnutls_x509_crt_t crt,

gnutls_pkcs11_obj_t pkcs11_crt)

int [gnutls_x509_crt_import_pkcs11_url], page 479 (gnutls_x509_crt_t crt,

const char * url, unsigned int flags)

int [gnutls_x509_crt_list_import_pkcs11], page 480 (gnutls_x509_crt_t *

certs, unsigned int cert_max, gnutls_pkcs11_obj_t * const objs, unsigned int

flags)

Properties of the physical token can also be accessed and altered with GnuTLS. For example
data in a token can be erased (initialized), PIN can be altered, etc.

int [gnutls_pkcs11_token_init], page 478 (const char * token_url, const char *

so_pin, const char * label)

int [gnutls_pkcs11_token_get_url], page 478 (unsigned int seq,

gnutls_pkcs11_url_type_t detailed, char ** url)

int [gnutls_pkcs11_token_get_info], page 477 (const char * url,

gnutls_pkcs11_token_info_t ttype, void * output, size_t * output_size)

int [gnutls_pkcs11_token_get_flags], page 477 (const char * url, unsigned int

* flags)

int [gnutls_pkcs11_token_set_pin], page 479 (const char * token_url, const

char * oldpin, const char * newpin, unsigned int flags)

The following examples demonstrate the usage of the API. The first example will list all
available PKCS #11 tokens in a system and the latter will list all certificates in a token
that have a corresponding private key.

Chapter 5: Hardware security modules and abstract key types 99

int i;

char* url;

gnutls_global_init();

for (i=0;;i++)

{

ret = gnutls_pkcs11_token_get_url(i, &url);

if (ret == GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE)

break;

if (ret < 0)

exit(1);

fprintf(stdout, "Token[%d]: URL: %s\n", i, url);

gnutls_free(url);

}

gnutls_global_deinit();

/* This example code is placed in the public domain. */

#include <config.h>

#include <gnutls/gnutls.h>

#include <gnutls/pkcs11.h>

#include <stdio.h>

#include <stdlib.h>

#define URL "pkcs11:URL"

int main(int argc, char **argv)

{

gnutls_pkcs11_obj_t *obj_list;

gnutls_x509_crt_t xcrt;

unsigned int obj_list_size = 0;

gnutls_datum_t cinfo;

int ret;

unsigned int i;

obj_list_size = 0;

ret = gnutls_pkcs11_obj_list_import_url(NULL, &obj_list_size, URL,

GNUTLS_PKCS11_OBJ_ATTR_CRT_WITH_PRIVKEY,

0);

if (ret < 0 && ret != GNUTLS_E_SHORT_MEMORY_BUFFER)

return -1;

/* no error checking from now on */

obj_list = malloc(sizeof(*obj_list) * obj_list_size);

Chapter 5: Hardware security modules and abstract key types 100

gnutls_pkcs11_obj_list_import_url(obj_list, &obj_list_size, URL,

GNUTLS_PKCS11_OBJ_ATTR_CRT_WITH_PRIVKEY,

0);

/* now all certificates are in obj_list */

for (i = 0; i < obj_list_size; i++) {

gnutls_x509_crt_init(&xcrt);

gnutls_x509_crt_import_pkcs11(xcrt, obj_list[i]);

gnutls_x509_crt_print(xcrt, GNUTLS_CRT_PRINT_FULL, &cinfo);

fprintf(stdout, "cert[%d]:\n %s\n\n", i, cinfo.data);

gnutls_free(cinfo.data);

gnutls_x509_crt_deinit(xcrt);

}

return 0;

}

5.2.4 Writing objects

With GnuTLS you can copy existing private keys and certificates to a token. Note that
when copying private keys it is recommended to mark them as sensitive using the GNUTLS_
PKCS11_OBJ_FLAG_MARK_SENSITIVE to prevent its extraction. An object can be marked
as private using the flag GNUTLS_PKCS11_OBJ_FLAG_MARK_PRIVATE, to require PIN to be
entered before accessing the object (for operations or otherwise).

[Function]int gnutls_pkcs11_copy_x509_privkey (const char * token_url,
gnutls x509 privkey t key, const char * label, unsigned int key_usage,
unsigned int flags)

token url: A PKCS 11 URL specifying a token

key : A private key

label: A name to be used for the stored data

key usage: One of GNUTLS KEY *

flags: One of GNUTLS PKCS11 OBJ * flags

This function will copy a private key into a PKCS 11 token specified by a URL. It
is highly recommended flags to contain GNUTLS_PKCS11_OBJ_FLAG_MARK_SENSITIVE

unless there is a strong reason not to.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

Chapter 5: Hardware security modules and abstract key types 101

[Function]int gnutls_pkcs11_copy_x509_crt (const char * token_url,
gnutls x509 crt t crt, const char * label, unsigned int flags)

token url: A PKCS 11 URL specifying a token

crt: The certificate to copy

label: The name to be used for the stored data

flags: One of GNUTLS PKCS11 OBJ FLAG *

This function will copy a certificate into a PKCS 11 token specified by a URL. The
certificate can be marked as trusted or not.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

[Function]int gnutls_pkcs11_delete_url (const char * object_url, unsigned
int flags)

object url: The URL of the object to delete.

flags: One of GNUTLS PKCS11 OBJ * flags

This function will delete objects matching the given URL. Note that not all tokens
support the delete operation.

Returns: On success, the number of objects deleted is returned, otherwise a negative
error value.

Since: 2.12.0

5.2.5 Using a PKCS #11 token with TLS

It is possible to use a PKCS #11 token to a TLS session, as shown in 〈undefined〉 [ex-pkcs11-
client], page 〈undefined〉. In addition the following functions can be used to load PKCS
#11 key and certificates by specifying a PKCS #11 URL instead of a filename.

int [gnutls_certificate_set_x509_trust_file], page 287

(gnutls_certificate_credentials_t cred, const char * cafile,

gnutls_x509_crt_fmt_t type)

int [gnutls_certificate_set_x509_key_file2], page 284

(gnutls_certificate_credentials_t res, const char * certfile, const char *

keyfile, gnutls_x509_crt_fmt_t type, const char * pass, unsigned int flags)

[Function]int gnutls_certificate_set_x509_system_trust
(gnutls certificate credentials t cred)

cred: is a gnutls_certificate_credentials_t structure.

This function adds the system’s default trusted CAs in order to verify client or server
certificates.

In the case the system is currently unsupported GNUTLS_E_UNIMPLEMENTED_FEATURE

is returned.

Returns: the number of certificates processed or a negative error code on error.

Since: 3.0.20

Chapter 5: Hardware security modules and abstract key types 102

5.2.6 Invoking p11tool

Program that allows operations on PKCS #11 smart cards and security modules.

To use PKCS #11 tokens with GnuTLS the p11-kit configuration files need to be
setup. That is create a .module file in /etc/pkcs11/modules with the contents ’module:
/path/to/pkcs11.so’. Alternatively the configuration file /etc/gnutls/pkcs11.conf has to
exist and contain a number of lines of the form ’load=/usr/lib/opensc-pkcs11.so’.

You can provide the PIN to be used for the PKCS #11 operations with the environment
variables GNUTLS PIN and GNUTLS SO PIN.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the p11tool program. This software is released under the GNU General
Public License, version 3 or later.

5.2.7 p11tool help/usage (--help)

This is the automatically generated usage text for p11tool.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

p11tool - GnuTLS PKCS #11 tool

Usage: p11tool [-<flag> [<val>] | --<name>[{=| }<val>]]... [url]

Tokens:

--list-tokens List all available tokens

--list-token-urls List the URLs available tokens

--list-mechanisms List all available mechanisms in a token

--initialize Initializes a PKCS #11 token

--initialize-pin Initializes/Resets a PKCS #11 token user PIN

--initialize-so-pin Initializes/Resets a PKCS #11 token security officer PIN

--set-pin=str Specify the PIN to use on token initialization

--set-so-pin=str Specify the Security Officer’s PIN to use on token initialization

Object listing:

--list-all List all available objects in a token

--list-all-certs List all available certificates in a token

--list-certs List all certificates that have an associated private key

--list-all-privkeys List all available private keys in a token

--list-privkeys an alias for the ’list-all-privkeys’ option

--list-keys an alias for the ’list-all-privkeys’ option

--list-all-trusted List all available certificates marked as trusted

--export Export the object specified by the URL

- prohibits these options:

Chapter 5: Hardware security modules and abstract key types 103

export-stapled

export-chain

export-pubkey

--export-stapled Export the certificate object specified by the URL

- prohibits these options:

export

export-chain

export-pubkey

--export-chain Export the certificate specified by the URL and its chain of trust

- prohibits these options:

export-stapled

export

export-pubkey

--export-pubkey Export the public key for a private key

- prohibits these options:

export-stapled

export

export-chain

--info List information on an available object in a token

--trusted an alias for the ’mark-trusted’ option

--distrusted an alias for the ’mark-distrusted’ option

Key generation:

--generate-rsa Generate an RSA private-public key pair

--generate-dsa Generate a DSA private-public key pair

--generate-ecc Generate an ECDSA private-public key pair

--bits=num Specify the number of bits for the key generate

--curve=str Specify the curve used for EC key generation

--sec-param=str Specify the security level

Writing objects:

--set-id=str Set the CKA_ID (in hex) for the specified by the URL object

- prohibits the option ’write’

--set-label=str Set the CKA_LABEL for the specified by the URL object

- prohibits these options:

write

set-id

--write Writes the loaded objects to a PKCS #11 token

--delete Deletes the objects matching the given PKCS #11 URL

--label=str Sets a label for the write operation

--id=str Sets an ID for the write operation

--mark-wrap Marks the generated key to be a wrapping key

- disabled as ’--no-mark-wrap’

--mark-trusted Marks the object to be written as trusted

- prohibits the option ’mark-distrusted’

Chapter 5: Hardware security modules and abstract key types 104

- disabled as ’--no-mark-trusted’

--mark-distrusted When retrieving objects, it requires the objects to be distrusted

(blacklisted)

- prohibits the option ’mark-trusted’

--mark-decrypt Marks the object to be written for decryption

- disabled as ’--no-mark-decrypt’

--mark-sign Marks the object to be written for signature generation

- disabled as ’--no-mark-sign’

--mark-ca Marks the object to be written as a CA

- disabled as ’--no-mark-ca’

--mark-private Marks the object to be written as private

- disabled as ’--no-mark-private’

--ca an alias for the ’mark-ca’ option

--private an alias for the ’mark-private’ option

--secret-key=str Provide a hex encoded secret key

--load-privkey=file Private key file to use

- file must pre-exist

--load-pubkey=file Public key file to use

- file must pre-exist

--load-certificate=file Certificate file to use

- file must pre-exist

Other options:

-d, --debug=num Enable debugging

- it must be in the range:

0 to 9999

--outfile=str Output file

--login Force (user) login to token

- disabled as ’--no-login’

--so-login Force security officer login to token

- disabled as ’--no-so-login’

--admin-login an alias for the ’so-login’ option

--test-sign Tests the signature operation of the provided object

--generate-random=num Generate random data

-8, --pkcs8 Use PKCS #8 format for private keys

--inder Use DER/RAW format for input

- disabled as ’--no-inder’

--inraw an alias for the ’inder’ option

--outder Use DER format for output certificates, private keys, and DH parameters

- disabled as ’--no-outder’

--outraw an alias for the ’outder’ option

--provider=file Specify the PKCS #11 provider library

--detailed-url Print detailed URLs

- disabled as ’--no-detailed-url’

--only-urls Print a compact listing using only the URLs

--batch Disable all interaction with the tool

Chapter 5: Hardware security modules and abstract key types 105

Version, usage and configuration options:

-v, --version[=arg] output version information and exit

-h, --help display extended usage information and exit

-!, --more-help extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single

hyphen and the flag character.

Operands and options may be intermixed. They will be reordered.

Program that allows operations on PKCS #11 smart cards and security

modules.

To use PKCS #11 tokens with GnuTLS the p11-kit configuration files need to

be setup. That is create a .module file in /etc/pkcs11/modules with the

contents ’module: /path/to/pkcs11.so’. Alternatively the configuration

file /etc/gnutls/pkcs11.conf has to exist and contain a number of lines of

the form ’load=/usr/lib/opensc-pkcs11.so’.

You can provide the PIN to be used for the PKCS #11 operations with the

environment variables GNUTLS_PIN and GNUTLS_SO_PIN.

5.2.8 debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the

debug level.

5.2.9 export-chain option

This is the “export the certificate specified by the url and its chain of trust” option. Exports

the certificate specified by the URL and generates its chain of trust based on the stored

certificates in the module.

5.2.10 list-all-privkeys option

This is the “list all available private keys in a token” option. Lists all the private keys in a

token that match the specified URL.

5.2.11 list-privkeys option

This is an alias for the list-all-privkeys option, see 〈undefined〉 [p11tool
list-all-privkeys], page 〈undefined〉.

5.2.12 list-keys option

This is an alias for the list-all-privkeys option, see 〈undefined〉 [p11tool
list-all-privkeys], page 〈undefined〉.

Chapter 5: Hardware security modules and abstract key types 106

5.2.13 write option

This is the “writes the loaded objects to a pkcs #11 token” option. It can be used to write

private keys, certificates or secret keys to a token.

5.2.14 generate-random option

This is the “generate random data” option. This option takes a number argument. Asks

the token to generate a number of bytes of random bytes.

5.2.15 generate-rsa option

This is the “generate an rsa private-public key pair” option. Generates an RSA private-

public key pair on the specified token.

5.2.16 generate-dsa option

This is the “generate a dsa private-public key pair” option. Generates a DSA private-public

key pair on the specified token.

5.2.17 generate-ecc option

This is the “generate an ecdsa private-public key pair” option. Generates an ECDSA

private-public key pair on the specified token.

5.2.18 export-pubkey option

This is the “export the public key for a private key” option. Exports the public key for the

specified private key

5.2.19 set-id option

This is the “set the cka id (in hex) for the specified by the url object” option. This option

takes a string argument. Sets the CKA ID in the specified by the URL object. The ID

should be specified in hexadecimal format without a ’0x’ prefix.

5.2.20 set-label option

This is the “set the cka label for the specified by the url object” option. This option takes

a string argument. Sets the CKA LABEL in the specified by the URL object

5.2.21 id option

This is the “sets an id for the write operation” option. This option takes a string argument.

Sets the CKA ID to be set by the write operation. The ID should be specified in hexadecimal

format without a ’0x’ prefix.

5.2.22 mark-wrap option

This is the “marks the generated key to be a wrapping key” option.

This option has some usage constraints. It:

• can be disabled with –no-mark-wrap.

Marks the generated key with the CKA WRAP flag.

Chapter 5: Hardware security modules and abstract key types 107

5.2.23 mark-trusted option

This is the “marks the object to be written as trusted” option.

This option has some usage constraints. It:

• can be disabled with –no-mark-trusted.

Marks the object to be generated/copied with the CKA TRUST flag.

5.2.24 mark-ca option

This is the “marks the object to be written as a ca” option.

This option has some usage constraints. It:

• can be disabled with –no-mark-ca.

Marks the object to be generated/copied with the CKA CERTIFICATE CATEGORY as

CA.

5.2.25 mark-private option

This is the “marks the object to be written as private” option.

This option has some usage constraints. It:

• can be disabled with –no-mark-private.

• It is enabled by default.

Marks the object to be generated/copied with the CKA PRIVATE flag. The written object

will require a PIN to be used.

5.2.26 trusted option

This is an alias for the mark-trusted option, see 〈undefined〉 [p11tool mark-trusted],
page 〈undefined〉.

5.2.27 ca option

This is an alias for the mark-ca option, see 〈undefined〉 [p11tool mark-ca], page 〈undefined〉.

5.2.28 private option

This is an alias for the mark-private option, see 〈undefined〉 [p11tool mark-private],
page 〈undefined〉.

5.2.29 so-login option

This is the “force security officer login to token” option.

This option has some usage constraints. It:

• can be disabled with –no-so-login.

Forces login to the token as security officer (admin).

5.2.30 admin-login option

This is an alias for the so-login option, see 〈undefined〉 [p11tool so-login], page 〈undefined〉.

Chapter 5: Hardware security modules and abstract key types 108

5.2.31 curve option

This is the “specify the curve used for ec key generation” option. This option takes a string

argument. Supported values are secp192r1, secp224r1, secp256r1, secp384r1 and secp521r1.

5.2.32 sec-param option

This is the “specify the security level” option. This option takes a string argument Security

parameter. This is alternative to the bits option. Available options are [low, legacy,

medium, high, ultra].

5.2.33 inder option

This is the “use der/raw format for input” option.

This option has some usage constraints. It:

• can be disabled with –no-inder.

Use DER/RAW format for input certificates and private keys.

5.2.34 inraw option

This is an alias for the inder option, see [p11tool inder], page 95.

5.2.35 outder option

This is the “use der format for output certificates, private keys, and dh parameters” option.

This option has some usage constraints. It:

• can be disabled with –no-outder.

The output will be in DER or RAW format.

5.2.36 outraw option

This is an alias for the outder option, see 〈undefined〉 [p11tool outder], page 〈undefined〉.

5.2.37 set-pin option

This is the “specify the pin to use on token initialization” option. This option takes a string

argument. Alternatively the GNUTLS PIN environment variable may be used.

5.2.38 set-so-pin option

This is the “specify the security officer’s pin to use on token initialization” option. This

option takes a string argument. Alternatively the GNUTLS SO PIN environment variable

may be used.

5.2.39 provider option

This is the “specify the pkcs #11 provider library” option. This option takes a file argument.

This will override the default options in /etc/gnutls/pkcs11.conf

Chapter 5: Hardware security modules and abstract key types 109

5.2.40 p11tool exit status

One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

5.2.41 p11tool See Also

certtool (1)

5.2.42 p11tool Examples

To view all tokens in your system use:

$ p11tool --list-tokens

To view all objects in a token use:

$ p11tool --login --list-all "pkcs11:TOKEN-URL"

To store a private key and a certificate in a token run:

$ p11tool --login --write "pkcs11:URL" --load-privkey key.pem \

--label "Mykey"

$ p11tool --login --write "pkcs11:URL" --load-certificate cert.pem \

--label "Mykey"

Note that some tokens require the same label to be used for the certificate and its corre-
sponding private key.

To generate an RSA private key inside the token use:

$ p11tool --login --generate-rsa --bits 1024 --label "MyNewKey" \

--outfile MyNewKey.pub "pkcs11:TOKEN-URL"

The bits parameter in the above example is explicitly set because some tokens only support
limited choices in the bit length. The output file is the corresponding public key. This key
can be used to general a certificate request with certtool.

certtool --generate-request --load-privkey "pkcs11:KEY-URL" \

--load-pubkey MyNewKey.pub --outfile request.pem

5.3 Trusted Platform Module (TPM)

In this section we present the Trusted Platform Module (TPM) support in GnuTLS.

There was a big hype when the TPM chip was introduced into computers. Briefly it is a
co-processor in your PC that allows it to perform calculations independently of the main
processor. This has good and bad side-effects. In this section we focus on the good ones;
these are the fact that you can use the TPM chip to perform cryptographic operations on
keys stored in it, without accessing them. That is very similar to the operation of a PKCS

#11 smart card. The chip allows for storage and usage of RSA keys, but has quite some
operational differences from PKCS #11 module, and thus require different handling. The
basic TPM operations supported and used by GnuTLS, are key generation and signing.

Chapter 5: Hardware security modules and abstract key types 110

The next sections assume that the TPM chip in the system is already initialized and in a
operational state.

In GnuTLS the TPM functionality is available in gnutls/tpm.h.

5.3.1 Keys in TPM

The RSA keys in the TPM module may either be stored in a flash memory within TPM
or stored in a file in disk. In the former case the key can provide operations as with PKCS

#11 and is identified by a URL. The URL is described in [TPMURI] and is of the following
form.

tpmkey:uuid=42309df8-d101-11e1-a89a-97bb33c23ad1;storage=user

It consists from a unique identifier of the key as well as the part of the flash memory the
key is stored at. The two options for the storage field are ‘user’ and ‘system’. The user keys
are typically only available to the generating user and the system keys to all users. The
stored in TPM keys are called registered keys.

The keys that are stored in the disk are exported from the TPM but in an encrypted form.
To access them two passwords are required. The first is the TPM Storage Root Key (SRK),
and the other is a key-specific password. Also those keys are identified by a URL of the
form:

tpmkey:file=/path/to/file

When objects require a PIN to be accessed the same callbacks as with PKCS #11 objects
are expected (see Section 5.2.2 [Accessing objects that require a PIN], page 87). Note that
the PIN function may be called multiple times to unlock the SRK and the specific key in
use. The label in the key function will then be set to ‘SRK’ when unlocking the SRK key,
or to ‘TPM’ when unlocking any other key.

5.3.2 Key generation

All keys used by the TPM must be generated by the TPM. This can be done using
[gnutls tpm privkey generate], page 481.

[Function]int gnutls_tpm_privkey_generate (gnutls pk algorithm t pk,
unsigned int bits, const char * srk_password, const char * key_password,
gnutls tpmkey fmt t format, gnutls x509 crt fmt t pub_format,
gnutls datum t * privkey, gnutls datum t * pubkey, unsigned int flags)

pk: the public key algorithm

bits: the security bits

srk password: a password to protect the exported key (optional)

key password: the password for the TPM (optional)

format: the format of the private key

pub format: the format of the public key

privkey : the generated key

pubkey : the corresponding public key (may be null)

flags: should be a list of GNUTLS TPM * flags

Chapter 5: Hardware security modules and abstract key types 111

This function will generate a private key in the TPM chip. The private key will be
generated within the chip and will be exported in a wrapped with TPM’s master key
form. Furthermore the wrapped key can be protected with the provided password .

Note that bits in TPM is quantized value. If the input value is not one of the allowed
values, then it will be quantized to one of 512, 1024, 2048, 4096, 8192 and 16384.

Allowed flags are:

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

int [gnutls_tpm_get_registered], page 480 (gnutls_tpm_key_list_t * list)

void [gnutls_tpm_key_list_deinit], page 480 (gnutls_tpm_key_list_t list)

int [gnutls_tpm_key_list_get_url], page 481 (gnutls_tpm_key_list_t list,

unsigned int idx, char ** url, unsigned int flags)

[Function]int gnutls_tpm_privkey_delete (const char * url, const char *
srk_password)

url: the URL describing the key

srk password: a password for the SRK key

This function will unregister the private key from the TPM chip.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

5.3.3 Using keys

Importing keys

The TPM keys can be used directly by the abstract key types and do not require any
special structures. Moreover functions like [gnutls certificate set x509 key file2], page 284
can access TPM URLs.

int [gnutls_privkey_import_tpm_raw], page 489 (gnutls_privkey_t pkey, const

gnutls_datum_t * fdata, gnutls_tpmkey_fmt_t format, const char * srk_password,

const char * key_password, unsigned int flags)

int [gnutls_pubkey_import_tpm_raw], page 500 (gnutls_pubkey_t pkey, const

gnutls_datum_t * fdata, gnutls_tpmkey_fmt_t format, const char * srk_password,

unsigned int flags)

[Function]int gnutls_privkey_import_tpm_url (gnutls privkey t pkey, const
char * url, const char * srk_password, const char * key_password,
unsigned int flags)

pkey : The private key

url: The URL of the TPM key to be imported

srk password: The password for the SRK key (optional)

key password: A password for the key (optional)

flags: One of the GNUTLS PRIVKEY * flags

Chapter 5: Hardware security modules and abstract key types 112

This function will import the given private key to the abstract gnutls_privkey_t

structure.

Note that unless GNUTLS_PRIVKEY_DISABLE_CALLBACKS is specified, if incorrect (or
NULL) passwords are given the PKCS11 callback functions will be used to obtain
the correct passwords. Otherwise if the SRK password is wrong GNUTLS_E_TPM_SRK_

PASSWORD_ERROR is returned and if the key password is wrong or not provided then
GNUTLS_E_TPM_KEY_PASSWORD_ERROR is returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

[Function]int gnutls_pubkey_import_tpm_url (gnutls pubkey t pkey, const
char * url, const char * srk_password, unsigned int flags)

pkey : The public key

url: The URL of the TPM key to be imported

srk password: The password for the SRK key (optional)

flags: should be zero

This function will import the given private key to the abstract gnutls_privkey_t

structure.

Note that unless GNUTLS_PUBKEY_DISABLE_CALLBACKS is specified, if incorrect (or
NULL) passwords are given the PKCS11 callback functions will be used to obtain
the correct passwords. Otherwise if the SRK password is wrong GNUTLS_E_TPM_SRK_

PASSWORD_ERROR is returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

Listing and deleting keys

The registered keys (that are stored in the TPM) can be listed using one of the following
functions. Those keys are unfortunately only identified by their UUID and have no label
or other human friendly identifier. Keys can be deleted from permament storage using
[gnutls tpm privkey delete], page 481.

int [gnutls_tpm_get_registered], page 480 (gnutls_tpm_key_list_t * list)

void [gnutls_tpm_key_list_deinit], page 480 (gnutls_tpm_key_list_t list)

int [gnutls_tpm_key_list_get_url], page 481 (gnutls_tpm_key_list_t list,

unsigned int idx, char ** url, unsigned int flags)

[Function]int gnutls_tpm_privkey_delete (const char * url, const char *
srk_password)

url: the URL describing the key

srk password: a password for the SRK key

This function will unregister the private key from the TPM chip.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

Chapter 5: Hardware security modules and abstract key types 113

5.3.4 Invoking tpmtool

Program that allows handling cryptographic data from the TPM chip.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the tpmtool program. This software is released under the GNU General
Public License, version 3 or later.

5.3.5 tpmtool help/usage (--help)

This is the automatically generated usage text for tpmtool.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

tpmtool is unavailable - no --help

5.3.6 debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the

debug level.

5.3.7 generate-rsa option

This is the “generate an rsa private-public key pair” option. Generates an RSA private-

public key pair in the TPM chip. The key may be stored in filesystem and protected by a

PIN, or stored (registered) in the TPM chip flash.

5.3.8 user option

This is the “any registered key will be a user key” option.

This option has some usage constraints. It:

• must appear in combination with the following options: register.

• must not appear in combination with any of the following options: system.

The generated key will be stored in a user specific persistent storage.

5.3.9 system option

This is the “any registred key will be a system key” option.

This option has some usage constraints. It:

• must appear in combination with the following options: register.

• must not appear in combination with any of the following options: user.

The generated key will be stored in system persistent storage.

5.3.10 test-sign option

This is the “tests the signature operation of the provided object” option. This option takes a

string argument url. It can be used to test the correct operation of the signature operation.

This operation will sign and verify the signed data.

Chapter 5: Hardware security modules and abstract key types 114

5.3.11 sec-param option

This is the “specify the security level [low, legacy, medium, high, ultra].” option. This

option takes a string argument Security parameter. This is alternative to the bits option.

Note however that the values allowed by the TPM chip are quantized and given values may

be rounded up.

5.3.12 inder option

This is the “use the der format for keys.” option.

This option has some usage constraints. It:

• can be disabled with –no-inder.

The input files will be assumed to be in the portable DER format of TPM. The default

format is a custom format used by various TPM tools

5.3.13 outder option

This is the “use der format for output keys” option.

This option has some usage constraints. It:

• can be disabled with –no-outder.

The output will be in the TPM portable DER format.

5.3.14 tpmtool exit status

One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

5.3.15 tpmtool See Also

p11tool (1), certtool (1)

5.3.16 tpmtool Examples

To generate a key that is to be stored in filesystem use:

$ tpmtool --generate-rsa --bits 2048 --outfile tpmkey.pem

To generate a key that is to be stored in TPM’s flash use:

$ tpmtool --generate-rsa --bits 2048 --register --user

To get the public key of a TPM key use:

$ tpmtool --pubkey tpmkey:uuid=58ad734b-bde6-45c7-89d8-756a55ad1891;storage=user \

--outfile pubkey.pem

or if the key is stored in the filesystem:

$ tpmtool --pubkey tpmkey:file=tmpkey.pem --outfile pubkey.pem

To list all keys stored in TPM use:

$ tpmtool --list

Chapter 6: How to use GnuTLS in applications 115

6 How to use GnuTLS in applications

6.1 Introduction

This chapter tries to explain the basic functionality of the current GnuTLS library. Note
that there may be additional functionality not discussed here but included in the library.
Checking the header files in /usr/include/gnutls/ and the manpages is recommended.

6.1.1 General idea

A brief description of how GnuTLS sessions operate is shown at 〈undefined〉 [fig-gnutls-
design], page 〈undefined〉. This section will become more clear when it is completely read.
As shown in the figure, there is a read-only global state that is initialized once by the
global initialization function. This global structure, among others, contains the memory
allocation functions used, structures needed for the ASN.1 parser and depending on the
system’s CPU, pointers to hardware accelerated encryption functions. This structure is
never modified by any GnuTLS function, except for the deinitialization function which frees
all allocated memory and must be called after the program has permanently finished using
GnuTLS.

TLS Session TLS Session

Global state

Session Database
Backend

Transport Layer

Credentials

Figure 6.1: High level design of GnuTLS.

The credentials structures are used by the authentication methods, such as certificate au-
thentication. They store certificates, privates keys, and other information that is needed
to prove the identity to the peer, and/or verify the indentity of the peer. The information
stored in the credentials structures is initialized once and then can be shared by many TLS

sessions.

A GnuTLS session contains all the required state and information to handle one secure
connection. The session communicates with the peers using the provided functions of the
transport layer. Every session has a unique session ID shared with the peer.

Chapter 6: How to use GnuTLS in applications 116

Since TLS sessions can be resumed, servers need a database back-end to hold the session’s
parameters. Every GnuTLS session after a successful handshake calls the appropriate back-
end function (see [resume], page 10) to store the newly negotiated session. The session
database is examined by the server just after having received the client hello1, and if the
session ID sent by the client, matches a stored session, the stored session will be retrieved,
and the new session will be a resumed one, and will share the same session ID with the
previous one.

6.1.2 Error handling

In GnuTLS most functions return an integer type as a result. In almost all cases a zero or a
positive number means success, and a negative number indicates failure, or a situation that
some action has to be taken. Thus negative error codes may be fatal or not.

Fatal errors terminate the connection immediately and further sends and receives will be
disallowed. Such an example is GNUTLS_E_DECRYPTION_FAILED. Non-fatal errors may
warn about something, i.e., a warning alert was received, or indicate the some action
has to be taken. This is the case with the error code GNUTLS_E_REHANDSHAKE returned
by [gnutls record recv], page 325. This error code indicates that the server requests a re-
handshake. The client may ignore this request, or may reply with an alert. You can test if
an error code is a fatal one by using the [gnutls error is fatal], page 300. All errors can be
converted to a descriptive string using [gnutls strerror], page 345.

If any non fatal errors, that require an action, are to be returned by a function, these
error codes will be documented in the function’s reference. For example the error codes
GNUTLS_E_WARNING_ALERT_RECEIVED and GNUTLS_E_FATAL_ALERT_RECEIVED that may re-
turned when receiving data, should be handled by notifying the user of the alert (as ex-
plained in Section 6.9 [Handling alerts], page 125). See Appendix C [Error codes], page 258,
for a description of the available error codes.

6.1.3 Common types

All strings that are to provided as input to GnuTLS functions should be in UTF-8 unless
otherwise specified. Output strings are also in UTF-8 format unless otherwise specified.

When data of a fixed size are provided to GnuTLS functions then the helper structure
gnutls_datum_t is often used. Its definition is shown below.

typedef struct

{

unsigned char *data;

unsigned int size;

} gnutls_datum_t;

Other functions that require data for scattered read use a structure similar to struct iovec

typically used by readv. It is shown below.

typedef struct

{

void *iov_base; /* Starting address */

size_t iov_len; /* Number of bytes to transfer */

} giovec_t;

1 The first message in a TLS handshake

Chapter 6: How to use GnuTLS in applications 117

6.1.4 Debugging and auditing

In many cases things may not go as expected and further information, to assist debug-
ging, from GnuTLS is desired. Those are the cases where the [gnutls global set log level],
page 302 and [gnutls global set log function], page 302 are to be used. Those will print
verbose information on the GnuTLS functions internal flow.

void [gnutls_global_set_log_level], page 302 (int level)

void [gnutls_global_set_log_function], page 302 (gnutls_log_func log_func)

Alternatively the environment variable GNUTLS_DEBUG_LEVEL can be set to a logging level
and GnuTLS will output debugging output to standard error. Other available environment
variables are shown in 〈undefined〉 [tab:environment], page 〈undefined〉.

Variable Purpose

GNUTLS_DEBUG_LEVEL When set to a numeric value, it sets the default debugging
level for GnuTLS applications.

GNUTLS_CPUID_OVERRIDE That environment variable can be used to explicitly en-
able/disable the use of certain CPU capabilities. Note that
CPU detection cannot be overriden, i.e., VIA options cannot
be enabled on an Intel CPU. The currently available options
are:

• 0x1: Disable all run-time detected optimizations

• 0x2: Enable AES-NI

• 0x4: Enable SSSE3

• 0x8: Enable PCLMUL

• 0x100000: Enable VIA padlock

• 0x200000: Enable VIA PHE

• 0x400000: Enable VIA PHE SHA512

GNUTLS_FORCE_FIPS_MODE In setups where GnuTLS is compiled with support for
FIPS140-2 (see –enable-fips140-mode in configure), that op-
tion if set to one enforces the FIPS140 mode.

Table 6.1: Environment variables used by the library.

When debugging is not required, important issues, such as detected attacks on the
protocol still need to be logged. This is provided by the logging function set by
[gnutls global set audit log function], page 301. The provided function will receive an
message and the corresponding TLS session. The session information might be used to
derive IP addresses or other information about the peer involved.

[Function]void gnutls_global_set_audit_log_function
(gnutls audit log func log_func)

log func: it is the audit log function

Chapter 6: How to use GnuTLS in applications 118

This is the function to set the audit logging function. This is a function to report im-
portant issues, such as possible attacks in the protocol. This is different from gnutls_

global_set_log_function() because it will report also session-specific events. The
session parameter will be null if there is no corresponding TLS session.

gnutls_audit_log_func is of the form, void (*gnutls audit log func)(
gnutls session t, const char*);

Since: 3.0

6.1.5 Thread safety

The GnuTLS library is thread safe by design, meaning that objects of the library such as
TLS sessions, can be safely divided across threads as long as a single thread accesses a single
object. This is sufficient to support a server which handles several sessions per thread. If,
however, an object needs to be shared across threads then access must be protected with a
mutex. Read-only access to objects, for example the credentials holding structures, is also
thread-safe.

A gnutls_session_t object can be shared by two threads, one sending, the other receiving.
In that case rehandshakes, if required, must only be handled by a single thread being active.
The termination of a session should be handled, either by a single thread being active, or
by the sender thread using [gnutls bye], page 275 with GNUTLS_SHUT_WR and the receiving
thread waiting for a return value of zero.

The random generator of the cryptographic back-end, utilizes mutex locks (e.g., pthreads
on GNU/Linux and CriticalSection on Windows) which are setup by GnuTLS on library ini-
tialization. Prior to version 3.3.0 they were setup by calling [gnutls global init], page 301.
On special systems you could manually specify the locking system using the function
[gnutls global set mutex], page 302 before calling any other GnuTLS function. Setting
mutexes manually is not recommended. An example of non-native thread usage is shown
below.

#include <gnutls/gnutls.h>

int main()

{

/* When the system mutexes are not to be used

* gnutls_global_set_mutex() must be called explicitly

*/

gnutls_global_set_mutex (mutex_init, mutex_deinit,

mutex_lock, mutex_unlock);

}

[Function]void gnutls_global_set_mutex (mutex init func init,
mutex deinit func deinit, mutex lock func lock, mutex unlock func
unlock)

init: mutex initialization function

deinit: mutex deinitialization function

lock: mutex locking function

unlock: mutex unlocking function

Chapter 6: How to use GnuTLS in applications 119

With this function you are allowed to override the default mutex locks used in some
parts of gnutls and dependent libraries. This function should be used if you have
complete control of your program and libraries. Do not call this function from a
library, or preferrably from any application unless really needed to. GnuTLS will use
the appropriate locks for the running system.

This function must be called prior to any other gnutls function.

Since: 2.12.0

6.1.6 Sessions and fork

A gnutls_session_t object can be shared by two processes after a fork, one sending,
the other receiving. In that case rehandshakes, cannot and must not be performed. As
with threads, the termination of a session should be handled by the sender process using
[gnutls bye], page 275 with GNUTLS_SHUT_WR and the receiving process waiting for a return
value of zero.

6.1.7 Callback functions

There are several cases where GnuTLS may need out of band input from your program.
This is now implemented using some callback functions, which your program is expected to
register.

An example of this type of functions are the push and pull callbacks which are used to
specify the functions that will retrieve and send data to the transport layer.

void [gnutls_transport_set_push_function], page 350 (gnutls_session_t

session, gnutls_push_func push_func)

void [gnutls_transport_set_pull_function], page 349 (gnutls_session_t

session, gnutls_pull_func pull_func)

Other callback functions may require more complicated input and data to be allocated.
Such an example is [gnutls srp set server credentials function], page 341. All callbacks
should allocate and free memory using gnutls_malloc and gnutls_free.

6.2 Preparation

To use GnuTLS, you have to perform some changes to your sources and your build system.
The necessary changes are explained in the following subsections.

6.2.1 Headers

All the data types and functions of the GnuTLS library are defined in the header file
gnutls/gnutls.h. This must be included in all programs that make use of the GnuTLS

library.

6.2.2 Initialization

The GnuTLS library is initialized on load; prior to 3.3.0 was initialized by calling
[gnutls global init], page 3012. The initialization typically enables CPU-specific

2 The original behavior of requiring explicit initialization can obtained by setting the
GNUTLS NO EXPLICIT INIT environment variable to 1, or by using the macro GNUTLS SKIP GLOBAL INIT
in a global section of your program.

Chapter 6: How to use GnuTLS in applications 120

acceleration, performs any required precalculations needed, opens any required system
devices (e.g., /dev/urandom on Linux) and initializes subsystems that could be used later.

The resources allocated by the initialization process will be released on library deinitializa-
tion, or explictly by calling [gnutls global deinit], page 301.

Note that during initialization file descriptors may be kept open by GnuTLS (e.g.
/dev/urandom) on library load. Applications closing all unknown file descriptors must
immediately call [gnutls global init], page 301, after that, to ensure they don’t disrupt
GnuTLS’ operation.

6.2.3 Version check

It is often desirable to check that the version of ‘gnutls’ used is indeed one which fits
all requirements. Even with binary compatibility new features may have been introduced
but due to problem with the dynamic linker an old version is actually used. So you may
want to check that the version is okay right after program start-up. See the function
[gnutls check version], page 290.

On the other hand, it is often desirable to support more than one versions of the library.
In that case you could utilize compile-time feature checks using the the GNUTLS_VERSION_

NUMBER macro. For example, to conditionally add code for GnuTLS 3.2.1 or later, you may
use:

#if GNUTLS_VERSION_NUMBER >= 0x030201

...

#endif

6.2.4 Building the source

If you want to compile a source file including the gnutls/gnutls.h header file, you must
make sure that the compiler can find it in the directory hierarchy. This is accomplished by
adding the path to the directory in which the header file is located to the compilers include
file search path (via the -I option).

However, the path to the include file is determined at the time the source is configured. To
solve this problem, the library uses the external package pkg-config that knows the path
to the include file and other configuration options. The options that need to be added to
the compiler invocation at compile time are output by the --cflags option to pkg-config

gnutls. The following example shows how it can be used at the command line:

gcc -c foo.c ‘pkg-config gnutls --cflags‘

Adding the output of ‘pkg-config gnutls --cflags’ to the compilers command line will
ensure that the compiler can find the gnutls/gnutls.h header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added
to the library search path (via the -L option). For this, the option --libs to pkg-config

gnutls can be used. For convenience, this option also outputs all other options that are
required to link the program with the library (for instance, the ‘-ltasn1’ option). The
example shows how to link foo.o with the library to a program foo.

gcc -o foo foo.o ‘pkg-config gnutls --libs‘

Of course you can also combine both examples to a single command by specifying both
options to pkg-config:

Chapter 6: How to use GnuTLS in applications 121

gcc -o foo foo.c ‘pkg-config gnutls --cflags --libs‘

When a program uses the GNU autoconf system, then the following line or similar can be
used to detect the presence of GnuTLS.

PKG_CHECK_MODULES([LIBGNUTLS], [gnutls >= 3.3.0])

AC_SUBST([LIBGNUTLS_CFLAGS])

AC_SUBST([LIBGNUTLS_LIBS])

6.3 Session initialization

In the previous sections we have discussed the global initialization required for GnuTLS
as well as the initialization required for each authentication method’s credentials (see
Section 3.5.2 [Authentication], page 10). In this section we elaborate on the TLS or DTLS
session initiation. Each session is initialized using [gnutls init], page 308 which among
others is used to specify the type of the connection (server or client), and the underlying
protocol type, i.e., datagram (UDP) or reliable (TCP).

[Function]int gnutls_init (gnutls session t * session, unsigned int flags)
session: is a pointer to a gnutls_session_t structure.

flags: indicate if this session is to be used for server or client.

This function initializes the current session to null. Every session must be initialized
before use, so internal structures can be allocated. This function allocates structures
which can only be free’d by calling gnutls_deinit() . Returns GNUTLS_E_SUCCESS
(0) on success.

flags can be one of GNUTLS_CLIENT and GNUTLS_SERVER . For a DTLS entity, the
flags GNUTLS_DATAGRAM and GNUTLS_NONBLOCK are also available. The latter flag will
enable a non-blocking operation of the DTLS timers.

The flag GNUTLS_NO_REPLAY_PROTECTION will disable any replay protection in DTLS
mode. That must only used when replay protection is achieved using other means.

Note that since version 3.1.2 this function enables some common TLS extensions such
as session tickets and OCSP certificate status request in client side by default. To
prevent that use the GNUTLS_NO_EXTENSIONS flag.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

After the session initialization details on the allowed ciphersuites and protocol versions
should be set using the priority functions such as [gnutls priority set direct], page 318. We
elaborate on them in Section 6.10 [Priority Strings], page 127. The credentials used for
the key exchange method, such as certificates or usernames and passwords should also be
associated with the session current session using [gnutls credentials set], page 292.

[Function]int gnutls_credentials_set (gnutls session t session,
gnutls credentials type t type, void * cred)

session: is a gnutls_session_t structure.

type: is the type of the credentials

cred: is a pointer to a structure.

Chapter 6: How to use GnuTLS in applications 122

Sets the needed credentials for the specified type. Eg username, password - or public
and private keys etc. The cred parameter is a structure that depends on the specified
type and on the current session (client or server).

In order to minimize memory usage, and share credentials between several threads
gnutls keeps a pointer to cred, and not the whole cred structure. Thus you will have
to keep the structure allocated until you call gnutls_deinit() .

For GNUTLS_CRD_ANON , cred should be gnutls_anon_client_credentials_t in case
of a client. In case of a server it should be gnutls_anon_server_credentials_t .

For GNUTLS_CRD_SRP , cred should be gnutls_srp_client_credentials_t in case
of a client, and gnutls_srp_server_credentials_t , in case of a server.

For GNUTLS_CRD_CERTIFICATE , cred should be gnutls_certificate_credentials_
t .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

6.4 Associating the credentials

Each authentication method is associated with a key exchange method, and a credentials
type. The contents of the credentials is method-dependent, e.g. certificates for
certificate authentication and should be initialized and associated with a session (see
[gnutls credentials set], page 292). A mapping of the key exchange methods with the
credential types is shown in Table 6.1.

Authentication
method

Key exchange Client
credentials

Server creden-
tials

Certificate KX_RSA, KX_DHE_

RSA, KX_DHE_DSS,
KX_ECDHE_RSA,
KX_ECDHE_ECDSA,
KX_RSA_EXPORT

CRD_

CERTIFICATE

CRD_

CERTIFICATE

Password and
certificate

KX_SRP_RSA,
KX_SRP_DSS

CRD_SRP CRD_

CERTIFICATE,
CRD_SRP

Password KX_SRP CRD_SRP CRD_SRP

Anonymous KX_ANON_DH,
KX_ANON_ECDH

CRD_ANON CRD_ANON

Pre-shared key KX_PSK, KX_

DHE_PSK,
KX_ECDHE_PSK

CRD_PSK CRD_PSK

Table 6.2: Key exchange algorithms and the corresponding credential types.

6.4.1 Certificates

Chapter 6: How to use GnuTLS in applications 123

Server certificate authentication

When using certificates the server is required to have at least one certificate and private
key pair. Clients may not hold such a pair, but a server could require it. In this section we
discuss general issues applying to both client and server certificates. The next section will
elaborate on issues arising from client authentication only.

int [gnutls_certificate_allocate_credentials], page 276

(gnutls_certificate_credentials_t * res)

void [gnutls_certificate_free_credentials], page 277

(gnutls_certificate_credentials_t sc)

After the credentials structures are initialized, the certificate and key pair must be loaded.
This occurs before any TLS session is initialized, and the same structures are reused for
multiple sessions. Depending on the certificate type different loading functions are available,
as shown below. For X.509 certificates, the functions will accept and use a certificate chain
that leads to a trusted authority. The certificate chain must be ordered in such way that
every certificate certifies the one before it. The trusted authority’s certificate need not to
be included since the peer should possess it already.

int [gnutls_certificate_set_x509_key_mem2], page 285

(gnutls_certificate_credentials_t res, const gnutls_datum_t * cert, const

gnutls_datum_t * key, gnutls_x509_crt_fmt_t type, const char * pass, unsigned

int flags)

int [gnutls_certificate_set_x509_key], page 283

(gnutls_certificate_credentials_t res, gnutls_x509_crt_t * cert_list, int

cert_list_size, gnutls_x509_privkey_t key)

int [gnutls_certificate_set_x509_key_file2], page 284

(gnutls_certificate_credentials_t res, const char * certfile, const char *

keyfile, gnutls_x509_crt_fmt_t type, const char * pass, unsigned int flags)

int [gnutls_certificate_set_openpgp_key_mem], page 443

(gnutls_certificate_credentials_t res, const gnutls_datum_t * cert, const

gnutls_datum_t * key, gnutls_openpgp_crt_fmt_t format)

int [gnutls_certificate_set_openpgp_key], page 442

(gnutls_certificate_credentials_t res, gnutls_openpgp_crt_t crt,

gnutls_openpgp_privkey_t pkey)

int [gnutls_certificate_set_openpgp_key_file], page 443

(gnutls_certificate_credentials_t res, const char * certfile, const char *

keyfile, gnutls_openpgp_crt_fmt_t format)

Note however, that since functions like [gnutls certificate set x509 key file2], page 284
may accept URLs that specify objects stored in token, another important function is
[gnutls certificate set pin function], page 280. That allows setting a callback function to
retrieve a PIN if the input keys are protected by PIN by the token.

[Function]void gnutls_certificate_set_pin_function
(gnutls certificate credentials t cred, gnutls pin callback t fn, void *
userdata)

cred: is a gnutls_certificate_credentials_t structure.

fn: A PIN callback

Chapter 6: How to use GnuTLS in applications 124

userdata: Data to be passed in the callback

This function will set a callback function to be used when required to access a pro-
tected object. This function overrides any other global PIN functions.

Note that this function must be called right after initialization to have effect.

Since: 3.1.0

If the imported keys and certificates need to be accessed before any TLS session is es-
tablished, it is convenient to use [gnutls certificate set key], page 482 in combination with
[gnutls pcert import x509 raw], page 484 and [gnutls privkey import x509 raw], page 490.

[Function]int gnutls_certificate_set_key (gnutls certificate credentials t
res, const char ** names, int names_size, gnutls pcert st * pcert_list, int
pcert_list_size, gnutls privkey t key)

res: is a gnutls_certificate_credentials_t structure.

names: is an array of DNS name of the certificate (NULL if none)

names size: holds the size of the names list

pcert list: contains a certificate list (path) for the specified private key

pcert list size: holds the size of the certificate list

key : is a gnutls_privkey_t key

This function sets a certificate/private key pair in the gnutls certificate credentials t
structure. This function may be called more than once, in case multiple
keys/certificates exist for the server. For clients that wants to send more than its
own end entity certificate (e.g., also an intermediate CA cert) then put the certificate
chain in pcert_list .

Note that the key and the elements of pcert_list will become part of the credentials
structure and must not be deallocated. They will be automatically deallocated when
the res structure is deinitialized.

If that function fails to load the res structure is at an undefined state, it must not
be reused to load other keys or certificates.

Returns: GNUTLS_E_SUCCESS (0) on success, or a negative error code.

Since: 3.0

If multiple certificates are used with the functions above each client’s request will be served
with the certificate that matches the requested name (see Section 3.6.2 [Server name indi-
cation], page 11).

As an alternative to loading from files or buffers, a callback may be used for the server
or the client to specify the certificate and the key at the handshake time. In that case a
certificate should be selected according the peer’s signature algorithm preferences. To get
those preferences use [gnutls sign algorithm get requested], page 336. Both functions are
shown below.

Chapter 6: How to use GnuTLS in applications 125

void [gnutls_certificate_set_retrieve_function], page 280

(gnutls_certificate_credentials_t cred, gnutls_certificate_retrieve_function

* func)

void [gnutls_certificate_set_retrieve_function2], page 482

(gnutls_certificate_credentials_t cred,

gnutls_certificate_retrieve_function2 * func)

int [gnutls_sign_algorithm_get_requested], page 336 (gnutls_session_t

session, size_t indx, gnutls_sign_algorithm_t * algo)

c The functions above do not handle the requested server name automatically. A server
would need to check the name requested by the client using [gnutls server name get],
page 329, and serve the appropriate certificate. Note that some of these functions require
the gnutls_pcert_st structure to be filled in. Helper functions to fill in the structure are
listed below.

typedef struct gnutls_pcert_st

{

gnutls_pubkey_t pubkey;

gnutls_datum_t cert;

gnutls_certificate_type_t type;

} gnutls_pcert_st;

int [gnutls_pcert_import_x509], page 484 (gnutls_pcert_st * pcert,

gnutls_x509_crt_t crt, unsigned int flags)

int [gnutls_pcert_import_openpgp], page 483 (gnutls_pcert_st * pcert,

gnutls_openpgp_crt_t crt, unsigned int flags)

int [gnutls_pcert_import_x509_raw], page 484 (gnutls_pcert_st * pcert, const

gnutls_datum_t * cert, gnutls_x509_crt_fmt_t format, unsigned int flags)

int [gnutls_pcert_import_openpgp_raw], page 484 (gnutls_pcert_st * pcert,

const gnutls_datum_t * cert, gnutls_openpgp_crt_fmt_t format,

gnutls_openpgp_keyid_t keyid, unsigned int flags)

void [gnutls_pcert_deinit], page 483 (gnutls_pcert_st * pcert)

In a handshake, the negotiated cipher suite depends on the certificate’s parameters, so some
key exchange methods might not be available with all certificates. GnuTLS will disable
ciphersuites that are not compatible with the key, or the enabled authentication methods.
For example keys marked as sign-only, will not be able to access the plain RSA ciphersuites,
that require decryption. It is not recommended to use RSA keys for both signing and
encryption. If possible use a different key for the DHE-RSA which uses signing and RSA that
requires decryption. All the key exchange methods shown in Table 4.1 are available in
certificate authentication.

Client certificate authentication

If a certificate is to be requested from the client during the handshake, the
server will send a certificate request message. This behavior is controlled
[gnutls certificate server set request], page 278. The request contains a list of the
acceptable by the server certificate signers. This list is constructed using the trusted
certificate authorities of the server. In cases where the server supports a large number of
certificate authorities it makes sense not to advertise all of the names to save bandwidth.
That can be controlled using the function [gnutls certificate send x509 rdn sequence],

Chapter 6: How to use GnuTLS in applications 126

page 278. This however will have the side-effect of not restricting the client to certificates
signed by server’s acceptable signers.

[Function]void gnutls_certificate_server_set_request (gnutls session t
session, gnutls certificate request t req)

session: is a gnutls_session_t structure.

req: is one of GNUTLS CERT REQUEST, GNUTLS CERT REQUIRE

This function specifies if we (in case of a server) are going to send a certificate request
message to the client. If req is GNUTLS CERT REQUIRE then the server will
return an error if the peer does not provide a certificate. If you do not call this
function then the client will not be asked to send a certificate.

[Function]void gnutls_certificate_send_x509_rdn_sequence
(gnutls session t session, int status)

session: is a pointer to a gnutls_session_t structure.

status: is 0 or 1

If status is non zero, this function will order gnutls not to send the rdnSequence in
the certificate request message. That is the server will not advertise its trusted CAs
to the peer. If status is zero then the default behaviour will take effect, which is to
advertise the server’s trusted CAs.

This function has no effect in clients, and in authentication methods other than
certificate with X.509 certificates.

Client or server certificate verification

Certificate verification is possible by loading the trusted authorities into the credentials
structure by using the following functions, applicable to X.509 and OpenPGP certificates.

int [gnutls_certificate_set_x509_system_trust], page 286

(gnutls_certificate_credentials_t cred)

int [gnutls_certificate_set_x509_trust_file], page 287

(gnutls_certificate_credentials_t cred, const char * cafile,

gnutls_x509_crt_fmt_t type)

int [gnutls_certificate_set_openpgp_keyring_file], page 444

(gnutls_certificate_credentials_t c, const char * file,

gnutls_openpgp_crt_fmt_t format)

The peer’s certificate is not automatically verified and one must call [gnutls certificate verify peers3],
page 289 after a successful handshake to verify the certificate’s signature and the
owner of the certificate. The verification status returned can be printed using
[gnutls certificate verification status print], page 288.

Alternatively the verification can occur during the handshake by using
[gnutls certificate set verify function], page 281.

The functions above provide a brief verification output. If a detailed output is required one
should call [gnutls certificate get peers], page 278 to obtain the raw certificate of the peer
and verify it using the functions discussed in Section 4.1.1 [X.509 certificates], page 19.

Chapter 6: How to use GnuTLS in applications 127

[Function]int gnutls_certificate_verify_peers3 (gnutls session t session,
const char * hostname, unsigned int * status)

session: is a gnutls session

hostname: is the expected name of the peer; may be NULL

status: is the output of the verification

This function will verify the peer’s certificate and store the status in the status

variable as a bitwise or’d gnutls certificate status t values or zero if the certificate
is trusted. Note that value in status is set only when the return value of this
function is success (i.e, failure to trust a certificate does not imply a negative return
value). The default verification flags used by this function can be overridden using
gnutls_certificate_set_verify_flags() . See the documentation of gnutls_

certificate_verify_peers2() for details in the verification process.

If the hostname provided is non-NULL then this function will compare the hostname
in the certificate against the given. The comparison will be accurate for ascii names;
non-ascii names are compared byte-by-byte. If names do not match the GNUTLS_

CERT_UNEXPECTED_OWNER status flag will be set.

In order to verify the purpose of the end-certificate (by checking the extended key
usage), use gnutls_certificate_verify_peers() .

Returns: a negative error code on error and GNUTLS_E_SUCCESS (0) when the peer’s
certificate was successfully parsed, irrespective of whether it was verified.

Since: 3.1.4

[Function]void gnutls_certificate_set_verify_function
(gnutls certificate credentials t cred, gnutls certificate verify function * func)

cred: is a gnutls_certificate_credentials_t structure.

func: is the callback function

This function sets a callback to be called when peer’s certificate has been received in
order to verify it on receipt rather than doing after the handshake is completed.

The callback’s function prototype is: int (*callback)(gnutls session t);

If the callback function is provided then gnutls will call it, in the handshake, just
after the certificate message has been received. To verify or obtain the certificate
the gnutls_certificate_verify_peers2() , gnutls_certificate_type_get() ,
gnutls_certificate_get_peers() functions can be used.

The callback function should return 0 for the handshake to continue or non-zero to
terminate.

Since: 2.10.0

6.4.2 SRP

The initialization functions in SRP credentials differ between client and server. Clients
supporting SRP should set the username and password prior to connection, to the credentials
structure. Alternatively [gnutls srp set client credentials function], page 340 may be used
instead, to specify a callback function that should return the SRP username and password.
The callback is called once during the TLS handshake.

Chapter 6: How to use GnuTLS in applications 128

int [gnutls_srp_allocate_server_credentials], page 337

(gnutls_srp_server_credentials_t * sc)

int [gnutls_srp_allocate_client_credentials], page 337

(gnutls_srp_client_credentials_t * sc)

void [gnutls_srp_free_server_credentials], page 339

(gnutls_srp_server_credentials_t sc)

void [gnutls_srp_free_client_credentials], page 339

(gnutls_srp_client_credentials_t sc)

int [gnutls_srp_set_client_credentials], page 339

(gnutls_srp_client_credentials_t res, const char * username, const char *

password)

[Function]void gnutls_srp_set_client_credentials_function
(gnutls srp client credentials t cred, gnutls srp client credentials function *
func)

cred: is a gnutls_srp_server_credentials_t structure.

func: is the callback function

This function can be used to set a callback to retrieve the username and password for
client SRP authentication. The callback’s function form is:

int (*callback)(gnutls session t, char** username, char**password);

The username and password must be allocated using gnutls_malloc() . username
and password should be ASCII strings or UTF-8 strings prepared using the "SASL-
prep" profile of "stringprep".

The callback function will be called once per handshake before the initial hello message
is sent.

The callback should not return a negative error code the second time called, since the
handshake procedure will be aborted.

The callback function should return 0 on success. -1 indicates an error.

In server side the default behavior of GnuTLS is to read the usernames and SRP

verifiers from password files. These password file format is compatible the with
the Stanford srp libraries format. If a different password file format is to be used,
then [gnutls srp set server credentials function], page 341 should be called, to set an
appropriate callback.

[Function]int gnutls_srp_set_server_credentials_file
(gnutls srp server credentials t res, const char * password_file, const char
* password_conf_file)

res: is a gnutls_srp_server_credentials_t structure.

password file: is the SRP password file (tpasswd)

password conf file: is the SRP password conf file (tpasswd.conf)

This function sets the password files, in a gnutls_srp_server_credentials_t struc-
ture. Those password files hold usernames and verifiers and will be used for SRP
authentication.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

Chapter 6: How to use GnuTLS in applications 129

[Function]void gnutls_srp_set_server_credentials_function
(gnutls srp server credentials t cred, gnutls srp server credentials function *
func)

cred: is a gnutls_srp_server_credentials_t structure.

func: is the callback function

This function can be used to set a callback to retrieve the user’s SRP credentials.
The callback’s function form is:

int (*callback)(gnutls session t, const char* username, gnutls datum t *salt,
gnutls datum t *verifier, gnutls datum t *generator, gnutls datum t *prime);

username contains the actual username. The salt , verifier , generator and prime

must be filled in using the gnutls_malloc() . For convenience prime and generator

may also be one of the static parameters defined in gnutls.h.

Initially, the data field is NULL in every gnutls_datum_t structure that the callback
has to fill in. When the callback is done GnuTLS deallocates all of those buffers which
are non-NULL, regardless of the return value.

In order to prevent attackers from guessing valid usernames, if a user does not exist,
g and n values should be filled in using a random user’s parameters. In that case
the callback must return the special value (1). See gnutls_srp_set_server_fake_

salt_seed too. If this is not required for your application, return a negative number
from the callback to abort the handshake.

The callback function will only be called once per handshake. The callback function
should return 0 on success, while -1 indicates an error.

6.4.3 PSK

The initialization functions in PSK credentials differ between client and server.

int [gnutls_psk_allocate_server_credentials], page 320

(gnutls_psk_server_credentials_t * sc)

int [gnutls_psk_allocate_client_credentials], page 320

(gnutls_psk_client_credentials_t * sc)

void [gnutls_psk_free_server_credentials], page 320

(gnutls_psk_server_credentials_t sc)

void [gnutls_psk_free_client_credentials], page 320

(gnutls_psk_client_credentials_t sc)

Clients supporting PSK should supply the username and key before a TLS session is estab-
lished. Alternatively [gnutls psk set client credentials function], page 321 can be used to
specify a callback function. This has the advantage that the callback will be called only if
PSK has been negotiated.

int [gnutls_psk_set_client_credentials], page 321

(gnutls_psk_client_credentials_t res, const char * username, const

gnutls_datum_t * key, gnutls_psk_key_flags flags)

[Function]void gnutls_psk_set_client_credentials_function
(gnutls psk client credentials t cred, gnutls psk client credentials function *
func)

cred: is a gnutls_psk_server_credentials_t structure.

Chapter 6: How to use GnuTLS in applications 130

func: is the callback function

This function can be used to set a callback to retrieve the username and pass-
word for client PSK authentication. The callback’s function form is: int (*call-
back)(gnutls session t, char** username, gnutls datum t* key);

The username and key ->data must be allocated using gnutls_malloc() . username
should be ASCII strings or UTF-8 strings prepared using the "SASLprep" profile of
"stringprep".

The callback function will be called once per handshake.

The callback function should return 0 on success. -1 indicates an error.

In server side the default behavior of GnuTLS is to read the usernames and PSK keys
from a password file. The password file should contain usernames and keys in hexadecimal
format. The name of the password file can be stored to the credentials structure by calling
[gnutls psk set server credentials file], page 322. If a different password file format is to be
used, then a callback should be set instead by [gnutls psk set server credentials function],
page 322.

The server can help the client chose a suitable username and password, by sending a hint.
Note that there is no common profile for the PSK hint and applications are discouraged
to use it. A server, may specify the hint by calling [gnutls psk set server credentials hint],
page 322. The client can retrieve the hint, for example in the callback function, using
[gnutls psk client get hint], page 320.

[Function]int gnutls_psk_set_server_credentials_file
(gnutls psk server credentials t res, const char * password_file)

res: is a gnutls_psk_server_credentials_t structure.

password file: is the PSK password file (passwd.psk)

This function sets the password file, in a gnutls_psk_server_credentials_t struc-
ture. This password file holds usernames and keys and will be used for PSK authen-
tication.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

void [gnutls_psk_set_server_credentials_function], page 322

(gnutls_psk_server_credentials_t cred,

gnutls_psk_server_credentials_function * func)

int [gnutls_psk_set_server_credentials_hint], page 322

(gnutls_psk_server_credentials_t res, const char * hint)

const char * [gnutls_psk_client_get_hint], page 320 (gnutls_session_t

session)

6.4.4 Anonymous

The key exchange methods for anonymous authentication might require Diffie-Hellman
parameters to be generated by the server and associated with an anonymous credentials
structure. Check Section 6.12.3 [Parameter generation], page 139 for more information.
The initialization functions for the credentials are shown below.

Chapter 6: How to use GnuTLS in applications 131

int [gnutls_anon_allocate_server_credentials], page 273

(gnutls_anon_server_credentials_t * sc)

int [gnutls_anon_allocate_client_credentials], page 273

(gnutls_anon_client_credentials_t * sc)

void [gnutls_anon_free_server_credentials], page 273

(gnutls_anon_server_credentials_t sc)

void [gnutls_anon_free_client_credentials], page 273

(gnutls_anon_client_credentials_t sc)

6.5 Setting up the transport layer

The next step is to setup the underlying transport layer details. The Berkeley sockets are
implicitly used by GnuTLS, thus a call to [gnutls transport set int], page 348 would be
sufficient to specify the socket descriptor.

void [gnutls_transport_set_int], page 348 (gnutls_session_t session, int i)

void [gnutls_transport_set_int2], page 348 (gnutls_session_t session, int

recv_int, int send_int)

If however another transport layer than TCP is selected, then a pointer should be used
instead to express the parameter to be passed to custom functions. In that case the following
functions should be used instead.

void [gnutls_transport_set_ptr], page 349 (gnutls_session_t session,

gnutls_transport_ptr_t ptr)

void [gnutls_transport_set_ptr2], page 349 (gnutls_session_t session,

gnutls_transport_ptr_t recv_ptr, gnutls_transport_ptr_t send_ptr)

Moreover all of the following push and pull callbacks should be set.

[Function]void gnutls_transport_set_push_function (gnutls session t
session, gnutls push func push_func)

session: is a gnutls_session_t structure.

push func: a callback function similar to write()

This is the function where you set a push function for gnutls to use in order to send
data. If you are going to use berkeley style sockets, you do not need to use this
function since the default send(2) will probably be ok. Otherwise you should specify
this function for gnutls to be able to send data. The callback should return a positive
number indicating the bytes sent, and -1 on error.

push_func is of the form, ssize t (*gnutls push func)(gnutls transport ptr t, const
void*, size t);

[Function]void gnutls_transport_set_vec_push_function (gnutls session t
session, gnutls vec push func vec_func)

session: is a gnutls_session_t structure.

vec func: a callback function similar to writev()

Using this function you can override the default writev(2) function for gnutls to send
data. Setting this callback instead of gnutls_transport_set_push_function() is
recommended since it introduces less overhead in the TLS handshake process.

Chapter 6: How to use GnuTLS in applications 132

vec_func is of the form, ssize t (*gnutls vec push func) (gnutls transport ptr t,
const giovec t * iov, int iovcnt);

Since: 2.12.0

[Function]void gnutls_transport_set_pull_function (gnutls session t
session, gnutls pull func pull_func)

session: is a gnutls_session_t structure.

pull func: a callback function similar to read()

This is the function where you set a function for gnutls to receive data. Normally,
if you use berkeley style sockets, do not need to use this function since the default
recv(2) will probably be ok. The callback should return 0 on connection termination,
a positive number indicating the number of bytes received, and -1 on error.

gnutls_pull_func is of the form, ssize t (*gnutls pull func)(gnutls transport ptr t,
void*, size t);

[Function]void gnutls_transport_set_pull_timeout_function
(gnutls session t session, gnutls pull timeout func func)

session: is a gnutls_session_t structure.

func: a callback function

This is the function where you set a function for gnutls to know whether data are
ready to be received. It should wait for data a given time frame in milliseconds. The
callback should return 0 on timeout, a positive number if data can be received, and
-1 on error. You’ll need to override this function if select() is not suitable for the
provided transport calls.

As with select() , if the timeout value is zero the callback should return zero if no
data are immediately available.

gnutls_pull_timeout_func is of the form, int (*gnutls pull timeout func)(gnutls transport ptr t,
unsigned int ms);

Since: 3.0

The functions above accept a callback function which should return the number of bytes
written, or -1 on error and should set errno appropriately. In some environments, setting
errno is unreliable. For example Windows have several errno variables in different CRTs,
or in other systems it may be a non thread-local variable. If this is a concern to you,
call [gnutls transport set errno], page 347 with the intended errno value instead of setting
errno directly.

[Function]void gnutls_transport_set_errno (gnutls session t session, int
err)

session: is a gnutls_session_t structure.

err: error value to store in session-specific errno variable.

Store err in the session-specific errno variable. Useful values for err are EINTR,
EAGAIN and EMSGSIZE, other values are treated will be treated as real errors in
the push/pull function.

This function is useful in replacement push and pull functions set by gnutls_

transport_set_push_function() and gnutls_transport_set_pull_function()

Chapter 6: How to use GnuTLS in applications 133

under Windows, where the replacements may not have access to the same errno

variable that is used by GnuTLS (e.g., the application is linked to msvcr71.dll and
gnutls is linked to msvcrt.dll).

GnuTLS currently only interprets the EINTR, EAGAIN and EMSGSIZE errno values and
returns the corresponding GnuTLS error codes:

• GNUTLS_E_INTERRUPTED

• GNUTLS_E_AGAIN

• GNUTLS_E_LARGE_PACKET

The EINTR and EAGAIN values are returned by interrupted system calls, or when non
blocking IO is used. All GnuTLS functions can be resumed (called again), if any of the
above error codes is returned. The EMSGSIZE value is returned when attempting to send
a large datagram.

In the case of DTLS it is also desirable to override the generic transport functions
with functions that emulate the operation of recvfrom and sendto. In addition
DTLS requires timers during the receive of a handshake message, set using the
[gnutls transport set pull timeout function], page 349 function. To check the retransmis-
sion timers the function [gnutls dtls get timeout], page 353 is provided, which returns the
time remaining until the next retransmission, or better the time until [gnutls handshake],
page 303 should be called again.

[Function]void gnutls_transport_set_pull_timeout_function
(gnutls session t session, gnutls pull timeout func func)

session: is a gnutls_session_t structure.

func: a callback function

This is the function where you set a function for gnutls to know whether data are
ready to be received. It should wait for data a given time frame in milliseconds. The
callback should return 0 on timeout, a positive number if data can be received, and
-1 on error. You’ll need to override this function if select() is not suitable for the
provided transport calls.

As with select() , if the timeout value is zero the callback should return zero if no
data are immediately available.

gnutls_pull_timeout_func is of the form, int (*gnutls pull timeout func)(gnutls transport ptr t,
unsigned int ms);

Since: 3.0

[Function]unsigned int gnutls_dtls_get_timeout (gnutls session t session)
session: is a gnutls_session_t structure.

This function will return the milliseconds remaining for a retransmission of the pre-
viously sent handshake message. This function is useful when DTLS is used in non-
blocking mode, to estimate when to call gnutls_handshake() if no packets have been
received.

Returns: the remaining time in milliseconds.

Since: 3.0

Chapter 6: How to use GnuTLS in applications 134

6.5.1 Asynchronous operation

GnuTLS can be used with asynchronous socket or event-driven programming. The approach
is similar to using Berkeley sockets under such an environment. The blocking, due to net-
work interaction, calls such as [gnutls handshake], page 303, [gnutls record recv], page 325,
can be set to non-blocking by setting the underlying sockets to non-blocking. If other push
and pull functions are setup, then they should behave the same way as recv and send

when used in a non-blocking way, i.e., set errno to EAGAIN. Since, during a TLS protocol
session GnuTLS does not block except for network interaction, the non blocking EAGAIN

errno will be propagated and GnuTLS functions will return the GNUTLS_E_AGAIN error code.
Such calls can be resumed the same way as a system call would. The only exception is
[gnutls record send], page 326, which if interrupted subsequent calls need not to include
the data to be sent (can be called with NULL argument).

The select system call can also be used in combination with the GnuTLS functions. select
allows monitoring of sockets and notifies on them being ready for reading or writing data.
Note however that this system call cannot notify on data present in GnuTLS read buffers,
it is only applicable to the kernel sockets API. Thus if you are using it for reading from a
GnuTLS session, make sure that any cached data are read completely. That can be achieved
by checking there are no data waiting to be read (using [gnutls record check pending],
page 324), either before the select system call, or after a call to [gnutls record recv],
page 325. GnuTLS does not keep a write buffer, thus when writing no additional actions
are required.

Although in the TLS protocol implementation each call to receive or send function implies
to restoring the same function that was interrupted, in the DTLS protocol this requirement
isn’t true. There are cases where a retransmission is required, which are indicated by a
received message and thus [gnutls record get direction], page 325 must be called to decide
which direction to check prior to restoring a function call.

[Function]int gnutls_record_get_direction (gnutls session t session)
session: is a gnutls_session_t structure.

This function provides information about the internals of the record protocol and is
only useful if a prior gnutls function call (e.g. gnutls_handshake()) was interrupted
for some reason, that is, if a function returned GNUTLS_E_INTERRUPTED or GNUTLS_
E_AGAIN . In such a case, you might want to call select() or poll() before calling
the interrupted gnutls function again. To tell you whether a file descriptor should be
selected for either reading or writing, gnutls_record_get_direction() returns 0 if
the interrupted function was trying to read data, and 1 if it was trying to write data.

This function’s output is unreliable if you are using the session in different threads,
for sending and receiving.

Returns: 0 if trying to read data, 1 if trying to write data.

Moreover, to prevent blocking from DTLS’ retransmission timers to block a handshake, the
[gnutls init], page 308 function should be called with the GNUTLS_NONBLOCK flag set (see
Section 6.3 [Session initialization], page 107). In that case, in order to be able to use the
DTLS handshake timers, the function [gnutls dtls get timeout], page 353 should be used
to estimate when to call [gnutls handshake], page 303 if no packets have been received.

Chapter 6: How to use GnuTLS in applications 135

6.5.2 DTLS sessions

Because datagram TLS can operate over connections where the client cannot be reliably
verified, functionality in the form of cookies, is available to prevent denial of service attacks
to servers. GnuTLS requires a server to generate a secret key that is used to sign a cookie3.
That cookie is sent to the client using [gnutls dtls cookie send], page 351, and the client
must reply using the correct cookie. The server side should verify the initial message sent
by client using [gnutls dtls cookie verify], page 352. If successful the session should be
initialized and associated with the cookie using [gnutls dtls prestate set], page 353, before
proceeding to the handshake.

int [gnutls_key_generate], page 308 (gnutls_datum_t * key, unsigned int

key_size)

int [gnutls_dtls_cookie_send], page 351 (gnutls_datum_t * key, void *

client_data, size_t client_data_size, gnutls_dtls_prestate_st * prestate,

gnutls_transport_ptr_t ptr, gnutls_push_func push_func)

int [gnutls_dtls_cookie_verify], page 352 (gnutls_datum_t * key, void *

client_data, size_t client_data_size, void * _msg, size_t msg_size,

gnutls_dtls_prestate_st * prestate)

void [gnutls_dtls_prestate_set], page 353 (gnutls_session_t session,

gnutls_dtls_prestate_st * prestate)

Note that the above apply to server side only and they are not mandatory to be used. Not
using them, however, allows denial of service attacks. The client side cookie handling is
part of [gnutls handshake], page 303.

Datagrams are typically restricted by a maximum transfer unit (MTU). For that both client
and server side should set the correct maximum transfer unit for the layer underneath
GnuTLS. This will allow proper fragmentation of DTLS messages and prevent messages
from being silently discarded by the transport layer. The “correct” maximum transfer unit
can be obtained through a path MTU discovery mechanism [RFC4821].

void [gnutls_dtls_set_mtu], page 353 (gnutls_session_t session, unsigned int

mtu)

unsigned int [gnutls_dtls_get_mtu], page 352 (gnutls_session_t session)

unsigned int [gnutls_dtls_get_data_mtu], page 352 (gnutls_session_t session)

6.6 TLS handshake

Once a session has been initialized and a network connection has been set up, TLS and
DTLS protocols perform a handshake. The handshake is the actual key exchange.

[Function]int gnutls_handshake (gnutls session t session)
session: is a gnutls_session_t structure.

This function does the handshake of the TLS/SSL protocol, and initializes the TLS
connection.

This function will fail if any problem is encountered, and will return a negative error
code. In case of a client, if the client has asked to resume a session, but the server
couldn’t, then a full handshake will be performed.

3 A key of 128 bits or 16 bytes should be sufficient for this purpose.

Chapter 6: How to use GnuTLS in applications 136

The non-fatal errors expected by this function are: GNUTLS_E_INTERRUPTED , GNUTLS_
E_AGAIN , GNUTLS_E_WARNING_ALERT_RECEIVED , and GNUTLS_E_GOT_APPLICATION_

DATA , the latter only in a case of rehandshake.

The former two interrupt the handshake procedure due to the lower layer being inter-
rupted, and the latter because of an alert that may be sent by a server (it is always a
good idea to check any received alerts). On these errors call this function again, until
it returns 0; cf. gnutls_record_get_direction() and gnutls_error_is_fatal()

. In DTLS sessions the non-fatal error GNUTLS_E_LARGE_PACKET is also possible, and
indicates that the MTU should be adjusted.

If this function is called by a server after a rehandshake request then GNUTLS_E_GOT_

APPLICATION_DATA or GNUTLS_E_WARNING_ALERT_RECEIVED may be returned. Note
that these are non fatal errors, only in the specific case of a rehandshake. Their
meaning is that the client rejected the rehandshake request or in the case of GNUTLS_
E_GOT_APPLICATION_DATA it could also mean that some data were pending.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

[Function]void gnutls_handshake_set_timeout (gnutls session t session,
unsigned int ms)

session: is a gnutls_session_t structure.

ms: is a timeout value in milliseconds

This function sets the timeout for the handshake process to the provided value. Use
an ms value of zero to disable timeout, or GNUTLS_DEFAULT_HANDSHAKE_TIMEOUT for
a reasonable default value.

Since: 3.1.0

The handshake process doesn’t ensure the verification of the peer’s identity. When certifi-
cates are in use, this can be done, either after the handshake is complete, or during the
handshake if [gnutls certificate set verify function], page 281 has been used. In both cases
the [gnutls certificate verify peers2], page 289 function can be used to verify the peer’s
certificate (see Section 4.1 [Certificate authentication], page 18 for more information).

int [gnutls_certificate_verify_peers2], page 289 (gnutls_session_t session,

unsigned int * status)

6.7 Data transfer and termination

Once the handshake is complete and peer’s identity has been verified data can be exchanged.
The available functions resemble the POSIX recv and send functions. It is suggested to
use [gnutls error is fatal], page 300 to check whether the error codes returned by these
functions are fatal for the protocol or can be ignored.

[Function]ssize_t gnutls_record_send (gnutls session t session, const void *
data, size t data_size)

session: is a gnutls_session_t structure.

data: contains the data to send

data size: is the length of the data

Chapter 6: How to use GnuTLS in applications 137

This function has the similar semantics with send() . The only difference is that
it accepts a GnuTLS session, and uses different error codes. Note that if the send
buffer is full, send() will block this function. See the send() documentation for more
information.

You can replace the default push function which is send() , by using gnutls_

transport_set_push_function() .

If the EINTR is returned by the internal push function then GNUTLS_E_INTERRUPTED

will be returned. If GNUTLS_E_INTERRUPTED or GNUTLS_E_AGAIN is returned, you
must call this function again, with the exact same parameters; alternatively you could
provide a NULL pointer for data, and 0 for size. cf. gnutls_record_get_direction()
.

Note that in DTLS this function will return the GNUTLS_E_LARGE_PACKET error code
if the send data exceed the data MTU value - as returned by gnutls_dtls_get_

data_mtu() . The errno value EMSGSIZE also maps to GNUTLS_E_LARGE_PACKET .
Note that since 3.2.13 this function can be called under cork in DTLS mode, and will
refuse to send data over the MTU size by returning GNUTLS_E_LARGE_PACKET .

Returns: The number of bytes sent, or a negative error code. The number of bytes
sent might be less than data_size . The maximum number of bytes this function
can send in a single call depends on the negotiated maximum record size.

[Function]ssize_t gnutls_record_recv (gnutls session t session, void * data,
size t data_size)

session: is a gnutls_session_t structure.

data: the buffer that the data will be read into

data size: the number of requested bytes

This function has the similar semantics with recv() . The only difference is that it
accepts a GnuTLS session, and uses different error codes. In the special case that
a server requests a renegotiation, the client may receive an error code of GNUTLS_E_
REHANDSHAKE . This message may be simply ignored, replied with an alert GNUTLS_
A_NO_RENEGOTIATION , or replied with a new handshake, depending on the client’s
will. If EINTR is returned by the internal push function (the default is recv()) then
GNUTLS_E_INTERRUPTED will be returned. If GNUTLS_E_INTERRUPTED or GNUTLS_E_

AGAIN is returned, you must call this function again to get the data. See also gnutls_
record_get_direction() . A server may also receive GNUTLS_E_REHANDSHAKE when
a client has initiated a handshake. In that case the server can only initiate a handshake
or terminate the connection.

Returns: The number of bytes received and zero on EOF (for stream connections).
A negative error code is returned in case of an error. The number of bytes received
might be less than the requested data_size .

[Function]int gnutls_error_is_fatal (int error)
error: is a GnuTLS error code, a negative error code

If a GnuTLS function returns a negative error code you may feed that value to this
function to see if the error condition is fatal to a TLS session (i.e., must be terminated).

Chapter 6: How to use GnuTLS in applications 138

Note that you may also want to check the error code manually, since some non-fatal
errors to the protocol (such as a warning alert or a rehandshake request) may be fatal
for your program.

This function is only useful if you are dealing with errors from functions that relate
to a TLS session (e.g., record layer or handshake layer handling functions).

Returns: Non-zero value on fatal errors or zero on non-fatal.

Although, in the TLS protocol the receive function can be called at any time, when DTLS is
used the GnuTLS receive functions must be called once a message is available for reading,
even if no data are expected. This is because in DTLS various (internal) actions may
be required due to retransmission timers. Moreover, an extended receive function is shown
below, which allows the extraction of the message’s sequence number. Due to the unreliable
nature of the protocol, this field allows distinguishing out-of-order messages.

[Function]ssize_t gnutls_record_recv_seq (gnutls session t session, void *
data, size t data_size, unsigned char * seq)

session: is a gnutls_session_t structure.

data: the buffer that the data will be read into

data size: the number of requested bytes

seq: is the packet’s 64-bit sequence number. Should have space for 8 bytes.

This function is the same as gnutls_record_recv() , except that it returns in addi-
tion to data, the sequence number of the data. This is useful in DTLS where record
packets might be received out-of-order. The returned 8-byte sequence number is an
integer in big-endian format and should be treated as a unique message identification.

Returns: The number of bytes received and zero on EOF. A negative error code
is returned in case of an error. The number of bytes received might be less than
data_size .

Since: 3.0

The [gnutls record check pending], page 324 helper function is available to allow checking
whether data are available to be read in a GnuTLS session buffers. Note that this function
complements but does not replace select, i.e., [gnutls record check pending], page 324
reports no data to be read, select should be called to check for data in the network
buffers.

[Function]size_t gnutls_record_check_pending (gnutls session t session)
session: is a gnutls_session_t structure.

This function checks if there are unread data in the gnutls buffers. If the return value
is non-zero the next call to gnutls_record_recv() is guaranteed not to block.

Returns: Returns the size of the data or zero.

int [gnutls_record_get_direction], page 325 (gnutls_session_t session)

Once a TLS or DTLS session is no longer needed, it is recommended to use [gnutls bye],
page 275 to terminate the session. That way the peer is notified securely about the intention
of termination, which allows distinguishing it from a malicious connection termination. A
session can be deinitialized with the [gnutls deinit], page 295 function.

Chapter 6: How to use GnuTLS in applications 139

[Function]int gnutls_bye (gnutls session t session, gnutls close request t how)
session: is a gnutls_session_t structure.

how : is an integer

Terminates the current TLS/SSL connection. The connection should have been initi-
ated using gnutls_handshake() . how should be one of GNUTLS_SHUT_RDWR , GNUTLS_
SHUT_WR .

In case of GNUTLS_SHUT_RDWR the TLS session gets terminated and further receives
and sends will be disallowed. If the return value is zero you may continue using
the underlying transport layer. GNUTLS_SHUT_RDWR sends an alert containing a close
request and waits for the peer to reply with the same message.

In case of GNUTLS_SHUT_WR the TLS session gets terminated and further sends will
be disallowed. In order to reuse the connection you should wait for an EOF from the
peer. GNUTLS_SHUT_WR sends an alert containing a close request.

Note that not all implementations will properly terminate a TLS connection. Some of
them, usually for performance reasons, will terminate only the underlying transport
layer, and thus not distinguishing between a malicious party prematurely terminating
the connection and normal termination.

This function may also return GNUTLS_E_AGAIN or GNUTLS_E_INTERRUPTED ; cf.
gnutls_record_get_direction() .

Returns: GNUTLS_E_SUCCESS on success, or an error code, see function documentation
for entire semantics.

[Function]void gnutls_deinit (gnutls session t session)
session: is a gnutls_session_t structure.

This function clears all buffers associated with the session . This function will
also remove session data from the session database if the session was terminated
abnormally.

6.8 Buffered data transfer

Although [gnutls record send], page 326 is sufficient to transmit data to the peer, when
many small chunks of data are to be transmitted it is inefficient and wastes bandwidth due
to the TLS record overhead. In that case it is preferrable to combine the small chunks
before transmission. The following functions provide that functionality.

[Function]void gnutls_record_cork (gnutls session t session)
session: is a gnutls_session_t structure.

If called, gnutls_record_send() will no longer send any records. Any sent records
will be cached until gnutls_record_uncork() is called.

This function is safe to use with DTLS after GnuTLS 3.3.0.

Since: 3.1.9

[Function]int gnutls_record_uncork (gnutls session t session, unsigned int
flags)

session: is a gnutls_session_t structure.

flags: Could be zero or GNUTLS_RECORD_WAIT

Chapter 6: How to use GnuTLS in applications 140

This resets the effect of gnutls_record_cork() , and flushes any pending data. If
the GNUTLS_RECORD_WAIT flag is specified then this function will block until the data
is sent or a fatal error occurs (i.e., the function will retry on GNUTLS_E_AGAIN and
GNUTLS_E_INTERRUPTED).

If the flag GNUTLS_RECORD_WAIT is not specified and the function is interrupted then
the GNUTLS_E_AGAIN or GNUTLS_E_INTERRUPTED errors will be returned. To obtain
the data left in the corked buffer use gnutls_record_check_corked() .

Returns: On success the number of transmitted data is returned, or otherwise a
negative error code.

Since: 3.1.9

6.9 Handling alerts

During a TLS connection alert messages may be exchanged by the two peers. Those mes-
sages may be fatal, meaning the connection must be terminated afterwards, or warning
when something needs to be reported to the peer, but without interrupting the session. The
error codes GNUTLS_E_WARNING_ALERT_RECEIVED or GNUTLS_E_FATAL_ALERT_RECEIVED sig-
nal those alerts when received, and may be returned by all GnuTLS functions that receive
data from the peer, being [gnutls handshake], page 303 and [gnutls record recv], page 325.

If those error codes are received the alert and its level should be logged or reported to the
peer using the functions below.

[Function]gnutls_alert_description_t gnutls_alert_get (gnutls session t
session)

session: is a gnutls_session_t structure.

This function will return the last alert number received. This function should be called
when GNUTLS_E_WARNING_ALERT_RECEIVED or GNUTLS_E_FATAL_ALERT_RECEIVED er-
rors are returned by a gnutls function. The peer may send alerts if he encounters an
error. If no alert has been received the returned value is undefined.

Returns: the last alert received, a gnutls_alert_description_t value.

[Function]const char * gnutls_alert_get_name (gnutls alert description t
alert)

alert: is an alert number.

This function will return a string that describes the given alert number, or NULL . See
gnutls_alert_get() .

Returns: string corresponding to gnutls_alert_description_t value.

The peer may also be warned or notified of a fatal issue by using one of the functions below.
All the available alerts are listed in [The Alert Protocol], page 8.

[Function]int gnutls_alert_send (gnutls session t session, gnutls alert level t
level, gnutls alert description t desc)

session: is a gnutls_session_t structure.

level: is the level of the alert

desc: is the alert description

Chapter 6: How to use GnuTLS in applications 141

This function will send an alert to the peer in order to inform him of something
important (eg. his Certificate could not be verified). If the alert level is Fatal then
the peer is expected to close the connection, otherwise he may ignore the alert and
continue.

The error code of the underlying record send function will be returned, so you may
also receive GNUTLS_E_INTERRUPTED or GNUTLS_E_AGAIN as well.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

[Function]int gnutls_error_to_alert (int err, int * level)
err: is a negative integer

level: the alert level will be stored there

Get an alert depending on the error code returned by a gnutls function. All alerts
sent by this function should be considered fatal. The only exception is when err is
GNUTLS_E_REHANDSHAKE , where a warning alert should be sent to the peer indicating
that no renegotiation will be performed.

If there is no mapping to a valid alert the alert to indicate internal error is returned.

Returns: the alert code to use for a particular error code.

6.10 Priority strings

The GnuTLS priority strings specify the TLS session’s handshake algorithms and options
in a compact, easy-to-use format. That string may contain a single initial keyword such
as in Table 6.2 and may be followed by additional algorithm or special keywords. Note
that their description is intentionally avoiding specific algorithm details, as the priority
strings are not constant between gnutls versions (they are periodically updated to account
for cryptographic advances while providing compatibility with old clients and servers).

Chapter 6: How to use GnuTLS in applications 142

int [gnutls_priority_set_direct], page 318 (gnutls_session_t session, const

char * priorities, const char ** err_pos)

int [gnutls_priority_set], page 318 (gnutls_session_t session,

gnutls_priority_t priority)

Keyword Description
@KEYWORD Means that a compile-time specified system configuration file4

will be used to expand the provided keyword. That is used
to impose system-specific policies. It may be followed by ad-
ditional options that will be appended to the system string
(e.g., "@SYSTEM:+SRP"). The system file should have the
format ’KEYWORD=VALUE’, e.g., ’SYSTEM=NORMAL:-
ARCFOUR-128’.

PERFORMANCE All the known to be secure ciphersuites are enabled, lim-
ited to 128 bit ciphers and sorted by terms of speed per-
formance. The message authenticity security level is of 64
bits or more, and the certificate verification profile is set to
GNUTLS PROFILE LOW (80-bits).

NORMAL Means all the known to be secure ciphersuites. The ciphers
are sorted by security margin, although the 256-bit ciphers are
included as a fallback only. The message authenticity secu-
rity level is of 64 bits or more, and the certificate verification
profile is set to GNUTLS PROFILE LOW (80-bits).
This priority string implicitly enables ECDHE and DHE.

The ECDHE ciphersuites are placed first in the priority order,
but due to compatibility issues with the DHE ciphersuites
they are placed last in the priority order, after the plain RSA
ciphersuites.

LEGACY This sets the NORMAL settings that were used for GnuTLS
3.2.x or earlier. There is no verification profile set, and the
allowed DH primes are considered weak today (but are often
used by misconfigured servers).

PFS Means all the known to be secure ciphersuites that support
perfect forward secrecy (ECDHE and DHE). The ciphers are
sorted by security margin, although the 256-bit ciphers are
included as a fallback only. The message authenticity secu-
rity level is of 80 bits or more, and the certificate verification
profile is set to GNUTLS PROFILE LOW (80-bits). This
option is available since 3.2.4 or later.

SECURE128 Means all known to be secure ciphersuites that offer a security
level 128-bit or more. The message authenticity security level
is of 80 bits or more, and the certificate verification profile is
set to GNUTLS PROFILE LOW (80-bits).

SECURE192 Means all the known to be secure ciphersuites that offer a se-
curity level 192-bit or more. The message authenticity secu-
rity level is of 128 bits or more, and the certificate verification
profile is set to GNUTLS PROFILE HIGH (128-bits).

SECURE256 Currently alias for SECURE192. This option, will enable ci-
phers which use a 256-bit key but, due to limitations of the
TLS protocol, the overall security level will be 192-bits (the
security level depends on more factors than cipher key size).

SUITEB128 Means all the NSA Suite B cryptography (RFC5430) cipher-
suites with an 128 bit security level, as well as the enabling
of the corresponding verification profile.

SUITEB192 Means all the NSA Suite B cryptography (RFC5430) cipher-
suites with an 192 bit security level, as well as the enabling
of the corresponding verification profile.

EXPORT This priority string should be treated as deprecated. GnuTLS
no longer negotiates 40-bit ciphers.

NONE Means nothing is enabled. This disables even protocols and
compression methods. It should be followed by the algorithms
to be enabled.

Table 6.3: Supported initial keywords.

4 The default is /etc/gnutls/default-priorities.

Chapter 6: How to use GnuTLS in applications 143

Unless the initial keyword is "NONE" the defaults (in preference order) are for TLS proto-
cols TLS 1.2, TLS1.1, TLS1.0, SSL3.0; for compression NULL; for certificate types X.509.
In key exchange algorithms when in NORMAL or SECURE levels the perfect forward se-
crecy algorithms take precedence of the other protocols. In all cases all the supported key
exchange algorithms are enabled.

Note that the SECURE levels distinguish between overall security level and message au-
thenticity security level. That is because the message authenticity security level requires the
adversary to break the algorithms at real-time during the protocol run, whilst the overall
security level refers to off-line adversaries (e.g. adversaries breaking the ciphertext years
after it was captured).

The NONE keyword, if used, must followed by keywords specifying the algorithms and
protocols to be enabled. The other initial keywords do not require, but may be followed
by such keywords. All level keywords can be combined, and for example a level of "SE-
CURE256:+SECURE128" is allowed.

The order with which every algorithm or protocol is specified is significant. Algorithms
specified before others will take precedence. The supported algorithms and protocols are
shown in Table 6.3. To avoid collisions in order to specify a compression algorithm in
the priority string you have to prefix it with "COMP-", protocol versions with "VERS-
", signature algorithms with "SIGN-" and certificate types with "CTYPE-". All other
algorithms don’t need a prefix. Each specified keyword can be prefixed with any of the
following characters.

’ !’ or ’-’ appended with an algorithm will remove this algorithm.

"+" appended with an algorithm will add this algorithm.

Chapter 6: How to use GnuTLS in applications 144

Type Keywords
Ciphers AES-128-CBC, AES-256-CBC, AES-128-GCM, CAMELLIA-

128-CBC, CAMELLIA-256-CBC, ARCFOUR-128, 3DES-
CBC ARCFOUR-40. Catch all name is CIPHER-ALL which
will add all the algorithms from NORMAL priority.

Key exchange RSA, DHE-RSA, DHE-DSS, SRP, SRP-RSA, SRP-DSS,
PSK, DHE-PSK, ECDHE-RSA, ANON-ECDH, ANON-DH.
The Catch all name is KX-ALL which will add all the algo-
rithms from NORMAL priority.
Add !DHE-RSA:!DHE-DSS to the priority string to disable

DHE.

MAC MD5, SHA1, SHA256, SHA384, AEAD (used with GCM ci-
phers only). All algorithms from NORMAL priority can be
accessed with MAC-ALL.

Compression
algorithms

COMP-NULL, COMP-DEFLATE. Catch all is COMP-ALL.

TLS versions VERS-SSL3.0, VERS-TLS1.0, VERS-TLS1.1, VERS-TLS1.2,
VERS-DTLS1.2, VERS-DTLS1.0. Catch all is VERS-TLS-
ALL and VERS-DTLS-ALL.

Signature
algorithms

SIGN-RSA-SHA1, SIGN-RSA-SHA224, SIGN-RSA-SHA256,
SIGN-RSA-SHA384, SIGN-RSA-SHA512, SIGN-DSA-SHA1,
SIGN-DSA-SHA224, SIGN-DSA-SHA256, SIGN-RSA-MD5.
Catch all is SIGN-ALL. This is only valid for TLS 1.2 and
later.

Elliptic curves CURVE-SECP192R1, CURVE-SECP224R1, CURVE-
SECP256R1, CURVE-SECP384R1, CURVE-SECP521R1.
Catch all is CURVE-ALL.

Table 6.4: The supported algorithm keywords in priority strings.

Note that the DHE key exchange methods are generally slower5 than their elliptic curves
counterpart (ECDHE). Moreover the plain Diffie-Hellman key exchange requires parameters
to be generated and associated with a credentials structure by the server (see Section 6.12.3
[Parameter generation], page 139).

The available special keywords are shown in Table 6.4 and Table 6.5.

5 It depends on the group used. Primes with lesser bits are always faster, but also easier to break. See
Section 6.11 [Selecting cryptographic key sizes], page 132 for the acceptable security levels.

Chapter 6: How to use GnuTLS in applications 145

Keyword Description

%COMPAT will enable compatibility mode. It
might mean that violations of the pro-
tocols are allowed as long as maximum
compatibility with problematic clients
and servers is achieved. More specif-
ically this string would disable TLS
record random padding, tolerate pack-
ets over the maximum allowed TLS
record, and add a padding to TLS
Client Hello packet to prevent it being
in the 256-512 range which is known
to be causing issues with a commonly
used firewall.

%DUMBFW will add a private extension with bo-
gus data that make the client hello ex-
ceed 512 bytes. This avoids a black
hole behavior in some firewalls. This
is a non-standard TLS extension, use
with care.

%NO EXTENSIONS will prevent the sending of any TLS ex-
tensions in client side. Note that TLS
1.2 requires extensions to be used, as
well as safe renegotiation thus this op-
tion must be used with care.

%SERVER PRECEDENCE The ciphersuite will be selected accord-
ing to server priorities and not the
client’s.

%SSL3 RECORD VERSION will use SSL3.0 record version in client
hello. This is the default.

%LATEST RECORD VERSION will use the latest TLS version record
version in client hello.

Table 6.5: Special priority string keywords.

Chapter 6: How to use GnuTLS in applications 146

Keyword Description

%STATELESS COMPRESSION will disable keeping state across
records when compressing. This may
help to mitigate attacks when com-
pression is used but an attacker is in
control of input data. This has to
be used only when the data that are
possibly controlled by an attacker are
placed in separate records.

%DISABLE WILDCARDS will disable matching wildcards when
comparing hostnames in certificates.

%DISABLE SAFE RENEGOTIATION will completely disable safe renegotia-
tion completely. Do not use unless you
know what you are doing.

%UNSAFE RENEGOTIATION will allow handshakes and
re-handshakes without the safe
renegotiation extension. Note that
for clients this mode is insecure
(you may be under attack), and for
servers it will allow insecure clients
to connect (which could be fooled by
an attacker). Do not use unless you
know what you are doing and want
maximum compatibility.

%PARTIAL RENEGOTIATION will allow initial handshakes to pro-
ceed, but not re-handshakes. This
leaves the client vulnerable to attack,
and servers will be compatible with
non-upgraded clients for initial hand-
shakes. This is currently the default
for clients and servers, for compatibil-
ity reasons.

%SAFE RENEGOTIATION will enforce safe renegotiation. Clients
and servers will refuse to talk to an
insecure peer. Currently this causes
interoperability problems, but is re-
quired for full protection.

%VERIFY ALLOW SIGN RSA MD5 will allow RSA-MD5 signatures in cer-
tificate chains.

%VERIFY DISABLE CRL CHECKS will disable CRL or OCSP checks in
the verification of the certificate chain.

%VERIFY ALLOW X509 V1 CA CRT will allow V1 CAs in chains.

%PROFILE (LOW|LEGACY|MEDIUM|HIGH|ULTRA)require a certificate verification profile
the corresponds to the specified secu-
rity level, see Table 6.6 for the map-
pings to values.

%PROFILE (SUITEB128|SUITEB192) require a certificate verification pro-
file the corresponds to SUITEB. Note
that an initial keyword that enables
SUITEB automatically sets the profile.

Table 6.6: More priority string keywords.

Chapter 6: How to use GnuTLS in applications 147

Finally the ciphersuites enabled by any priority string can be listed using the gnutls-

cli application (see Section 9.1 [gnutls-cli Invocation], page 229), or by using the priority
functions as in Section 7.4.3 [Listing the ciphersuites in a priority string], page 217.

Example priority strings are:

The system imposed security level:

"SYSTEM"

The default priority without the HMAC-MD5:

"NORMAL:-MD5"

Specifying RSA with AES-128-CBC:

"NONE:+VERS-TLS-ALL:+MAC-ALL:+RSA:+AES-128-CBC:+SIGN-ALL:+COMP-NULL"

Specifying the defaults except ARCFOUR-128:

"NORMAL:-ARCFOUR-128"

Enabling the 128-bit secure ciphers, while disabling SSL 3.0 and enabling compression:

"SECURE128:-VERS-SSL3.0:+COMP-DEFLATE"

Enabling the 128-bit and 192-bit secure ciphers, while disabling all TLS versions

except TLS 1.2:

"SECURE128:+SECURE192:-VERS-TLS-ALL:+VERS-TLS1.2"

6.11 Selecting cryptographic key sizes

Because many algorithms are involved in TLS, it is not easy to set a consistent security level.
For this reason in Table 6.6 we present some correspondence between key sizes of symmetric
algorithms and public key algorithms based on [ECRYPT]. Those can be used to generate
certificates with appropriate key sizes as well as select parameters for Diffie-Hellman and
SRP authentication.

Chapter 6: How to use GnuTLS in applications 148

Security
bits

RSA,
DH and
SRP
param-
eter
size

ECC
key
size

Security
parameter

Description

<64 <768 <128 INSECURE Considered to be insecure

64 768 128 VERY WEAK Short term protection
against individuals

72 1008 160 WEAK Short term protec-
tion against small
organizations

80 1024 160 LOW Very short term protec-
tion against agencies (cor-
responds to ENISA legacy
level)

96 1776 192 LEGACY Legacy standard level

112 2048 224 MEDIUM Medium-term protection

128 3072 256 HIGH Long term protection

256 15424 512 ULTRA Foreseeable future

Table 6.7: Key sizes and security parameters.

The first column provides a security parameter in a number of bits. This gives an indication
of the number of combinations to be tried by an adversary to brute force a key. For example
to test all possible keys in a 112 bit security parameter 2112 combinations have to be tried.
For today’s technology this is infeasible. The next two columns correlate the security
parameter with actual bit sizes of parameters for DH, RSA, SRP and ECC algorithms. A
mapping to gnutls_sec_param_t value is given for each security parameter, on the next
column, and finally a brief description of the level.

Note, however, that the values suggested here are nothing more than an educated guess
that is valid today. There are no guarantees that an algorithm will remain unbreakable or
that these values will remain constant in time. There could be scientific breakthroughs that
cannot be predicted or total failure of the current public key systems by quantum computers.
On the other hand though the cryptosystems used in TLS are selected in a conservative
way and such catastrophic breakthroughs or failures are believed to be unlikely. The NIST
publication SP 800-57 [NISTSP80057] contains a similar table.

Chapter 6: How to use GnuTLS in applications 149

When using GnuTLS and a decision on bit sizes for a public key algorithm is required, use
of the following functions is recommended:

[Function]unsigned int gnutls_sec_param_to_pk_bits
(gnutls pk algorithm t algo, gnutls sec param t param)

algo: is a public key algorithm

param: is a security parameter

When generating private and public key pairs a difficult question is which size of
"bits" the modulus will be in RSA and the group size in DSA. The easy answer
is 1024, which is also wrong. This function will convert a human understandable
security parameter to an appropriate size for the specific algorithm.

Returns: The number of bits, or (0).

Since: 2.12.0

[Function]gnutls_sec_param_t gnutls_pk_bits_to_sec_param
(gnutls pk algorithm t algo, unsigned int bits)

algo: is a public key algorithm

bits: is the number of bits

This is the inverse of gnutls_sec_param_to_pk_bits() . Given an algorithm and
the number of bits, it will return the security parameter. This is a rough indication.

Returns: The security parameter.

Since: 2.12.0

Those functions will convert a human understandable security parameter of gnutls_sec_
param_t type, to a number of bits suitable for a public key algorithm.

const char * [gnutls_sec_param_get_name], page 329 (gnutls_sec_param_t param)

The following functions will set the minimum acceptable group size for Diffie-Hellman and
SRP authentication.

void [gnutls_dh_set_prime_bits], page 299 (gnutls_session_t session, unsigned

int bits)

void [gnutls_srp_set_prime_bits], page 340 (gnutls_session_t session,

unsigned int bits)

6.12 Advanced topics

6.12.1 Session resumption

Client side

To reduce time and roundtrips spent in a handshake the client can request session re-
sumption from a server that previously shared a session with the client. For that the
client has to retrieve and store the session parameters. Before establishing a new session
to the same server the parameters must be re-associated with the GnuTLS session using
[gnutls session set data], page 333.

Chapter 6: How to use GnuTLS in applications 150

int [gnutls_session_get_data2], page 331 (gnutls_session_t session,

gnutls_datum_t * data)

int [gnutls_session_get_id2], page 332 (gnutls_session_t session,

gnutls_datum_t * session_id)

int [gnutls_session_set_data], page 333 (gnutls_session_t session, const void

* session_data, size_t session_data_size)

Keep in mind that sessions will be expired after some time, depending on the server, and
a server may choose not to resume a session even when requested to. The expiration is to
prevent temporal session keys from becoming long-term keys. Also note that as a client you
must enable, using the priority functions, at least the algorithms used in the last session.

[Function]int gnutls_session_is_resumed (gnutls session t session)
session: is a gnutls_session_t structure.

Check whether session is resumed or not.

Returns: non zero if this session is resumed, or a zero if this is a new session.

Server side

In order to support resumption a server can store the session security parameters in a local
database or by using session tickets (see Section 3.6.3 [Session tickets], page 11) to delegate
storage to the client. Because session tickets might not be supported by all clients, servers
could combine the two methods.

A storing server needs to specify callback functions to store, retrieve and delete session data.
These can be registered with the functions below. The stored sessions in the database can
be checked using [gnutls db check entry], page 293 for expiration.

void [gnutls_db_set_retrieve_function], page 294 (gnutls_session_t session,

gnutls_db_retr_func retr_func)

void [gnutls_db_set_store_function], page 294 (gnutls_session_t session,

gnutls_db_store_func store_func)

void [gnutls_db_set_ptr], page 294 (gnutls_session_t session, void * ptr)

void [gnutls_db_set_remove_function], page 294 (gnutls_session_t session,

gnutls_db_remove_func rem_func)

int [gnutls_db_check_entry], page 293 (gnutls_session_t session,

gnutls_datum_t session_entry)

A server utilizing tickets should generate ticket encryption and authentication keys using
[gnutls session ticket key generate], page 335. Those keys should be associated with the
GnuTLS session using [gnutls session ticket enable server], page 334, and should be rotated
regularly (e.g., every few hours), to prevent them from becoming long-term keys which if
revealed could be used to decrypt all previous sessions.

[Function]int gnutls_session_ticket_enable_server (gnutls session t
session, const gnutls datum t * key)

session: is a gnutls_session_t structure.

key : key to encrypt session parameters.

Request that the server should attempt session resumption using SessionTicket. key
must be initialized with gnutls_session_ticket_key_generate() .

Chapter 6: How to use GnuTLS in applications 151

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

Since: 2.10.0

[Function]int gnutls_session_ticket_key_generate (gnutls datum t * key)
key : is a pointer to a gnutls_datum_t which will contain a newly created key.

Generate a random key to encrypt security parameters within SessionTicket.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

Since: 2.10.0

[Function]int gnutls_session_resumption_requested (gnutls session t
session)

session: is a gnutls_session_t structure.

Check whether the client has asked for session resumption. This function is valid only
on server side.

Returns: non zero if session resumption was asked, or a zero if not.

A server enabling both session tickets and a storage for session data would use session tickets
when clients support it and the storage otherwise.

6.12.2 Certificate verification

In this section the functionality for additional certificate verification methods is listed. These
methods are intended to be used in addition to normal PKI verification, in order to reduce
the risk of a compromised CA being undetected.

6.12.2.1 Trust on first use

The GnuTLS library includes functionlity to use an SSH-like trust on first use authentica-
tion. The available functions to store and verify public keys are listed below.

[Function]int gnutls_verify_stored_pubkey (const char * db_name,
gnutls tdb t tdb, const char * host, const char * service,
gnutls certificate type t cert_type, const gnutls datum t * cert, unsigned
int flags)

db name: A file specifying the stored keys (use NULL for the default)

tdb: A storage structure or NULL to use the default

host: The peer’s name

service: non-NULL if this key is specific to a service (e.g. http)

cert type: The type of the certificate

cert: The raw (der) data of the certificate

flags: should be 0.

This function will try to verify the provided (raw or DER-encoded) certificate using
a list of stored public keys. The service field if non-NULL should be a port number.

The retrieve variable if non-null specifies a custom backend for the retrieval of
entries. If it is NULL then the default file backend will be used. In POSIX-like
systems the file backend uses the $HOME/.gnutls/known hosts file.

Chapter 6: How to use GnuTLS in applications 152

Note that if the custom storage backend is provided the retrieval function should
return GNUTLS_E_CERTIFICATE_KEY_MISMATCH if the host/service pair is found but
key doesn’t match, GNUTLS_E_NO_CERTIFICATE_FOUND if no such host/service with
the given key is found, and 0 if it was found. The storage function should return 0
on success.

Returns: If no associated public key is found then GNUTLS_E_NO_CERTIFICATE_FOUND

will be returned. If a key is found but does not match GNUTLS_E_CERTIFICATE_KEY_

MISMATCH is returned. On success, GNUTLS_E_SUCCESS (0) is returned, or a negative
error value on other errors.

Since: 3.0.13

[Function]int gnutls_store_pubkey (const char * db_name, gnutls tdb t tdb,
const char * host, const char * service, gnutls certificate type t cert_type,
const gnutls datum t * cert, time t expiration, unsigned int flags)

db name: A file specifying the stored keys (use NULL for the default)

tdb: A storage structure or NULL to use the default

host: The peer’s name

service: non-NULL if this key is specific to a service (e.g. http)

cert type: The type of the certificate

cert: The data of the certificate

expiration: The expiration time (use 0 to disable expiration)

flags: should be 0.

This function will store the provided (raw or DER-encoded) certificate to the list of
stored public keys. The key will be considered valid until the provided expiration
time.

The store variable if non-null specifies a custom backend for the storage of entries.
If it is NULL then the default file backend will be used.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0.13

In addition to the above the [gnutls store commitment], page 344 can be used to implement
a key-pinning architecture as in [KEYPIN]. This provides a way for web server to commit
on a public key that is not yet active.

[Function]int gnutls_store_commitment (const char * db_name, gnutls tdb t
tdb, const char * host, const char * service, gnutls digest algorithm t
hash_algo, const gnutls datum t * hash, time t expiration, unsigned int
flags)

db name: A file specifying the stored keys (use NULL for the default)

tdb: A storage structure or NULL to use the default

host: The peer’s name

service: non-NULL if this key is specific to a service (e.g. http)

hash algo: The hash algorithm type

Chapter 6: How to use GnuTLS in applications 153

hash: The raw hash

expiration: The expiration time (use 0 to disable expiration)

flags: should be 0.

This function will store the provided hash commitment to the list of stored public keys.
The key with the given hash will be considered valid until the provided expiration
time.

The store variable if non-null specifies a custom backend for the storage of entries.
If it is NULL then the default file backend will be used.

Note that this function is not thread safe with the default backend.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

The storage and verification functions may be used with the default text file based back-end,
or another back-end may be specified. That should contain storage and retrieval functions
and specified as below.

int [gnutls_tdb_init], page 346 (gnutls_tdb_t * tdb)

void [gnutls_tdb_deinit], page 346 (gnutls_tdb_t tdb)

void [gnutls_tdb_set_verify_func], page 346 (gnutls_tdb_t tdb,

gnutls_tdb_verify_func verify)

void [gnutls_tdb_set_store_func], page 346 (gnutls_tdb_t tdb,

gnutls_tdb_store_func store)

void [gnutls_tdb_set_store_commitment_func], page 346 (gnutls_tdb_t tdb,

gnutls_tdb_store_commitment_func cstore)

6.12.2.2 DANE verification

Since the DANE library is not included in GnuTLS it requires programs to be linked against
it. This can be achieved with the following commands.

gcc -o foo foo.c ‘pkg-config gnutls-dane --cflags --libs‘

When a program uses the GNU autoconf system, then the following line or similar can be
used to detect the presence of the library.

PKG_CHECK_MODULES([LIBDANE], [gnutls-dane >= 3.0.0])

AC_SUBST([LIBDANE_CFLAGS])

AC_SUBST([LIBDANE_LIBS])

The high level functionality provided by the DANE library is shown below.

[Function]int dane_verify_crt (dane state t s, const gnutls datum t * chain,
unsigned chain_size, gnutls certificate type t chain_type, const char *
hostname, const char * proto, unsigned int port, unsigned int sflags,
unsigned int vflags, unsigned int * verify)

s: A DANE state structure (may be NULL)

chain: A certificate chain

chain size: The size of the chain

Chapter 6: How to use GnuTLS in applications 154

chain type: The type of the certificate chain

hostname: The hostname associated with the chain

proto: The protocol of the service connecting (e.g. tcp)

port: The port of the service connecting (e.g. 443)

sflags: Flags for the the initialization of s (if NULL)

vflags: Verification flags; an OR’ed list of dane_verify_flags_t .

verify : An OR’ed list of dane_verify_status_t .

This function will verify the given certificate chain against the CA constrains and/or
the certificate available via DANE. If no information via DANE can be obtained the
flag DANE_VERIFY_NO_DANE_INFO is set. If a DNSSEC signature is not available for
the DANE record then the verify flag DANE_VERIFY_NO_DNSSEC_DATA is set.

Due to the many possible options of DANE, there is no single threat model countered.
When notifying the user about DANE verification results it may be better to mention:
DANE verification did not reject the certificate, rather than mentioning a successful
DANE verication.

Note that this function is designed to be run in addition to PKIX - certificate chain
- verification. To be run independently the DANE_VFLAG_ONLY_CHECK_EE_USAGE flag
should be specified; then the function will check whether the key of the peer matches
the key advertized in the DANE entry.

Returns: a negative error code on error and DANE_E_SUCCESS (0) when the DANE
entries were successfully parsed, irrespective of whether they were verified (see verify
for that information). If no usable entries were encountered DANE_E_REQUESTED_

DATA_NOT_AVAILABLE will be returned.

int [dane_verify_session_crt], page 510 (dane_state_t s, gnutls_session_t

session, const char * hostname, const char * proto, unsigned int port, unsigned

int sflags, unsigned int vflags, unsigned int * verify)

const char * [dane_strerror], page 509 (int error)

Note that the dane_state_t structure that is accepted by both verification functions is
optional. It is required when many queries are performed to facilitate caching. The following
flags are returned by the verify functions to indicate the status of the verification.

DANE_VERIFY_CA_CONSTRAINTS_VIOLATED

The CA constraints were violated.

DANE_VERIFY_CERT_DIFFERS

The certificate obtained via DNS differs.

DANE_VERIFY_UNKNOWN_DANE_INFO

No known DANE data was found in the DNS record.

Figure 6.2: The DANE verification status flags.

In order to generate a DANE TLSA entry to use in a DNS server you may use danetool
(see Section 4.2.7 [danetool Invocation], page 67).

Chapter 6: How to use GnuTLS in applications 155

6.12.3 Parameter generation

Several TLS ciphersuites require additional parameters that need to be generated
or provided by the application. The Diffie-Hellman based ciphersuites (ANON-DH
or DHE), require the group parameters to be provided. Those can either be be
generated on the fly using [gnutls dh params generate2], page 297 or imported from
pregenerated data using [gnutls dh params import pkcs3], page 298. The parameters
can be used in a TLS session by calling [gnutls certificate set dh params], page 279 or
[gnutls anon set server dh params], page 274 for anonymous sessions.

int [gnutls_dh_params_generate2], page 297 (gnutls_dh_params_t dparams,

unsigned int bits)

int [gnutls_dh_params_import_pkcs3], page 298 (gnutls_dh_params_t params,

const gnutls_datum_t * pkcs3_params, gnutls_x509_crt_fmt_t format)

void [gnutls_certificate_set_dh_params], page 279

(gnutls_certificate_credentials_t res, gnutls_dh_params_t dh_params)

void [gnutls_anon_set_server_dh_params], page 274

(gnutls_anon_server_credentials_t res, gnutls_dh_params_t dh_params)

Due to the time-consuming calculations required for the generation of Diffie-Hellman pa-
rameters we suggest against performing generation of them within an application. The
certtool tool can be used to generate or export known safe values that can be stored in
code or in a configuration file to provide the ability to replace. We also recommend the
usage of [gnutls sec param to pk bits], page 329 (see Section 6.11 [Selecting cryptographic
key sizes], page 132) to determine the bit size of the generated parameters.

Note that the information stored in the generated PKCS #3 structure changed with
GnuTLS 3.0.9. Since that version the privateValueLength member of the structure is
set, allowing the server utilizing the parameters to use keys of the size of the security
parameter. This provides better performance in key exchange.

To allow renewal of the parameters within an application without accessing the credentials,
which are a shared structure, an alternative interface is available using a callback function.

[Function]void gnutls_certificate_set_params_function
(gnutls certificate credentials t res, gnutls params function * func)

res: is a gnutls certificate credentials t structure

func: is the function to be called

This function will set a callback in order for the server to get the Diffie-Hellman or
RSA parameters for certificate authentication. The callback should return GNUTLS_

E_SUCCESS (0) on success.

6.12.4 Deriving keys for other applications/protocols

In several cases, after a TLS connection is established, it is desirable to derive keys to be
used in another application or protocol (e.g., in an other TLS session using pre-shared keys).
The following describe GnuTLS’ implementation of RFC5705 to extract keys based on a
session’s master secret.

The API to use is [gnutls prf], page 315. The function needs to be provided with a label,
and additional context data to mix in the extra parameter. Moreover, the API allows to
switch the mix of the client and server random nonces, using the server_random_first

Chapter 6: How to use GnuTLS in applications 156

parameter. In typical uses you don’t need it, so a zero value should be provided in server_

random_first.

For example, after establishing a TLS session using [gnutls handshake], page 303, you can
obtain 32-bytes to be used as key, using this call:

#define MYLABEL "EXPORTER-My-protocol-name"

#define MYCONTEXT "my-protocol’s-1st-session"

char out[32];

rc = gnutls_prf (session, sizeof(MYLABEL)-1, MYLABEL, 0,

sizeof(MYCONTEXT)-1, MYCONTEXT, 32, out);

The output key depends on TLS’ master secret, and is the same on both client and server.

If you don’t want to use the RFC5705 interface and not mix in the client and server random
nonces, there is a low-level TLS PRF interface called [gnutls prf raw], page 315.

6.12.5 Channel bindings

In user authentication protocols (e.g., EAP or SASL mechanisms) it is useful to have a
unique string that identifies the secure channel that is used, to bind together the user
authentication with the secure channel. This can protect against man-in-the-middle attacks
in some situations. That unique string is called a “channel binding”. For background and
discussion see [RFC5056].

In GnuTLS you can extract a channel binding using the [gnutls session channel binding],
page 330 function. Currently only the type GNUTLS_CB_TLS_UNIQUE is supported, which
corresponds to the tls-unique channel binding for TLS defined in [RFC5929].

The following example describes how to print the channel binding data. Note that it must
be run after a successful TLS handshake.

{

gnutls_datum_t cb;

int rc;

rc = gnutls_session_channel_binding (session,

GNUTLS_CB_TLS_UNIQUE,

&cb);

if (rc)

fprintf (stderr, "Channel binding error: %s\n",

gnutls_strerror (rc));

else

{

size_t i;

printf ("- Channel binding ’tls-unique’: ");

for (i = 0; i < cb.size; i++)

printf ("%02x", cb.data[i]);

printf ("\n");

}

}

Chapter 6: How to use GnuTLS in applications 157

6.12.6 Interoperability

The TLS protocols support many ciphersuites, extensions and version numbers. As a result,
few implementations are not able to properly interoperate once faced with extensions or
version protocols they do not support and understand. The TLS protocol allows for a
graceful downgrade to the commonly supported options, but practice shows it is not always
implemented correctly.

Because there is no way to achieve maximum interoperability with broken peers without
sacrificing security, GnuTLS ignores such peers by default. This might not be acceptable
in cases where maximum compatibility is required. Thus we allow enabling compatibility
with broken peers using priority strings (see Section 6.10 [Priority Strings], page 127). A
conservative priority string that would disable certain TLS protocol options that are known
to cause compatibility problems, is shown below.

NORMAL:%COMPAT

For broken peers that do not tolerate TLS version numbers over TLS 1.0 another priority
string is:

NORMAL:-VERS-TLS-ALL:+VERS-TLS1.0:+VERS-SSL3.0:%COMPAT

This priority string will in addition to above, only enable SSL 3.0 and TLS 1.0 as protocols.

6.12.7 Compatibility with the OpenSSL library

To ease GnuTLS’ integration with existing applications, a compatibility layer with the
OpenSSL library is included in the gnutls-openssl library. This compatibility layer is
not complete and it is not intended to completely re-implement the OpenSSL API with
GnuTLS. It only provides limited source-level compatibility.

The prototypes for the compatibility functions are in the gnutls/openssl.h header file.
The limitations imposed by the compatibility layer include:

• Error handling is not thread safe.

Chapter 7: GnuTLS application examples 158

7 GnuTLS application examples

In this chapter several examples of real-world use cases are listed. The examples are sim-
plified to promote readability and contain little or no error checking.

7.1 Client examples

This section contains examples of TLS and SSL clients, using GnuTLS. Note that some of
the examples require functions implemented by another example.

7.1.1 Simple client example with X.509 certificate support

Let’s assume now that we want to create a TCP client which communicates with servers
that use X.509 or OpenPGP certificate authentication. The following client is a very simple
TLS client, which uses the high level verification functions for certificates, but does not
support session resumption.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <gnutls/gnutls.h>

#include <gnutls/x509.h>

#include "examples.h"

/* A very basic TLS client, with X.509 authentication and server certificate

* verification. Note that error checking for missing files etc. is omitted

* for simplicity.

*/

#define MAX_BUF 1024

#define CAFILE "/etc/ssl/certs/ca-certificates.crt"

#define MSG "GET / HTTP/1.0\r\n\r\n"

extern int tcp_connect(void);

extern void tcp_close(int sd);

static int _verify_certificate_callback(gnutls_session_t session);

int main(void)

{

int ret, sd, ii;

gnutls_session_t session;

char buffer[MAX_BUF + 1];

const char *err;

Chapter 7: GnuTLS application examples 159

gnutls_certificate_credentials_t xcred;

if (gnutls_check_version("3.1.4") == NULL) {

fprintf(stderr, "GnuTLS 3.1.4 or later is required for this example\n");

exit(1);

}

/* for backwards compatibility with gnutls < 3.3.0 */

gnutls_global_init();

/* X509 stuff */

gnutls_certificate_allocate_credentials(&xcred);

/* sets the trusted cas file

*/

gnutls_certificate_set_x509_trust_file(xcred, CAFILE,

GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_verify_function(xcred,

_verify_certificate_callback);

/* If client holds a certificate it can be set using the following:

*

gnutls_certificate_set_x509_key_file (xcred,

"cert.pem", "key.pem",

GNUTLS_X509_FMT_PEM);

*/

/* Initialize TLS session

*/

gnutls_init(&session, GNUTLS_CLIENT);

gnutls_session_set_ptr(session, (void *) "my_host_name");

gnutls_server_name_set(session, GNUTLS_NAME_DNS, "my_host_name",

strlen("my_host_name"));

/* use default priorities */

gnutls_set_default_priority(session);

#if 0

/* if more fine-graned control is required */

ret = gnutls_priority_set_direct(session,

"NORMAL", &err);

if (ret < 0) {

if (ret == GNUTLS_E_INVALID_REQUEST) {

fprintf(stderr, "Syntax error at: %s\n", err);

}

exit(1);

Chapter 7: GnuTLS application examples 160

}

#endif

/* put the x509 credentials to the current session

*/

gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, xcred);

/* connect to the peer

*/

sd = tcp_connect();

gnutls_transport_set_int(session, sd);

gnutls_handshake_set_timeout(session,

GNUTLS_DEFAULT_HANDSHAKE_TIMEOUT);

/* Perform the TLS handshake

*/

do {

ret = gnutls_handshake(session);

}

while (ret < 0 && gnutls_error_is_fatal(ret) == 0);

if (ret < 0) {

fprintf(stderr, "*** Handshake failed\n");

gnutls_perror(ret);

goto end;

} else {

char *desc;

desc = gnutls_session_get_desc(session);

printf("- Session info: %s\n", desc);

gnutls_free(desc);

}

gnutls_record_send(session, MSG, strlen(MSG));

ret = gnutls_record_recv(session, buffer, MAX_BUF);

if (ret == 0) {

printf("- Peer has closed the TLS connection\n");

goto end;

} else if (ret < 0 && gnutls_error_is_fatal(ret) == 0) {

fprintf(stderr, "*** Warning: %s\n", gnutls_strerror(ret));

} else if (ret < 0) {

fprintf(stderr, "*** Error: %s\n", gnutls_strerror(ret));

goto end;

}

Chapter 7: GnuTLS application examples 161

if (ret > 0) {

printf("- Received %d bytes: ", ret);

for (ii = 0; ii < ret; ii++) {

fputc(buffer[ii], stdout);

}

fputs("\n", stdout);

}

gnutls_bye(session, GNUTLS_SHUT_RDWR);

end:

tcp_close(sd);

gnutls_deinit(session);

gnutls_certificate_free_credentials(xcred);

gnutls_global_deinit();

return 0;

}

/* This function will verify the peer’s certificate, and check

* if the hostname matches, as well as the activation, expiration dates.

*/

static int _verify_certificate_callback(gnutls_session_t session)

{

unsigned int status;

int ret, type;

const char *hostname;

gnutls_datum_t out;

/* read hostname */

hostname = gnutls_session_get_ptr(session);

/* This verification function uses the trusted CAs in the credentials

* structure. So you must have installed one or more CA certificates.

*/

/* The following demonstrate two different verification functions,

* the more flexible gnutls_certificate_verify_peers(), as well

* as the old gnutls_certificate_verify_peers3(). */

#if 1

{

gnutls_typed_vdata_st data[2];

Chapter 7: GnuTLS application examples 162

memset(data, 0, sizeof(data));

data[0].type = GNUTLS_DT_DNS_HOSTNAME;

data[0].data = (void*)hostname;

data[1].type = GNUTLS_DT_KEY_PURPOSE_OID;

data[1].data = (void*)GNUTLS_KP_TLS_WWW_SERVER;

ret = gnutls_certificate_verify_peers(session, data, 2,

&status);

}

#else

ret = gnutls_certificate_verify_peers3(session, hostname,

&status);

#endif

if (ret < 0) {

printf("Error\n");

return GNUTLS_E_CERTIFICATE_ERROR;

}

type = gnutls_certificate_type_get(session);

ret =

gnutls_certificate_verification_status_print(status, type,

&out, 0);

if (ret < 0) {

printf("Error\n");

return GNUTLS_E_CERTIFICATE_ERROR;

}

printf("%s", out.data);

gnutls_free(out.data);

if (status != 0) /* Certificate is not trusted */

return GNUTLS_E_CERTIFICATE_ERROR;

/* notify gnutls to continue handshake normally */

return 0;

}

7.1.2 Simple client example with SSH-style certificate verification

This is an alternative verification function that will use the X.509 certificate authorities for
verification, but also assume an trust on first use (SSH-like) authentication system. That is
the user is prompted on unknown public keys and known public keys are considered trusted.

/* This example code is placed in the public domain. */

Chapter 7: GnuTLS application examples 163

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <gnutls/gnutls.h>

#include <gnutls/x509.h>

#include "examples.h"

/* This function will verify the peer’s certificate, check

* if the hostname matches. In addition it will perform an

* SSH-style authentication, where ultimately trusted keys

* are only the keys that have been seen before.

*/

int _ssh_verify_certificate_callback(gnutls_session_t session)

{

unsigned int status;

const gnutls_datum_t *cert_list;

unsigned int cert_list_size;

int ret, type;

gnutls_datum_t out;

const char *hostname;

/* read hostname */

hostname = gnutls_session_get_ptr(session);

/* This verification function uses the trusted CAs in the credentials

* structure. So you must have installed one or more CA certificates.

*/

ret = gnutls_certificate_verify_peers3(session, hostname, &status);

if (ret < 0) {

printf("Error\n");

return GNUTLS_E_CERTIFICATE_ERROR;

}

type = gnutls_certificate_type_get(session);

ret =

gnutls_certificate_verification_status_print(status, type,

&out, 0);

if (ret < 0) {

printf("Error\n");

return GNUTLS_E_CERTIFICATE_ERROR;

}

Chapter 7: GnuTLS application examples 164

printf("%s", out.data);

gnutls_free(out.data);

if (status != 0) /* Certificate is not trusted */

return GNUTLS_E_CERTIFICATE_ERROR;

/* Do SSH verification */

cert_list = gnutls_certificate_get_peers(session, &cert_list_size);

if (cert_list == NULL) {

printf("No certificate was found!\n");

return GNUTLS_E_CERTIFICATE_ERROR;

}

/* service may be obtained alternatively using getservbyport() */

ret = gnutls_verify_stored_pubkey(NULL, NULL, hostname, "https",

type, &cert_list[0], 0);

if (ret == GNUTLS_E_NO_CERTIFICATE_FOUND) {

printf("Host %s is not known.", hostname);

if (status == 0)

printf("Its certificate is valid for %s.\n",

hostname);

/* the certificate must be printed and user must be asked on

* whether it is trustworthy. --see gnutls_x509_crt_print() */

/* if not trusted */

return GNUTLS_E_CERTIFICATE_ERROR;

} else if (ret == GNUTLS_E_CERTIFICATE_KEY_MISMATCH) {

printf

("Warning: host %s is known but has another key associated.",

hostname);

printf

("It might be that the server has multiple keys, or you are under attack\n");

if (status == 0)

printf("Its certificate is valid for %s.\n",

hostname);

/* the certificate must be printed and user must be asked on

* whether it is trustworthy. --see gnutls_x509_crt_print() */

/* if not trusted */

return GNUTLS_E_CERTIFICATE_ERROR;

} else if (ret < 0) {

printf("gnutls_verify_stored_pubkey: %s\n",

gnutls_strerror(ret));

Chapter 7: GnuTLS application examples 165

return ret;

}

/* user trusts the key -> store it */

if (ret != 0) {

ret = gnutls_store_pubkey(NULL, NULL, hostname, "https",

type, &cert_list[0], 0, 0);

if (ret < 0)

printf("gnutls_store_pubkey: %s\n",

gnutls_strerror(ret));

}

/* notify gnutls to continue handshake normally */

return 0;

}

7.1.3 Simple client example with anonymous authentication

The simplest client using TLS is the one that doesn’t do any authentication. This means
no external certificates or passwords are needed to set up the connection. As could be
expected, the connection is vulnerable to man-in-the-middle (active or redirection) attacks.
However, the data are integrity protected and encrypted from passive eavesdroppers.

Note that due to the vulnerable nature of this method very few public servers support it.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <unistd.h>

#include <gnutls/gnutls.h>

/* A very basic TLS client, with anonymous authentication.

*/

#define MAX_BUF 1024

#define MSG "GET / HTTP/1.0\r\n\r\n"

extern int tcp_connect(void);

extern void tcp_close(int sd);

Chapter 7: GnuTLS application examples 166

int main(void)

{

int ret, sd, ii;

gnutls_session_t session;

char buffer[MAX_BUF + 1];

gnutls_anon_client_credentials_t anoncred;

/* Need to enable anonymous KX specifically. */

gnutls_global_init();

gnutls_anon_allocate_client_credentials(&anoncred);

/* Initialize TLS session

*/

gnutls_init(&session, GNUTLS_CLIENT);

/* Use default priorities */

gnutls_priority_set_direct(session,

"PERFORMANCE:+ANON-ECDH:+ANON-DH",

NULL);

/* put the anonymous credentials to the current session

*/

gnutls_credentials_set(session, GNUTLS_CRD_ANON, anoncred);

/* connect to the peer

*/

sd = tcp_connect();

gnutls_transport_set_int(session, sd);

gnutls_handshake_set_timeout(session,

GNUTLS_DEFAULT_HANDSHAKE_TIMEOUT);

/* Perform the TLS handshake

*/

do {

ret = gnutls_handshake(session);

}

while (ret < 0 && gnutls_error_is_fatal(ret) == 0);

if (ret < 0) {

fprintf(stderr, "*** Handshake failed\n");

gnutls_perror(ret);

goto end;

} else {

char *desc;

Chapter 7: GnuTLS application examples 167

desc = gnutls_session_get_desc(session);

printf("- Session info: %s\n", desc);

gnutls_free(desc);

}

gnutls_record_send(session, MSG, strlen(MSG));

ret = gnutls_record_recv(session, buffer, MAX_BUF);

if (ret == 0) {

printf("- Peer has closed the TLS connection\n");

goto end;

} else if (ret < 0 && gnutls_error_is_fatal(ret) == 0) {

fprintf(stderr, "*** Warning: %s\n", gnutls_strerror(ret));

} else if (ret < 0) {

fprintf(stderr, "*** Error: %s\n", gnutls_strerror(ret));

goto end;

}

if (ret > 0) {

printf("- Received %d bytes: ", ret);

for (ii = 0; ii < ret; ii++) {

fputc(buffer[ii], stdout);

}

fputs("\n", stdout);

}

gnutls_bye(session, GNUTLS_SHUT_RDWR);

end:

tcp_close(sd);

gnutls_deinit(session);

gnutls_anon_free_client_credentials(anoncred);

gnutls_global_deinit();

return 0;

}

7.1.4 Simple datagram TLS client example

This is a client that uses UDP to connect to a server. This is the DTLS equivalent to the
TLS example with X.509 certificates.

/* This example code is placed in the public domain. */

Chapter 7: GnuTLS application examples 168

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <unistd.h>

#include <gnutls/gnutls.h>

#include <gnutls/dtls.h>

/* A very basic Datagram TLS client, over UDP with X.509 authentication.

*/

#define MAX_BUF 1024

#define CAFILE "/etc/ssl/certs/ca-certificates.crt"

#define MSG "GET / HTTP/1.0\r\n\r\n"

extern int udp_connect(void);

extern void udp_close(int sd);

extern int verify_certificate_callback(gnutls_session_t session);

int main(void)

{

int ret, sd, ii;

gnutls_session_t session;

char buffer[MAX_BUF + 1];

const char *err;

gnutls_certificate_credentials_t xcred;

if (gnutls_check_version("3.1.4") == NULL) {

fprintf(stderr, "GnuTLS 3.1.4 or later is required for this example\n");

exit(1);

}

/* for backwards compatibility with gnutls < 3.3.0 */

gnutls_global_init();

/* X509 stuff */

gnutls_certificate_allocate_credentials(&xcred);

/* sets the trusted cas file */

gnutls_certificate_set_x509_trust_file(xcred, CAFILE,

GNUTLS_X509_FMT_PEM);

Chapter 7: GnuTLS application examples 169

gnutls_certificate_set_verify_function(xcred,

verify_certificate_callback);

/* Initialize TLS session */

gnutls_init(&session, GNUTLS_CLIENT | GNUTLS_DATAGRAM);

/* Use default priorities */

ret = gnutls_priority_set_direct(session,

"NORMAL", &err);

if (ret < 0) {

if (ret == GNUTLS_E_INVALID_REQUEST) {

fprintf(stderr, "Syntax error at: %s\n", err);

}

exit(1);

}

/* put the x509 credentials to the current session */

gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, xcred);

gnutls_server_name_set(session, GNUTLS_NAME_DNS, "my_host_name",

strlen("my_host_name"));

/* connect to the peer */

sd = udp_connect();

gnutls_transport_set_int(session, sd);

/* set the connection MTU */

gnutls_dtls_set_mtu(session, 1000);

/* gnutls_dtls_set_timeouts(session, 1000, 60000); */

/* Perform the TLS handshake */

do {

ret = gnutls_handshake(session);

}

while (ret == GNUTLS_E_INTERRUPTED || ret == GNUTLS_E_AGAIN);

/* Note that DTLS may also receive GNUTLS_E_LARGE_PACKET */

if (ret < 0) {

fprintf(stderr, "*** Handshake failed\n");

gnutls_perror(ret);

goto end;

} else {

char *desc;

desc = gnutls_session_get_desc(session);

printf("- Session info: %s\n", desc);

gnutls_free(desc);

Chapter 7: GnuTLS application examples 170

}

gnutls_record_send(session, MSG, strlen(MSG));

ret = gnutls_record_recv(session, buffer, MAX_BUF);

if (ret == 0) {

printf("- Peer has closed the TLS connection\n");

goto end;

} else if (ret < 0 && gnutls_error_is_fatal(ret) == 0) {

fprintf(stderr, "*** Warning: %s\n", gnutls_strerror(ret));

} else if (ret < 0) {

fprintf(stderr, "*** Error: %s\n", gnutls_strerror(ret));

goto end;

}

if (ret > 0) {

printf("- Received %d bytes: ", ret);

for (ii = 0; ii < ret; ii++) {

fputc(buffer[ii], stdout);

}

fputs("\n", stdout);

}

/* It is suggested not to use GNUTLS_SHUT_RDWR in DTLS

* connections because the peer’s closure message might

* be lost */

gnutls_bye(session, GNUTLS_SHUT_WR);

end:

udp_close(sd);

gnutls_deinit(session);

gnutls_certificate_free_credentials(xcred);

gnutls_global_deinit();

return 0;

}

7.1.5 Obtaining session information

Most of the times it is desirable to know the security properties of the current established
session. This includes the underlying ciphers and the protocols involved. That is the
purpose of the following function. Note that this function will print meaningful values only
if called after a successful [gnutls handshake], page 303.

Chapter 7: GnuTLS application examples 171

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <gnutls/gnutls.h>

#include <gnutls/x509.h>

#include "examples.h"

/* This function will print some details of the

* given session.

*/

int print_info(gnutls_session_t session)

{

const char *tmp;

gnutls_credentials_type_t cred;

gnutls_kx_algorithm_t kx;

int dhe, ecdh;

dhe = ecdh = 0;

/* print the key exchange’s algorithm name

*/

kx = gnutls_kx_get(session);

tmp = gnutls_kx_get_name(kx);

printf("- Key Exchange: %s\n", tmp);

/* Check the authentication type used and switch

* to the appropriate.

*/

cred = gnutls_auth_get_type(session);

switch (cred) {

case GNUTLS_CRD_IA:

printf("- TLS/IA session\n");

break;

#ifdef ENABLE_SRP

case GNUTLS_CRD_SRP:

printf("- SRP session with username %s\n",

gnutls_srp_server_get_username(session));

break;

#endif

Chapter 7: GnuTLS application examples 172

case GNUTLS_CRD_PSK:

/* This returns NULL in server side.

*/

if (gnutls_psk_client_get_hint(session) != NULL)

printf("- PSK authentication. PSK hint ’%s’\n",

gnutls_psk_client_get_hint(session));

/* This returns NULL in client side.

*/

if (gnutls_psk_server_get_username(session) != NULL)

printf("- PSK authentication. Connected as ’%s’\n",

gnutls_psk_server_get_username(session));

if (kx == GNUTLS_KX_ECDHE_PSK)

ecdh = 1;

else if (kx == GNUTLS_KX_DHE_PSK)

dhe = 1;

break;

case GNUTLS_CRD_ANON: /* anonymous authentication */

printf("- Anonymous authentication.\n");

if (kx == GNUTLS_KX_ANON_ECDH)

ecdh = 1;

else if (kx == GNUTLS_KX_ANON_DH)

dhe = 1;

break;

case GNUTLS_CRD_CERTIFICATE: /* certificate authentication */

/* Check if we have been using ephemeral Diffie-Hellman.

*/

if (kx == GNUTLS_KX_DHE_RSA || kx == GNUTLS_KX_DHE_DSS)

dhe = 1;

else if (kx == GNUTLS_KX_ECDHE_RSA

|| kx == GNUTLS_KX_ECDHE_ECDSA)

ecdh = 1;

/* if the certificate list is available, then

* print some information about it.

*/

print_x509_certificate_info(session);

} /* switch */

if (ecdh != 0)

printf("- Ephemeral ECDH using curve %s\n",

Chapter 7: GnuTLS application examples 173

gnutls_ecc_curve_get_name(gnutls_ecc_curve_get

(session)));

else if (dhe != 0)

printf("- Ephemeral DH using prime of %d bits\n",

gnutls_dh_get_prime_bits(session));

/* print the protocol’s name (ie TLS 1.0)

*/

tmp =

gnutls_protocol_get_name(gnutls_protocol_get_version(session));

printf("- Protocol: %s\n", tmp);

/* print the certificate type of the peer.

* ie X.509

*/

tmp =

gnutls_certificate_type_get_name(gnutls_certificate_type_get

(session));

printf("- Certificate Type: %s\n", tmp);

/* print the compression algorithm (if any)

*/

tmp = gnutls_compression_get_name(gnutls_compression_get(session));

printf("- Compression: %s\n", tmp);

/* print the name of the cipher used.

* ie 3DES.

*/

tmp = gnutls_cipher_get_name(gnutls_cipher_get(session));

printf("- Cipher: %s\n", tmp);

/* Print the MAC algorithms name.

* ie SHA1

*/

tmp = gnutls_mac_get_name(gnutls_mac_get(session));

printf("- MAC: %s\n", tmp);

return 0;

}

7.1.6 Using a callback to select the certificate to use

There are cases where a client holds several certificate and key pairs, and may not want to
load all of them in the credentials structure. The following example demonstrates the use
of the certificate selection callback.

/* This example code is placed in the public domain. */

Chapter 7: GnuTLS application examples 174

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <unistd.h>

#include <gnutls/gnutls.h>

#include <gnutls/x509.h>

#include <gnutls/abstract.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

/* A TLS client that loads the certificate and key.

*/

#define MAX_BUF 1024

#define MSG "GET / HTTP/1.0\r\n\r\n"

#define CERT_FILE "cert.pem"

#define KEY_FILE "key.pem"

#define CAFILE "/etc/ssl/certs/ca-certificates.crt"

extern int tcp_connect(void);

extern void tcp_close(int sd);

static int

cert_callback(gnutls_session_t session,

const gnutls_datum_t * req_ca_rdn, int nreqs,

const gnutls_pk_algorithm_t * sign_algos,

int sign_algos_length, gnutls_pcert_st ** pcert,

unsigned int *pcert_length, gnutls_privkey_t * pkey);

gnutls_pcert_st pcrt;

gnutls_privkey_t key;

/* Load the certificate and the private key.

*/

static void load_keys(void)

{

int ret;

Chapter 7: GnuTLS application examples 175

gnutls_datum_t data;

ret = gnutls_load_file(CERT_FILE, &data);

if (ret < 0) {

fprintf(stderr, "*** Error loading certificate file.\n");

exit(1);

}

ret =

gnutls_pcert_import_x509_raw(&pcrt, &data, GNUTLS_X509_FMT_PEM,

0);

if (ret < 0) {

fprintf(stderr, "*** Error loading certificate file: %s\n",

gnutls_strerror(ret));

exit(1);

}

gnutls_free(data.data);

ret = gnutls_load_file(KEY_FILE, &data);

if (ret < 0) {

fprintf(stderr, "*** Error loading key file.\n");

exit(1);

}

gnutls_privkey_init(&key);

ret =

gnutls_privkey_import_x509_raw(key, &data, GNUTLS_X509_FMT_PEM,

NULL, 0);

if (ret < 0) {

fprintf(stderr, "*** Error loading key file: %s\n",

gnutls_strerror(ret));

exit(1);

}

gnutls_free(data.data);

}

int main(void)

{

int ret, sd, ii;

gnutls_session_t session;

gnutls_priority_t priorities_cache;

char buffer[MAX_BUF + 1];

gnutls_certificate_credentials_t xcred;

Chapter 7: GnuTLS application examples 176

if (gnutls_check_version("3.1.4") == NULL) {

fprintf(stderr, "GnuTLS 3.1.4 or later is required for this example\n");

exit(1);

}

/* for backwards compatibility with gnutls < 3.3.0 */

gnutls_global_init();

load_keys();

/* X509 stuff */

gnutls_certificate_allocate_credentials(&xcred);

/* priorities */

gnutls_priority_init(&priorities_cache,

"NORMAL", NULL);

/* sets the trusted cas file

*/

gnutls_certificate_set_x509_trust_file(xcred, CAFILE,

GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_retrieve_function2(xcred, cert_callback);

/* Initialize TLS session

*/

gnutls_init(&session, GNUTLS_CLIENT);

/* Use default priorities */

gnutls_priority_set(session, priorities_cache);

/* put the x509 credentials to the current session

*/

gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, xcred);

/* connect to the peer

*/

sd = tcp_connect();

gnutls_transport_set_int(session, sd);

/* Perform the TLS handshake

*/

ret = gnutls_handshake(session);

if (ret < 0) {

fprintf(stderr, "*** Handshake failed\n");

Chapter 7: GnuTLS application examples 177

gnutls_perror(ret);

goto end;

} else {

char *desc;

desc = gnutls_session_get_desc(session);

printf("- Session info: %s\n", desc);

gnutls_free(desc);

}

gnutls_record_send(session, MSG, strlen(MSG));

ret = gnutls_record_recv(session, buffer, MAX_BUF);

if (ret == 0) {

printf("- Peer has closed the TLS connection\n");

goto end;

} else if (ret < 0) {

fprintf(stderr, "*** Error: %s\n", gnutls_strerror(ret));

goto end;

}

printf("- Received %d bytes: ", ret);

for (ii = 0; ii < ret; ii++) {

fputc(buffer[ii], stdout);

}

fputs("\n", stdout);

gnutls_bye(session, GNUTLS_SHUT_RDWR);

end:

tcp_close(sd);

gnutls_deinit(session);

gnutls_certificate_free_credentials(xcred);

gnutls_priority_deinit(priorities_cache);

gnutls_global_deinit();

return 0;

}

/* This callback should be associated with a session by calling

* gnutls_certificate_client_set_retrieve_function(session, cert_callback),

Chapter 7: GnuTLS application examples 178

* before a handshake.

*/

static int

cert_callback(gnutls_session_t session,

const gnutls_datum_t * req_ca_rdn, int nreqs,

const gnutls_pk_algorithm_t * sign_algos,

int sign_algos_length, gnutls_pcert_st ** pcert,

unsigned int *pcert_length, gnutls_privkey_t * pkey)

{

char issuer_dn[256];

int i, ret;

size_t len;

gnutls_certificate_type_t type;

/* Print the server’s trusted CAs

*/

if (nreqs > 0)

printf("- Server’s trusted authorities:\n");

else

printf

("- Server did not send us any trusted authorities names.\n");

/* print the names (if any) */

for (i = 0; i < nreqs; i++) {

len = sizeof(issuer_dn);

ret = gnutls_x509_rdn_get(&req_ca_rdn[i], issuer_dn, &len);

if (ret >= 0) {

printf(" [%d]: ", i);

printf("%s\n", issuer_dn);

}

}

/* Select a certificate and return it.

* The certificate must be of any of the "sign algorithms"

* supported by the server.

*/

type = gnutls_certificate_type_get(session);

if (type == GNUTLS_CRT_X509) {

*pcert_length = 1;

*pcert = &pcrt;

*pkey = key;

} else {

return -1;

}

return 0;

Chapter 7: GnuTLS application examples 179

}

7.1.7 Verifying a certificate

An example is listed below which uses the high level verification functions to verify a given
certificate list.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <gnutls/gnutls.h>

#include <gnutls/x509.h>

#include "examples.h"

/* All the available CRLs

*/

gnutls_x509_crl_t *crl_list;

int crl_list_size;

/* All the available trusted CAs

*/

gnutls_x509_crt_t *ca_list;

int ca_list_size;

static int print_details_func(gnutls_x509_crt_t cert,

gnutls_x509_crt_t issuer,

gnutls_x509_crl_t crl,

unsigned int verification_output);

/* This function will try to verify the peer’s certificate chain, and

* also check if the hostname matches.

*/

void

verify_certificate_chain(const char *hostname,

const gnutls_datum_t * cert_chain,

int cert_chain_length)

{

int i;

gnutls_x509_trust_list_t tlist;

gnutls_x509_crt_t *cert;

Chapter 7: GnuTLS application examples 180

unsigned int output;

/* Initialize the trusted certificate list. This should be done

* once on initialization. gnutls_x509_crt_list_import2() and

* gnutls_x509_crl_list_import2() can be used to load them.

*/

gnutls_x509_trust_list_init(&tlist, 0);

gnutls_x509_trust_list_add_cas(tlist, ca_list, ca_list_size, 0);

gnutls_x509_trust_list_add_crls(tlist, crl_list, crl_list_size,

GNUTLS_TL_VERIFY_CRL, 0);

cert = malloc(sizeof(*cert) * cert_chain_length);

/* Import all the certificates in the chain to

* native certificate format.

*/

for (i = 0; i < cert_chain_length; i++) {

gnutls_x509_crt_init(&cert[i]);

gnutls_x509_crt_import(cert[i], &cert_chain[i],

GNUTLS_X509_FMT_DER);

}

gnutls_x509_trust_list_verify_named_crt(tlist, cert[0], hostname,

strlen(hostname),

GNUTLS_VERIFY_DISABLE_CRL_CHECKS,

&output,

print_details_func);

/* if this certificate is not explicitly trusted verify against CAs

*/

if (output != 0) {

gnutls_x509_trust_list_verify_crt(tlist, cert,

cert_chain_length, 0,

&output,

print_details_func);

}

if (output & GNUTLS_CERT_INVALID) {

fprintf(stderr, "Not trusted");

if (output & GNUTLS_CERT_SIGNER_NOT_FOUND)

fprintf(stderr, ": no issuer was found");

if (output & GNUTLS_CERT_SIGNER_NOT_CA)

fprintf(stderr, ": issuer is not a CA");

if (output & GNUTLS_CERT_NOT_ACTIVATED)

Chapter 7: GnuTLS application examples 181

fprintf(stderr, ": not yet activated\n");

if (output & GNUTLS_CERT_EXPIRED)

fprintf(stderr, ": expired\n");

fprintf(stderr, "\n");

} else

fprintf(stderr, "Trusted\n");

/* Check if the name in the first certificate matches our destination!

*/

if (!gnutls_x509_crt_check_hostname(cert[0], hostname)) {

printf

("The certificate’s owner does not match hostname ’%s’\n",

hostname);

}

gnutls_x509_trust_list_deinit(tlist, 1);

return;

}

static int

print_details_func(gnutls_x509_crt_t cert,

gnutls_x509_crt_t issuer, gnutls_x509_crl_t crl,

unsigned int verification_output)

{

char name[512];

char issuer_name[512];

size_t name_size;

size_t issuer_name_size;

issuer_name_size = sizeof(issuer_name);

gnutls_x509_crt_get_issuer_dn(cert, issuer_name,

&issuer_name_size);

name_size = sizeof(name);

gnutls_x509_crt_get_dn(cert, name, &name_size);

fprintf(stdout, "\tSubject: %s\n", name);

fprintf(stdout, "\tIssuer: %s\n", issuer_name);

if (issuer != NULL) {

issuer_name_size = sizeof(issuer_name);

gnutls_x509_crt_get_dn(issuer, issuer_name,

&issuer_name_size);

fprintf(stdout, "\tVerified against: %s\n", issuer_name);

Chapter 7: GnuTLS application examples 182

}

if (crl != NULL) {

issuer_name_size = sizeof(issuer_name);

gnutls_x509_crl_get_issuer_dn(crl, issuer_name,

&issuer_name_size);

fprintf(stdout, "\tVerified against CRL of: %s\n",

issuer_name);

}

fprintf(stdout, "\tVerification output: %x\n\n",

verification_output);

return 0;

}

7.1.8 Using a smart card with TLS

This example will demonstrate how to load keys and certificates from a smart-card or any
other PKCS #11 token, and use it in a TLS connection.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <unistd.h>

#include <gnutls/gnutls.h>

#include <gnutls/x509.h>

#include <gnutls/pkcs11.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <getpass.h> /* for getpass() */

/* A TLS client that loads the certificate and key.

*/

#define MAX_BUF 1024

#define MSG "GET / HTTP/1.0\r\n\r\n"

Chapter 7: GnuTLS application examples 183

#define MIN(x,y) (((x)<(y))?(x):(y))

#define CAFILE "/etc/ssl/certs/ca-certificates.crt"

/* The URLs of the objects can be obtained

* using p11tool --list-all --login

*/

#define KEY_URL "pkcs11:manufacturer=SomeManufacturer;object=Private%20Key" \

";objecttype=private;id=%db%5b%3e%b5%72%33"

#define CERT_URL "pkcs11:manufacturer=SomeManufacturer;object=Certificate;" \

"objecttype=cert;id=db%5b%3e%b5%72%33"

extern int tcp_connect(void);

extern void tcp_close(int sd);

static int

pin_callback(void *user, int attempt, const char *token_url,

const char *token_label, unsigned int flags, char *pin,

size_t pin_max)

{

const char *password;

int len;

printf("PIN required for token ’%s’ with URL ’%s’\n", token_label,

token_url);

if (flags & GNUTLS_PIN_FINAL_TRY)

printf("*** This is the final try before locking!\n");

if (flags & GNUTLS_PIN_COUNT_LOW)

printf("*** Only few tries left before locking!\n");

if (flags & GNUTLS_PIN_WRONG)

printf("*** Wrong PIN\n");

password = getpass("Enter pin: ");

if (password == NULL || password[0] == 0) {

fprintf(stderr, "No password given\n");

exit(1);

}

len = MIN(pin_max - 1, strlen(password));

memcpy(pin, password, len);

pin[len] = 0;

return 0;

}

int main(void)

{

Chapter 7: GnuTLS application examples 184

int ret, sd, ii;

gnutls_session_t session;

gnutls_priority_t priorities_cache;

char buffer[MAX_BUF + 1];

gnutls_certificate_credentials_t xcred;

/* Allow connections to servers that have OpenPGP keys as well.

*/

if (gnutls_check_version("3.1.4") == NULL) {

fprintf(stderr, "GnuTLS 3.1.4 or later is required for this example\n");

exit(1);

}

/* for backwards compatibility with gnutls < 3.3.0 */

gnutls_global_init();

/* The PKCS11 private key operations may require PIN.

* Register a callback. */

gnutls_pkcs11_set_pin_function(pin_callback, NULL);

/* X509 stuff */

gnutls_certificate_allocate_credentials(&xcred);

/* priorities */

gnutls_priority_init(&priorities_cache,

"NORMAL", NULL);

/* sets the trusted cas file

*/

gnutls_certificate_set_x509_trust_file(xcred, CAFILE,

GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_x509_key_file(xcred, CERT_URL, KEY_URL,

GNUTLS_X509_FMT_DER);

/* Initialize TLS session

*/

gnutls_init(&session, GNUTLS_CLIENT);

/* Use default priorities */

gnutls_priority_set(session, priorities_cache);

/* put the x509 credentials to the current session

*/

gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, xcred);

/* connect to the peer

Chapter 7: GnuTLS application examples 185

*/

sd = tcp_connect();

gnutls_transport_set_int(session, sd);

/* Perform the TLS handshake

*/

ret = gnutls_handshake(session);

if (ret < 0) {

fprintf(stderr, "*** Handshake failed\n");

gnutls_perror(ret);

goto end;

} else {

char *desc;

desc = gnutls_session_get_desc(session);

printf("- Session info: %s\n", desc);

gnutls_free(desc);

}

gnutls_record_send(session, MSG, strlen(MSG));

ret = gnutls_record_recv(session, buffer, MAX_BUF);

if (ret == 0) {

printf("- Peer has closed the TLS connection\n");

goto end;

} else if (ret < 0) {

fprintf(stderr, "*** Error: %s\n", gnutls_strerror(ret));

goto end;

}

printf("- Received %d bytes: ", ret);

for (ii = 0; ii < ret; ii++) {

fputc(buffer[ii], stdout);

}

fputs("\n", stdout);

gnutls_bye(session, GNUTLS_SHUT_RDWR);

end:

tcp_close(sd);

gnutls_deinit(session);

gnutls_certificate_free_credentials(xcred);

Chapter 7: GnuTLS application examples 186

gnutls_priority_deinit(priorities_cache);

gnutls_global_deinit();

return 0;

}

7.1.9 Client with resume capability example

This is a modification of the simple client example. Here we demonstrate the use of session
resumption. The client tries to connect once using TLS, close the connection and then try
to establish a new connection using the previously negotiated data.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include <gnutls/gnutls.h>

/* Those functions are defined in other examples.

*/

extern void check_alert(gnutls_session_t session, int ret);

extern int tcp_connect(void);

extern void tcp_close(int sd);

#define MAX_BUF 1024

#define CAFILE "/etc/ssl/certs/ca-certificates.crt"

#define MSG "GET / HTTP/1.0\r\n\r\n"

int main(void)

{

int ret;

int sd, ii;

gnutls_session_t session;

char buffer[MAX_BUF + 1];

gnutls_certificate_credentials_t xcred;

/* variables used in session resuming

*/

int t;

char *session_data = NULL;

size_t session_data_size = 0;

Chapter 7: GnuTLS application examples 187

gnutls_global_init();

/* X509 stuff */

gnutls_certificate_allocate_credentials(&xcred);

gnutls_certificate_set_x509_trust_file(xcred, CAFILE,

GNUTLS_X509_FMT_PEM);

for (t = 0; t < 2; t++) { /* connect 2 times to the server */

sd = tcp_connect();

gnutls_init(&session, GNUTLS_CLIENT);

gnutls_priority_set_direct(session,

"PERFORMANCE:!ARCFOUR-128",

NULL);

gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE,

xcred);

if (t > 0) {

/* if this is not the first time we connect */

gnutls_session_set_data(session, session_data,

session_data_size);

free(session_data);

}

gnutls_transport_set_int(session, sd);

gnutls_handshake_set_timeout(session,

GNUTLS_DEFAULT_HANDSHAKE_TIMEOUT);

/* Perform the TLS handshake

*/

do {

ret = gnutls_handshake(session);

}

while (ret < 0 && gnutls_error_is_fatal(ret) == 0);

if (ret < 0) {

fprintf(stderr, "*** Handshake failed\n");

gnutls_perror(ret);

goto end;

} else {

printf("- Handshake was completed\n");

}

Chapter 7: GnuTLS application examples 188

if (t == 0) { /* the first time we connect */

/* get the session data size */

gnutls_session_get_data(session, NULL,

&session_data_size);

session_data = malloc(session_data_size);

/* put session data to the session variable */

gnutls_session_get_data(session, session_data,

&session_data_size);

} else { /* the second time we connect */

/* check if we actually resumed the previous session */

if (gnutls_session_is_resumed(session) != 0) {

printf("- Previous session was resumed\n");

} else {

fprintf(stderr,

"*** Previous session was NOT resumed\n");

}

}

/* This function was defined in a previous example

*/

/* print_info(session); */

gnutls_record_send(session, MSG, strlen(MSG));

ret = gnutls_record_recv(session, buffer, MAX_BUF);

if (ret == 0) {

printf("- Peer has closed the TLS connection\n");

goto end;

} else if (ret < 0 && gnutls_error_is_fatal(ret) == 0) {

fprintf(stderr, "*** Warning: %s\n",

gnutls_strerror(ret));

} else if (ret < 0) {

fprintf(stderr, "*** Error: %s\n",

gnutls_strerror(ret));

goto end;

}

if (ret > 0) {

printf("- Received %d bytes: ", ret);

for (ii = 0; ii < ret; ii++) {

fputc(buffer[ii], stdout);

}

fputs("\n", stdout);

}

Chapter 7: GnuTLS application examples 189

gnutls_bye(session, GNUTLS_SHUT_RDWR);

end:

tcp_close(sd);

gnutls_deinit(session);

} /* for() */

gnutls_certificate_free_credentials(xcred);

gnutls_global_deinit();

return 0;

}

7.1.10 Simple client example with SRP authentication

The following client is a very simple SRP TLS client which connects to a server and au-
thenticates using a username and a password. The server may authenticate itself using a
certificate, and in that case it has to be verified.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <gnutls/gnutls.h>

/* Those functions are defined in other examples.

*/

extern void check_alert(gnutls_session_t session, int ret);

extern int tcp_connect(void);

extern void tcp_close(int sd);

#define MAX_BUF 1024

#define USERNAME "user"

#define PASSWORD "pass"

#define CAFILE "/etc/ssl/certs/ca-certificates.crt"

#define MSG "GET / HTTP/1.0\r\n\r\n"

int main(void)

Chapter 7: GnuTLS application examples 190

{

int ret;

int sd, ii;

gnutls_session_t session;

char buffer[MAX_BUF + 1];

gnutls_srp_client_credentials_t srp_cred;

gnutls_certificate_credentials_t cert_cred;

if (gnutls_check_version("3.1.4") == NULL) {

fprintf(stderr, "GnuTLS 3.1.4 or later is required for this example\n");

exit(1);

}

/* for backwards compatibility with gnutls < 3.3.0 */

gnutls_global_init();

gnutls_srp_allocate_client_credentials(&srp_cred);

gnutls_certificate_allocate_credentials(&cert_cred);

gnutls_certificate_set_x509_trust_file(cert_cred, CAFILE,

GNUTLS_X509_FMT_PEM);

gnutls_srp_set_client_credentials(srp_cred, USERNAME, PASSWORD);

/* connects to server

*/

sd = tcp_connect();

/* Initialize TLS session

*/

gnutls_init(&session, GNUTLS_CLIENT);

/* Set the priorities.

*/

gnutls_priority_set_direct(session,

"NORMAL:+SRP:+SRP-RSA:+SRP-DSS",

NULL);

/* put the SRP credentials to the current session

*/

gnutls_credentials_set(session, GNUTLS_CRD_SRP, srp_cred);

gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, cert_cred);

gnutls_transport_set_int(session, sd);

gnutls_handshake_set_timeout(session,

GNUTLS_DEFAULT_HANDSHAKE_TIMEOUT);

Chapter 7: GnuTLS application examples 191

/* Perform the TLS handshake

*/

do {

ret = gnutls_handshake(session);

}

while (ret < 0 && gnutls_error_is_fatal(ret) == 0);

if (ret < 0) {

fprintf(stderr, "*** Handshake failed\n");

gnutls_perror(ret);

goto end;

} else {

char *desc;

desc = gnutls_session_get_desc(session);

printf("- Session info: %s\n", desc);

gnutls_free(desc);

}

gnutls_record_send(session, MSG, strlen(MSG));

ret = gnutls_record_recv(session, buffer, MAX_BUF);

if (gnutls_error_is_fatal(ret) != 0 || ret == 0) {

if (ret == 0) {

printf

("- Peer has closed the GnuTLS connection\n");

goto end;

} else {

fprintf(stderr, "*** Error: %s\n",

gnutls_strerror(ret));

goto end;

}

} else

check_alert(session, ret);

if (ret > 0) {

printf("- Received %d bytes: ", ret);

for (ii = 0; ii < ret; ii++) {

fputc(buffer[ii], stdout);

}

fputs("\n", stdout);

}

gnutls_bye(session, GNUTLS_SHUT_RDWR);

end:

tcp_close(sd);

Chapter 7: GnuTLS application examples 192

gnutls_deinit(session);

gnutls_srp_free_client_credentials(srp_cred);

gnutls_certificate_free_credentials(cert_cred);

gnutls_global_deinit();

return 0;

}

7.1.11 Simple client example using the C++ API

The following client is a simple example of a client client utilizing the GnuTLS C++ API.

#include <config.h>

#include <iostream>

#include <stdexcept>

#include <gnutls/gnutls.h>

#include <gnutls/gnutlsxx.h>

#include <cstring> /* for strlen */

/* A very basic TLS client, with anonymous authentication.

* written by Eduardo Villanueva Che.

*/

#define MAX_BUF 1024

#define SA struct sockaddr

#define CAFILE "ca.pem"

#define MSG "GET / HTTP/1.0\r\n\r\n"

extern "C"

{

int tcp_connect(void);

void tcp_close(int sd);

}

int main(void)

{

int sd = -1;

gnutls_global_init();

try

{

/* Allow connections to servers that have OpenPGP keys as well.

Chapter 7: GnuTLS application examples 193

*/

gnutls::client_session session;

/* X509 stuff */

gnutls::certificate_credentials credentials;

/* sets the trusted cas file

*/

credentials.set_x509_trust_file(CAFILE, GNUTLS_X509_FMT_PEM);

/* put the x509 credentials to the current session

*/

session.set_credentials(credentials);

/* Use default priorities */

session.set_priority ("NORMAL", NULL);

/* connect to the peer

*/

sd = tcp_connect();

session.set_transport_ptr((gnutls_transport_ptr_t) (ptrdiff_t)sd);

/* Perform the TLS handshake

*/

int ret = session.handshake();

if (ret < 0)

{

throw std::runtime_error("Handshake failed");

}

else

{

std::cout << "- Handshake was completed" << std::endl;

}

session.send(MSG, strlen(MSG));

char buffer[MAX_BUF + 1];

ret = session.recv(buffer, MAX_BUF);

if (ret == 0)

{

throw std::runtime_error("Peer has closed the TLS connection");

}

else if (ret < 0)

{

throw std::runtime_error(gnutls_strerror(ret));

}

std::cout << "- Received " << ret << " bytes:" << std::endl;

Chapter 7: GnuTLS application examples 194

std::cout.write(buffer, ret);

std::cout << std::endl;

session.bye(GNUTLS_SHUT_RDWR);

}

catch (std::exception &ex)

{

std::cerr << "Exception caught: " << ex.what() << std::endl;

}

if (sd != -1)

tcp_close(sd);

gnutls_global_deinit();

return 0;

}

7.1.12 Helper functions for TCP connections

Those helper function abstract away TCP connection handling from the other examples. It
is required to build some examples.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <netinet/in.h>

#include <unistd.h>

/* tcp.c */

int tcp_connect(void);

void tcp_close(int sd);

/* Connects to the peer and returns a socket

* descriptor.

*/

extern int tcp_connect(void)

{

const char *PORT = "5556";

Chapter 7: GnuTLS application examples 195

const char *SERVER = "127.0.0.1";

int err, sd;

struct sockaddr_in sa;

/* connects to server

*/

sd = socket(AF_INET, SOCK_STREAM, 0);

memset(&sa, ’\0’, sizeof(sa));

sa.sin_family = AF_INET;

sa.sin_port = htons(atoi(PORT));

inet_pton(AF_INET, SERVER, &sa.sin_addr);

err = connect(sd, (struct sockaddr *) &sa, sizeof(sa));

if (err < 0) {

fprintf(stderr, "Connect error\n");

exit(1);

}

return sd;

}

/* closes the given socket descriptor.

*/

extern void tcp_close(int sd)

{

shutdown(sd, SHUT_RDWR); /* no more receptions */

close(sd);

}

7.1.13 Helper functions for UDP connections

The UDP helper functions abstract away UDP connection handling from the other examples.
It is required to build the examples using UDP.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <netinet/in.h>

Chapter 7: GnuTLS application examples 196

#include <unistd.h>

/* udp.c */

int udp_connect(void);

void udp_close(int sd);

/* Connects to the peer and returns a socket

* descriptor.

*/

extern int udp_connect(void)

{

const char *PORT = "5557";

const char *SERVER = "127.0.0.1";

int err, sd, optval;

struct sockaddr_in sa;

/* connects to server

*/

sd = socket(AF_INET, SOCK_DGRAM, 0);

memset(&sa, ’\0’, sizeof(sa));

sa.sin_family = AF_INET;

sa.sin_port = htons(atoi(PORT));

inet_pton(AF_INET, SERVER, &sa.sin_addr);

#if defined(IP_DONTFRAG)

optval = 1;

setsockopt(sd, IPPROTO_IP, IP_DONTFRAG,

(const void *) &optval, sizeof(optval));

#elif defined(IP_MTU_DISCOVER)

optval = IP_PMTUDISC_DO;

setsockopt(sd, IPPROTO_IP, IP_MTU_DISCOVER,

(const void *) &optval, sizeof(optval));

#endif

err = connect(sd, (struct sockaddr *) &sa, sizeof(sa));

if (err < 0) {

fprintf(stderr, "Connect error\n");

exit(1);

}

return sd;

}

/* closes the given socket descriptor.

*/

extern void udp_close(int sd)

Chapter 7: GnuTLS application examples 197

{

close(sd);

}

7.2 Server examples

This section contains examples of TLS and SSL servers, using GnuTLS.

7.2.1 Echo server with X.509 authentication

This example is a very simple echo server which supports X.509 authentication.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <netinet/in.h>

#include <string.h>

#include <unistd.h>

#include <gnutls/gnutls.h>

#define KEYFILE "key.pem"

#define CERTFILE "cert.pem"

#define CAFILE "/etc/ssl/certs/ca-certificates.crt"

#define CRLFILE "crl.pem"

/* The OCSP status file contains up to date information about revocation

* of the server’s certificate. That can be periodically be updated

* using:

* $ ocsptool --ask --load-cert your_cert.pem --load-issuer your_issuer.pem

* --load-signer your_issuer.pem --outfile ocsp-status.der

*/

#define OCSP_STATUS_FILE "ocsp-status.der"

/* This is a sample TLS 1.0 echo server, using X.509 authentication and

* OCSP stapling support.

*/

#define MAX_BUF 1024

#define PORT 5556 /* listen to 5556 port */

Chapter 7: GnuTLS application examples 198

/* These are global */

static gnutls_dh_params_t dh_params;

static int generate_dh_params(void)

{

unsigned int bits = gnutls_sec_param_to_pk_bits(GNUTLS_PK_DH,

GNUTLS_SEC_PARAM_LEGACY);

/* Generate Diffie-Hellman parameters - for use with DHE

* kx algorithms. When short bit length is used, it might

* be wise to regenerate parameters often.

*/

gnutls_dh_params_init(&dh_params);

gnutls_dh_params_generate2(dh_params, bits);

return 0;

}

int main(void)

{

int listen_sd;

int sd, ret;

gnutls_certificate_credentials_t x509_cred;

gnutls_priority_t priority_cache;

struct sockaddr_in sa_serv;

struct sockaddr_in sa_cli;

socklen_t client_len;

char topbuf[512];

gnutls_session_t session;

char buffer[MAX_BUF + 1];

int optval = 1;

/* for backwards compatibility with gnutls < 3.3.0 */

gnutls_global_init();

gnutls_certificate_allocate_credentials(&x509_cred);

/* gnutls_certificate_set_x509_system_trust(xcred); */

gnutls_certificate_set_x509_trust_file(x509_cred, CAFILE,

GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_x509_crl_file(x509_cred, CRLFILE,

GNUTLS_X509_FMT_PEM);

ret =

gnutls_certificate_set_x509_key_file(x509_cred, CERTFILE,

KEYFILE,

GNUTLS_X509_FMT_PEM);

Chapter 7: GnuTLS application examples 199

if (ret < 0) {

printf("No certificate or key were found\n");

exit(1);

}

/* loads an OCSP status request if available */

gnutls_certificate_set_ocsp_status_request_file(x509_cred,

OCSP_STATUS_FILE,

0);

generate_dh_params();

gnutls_priority_init(&priority_cache,

"PERFORMANCE:%SERVER_PRECEDENCE", NULL);

gnutls_certificate_set_dh_params(x509_cred, dh_params);

/* Socket operations

*/

listen_sd = socket(AF_INET, SOCK_STREAM, 0);

memset(&sa_serv, ’\0’, sizeof(sa_serv));

sa_serv.sin_family = AF_INET;

sa_serv.sin_addr.s_addr = INADDR_ANY;

sa_serv.sin_port = htons(PORT); /* Server Port number */

setsockopt(listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval,

sizeof(int));

bind(listen_sd, (struct sockaddr *) &sa_serv, sizeof(sa_serv));

listen(listen_sd, 1024);

printf("Server ready. Listening to port ’%d’.\n\n", PORT);

client_len = sizeof(sa_cli);

for (;;) {

gnutls_init(&session, GNUTLS_SERVER);

gnutls_priority_set(session, priority_cache);

gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE,

x509_cred);

/* We don’t request any certificate from the client.

* If we did we would need to verify it. One way of

* doing that is shown in the "Verifying a certificate"

* example.

Chapter 7: GnuTLS application examples 200

*/

gnutls_certificate_server_set_request(session,

GNUTLS_CERT_IGNORE);

sd = accept(listen_sd, (struct sockaddr *) &sa_cli,

&client_len);

printf("- connection from %s, port %d\n",

inet_ntop(AF_INET, &sa_cli.sin_addr, topbuf,

sizeof(topbuf)), ntohs(sa_cli.sin_port));

gnutls_transport_set_int(session, sd);

do {

ret = gnutls_handshake(session);

}

while (ret < 0 && gnutls_error_is_fatal(ret) == 0);

if (ret < 0) {

close(sd);

gnutls_deinit(session);

fprintf(stderr,

"*** Handshake has failed (%s)\n\n",

gnutls_strerror(ret));

continue;

}

printf("- Handshake was completed\n");

/* see the Getting peer’s information example */

/* print_info(session); */

for (;;) {

ret = gnutls_record_recv(session, buffer, MAX_BUF);

if (ret == 0) {

printf

("\n- Peer has closed the GnuTLS connection\n");

break;

} else if (ret < 0

&& gnutls_error_is_fatal(ret) == 0) {

fprintf(stderr, "*** Warning: %s\n",

gnutls_strerror(ret));

} else if (ret < 0) {

fprintf(stderr, "\n*** Received corrupted "

"data(%d). Closing the connection.\n\n",

ret);

break;

Chapter 7: GnuTLS application examples 201

} else if (ret > 0) {

/* echo data back to the client

*/

gnutls_record_send(session, buffer, ret);

}

}

printf("\n");

/* do not wait for the peer to close the connection.

*/

gnutls_bye(session, GNUTLS_SHUT_WR);

close(sd);

gnutls_deinit(session);

}

close(listen_sd);

gnutls_certificate_free_credentials(x509_cred);

gnutls_priority_deinit(priority_cache);

gnutls_global_deinit();

return 0;

}

7.2.2 Echo server with OpenPGP authentication

The following example is an echo server which supports OpenPGP key authentication. You
can easily combine this functionality —that is have a server that supports both X.509 and
OpenPGP certificates— but we separated them to keep these examples as simple as possible.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <netinet/in.h>

#include <string.h>

#include <unistd.h>

#include <gnutls/gnutls.h>

Chapter 7: GnuTLS application examples 202

#include <gnutls/openpgp.h>

#define KEYFILE "secret.asc"

#define CERTFILE "public.asc"

#define RINGFILE "ring.gpg"

/* This is a sample TLS 1.0-OpenPGP echo server.

*/

#define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);}

#define MAX_BUF 1024

#define PORT 5556 /* listen to 5556 port */

/* These are global */

gnutls_dh_params_t dh_params;

static int generate_dh_params(void)

{

unsigned int bits = gnutls_sec_param_to_pk_bits(GNUTLS_PK_DH,

GNUTLS_SEC_PARAM_LEGACY);

/* Generate Diffie-Hellman parameters - for use with DHE

* kx algorithms. These should be discarded and regenerated

* once a day, once a week or once a month. Depending on the

* security requirements.

*/

gnutls_dh_params_init(&dh_params);

gnutls_dh_params_generate2(dh_params, bits);

return 0;

}

int main(void)

{

int err, listen_sd;

int sd, ret;

struct sockaddr_in sa_serv;

struct sockaddr_in sa_cli;

socklen_t client_len;

char topbuf[512];

gnutls_session_t session;

gnutls_certificate_credentials_t cred;

char buffer[MAX_BUF + 1];

int optval = 1;

char name[256];

Chapter 7: GnuTLS application examples 203

strcpy(name, "Echo Server");

if (gnutls_check_version("3.1.4") == NULL) {

fprintf(stderr, "GnuTLS 3.1.4 or later is required for this example\n");

exit(1);

}

/* for backwards compatibility with gnutls < 3.3.0 */

gnutls_global_init();

gnutls_certificate_allocate_credentials(&cred);

gnutls_certificate_set_openpgp_keyring_file(cred, RINGFILE,

GNUTLS_OPENPGP_FMT_BASE64);

gnutls_certificate_set_openpgp_key_file(cred, CERTFILE, KEYFILE,

GNUTLS_OPENPGP_FMT_BASE64);

generate_dh_params();

gnutls_certificate_set_dh_params(cred, dh_params);

/* Socket operations

*/

listen_sd = socket(AF_INET, SOCK_STREAM, 0);

SOCKET_ERR(listen_sd, "socket");

memset(&sa_serv, ’\0’, sizeof(sa_serv));

sa_serv.sin_family = AF_INET;

sa_serv.sin_addr.s_addr = INADDR_ANY;

sa_serv.sin_port = htons(PORT); /* Server Port number */

setsockopt(listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval,

sizeof(int));

err =

bind(listen_sd, (struct sockaddr *) &sa_serv, sizeof(sa_serv));

SOCKET_ERR(err, "bind");

err = listen(listen_sd, 1024);

SOCKET_ERR(err, "listen");

printf("%s ready. Listening to port ’%d’.\n\n", name, PORT);

client_len = sizeof(sa_cli);

for (;;) {

gnutls_init(&session, GNUTLS_SERVER);

gnutls_priority_set_direct(session,

"NORMAL:+CTYPE-OPENPGP", NULL);

Chapter 7: GnuTLS application examples 204

/* request client certificate if any.

*/

gnutls_certificate_server_set_request(session,

GNUTLS_CERT_REQUEST);

sd = accept(listen_sd, (struct sockaddr *) &sa_cli,

&client_len);

printf("- connection from %s, port %d\n",

inet_ntop(AF_INET, &sa_cli.sin_addr, topbuf,

sizeof(topbuf)), ntohs(sa_cli.sin_port));

gnutls_transport_set_int(session, sd);

ret = gnutls_handshake(session);

if (ret < 0) {

close(sd);

gnutls_deinit(session);

fprintf(stderr,

"*** Handshake has failed (%s)\n\n",

gnutls_strerror(ret));

continue;

}

printf("- Handshake was completed\n");

/* see the Getting peer’s information example */

/* print_info(session); */

for (;;) {

ret = gnutls_record_recv(session, buffer, MAX_BUF);

if (ret == 0) {

printf

("\n- Peer has closed the GnuTLS connection\n");

break;

} else if (ret < 0

&& gnutls_error_is_fatal(ret) == 0) {

fprintf(stderr, "*** Warning: %s\n",

gnutls_strerror(ret));

} else if (ret < 0) {

fprintf(stderr, "\n*** Received corrupted "

"data(%d). Closing the connection.\n\n",

ret);

break;

} else if (ret > 0) {

/* echo data back to the client

*/

Chapter 7: GnuTLS application examples 205

gnutls_record_send(session, buffer, ret);

}

}

printf("\n");

/* do not wait for the peer to close the connection.

*/

gnutls_bye(session, GNUTLS_SHUT_WR);

close(sd);

gnutls_deinit(session);

}

close(listen_sd);

gnutls_certificate_free_credentials(cred);

gnutls_global_deinit();

return 0;

}

7.2.3 Echo server with SRP authentication

This is a server which supports SRP authentication. It is also possible to combine this
functionality with a certificate server. Here it is separate for simplicity.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <netinet/in.h>

#include <string.h>

#include <unistd.h>

#include <gnutls/gnutls.h>

#define SRP_PASSWD "tpasswd"

#define SRP_PASSWD_CONF "tpasswd.conf"

#define KEYFILE "key.pem"

Chapter 7: GnuTLS application examples 206

#define CERTFILE "cert.pem"

#define CAFILE "/etc/ssl/certs/ca-certificates.crt"

/* This is a sample TLS-SRP echo server.

*/

#define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);}

#define MAX_BUF 1024

#define PORT 5556 /* listen to 5556 port */

int main(void)

{

int err, listen_sd;

int sd, ret;

struct sockaddr_in sa_serv;

struct sockaddr_in sa_cli;

socklen_t client_len;

char topbuf[512];

gnutls_session_t session;

gnutls_srp_server_credentials_t srp_cred;

gnutls_certificate_credentials_t cert_cred;

char buffer[MAX_BUF + 1];

int optval = 1;

char name[256];

strcpy(name, "Echo Server");

if (gnutls_check_version("3.1.4") == NULL) {

fprintf(stderr, "GnuTLS 3.1.4 or later is required for this example\n");

exit(1);

}

/* for backwards compatibility with gnutls < 3.3.0 */

gnutls_global_init();

/* SRP_PASSWD a password file (created with the included srptool utility)

*/

gnutls_srp_allocate_server_credentials(&srp_cred);

gnutls_srp_set_server_credentials_file(srp_cred, SRP_PASSWD,

SRP_PASSWD_CONF);

gnutls_certificate_allocate_credentials(&cert_cred);

gnutls_certificate_set_x509_trust_file(cert_cred, CAFILE,

GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_x509_key_file(cert_cred, CERTFILE, KEYFILE,

GNUTLS_X509_FMT_PEM);

Chapter 7: GnuTLS application examples 207

/* TCP socket operations

*/

listen_sd = socket(AF_INET, SOCK_STREAM, 0);

SOCKET_ERR(listen_sd, "socket");

memset(&sa_serv, ’\0’, sizeof(sa_serv));

sa_serv.sin_family = AF_INET;

sa_serv.sin_addr.s_addr = INADDR_ANY;

sa_serv.sin_port = htons(PORT); /* Server Port number */

setsockopt(listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval,

sizeof(int));

err =

bind(listen_sd, (struct sockaddr *) &sa_serv, sizeof(sa_serv));

SOCKET_ERR(err, "bind");

err = listen(listen_sd, 1024);

SOCKET_ERR(err, "listen");

printf("%s ready. Listening to port ’%d’.\n\n", name, PORT);

client_len = sizeof(sa_cli);

for (;;) {

gnutls_init(&session, GNUTLS_SERVER);

gnutls_priority_set_direct(session,

"NORMAL"

":-KX-ALL:+SRP:+SRP-DSS:+SRP-RSA",

NULL);

gnutls_credentials_set(session, GNUTLS_CRD_SRP, srp_cred);

/* for the certificate authenticated ciphersuites.

*/

gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE,

cert_cred);

/* We don’t request any certificate from the client.

* If we did we would need to verify it. One way of

* doing that is shown in the "Verifying a certificate"

* example.

*/

gnutls_certificate_server_set_request(session,

GNUTLS_CERT_IGNORE);

sd = accept(listen_sd, (struct sockaddr *) &sa_cli,

&client_len);

printf("- connection from %s, port %d\n",

inet_ntop(AF_INET, &sa_cli.sin_addr, topbuf,

Chapter 7: GnuTLS application examples 208

sizeof(topbuf)), ntohs(sa_cli.sin_port));

gnutls_transport_set_int(session, sd);

do {

ret = gnutls_handshake(session);

}

while (ret < 0 && gnutls_error_is_fatal(ret) == 0);

if (ret < 0) {

close(sd);

gnutls_deinit(session);

fprintf(stderr,

"*** Handshake has failed (%s)\n\n",

gnutls_strerror(ret));

continue;

}

printf("- Handshake was completed\n");

printf("- User %s was connected\n",

gnutls_srp_server_get_username(session));

/* print_info(session); */

for (;;) {

ret = gnutls_record_recv(session, buffer, MAX_BUF);

if (ret == 0) {

printf

("\n- Peer has closed the GnuTLS connection\n");

break;

} else if (ret < 0

&& gnutls_error_is_fatal(ret) == 0) {

fprintf(stderr, "*** Warning: %s\n",

gnutls_strerror(ret));

} else if (ret < 0) {

fprintf(stderr, "\n*** Received corrupted "

"data(%d). Closing the connection.\n\n",

ret);

break;

} else if (ret > 0) {

/* echo data back to the client

*/

gnutls_record_send(session, buffer, ret);

}

}

printf("\n");

/* do not wait for the peer to close the connection. */

Chapter 7: GnuTLS application examples 209

gnutls_bye(session, GNUTLS_SHUT_WR);

close(sd);

gnutls_deinit(session);

}

close(listen_sd);

gnutls_srp_free_server_credentials(srp_cred);

gnutls_certificate_free_credentials(cert_cred);

gnutls_global_deinit();

return 0;

}

7.2.4 Echo server with anonymous authentication

This example server supports anonymous authentication, and could be used to serve the
example client for anonymous authentication.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <netinet/in.h>

#include <string.h>

#include <unistd.h>

#include <gnutls/gnutls.h>

/* This is a sample TLS 1.0 echo server, for anonymous authentication only.

*/

#define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);}

#define MAX_BUF 1024

#define PORT 5556 /* listen to 5556 port */

/* These are global */

Chapter 7: GnuTLS application examples 210

static gnutls_dh_params_t dh_params;

static int generate_dh_params(void)

{

unsigned int bits = gnutls_sec_param_to_pk_bits(GNUTLS_PK_DH,

GNUTLS_SEC_PARAM_LEGACY);

/* Generate Diffie-Hellman parameters - for use with DHE

* kx algorithms. These should be discarded and regenerated

* once a day, once a week or once a month. Depending on the

* security requirements.

*/

gnutls_dh_params_init(&dh_params);

gnutls_dh_params_generate2(dh_params, bits);

return 0;

}

int main(void)

{

int err, listen_sd;

int sd, ret;

struct sockaddr_in sa_serv;

struct sockaddr_in sa_cli;

socklen_t client_len;

char topbuf[512];

gnutls_session_t session;

gnutls_anon_server_credentials_t anoncred;

char buffer[MAX_BUF + 1];

int optval = 1;

if (gnutls_check_version("3.1.4") == NULL) {

fprintf(stderr, "GnuTLS 3.1.4 or later is required for this example\n");

exit(1);

}

/* for backwards compatibility with gnutls < 3.3.0 */

gnutls_global_init();

gnutls_anon_allocate_server_credentials(&anoncred);

generate_dh_params();

gnutls_anon_set_server_dh_params(anoncred, dh_params);

/* Socket operations

*/

listen_sd = socket(AF_INET, SOCK_STREAM, 0);

Chapter 7: GnuTLS application examples 211

SOCKET_ERR(listen_sd, "socket");

memset(&sa_serv, ’\0’, sizeof(sa_serv));

sa_serv.sin_family = AF_INET;

sa_serv.sin_addr.s_addr = INADDR_ANY;

sa_serv.sin_port = htons(PORT); /* Server Port number */

setsockopt(listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval,

sizeof(int));

err =

bind(listen_sd, (struct sockaddr *) &sa_serv, sizeof(sa_serv));

SOCKET_ERR(err, "bind");

err = listen(listen_sd, 1024);

SOCKET_ERR(err, "listen");

printf("Server ready. Listening to port ’%d’.\n\n", PORT);

client_len = sizeof(sa_cli);

for (;;) {

gnutls_init(&session, GNUTLS_SERVER);

gnutls_priority_set_direct(session,

"NORMAL::+ANON-ECDH:+ANON-DH",

NULL);

gnutls_credentials_set(session, GNUTLS_CRD_ANON, anoncred);

sd = accept(listen_sd, (struct sockaddr *) &sa_cli,

&client_len);

printf("- connection from %s, port %d\n",

inet_ntop(AF_INET, &sa_cli.sin_addr, topbuf,

sizeof(topbuf)), ntohs(sa_cli.sin_port));

gnutls_transport_set_int(session, sd);

do {

ret = gnutls_handshake(session);

}

while (ret < 0 && gnutls_error_is_fatal(ret) == 0);

if (ret < 0) {

close(sd);

gnutls_deinit(session);

fprintf(stderr,

"*** Handshake has failed (%s)\n\n",

gnutls_strerror(ret));

continue;

Chapter 7: GnuTLS application examples 212

}

printf("- Handshake was completed\n");

/* see the Getting peer’s information example */

/* print_info(session); */

for (;;) {

ret = gnutls_record_recv(session, buffer, MAX_BUF);

if (ret == 0) {

printf

("\n- Peer has closed the GnuTLS connection\n");

break;

} else if (ret < 0

&& gnutls_error_is_fatal(ret) == 0) {

fprintf(stderr, "*** Warning: %s\n",

gnutls_strerror(ret));

} else if (ret < 0) {

fprintf(stderr, "\n*** Received corrupted "

"data(%d). Closing the connection.\n\n",

ret);

break;

} else if (ret > 0) {

/* echo data back to the client

*/

gnutls_record_send(session, buffer, ret);

}

}

printf("\n");

/* do not wait for the peer to close the connection.

*/

gnutls_bye(session, GNUTLS_SHUT_WR);

close(sd);

gnutls_deinit(session);

}

close(listen_sd);

gnutls_anon_free_server_credentials(anoncred);

gnutls_global_deinit();

return 0;

}

Chapter 7: GnuTLS application examples 213

7.2.5 DTLS echo server with X.509 authentication

This example is a very simple echo server using Datagram TLS and X.509 authentication.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <netinet/in.h>

#include <sys/select.h>

#include <netdb.h>

#include <string.h>

#include <unistd.h>

#include <gnutls/gnutls.h>

#include <gnutls/dtls.h>

#define KEYFILE "key.pem"

#define CERTFILE "cert.pem"

#define CAFILE "/etc/ssl/certs/ca-certificates.crt"

#define CRLFILE "crl.pem"

/* This is a sample DTLS echo server, using X.509 authentication.

* Note that error checking is minimal to simplify the example.

*/

#define MAX_BUFFER 1024

#define PORT 5557

typedef struct {

gnutls_session_t session;

int fd;

struct sockaddr *cli_addr;

socklen_t cli_addr_size;

} priv_data_st;

static int pull_timeout_func(gnutls_transport_ptr_t ptr, unsigned int ms);

static ssize_t push_func(gnutls_transport_ptr_t p, const void *data,

size_t size);

static ssize_t pull_func(gnutls_transport_ptr_t p, void *data,

size_t size);

Chapter 7: GnuTLS application examples 214

static const char *human_addr(const struct sockaddr *sa, socklen_t salen,

char *buf, size_t buflen);

static int wait_for_connection(int fd);

static int generate_dh_params(void);

/* Use global credentials and parameters to simplify

* the example. */

static gnutls_certificate_credentials_t x509_cred;

static gnutls_priority_t priority_cache;

static gnutls_dh_params_t dh_params;

int main(void)

{

int listen_sd;

int sock, ret;

struct sockaddr_in sa_serv;

struct sockaddr_in cli_addr;

socklen_t cli_addr_size;

gnutls_session_t session;

char buffer[MAX_BUFFER];

priv_data_st priv;

gnutls_datum_t cookie_key;

gnutls_dtls_prestate_st prestate;

int mtu = 1400;

unsigned char sequence[8];

/* this must be called once in the program

*/

gnutls_global_init();

gnutls_certificate_allocate_credentials(&x509_cred);

gnutls_certificate_set_x509_trust_file(x509_cred, CAFILE,

GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_x509_crl_file(x509_cred, CRLFILE,

GNUTLS_X509_FMT_PEM);

ret =

gnutls_certificate_set_x509_key_file(x509_cred, CERTFILE,

KEYFILE,

GNUTLS_X509_FMT_PEM);

if (ret < 0) {

printf("No certificate or key were found\n");

exit(1);

}

generate_dh_params();

Chapter 7: GnuTLS application examples 215

gnutls_certificate_set_dh_params(x509_cred, dh_params);

gnutls_priority_init(&priority_cache,

"PERFORMANCE:-VERS-TLS-ALL:+VERS-DTLS1.0:%SERVER_PRECEDENCE",

NULL);

gnutls_key_generate(&cookie_key, GNUTLS_COOKIE_KEY_SIZE);

/* Socket operations

*/

listen_sd = socket(AF_INET, SOCK_DGRAM, 0);

memset(&sa_serv, ’\0’, sizeof(sa_serv));

sa_serv.sin_family = AF_INET;

sa_serv.sin_addr.s_addr = INADDR_ANY;

sa_serv.sin_port = htons(PORT);

{ /* DTLS requires the IP don’t fragment (DF) bit to be set */

#if defined(IP_DONTFRAG)

int optval = 1;

setsockopt(listen_sd, IPPROTO_IP, IP_DONTFRAG,

(const void *) &optval, sizeof(optval));

#elif defined(IP_MTU_DISCOVER)

int optval = IP_PMTUDISC_DO;

setsockopt(listen_sd, IPPROTO_IP, IP_MTU_DISCOVER,

(const void *) &optval, sizeof(optval));

#endif

}

bind(listen_sd, (struct sockaddr *) &sa_serv, sizeof(sa_serv));

printf("UDP server ready. Listening to port ’%d’.\n\n", PORT);

for (;;) {

printf("Waiting for connection...\n");

sock = wait_for_connection(listen_sd);

if (sock < 0)

continue;

cli_addr_size = sizeof(cli_addr);

ret = recvfrom(sock, buffer, sizeof(buffer), MSG_PEEK,

(struct sockaddr *) &cli_addr,

&cli_addr_size);

if (ret > 0) {

memset(&prestate, 0, sizeof(prestate));

ret =

Chapter 7: GnuTLS application examples 216

gnutls_dtls_cookie_verify(&cookie_key,

&cli_addr,

sizeof(cli_addr),

buffer, ret,

&prestate);

if (ret < 0) { /* cookie not valid */

priv_data_st s;

memset(&s, 0, sizeof(s));

s.fd = sock;

s.cli_addr = (void *) &cli_addr;

s.cli_addr_size = sizeof(cli_addr);

printf

("Sending hello verify request to %s\n",

human_addr((struct sockaddr *)

&cli_addr,

sizeof(cli_addr), buffer,

sizeof(buffer)));

gnutls_dtls_cookie_send(&cookie_key,

&cli_addr,

sizeof(cli_addr),

&prestate,

(gnutls_transport_ptr_t)

& s, push_func);

/* discard peeked data */

recvfrom(sock, buffer, sizeof(buffer), 0,

(struct sockaddr *) &cli_addr,

&cli_addr_size);

usleep(100);

continue;

}

printf("Accepted connection from %s\n",

human_addr((struct sockaddr *)

&cli_addr, sizeof(cli_addr),

buffer, sizeof(buffer)));

} else

continue;

gnutls_init(&session, GNUTLS_SERVER | GNUTLS_DATAGRAM);

gnutls_priority_set(session, priority_cache);

gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE,

x509_cred);

gnutls_dtls_prestate_set(session, &prestate);

Chapter 7: GnuTLS application examples 217

gnutls_dtls_set_mtu(session, mtu);

priv.session = session;

priv.fd = sock;

priv.cli_addr = (struct sockaddr *) &cli_addr;

priv.cli_addr_size = sizeof(cli_addr);

gnutls_transport_set_ptr(session, &priv);

gnutls_transport_set_push_function(session, push_func);

gnutls_transport_set_pull_function(session, pull_func);

gnutls_transport_set_pull_timeout_function(session,

pull_timeout_func);

do {

ret = gnutls_handshake(session);

}

while (ret == GNUTLS_E_INTERRUPTED

|| ret == GNUTLS_E_AGAIN);

/* Note that DTLS may also receive GNUTLS_E_LARGE_PACKET.

* In that case the MTU should be adjusted.

*/

if (ret < 0) {

fprintf(stderr, "Error in handshake(): %s\n",

gnutls_strerror(ret));

gnutls_deinit(session);

continue;

}

printf("- Handshake was completed\n");

for (;;) {

do {

ret =

gnutls_record_recv_seq(session, buffer,

MAX_BUFFER,

sequence);

}

while (ret == GNUTLS_E_AGAIN

|| ret == GNUTLS_E_INTERRUPTED);

if (ret < 0 && gnutls_error_is_fatal(ret) == 0) {

fprintf(stderr, "*** Warning: %s\n",

gnutls_strerror(ret));

continue;

} else if (ret < 0) {

fprintf(stderr, "Error in recv(): %s\n",

Chapter 7: GnuTLS application examples 218

gnutls_strerror(ret));

break;

}

if (ret == 0) {

printf("EOF\n\n");

break;

}

buffer[ret] = 0;

printf

("received[%.2x%.2x%.2x%.2x%.2x%.2x%.2x%.2x]: %s\n",

sequence[0], sequence[1], sequence[2],

sequence[3], sequence[4], sequence[5],

sequence[6], sequence[7], buffer);

/* reply back */

ret = gnutls_record_send(session, buffer, ret);

if (ret < 0) {

fprintf(stderr, "Error in send(): %s\n",

gnutls_strerror(ret));

break;

}

}

gnutls_bye(session, GNUTLS_SHUT_WR);

gnutls_deinit(session);

}

close(listen_sd);

gnutls_certificate_free_credentials(x509_cred);

gnutls_priority_deinit(priority_cache);

gnutls_global_deinit();

return 0;

}

static int wait_for_connection(int fd)

{

fd_set rd, wr;

int n;

FD_ZERO(&rd);

FD_ZERO(&wr);

Chapter 7: GnuTLS application examples 219

FD_SET(fd, &rd);

/* waiting part */

n = select(fd + 1, &rd, &wr, NULL, NULL);

if (n == -1 && errno == EINTR)

return -1;

if (n < 0) {

perror("select()");

exit(1);

}

return fd;

}

/* Wait for data to be received within a timeout period in milliseconds

*/

static int pull_timeout_func(gnutls_transport_ptr_t ptr, unsigned int ms)

{

fd_set rfds;

struct timeval tv;

priv_data_st *priv = ptr;

struct sockaddr_in cli_addr;

socklen_t cli_addr_size;

int ret;

char c;

FD_ZERO(&rfds);

FD_SET(priv->fd, &rfds);

tv.tv_sec = 0;

tv.tv_usec = ms * 1000;

while (tv.tv_usec >= 1000000) {

tv.tv_usec -= 1000000;

tv.tv_sec++;

}

ret = select(priv->fd + 1, &rfds, NULL, NULL, &tv);

if (ret <= 0)

return ret;

/* only report ok if the next message is from the peer we expect

* from

*/

cli_addr_size = sizeof(cli_addr);

Chapter 7: GnuTLS application examples 220

ret =

recvfrom(priv->fd, &c, 1, MSG_PEEK,

(struct sockaddr *) &cli_addr, &cli_addr_size);

if (ret > 0) {

if (cli_addr_size == priv->cli_addr_size

&& memcmp(&cli_addr, priv->cli_addr,

sizeof(cli_addr)) == 0)

return 1;

}

return 0;

}

static ssize_t

push_func(gnutls_transport_ptr_t p, const void *data, size_t size)

{

priv_data_st *priv = p;

return sendto(priv->fd, data, size, 0, priv->cli_addr,

priv->cli_addr_size);

}

static ssize_t pull_func(gnutls_transport_ptr_t p, void *data, size_t size)

{

priv_data_st *priv = p;

struct sockaddr_in cli_addr;

socklen_t cli_addr_size;

char buffer[64];

int ret;

cli_addr_size = sizeof(cli_addr);

ret =

recvfrom(priv->fd, data, size, 0,

(struct sockaddr *) &cli_addr, &cli_addr_size);

if (ret == -1)

return ret;

if (cli_addr_size == priv->cli_addr_size

&& memcmp(&cli_addr, priv->cli_addr, sizeof(cli_addr)) == 0)

return ret;

printf("Denied connection from %s\n",

human_addr((struct sockaddr *)

&cli_addr, sizeof(cli_addr), buffer,

sizeof(buffer)));

gnutls_transport_set_errno(priv->session, EAGAIN);

Chapter 7: GnuTLS application examples 221

return -1;

}

static const char *human_addr(const struct sockaddr *sa, socklen_t salen,

char *buf, size_t buflen)

{

const char *save_buf = buf;

size_t l;

if (!buf || !buflen)

return NULL;

*buf = ’\0’;

switch (sa->sa_family) {

#if HAVE_IPV6

case AF_INET6:

snprintf(buf, buflen, "IPv6 ");

break;

#endif

case AF_INET:

snprintf(buf, buflen, "IPv4 ");

break;

}

l = strlen(buf);

buf += l;

buflen -= l;

if (getnameinfo(sa, salen, buf, buflen, NULL, 0, NI_NUMERICHOST) !=

0)

return NULL;

l = strlen(buf);

buf += l;

buflen -= l;

strncat(buf, " port ", buflen);

l = strlen(buf);

buf += l;

buflen -= l;

if (getnameinfo(sa, salen, NULL, 0, buf, buflen, NI_NUMERICSERV) !=

0)

return NULL;

Chapter 7: GnuTLS application examples 222

return save_buf;

}

static int generate_dh_params(void)

{

int bits = gnutls_sec_param_to_pk_bits(GNUTLS_PK_DH,

GNUTLS_SEC_PARAM_LEGACY);

/* Generate Diffie-Hellman parameters - for use with DHE

* kx algorithms. When short bit length is used, it might

* be wise to regenerate parameters often.

*/

gnutls_dh_params_init(&dh_params);

gnutls_dh_params_generate2(dh_params, bits);

return 0;

}

7.3 OCSP example

Generate OCSP request

A small tool to generate OCSP requests.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <gnutls/gnutls.h>

#include <gnutls/crypto.h>

#include <gnutls/ocsp.h>

#ifndef NO_LIBCURL

#include <curl/curl.h>

#endif

#include "read-file.h"

size_t get_data(void *buffer, size_t size, size_t nmemb, void *userp);

static gnutls_x509_crt_t load_cert(const char *cert_file);

static void _response_info(const gnutls_datum_t * data);

static void

_generate_request(gnutls_datum_t * rdata, gnutls_x509_crt_t cert,

gnutls_x509_crt_t issuer, gnutls_datum_t *nonce);

Chapter 7: GnuTLS application examples 223

static int

_verify_response(gnutls_datum_t * data, gnutls_x509_crt_t cert,

gnutls_x509_crt_t signer, gnutls_datum_t *nonce);

/* This program queries an OCSP server.

It expects three files. argv[1] containing the certificate to

be checked, argv[2] holding the issuer for this certificate,

and argv[3] holding a trusted certificate to verify OCSP’s response.

argv[4] is optional and should hold the server host name.

For simplicity the libcurl library is used.

*/

int main(int argc, char *argv[])

{

gnutls_datum_t ud, tmp;

int ret;

gnutls_datum_t req;

gnutls_x509_crt_t cert, issuer, signer;

#ifndef NO_LIBCURL

CURL *handle;

struct curl_slist *headers = NULL;

#endif

int v, seq;

const char *cert_file = argv[1];

const char *issuer_file = argv[2];

const char *signer_file = argv[3];

char *hostname = NULL;

unsigned char noncebuf[23];

gnutls_datum_t nonce = { noncebuf, sizeof(noncebuf) };

gnutls_global_init();

if (argc > 4)

hostname = argv[4];

ret = gnutls_rnd(GNUTLS_RND_NONCE, nonce.data, nonce.size);

if (ret < 0)

exit(1);

cert = load_cert(cert_file);

issuer = load_cert(issuer_file);

signer = load_cert(signer_file);

if (hostname == NULL) {

for (seq = 0;; seq++) {

Chapter 7: GnuTLS application examples 224

ret =

gnutls_x509_crt_get_authority_info_access(cert,

seq,

GNUTLS_IA_OCSP_URI,

&tmp,

NULL);

if (ret == GNUTLS_E_UNKNOWN_ALGORITHM)

continue;

if (ret == GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE) {

fprintf(stderr,

"No URI was found in the certificate.\n");

exit(1);

}

if (ret < 0) {

fprintf(stderr, "error: %s\n",

gnutls_strerror(ret));

exit(1);

}

printf("CA issuers URI: %.*s\n", tmp.size,

tmp.data);

hostname = malloc(tmp.size + 1);

memcpy(hostname, tmp.data, tmp.size);

hostname[tmp.size] = 0;

gnutls_free(tmp.data);

break;

}

}

/* Note that the OCSP servers hostname might be available

* using gnutls_x509_crt_get_authority_info_access() in the issuer’s

* certificate */

memset(&ud, 0, sizeof(ud));

fprintf(stderr, "Connecting to %s\n", hostname);

_generate_request(&req, cert, issuer, &nonce);

#ifndef NO_LIBCURL

curl_global_init(CURL_GLOBAL_ALL);

handle = curl_easy_init();

if (handle == NULL)

exit(1);

Chapter 7: GnuTLS application examples 225

headers =

curl_slist_append(headers,

"Content-Type: application/ocsp-request");

curl_easy_setopt(handle, CURLOPT_HTTPHEADER, headers);

curl_easy_setopt(handle, CURLOPT_POSTFIELDS, (void *) req.data);

curl_easy_setopt(handle, CURLOPT_POSTFIELDSIZE, req.size);

curl_easy_setopt(handle, CURLOPT_URL, hostname);

curl_easy_setopt(handle, CURLOPT_WRITEFUNCTION, get_data);

curl_easy_setopt(handle, CURLOPT_WRITEDATA, &ud);

ret = curl_easy_perform(handle);

if (ret != 0) {

fprintf(stderr, "curl[%d] error %d\n", __LINE__, ret);

exit(1);

}

curl_easy_cleanup(handle);

#endif

_response_info(&ud);

v = _verify_response(&ud, cert, signer, &nonce);

gnutls_x509_crt_deinit(cert);

gnutls_x509_crt_deinit(issuer);

gnutls_x509_crt_deinit(signer);

gnutls_global_deinit();

return v;

}

static void _response_info(const gnutls_datum_t * data)

{

gnutls_ocsp_resp_t resp;

int ret;

gnutls_datum buf;

ret = gnutls_ocsp_resp_init(&resp);

if (ret < 0)

exit(1);

ret = gnutls_ocsp_resp_import(resp, data);

if (ret < 0)

exit(1);

Chapter 7: GnuTLS application examples 226

ret = gnutls_ocsp_resp_print(resp, GNUTLS_OCSP_PRINT_FULL, &buf);

if (ret != 0)

exit(1);

printf("%.*s", buf.size, buf.data);

gnutls_free(buf.data);

gnutls_ocsp_resp_deinit(resp);

}

static gnutls_x509_crt_t load_cert(const char *cert_file)

{

gnutls_x509_crt_t crt;

int ret;

gnutls_datum_t data;

size_t size;

ret = gnutls_x509_crt_init(&crt);

if (ret < 0)

exit(1);

data.data = (void *) read_binary_file(cert_file, &size);

data.size = size;

if (!data.data) {

fprintf(stderr, "Cannot open file: %s\n", cert_file);

exit(1);

}

ret = gnutls_x509_crt_import(crt, &data, GNUTLS_X509_FMT_PEM);

free(data.data);

if (ret < 0) {

fprintf(stderr, "Cannot import certificate in %s: %s\n",

cert_file, gnutls_strerror(ret));

exit(1);

}

return crt;

}

static void

_generate_request(gnutls_datum_t * rdata, gnutls_x509_crt_t cert,

gnutls_x509_crt_t issuer, gnutls_datum_t *nonce)

{

gnutls_ocsp_req_t req;

int ret;

Chapter 7: GnuTLS application examples 227

ret = gnutls_ocsp_req_init(&req);

if (ret < 0)

exit(1);

ret = gnutls_ocsp_req_add_cert(req, GNUTLS_DIG_SHA1, issuer, cert);

if (ret < 0)

exit(1);

ret = gnutls_ocsp_req_set_nonce(req, 0, nonce);

if (ret < 0)

exit(1);

ret = gnutls_ocsp_req_export(req, rdata);

if (ret != 0)

exit(1);

gnutls_ocsp_req_deinit(req);

return;

}

static int

_verify_response(gnutls_datum_t * data, gnutls_x509_crt_t cert,

gnutls_x509_crt_t signer, gnutls_datum_t *nonce)

{

gnutls_ocsp_resp_t resp;

int ret;

unsigned verify;

gnutls_datum_t rnonce;

ret = gnutls_ocsp_resp_init(&resp);

if (ret < 0)

exit(1);

ret = gnutls_ocsp_resp_import(resp, data);

if (ret < 0)

exit(1);

ret = gnutls_ocsp_resp_check_crt(resp, 0, cert);

if (ret < 0)

exit(1);

ret = gnutls_ocsp_resp_get_nonce(resp, NULL, &rnonce);

if (ret < 0)

exit(1);

Chapter 7: GnuTLS application examples 228

if (rnonce.size != nonce->size || memcmp(nonce->data, rnonce.data,

nonce->size) != 0) {

exit(1);

}

ret = gnutls_ocsp_resp_verify_direct(resp, signer, &verify, 0);

if (ret < 0)

exit(1);

printf("Verifying OCSP Response: ");

if (verify == 0)

printf("Verification success!\n");

else

printf("Verification error!\n");

if (verify & GNUTLS_OCSP_VERIFY_SIGNER_NOT_FOUND)

printf("Signer cert not found\n");

if (verify & GNUTLS_OCSP_VERIFY_SIGNER_KEYUSAGE_ERROR)

printf("Signer cert keyusage error\n");

if (verify & GNUTLS_OCSP_VERIFY_UNTRUSTED_SIGNER)

printf("Signer cert is not trusted\n");

if (verify & GNUTLS_OCSP_VERIFY_INSECURE_ALGORITHM)

printf("Insecure algorithm\n");

if (verify & GNUTLS_OCSP_VERIFY_SIGNATURE_FAILURE)

printf("Signature failure\n");

if (verify & GNUTLS_OCSP_VERIFY_CERT_NOT_ACTIVATED)

printf("Signer cert not yet activated\n");

if (verify & GNUTLS_OCSP_VERIFY_CERT_EXPIRED)

printf("Signer cert expired\n");

gnutls_free(rnonce.data);

gnutls_ocsp_resp_deinit(resp);

return verify;

}

size_t get_data(void *buffer, size_t size, size_t nmemb, void *userp)

{

gnutls_datum_t *ud = userp;

size *= nmemb;

Chapter 7: GnuTLS application examples 229

ud->data = realloc(ud->data, size + ud->size);

if (ud->data == NULL) {

fprintf(stderr, "Not enough memory for the request\n");

exit(1);

}

memcpy(&ud->data[ud->size], buffer, size);

ud->size += size;

return size;

}

7.4 Miscellaneous examples

7.4.1 Checking for an alert

This is a function that checks if an alert has been received in the current session.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <gnutls/gnutls.h>

#include "examples.h"

/* This function will check whether the given return code from

* a gnutls function (recv/send), is an alert, and will print

* that alert.

*/

void check_alert(gnutls_session_t session, int ret)

{

int last_alert;

if (ret == GNUTLS_E_WARNING_ALERT_RECEIVED

|| ret == GNUTLS_E_FATAL_ALERT_RECEIVED) {

last_alert = gnutls_alert_get(session);

/* The check for renegotiation is only useful if we are

* a server, and we had requested a rehandshake.

*/

if (last_alert == GNUTLS_A_NO_RENEGOTIATION &&

ret == GNUTLS_E_WARNING_ALERT_RECEIVED)

Chapter 7: GnuTLS application examples 230

printf("* Received NO_RENEGOTIATION alert. "

"Client Does not support renegotiation.\n");

else

printf("* Received alert ’%d’: %s.\n", last_alert,

gnutls_alert_get_name(last_alert));

}

}

7.4.2 X.509 certificate parsing example

To demonstrate the X.509 parsing capabilities an example program is listed below. That
program reads the peer’s certificate, and prints information about it.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <gnutls/gnutls.h>

#include <gnutls/x509.h>

#include "examples.h"

static const char *bin2hex(const void *bin, size_t bin_size)

{

static char printable[110];

const unsigned char *_bin = bin;

char *print;

size_t i;

if (bin_size > 50)

bin_size = 50;

print = printable;

for (i = 0; i < bin_size; i++) {

sprintf(print, "%.2x ", _bin[i]);

print += 2;

}

return printable;

}

/* This function will print information about this session’s peer

* certificate.

*/

Chapter 7: GnuTLS application examples 231

void print_x509_certificate_info(gnutls_session_t session)

{

char serial[40];

char dn[256];

size_t size;

unsigned int algo, bits;

time_t expiration_time, activation_time;

const gnutls_datum_t *cert_list;

unsigned int cert_list_size = 0;

gnutls_x509_crt_t cert;

gnutls_datum_t cinfo;

/* This function only works for X.509 certificates.

*/

if (gnutls_certificate_type_get(session) != GNUTLS_CRT_X509)

return;

cert_list = gnutls_certificate_get_peers(session, &cert_list_size);

printf("Peer provided %d certificates.\n", cert_list_size);

if (cert_list_size > 0) {

int ret;

/* we only print information about the first certificate.

*/

gnutls_x509_crt_init(&cert);

gnutls_x509_crt_import(cert, &cert_list[0],

GNUTLS_X509_FMT_DER);

printf("Certificate info:\n");

/* This is the preferred way of printing short information about

a certificate. */

ret =

gnutls_x509_crt_print(cert, GNUTLS_CRT_PRINT_ONELINE,

&cinfo);

if (ret == 0) {

printf("\t%s\n", cinfo.data);

gnutls_free(cinfo.data);

}

/* If you want to extract fields manually for some other reason,

below are popular example calls. */

Chapter 7: GnuTLS application examples 232

expiration_time =

gnutls_x509_crt_get_expiration_time(cert);

activation_time =

gnutls_x509_crt_get_activation_time(cert);

printf("\tCertificate is valid since: %s",

ctime(&activation_time));

printf("\tCertificate expires: %s",

ctime(&expiration_time));

/* Print the serial number of the certificate.

*/

size = sizeof(serial);

gnutls_x509_crt_get_serial(cert, serial, &size);

printf("\tCertificate serial number: %s\n",

bin2hex(serial, size));

/* Extract some of the public key algorithm’s parameters

*/

algo = gnutls_x509_crt_get_pk_algorithm(cert, &bits);

printf("Certificate public key: %s",

gnutls_pk_algorithm_get_name(algo));

/* Print the version of the X.509

* certificate.

*/

printf("\tCertificate version: #%d\n",

gnutls_x509_crt_get_version(cert));

size = sizeof(dn);

gnutls_x509_crt_get_dn(cert, dn, &size);

printf("\tDN: %s\n", dn);

size = sizeof(dn);

gnutls_x509_crt_get_issuer_dn(cert, dn, &size);

printf("\tIssuer’s DN: %s\n", dn);

gnutls_x509_crt_deinit(cert);

}

}

7.4.3 Listing the ciphersuites in a priority string

This is a small program to list the enabled ciphersuites by a priority string.

Chapter 7: GnuTLS application examples 233

/* This example code is placed in the public domain. */

#include <config.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <gnutls/gnutls.h>

static void print_cipher_suite_list(const char *priorities)

{

size_t i;

int ret;

unsigned int idx;

const char *name;

const char *err;

unsigned char id[2];

gnutls_protocol_t version;

gnutls_priority_t pcache;

if (priorities != NULL) {

printf("Cipher suites for %s\n", priorities);

ret = gnutls_priority_init(&pcache, priorities, &err);

if (ret < 0) {

fprintf(stderr, "Syntax error at: %s\n", err);

exit(1);

}

for (i = 0;; i++) {

ret =

gnutls_priority_get_cipher_suite_index(pcache,

i,

&idx);

if (ret == GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE)

break;

if (ret == GNUTLS_E_UNKNOWN_CIPHER_SUITE)

continue;

name =

gnutls_cipher_suite_info(idx, id, NULL, NULL,

NULL, &version);

if (name != NULL)

printf("%-50s\t0x%02x, 0x%02x\t%s\n",

name, (unsigned char) id[0],

(unsigned char) id[1],

gnutls_protocol_get_name(version));

Chapter 7: GnuTLS application examples 234

}

return;

}

}

int main(int argc, char **argv)

{

if (argc > 1)

print_cipher_suite_list(argv[1]);

return 0;

}

7.4.4 PKCS #12 structure generation example

This small program demonstrates the usage of the PKCS #12 API, by generating such a
structure.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <gnutls/gnutls.h>

#include <gnutls/pkcs12.h>

#include "examples.h"

#define OUTFILE "out.p12"

/* This function will write a pkcs12 structure into a file.

* cert: is a DER encoded certificate

* pkcs8_key: is a PKCS #8 encrypted key (note that this must be

* encrypted using a PKCS #12 cipher, or some browsers will crash)

* password: is the password used to encrypt the PKCS #12 packet.

*/

int

write_pkcs12(const gnutls_datum_t * cert,

const gnutls_datum_t * pkcs8_key, const char *password)

{

gnutls_pkcs12_t pkcs12;

int ret, bag_index;

gnutls_pkcs12_bag_t bag, key_bag;

char pkcs12_struct[10 * 1024];

size_t pkcs12_struct_size;

Chapter 7: GnuTLS application examples 235

FILE *fd;

/* A good idea might be to use gnutls_x509_privkey_get_key_id()

* to obtain a unique ID.

*/

gnutls_datum_t key_id = { (void *) "\x00\x00\x07", 3 };

gnutls_global_init();

/* Firstly we create two helper bags, which hold the certificate,

* and the (encrypted) key.

*/

gnutls_pkcs12_bag_init(&bag);

gnutls_pkcs12_bag_init(&key_bag);

ret =

gnutls_pkcs12_bag_set_data(bag, GNUTLS_BAG_CERTIFICATE, cert);

if (ret < 0) {

fprintf(stderr, "ret: %s\n", gnutls_strerror(ret));

return 1;

}

/* ret now holds the bag’s index.

*/

bag_index = ret;

/* Associate a friendly name with the given certificate. Used

* by browsers.

*/

gnutls_pkcs12_bag_set_friendly_name(bag, bag_index, "My name");

/* Associate the certificate with the key using a unique key

* ID.

*/

gnutls_pkcs12_bag_set_key_id(bag, bag_index, &key_id);

/* use weak encryption for the certificate.

*/

gnutls_pkcs12_bag_encrypt(bag, password,

GNUTLS_PKCS_USE_PKCS12_RC2_40);

/* Now the key.

*/

ret = gnutls_pkcs12_bag_set_data(key_bag,

GNUTLS_BAG_PKCS8_ENCRYPTED_KEY,

Chapter 7: GnuTLS application examples 236

pkcs8_key);

if (ret < 0) {

fprintf(stderr, "ret: %s\n", gnutls_strerror(ret));

return 1;

}

/* Note that since the PKCS #8 key is already encrypted we don’t

* bother encrypting that bag.

*/

bag_index = ret;

gnutls_pkcs12_bag_set_friendly_name(key_bag, bag_index, "My name");

gnutls_pkcs12_bag_set_key_id(key_bag, bag_index, &key_id);

/* The bags were filled. Now create the PKCS #12 structure.

*/

gnutls_pkcs12_init(&pkcs12);

/* Insert the two bags in the PKCS #12 structure.

*/

gnutls_pkcs12_set_bag(pkcs12, bag);

gnutls_pkcs12_set_bag(pkcs12, key_bag);

/* Generate a message authentication code for the PKCS #12

* structure.

*/

gnutls_pkcs12_generate_mac(pkcs12, password);

pkcs12_struct_size = sizeof(pkcs12_struct);

ret =

gnutls_pkcs12_export(pkcs12, GNUTLS_X509_FMT_DER,

pkcs12_struct, &pkcs12_struct_size);

if (ret < 0) {

fprintf(stderr, "ret: %s\n", gnutls_strerror(ret));

return 1;

}

fd = fopen(OUTFILE, "w");

if (fd == NULL) {

fprintf(stderr, "cannot open file\n");

return 1;

}

fwrite(pkcs12_struct, 1, pkcs12_struct_size, fd);

Chapter 7: GnuTLS application examples 237

fclose(fd);

gnutls_pkcs12_bag_deinit(bag);

gnutls_pkcs12_bag_deinit(key_bag);

gnutls_pkcs12_deinit(pkcs12);

return 0;

}

Chapter 8: Using GnuTLS as a cryptographic library 238

8 Using GnuTLS as a cryptographic library

GnuTLS is not a low-level cryptographic library, i.e., it does not provide access to basic
cryptographic primitives. However it abstracts the internal cryptographic back-end (see
Section 10.5 [Cryptographic Backend], page 250), providing symmetric crypto, hash and
HMAC algorithms, as well access to the random number generation. For a low-level crypto
API the usage of nettle1 library is recommended.

8.1 Symmetric algorithms

The available functions to access symmetric crypto algorithms operations are shown below.
The supported algorithms are the algorithms required by the TLS protocol. They are listed
in Table 3.1.

int [gnutls_cipher_init], page 512 (gnutls_cipher_hd_t * handle,

gnutls_cipher_algorithm_t cipher, const gnutls_datum_t * key, const

gnutls_datum_t * iv)

int [gnutls_cipher_encrypt2], page 512 (gnutls_cipher_hd_t handle, const void

* text, size_t textlen, void * ciphertext, size_t ciphertextlen)

int [gnutls_cipher_decrypt2], page 511 (gnutls_cipher_hd_t handle, const void

* ciphertext, size_t ciphertextlen, void * text, size_t textlen)

void [gnutls_cipher_set_iv], page 513 (gnutls_cipher_hd_t handle, void * iv,

size_t ivlen)

void [gnutls_cipher_deinit], page 511 (gnutls_cipher_hd_t handle)

In order to support authenticated encryption with associated data (AEAD) algorithms the
following functions are provided to set the associated data and retrieve the authentication
tag.

int [gnutls_cipher_add_auth], page 510 (gnutls_cipher_hd_t handle, const void

* text, size_t text_size)

int [gnutls_cipher_tag], page 513 (gnutls_cipher_hd_t handle, void * tag,

size_t tag_size)

8.2 Public key algorithms

Public key cryptography algorithms such as RSA, DSA and ECDSA, can be accessed using
the abstract key API in Section 5.1 [Abstract key types], page 79. This is a high level API
with the advantage of transparently handling keys in memory and keys present in smart
cards.

8.3 Hash and HMAC functions

The available operations to access hash functions and hash-MAC (HMAC) algorithms are
shown below. HMAC algorithms provided keyed hash functionality. They supported HMAC
algorithms are listed in Table 3.2.

1 See http://www.lysator.liu.se/~nisse/nettle/.

http://www.lysator.liu.se/~nisse/nettle/

Chapter 8: Using GnuTLS as a cryptographic library 239

int [gnutls_hmac_init], page 516 (gnutls_hmac_hd_t * dig,

gnutls_mac_algorithm_t algorithm, const void * key, size_t keylen)

int [gnutls_hmac], page 515 (gnutls_hmac_hd_t handle, const void * text,

size_t textlen)

void [gnutls_hmac_output], page 516 (gnutls_hmac_hd_t handle, void * digest)

void [gnutls_hmac_deinit], page 515 (gnutls_hmac_hd_t handle, void * digest)

int [gnutls_hmac_get_len], page 515 (gnutls_mac_algorithm_t algorithm)

int [gnutls_hmac_fast], page 515 (gnutls_mac_algorithm_t algorithm, const

void * key, size_t keylen, const void * text, size_t textlen, void * digest)

The available functions to access hash functions are shown below. The supported hash
functions are the same as the HMAC algorithms.

int [gnutls_hash_init], page 514 (gnutls_hash_hd_t * dig,

gnutls_digest_algorithm_t algorithm)

int [gnutls_hash], page 513 (gnutls_hash_hd_t handle, const void * text,

size_t textlen)

void [gnutls_hash_output], page 514 (gnutls_hash_hd_t handle, void * digest)

void [gnutls_hash_deinit], page 513 (gnutls_hash_hd_t handle, void * digest)

int [gnutls_hash_get_len], page 514 (gnutls_digest_algorithm_t algorithm)

int [gnutls_hash_fast], page 514 (gnutls_digest_algorithm_t algorithm, const

void * text, size_t textlen, void * digest)

int [gnutls_fingerprint], page 300 (gnutls_digest_algorithm_t algo, const

gnutls_datum_t * data, void * result, size_t * result_size)

8.4 Random number generation

Access to the random number generator is provided using the [gnutls rnd], page 517 func-
tion. It allows obtaining random data of various levels.

GNUTLS_RND_NONCE

Non-predictable random number. Fatal in parts of session if broken, i.e., vul-
nerable to statistical analysis.

GNUTLS_RND_RANDOM

Pseudo-random cryptographic random number. Fatal in session if broken.

GNUTLS_RND_KEY

Fatal in many sessions if broken.

Figure 8.1: The random number levels.

[Function]int gnutls_rnd (gnutls rnd level t level, void * data, size t len)
level: a security level

data: place to store random bytes

len: The requested size

This function will generate random data and store it to output buffer.

This function is thread-safe and also fork-safe.

Returns: Zero on success, or a negative error code on error.

Since: 2.12.0

Chapter 9: Other included programs 240

9 Other included programs

Included with GnuTLS are also a few command line tools that let you use the library
for common tasks without writing an application. The applications are discussed in this
chapter.

9.1 Invoking gnutls-cli

Simple client program to set up a TLS connection to some other computer. It sets up a
TLS connection and forwards data from the standard input to the secured socket and vice
versa.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the gnutls-cli program. This software is released under the GNU General
Public License, version 3 or later.

gnutls-cli help/usage (--help)

This is the automatically generated usage text for gnutls-cli.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

gnutls-cli - GnuTLS client

Usage: gnutls-cli [-<flag> [<val>] | --<name>[{=| }<val>]]... [hostname]

-d, --debug=num Enable debugging

- it must be in the range:

0 to 9999

-V, --verbose More verbose output

- may appear multiple times

--tofu Enable trust on first use authentication

- disabled as ’--no-tofu’

--strict-tofu Fail to connect if a known certificate has changed

- disabled as ’--no-strict-tofu’

--dane Enable DANE certificate verification (DNSSEC)

- disabled as ’--no-dane’

--local-dns Use the local DNS server for DNSSEC resolving

- disabled as ’--no-local-dns’

--ca-verification Enable CA certificate verification

- disabled as ’--no-ca-verification’

- enabled by default

--ocsp Enable OCSP certificate verification

- disabled as ’--no-ocsp’

-r, --resume Establish a session and resume

-e, --rehandshake Establish a session and rehandshake

-s, --starttls Connect, establish a plain session and start TLS

Chapter 9: Other included programs 241

--app-proto=str an alias for the ’starttls-proto’ option

--starttls-proto=str The application protocol to be used to obtain the server’s certificate

(https, ftp, smtp, imap, ldap, xmpp)

- prohibits the option ’starttls’

-u, --udp Use DTLS (datagram TLS) over UDP

--mtu=num Set MTU for datagram TLS

- it must be in the range:

0 to 17000

--crlf Send CR LF instead of LF

--fastopen Enable TCP Fast Open

--x509fmtder Use DER format for certificates to read from

-f, --fingerprint Send the openpgp fingerprint, instead of the key

--print-cert Print peer’s certificate in PEM format

--save-cert=str Save the peer’s certificate chain in the specified file in PEM format

--save-ocsp=str Save the peer’s OCSP status response in the provided file

--dh-bits=num The minimum number of bits allowed for DH

--priority=str Priorities string

--x509cafile=str Certificate file or PKCS #11 URL to use

--x509crlfile=file CRL file to use

- file must pre-exist

--pgpkeyfile=file PGP Key file to use

- file must pre-exist

--pgpkeyring=file PGP Key ring file to use

- file must pre-exist

--pgpcertfile=file PGP Public Key (certificate) file to use

- requires the option ’pgpkeyfile’

- file must pre-exist

--x509keyfile=str X.509 key file or PKCS #11 URL to use

--x509certfile=str X.509 Certificate file or PKCS #11 URL to use

- requires the option ’x509keyfile’

--pgpsubkey=str PGP subkey to use (hex or auto)

--srpusername=str SRP username to use

--srppasswd=str SRP password to use

--pskusername=str PSK username to use

--pskkey=str PSK key (in hex) to use

-p, --port=str The port or service to connect to

--insecure Don’t abort program if server certificate can’t be validated

--ranges Use length-hiding padding to prevent traffic analysis

--benchmark-ciphers Benchmark individual ciphers

--benchmark-tls-kx Benchmark TLS key exchange methods

--benchmark-tls-ciphers Benchmark TLS ciphers

-l, --list Print a list of the supported algorithms and modes

- prohibits the option ’port’

--priority-list Print a list of the supported priority strings

--noticket Don’t allow session tickets

--srtp-profiles=str Offer SRTP profiles

--alpn=str Application layer protocol

Chapter 9: Other included programs 242

- may appear multiple times

-b, --heartbeat Activate heartbeat support

--recordsize=num The maximum record size to advertize

- it must be in the range:

0 to 4096

--disable-sni Do not send a Server Name Indication (SNI)

--disable-extensions Disable all the TLS extensions

--inline-commands Inline commands of the form ^<cmd>^

--inline-commands-prefix=str Change the default delimiter for inline commands.

--provider=file Specify the PKCS #11 provider library

- file must pre-exist

--fips140-mode Reports the status of the FIPS140-2 mode in gnutls library

-v, --version[=arg] output version information and exit

-h, --help display extended usage information and exit

-!, --more-help extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single

hyphen and the flag character.

Operands and options may be intermixed. They will be reordered.

Simple client program to set up a TLS connection to some other computer. It

sets up a TLS connection and forwards data from the standard input to the

secured socket and vice versa.

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the

debug level.

tofu option

This is the “enable trust on first use authentication” option.

This option has some usage constraints. It:

• can be disabled with –no-tofu.

This option will, in addition to certificate authentication, perform authentication based on

previously seen public keys, a model similar to SSH authentication. Note that when tofu

is specified (PKI) and DANE authentication will become advisory to assist the public key

acceptance process.

strict-tofu option

This is the “fail to connect if a known certificate has changed” option.

This option has some usage constraints. It:

• can be disabled with –no-strict-tofu.

This option will perform authentication as with option –tofu; however, while –tofu asks

whether to trust a changed public key, this option will fail in case of public key changes.

Chapter 9: Other included programs 243

dane option

This is the “enable dane certificate verification (dnssec)” option.

This option has some usage constraints. It:

• can be disabled with –no-dane.

This option will, in addition to certificate authentication using the trusted CAs, verify the

server certificates using on the DANE information available via DNSSEC.

local-dns option

This is the “use the local dns server for dnssec resolving” option.

This option has some usage constraints. It:

• can be disabled with –no-local-dns.

This option will use the local DNS server for DNSSEC. This is disabled by default due to

many servers not allowing DNSSEC.

ca-verification option

This is the “disable ca certificate verification” option.

This option has some usage constraints. It:

• can be disabled with –no-ca-verification.

• It is enabled by default.

This option will disable CA certificate verification. It is to be used with the –dane or –tofu

options.

ocsp option

This is the “enable ocsp certificate verification” option.

This option has some usage constraints. It:

• can be disabled with –no-ocsp.

This option will enable verification of the peer’s certificate using ocsp

resume option (-r)

This is the “establish a session and resume” option. Connect, establish a session, reconnect

and resume.

rehandshake option (-e)

This is the “establish a session and rehandshake” option. Connect, establish a session and

rehandshake immediately.

starttls option (-s)

This is the “connect, establish a plain session and start tls” option. The TLS session will

be initiated when EOF or a SIGALRM is received.

Chapter 9: Other included programs 244

app-proto option

This is an alias for the starttls-proto option, see 〈undefined〉 [gnutls-cli starttls-proto],
page 〈undefined〉.

starttls-proto option

This is the “the application protocol to be used to obtain the server’s certificate (https, ftp,
smtp, imap)” option. This option takes a string argument.

This option has some usage constraints. It:

• must not appear in combination with any of the following options: starttls.

Specify the application layer protocol for STARTTLS. If the protocol is supported, gnutls-cli

will proceed to the TLS negotiation.

dh-bits option

This is the “the minimum number of bits allowed for dh” option. This option takes a number

argument. This option sets the minimum number of bits allowed for a Diffie-Hellman key

exchange. You may want to lower the default value if the peer sends a weak prime and you

get an connection error with unacceptable prime.

priority option

This is the “priorities string” option. This option takes a string argument. TLS algorithms
and protocols to enable. You can use predefined sets of ciphersuites such as PERFOR-
MANCE, NORMAL, PFS, SECURE128, SECURE256. The default is NORMAL.

Check the GnuTLS manual on section “Priority strings” for more information on the allowed

keywords

ranges option

This is the “use length-hiding padding to prevent traffic analysis” option. When possible

(e.g., when using CBC ciphersuites), use length-hiding padding to prevent traffic analysis.

list option (-l)

This is the “print a list of the supported algorithms and modes” option.

This option has some usage constraints. It:

• must not appear in combination with any of the following options: port.

Print a list of the supported algorithms and modes. If a priority string is given then only

the enabled ciphersuites are shown.

alpn option

This is the “application layer protocol” option. This option takes a string argument.

This option has some usage constraints. It:

• may appear an unlimited number of times.

This option will set and enable the Application Layer Protocol Negotiation (ALPN) in the

TLS protocol.

Chapter 9: Other included programs 245

disable-extensions option

This is the “disable all the tls extensions” option. This option disables all TLS extensions.

Deprecated option. Use the priority string.

inline-commands option

This is the “inline commands of the form ^<cmd>^” option. Enable inline commands of

the form ^<cmd>^. The inline commands are expected to be in a line by themselves. The

available commands are: resume and renegotiate.

inline-commands-prefix option

This is the “change the default delimiter for inline commands.” option. This option takes a

string argument. Change the default delimiter (^) used for inline commands. The delimiter

is expected to be a single US-ASCII character (octets 0 - 127). This option is only relevant

if inline commands are enabled via the inline-commands option

provider option

This is the “specify the pkcs #11 provider library” option. This option takes a file argument.

This will override the default options in /etc/gnutls/pkcs11.conf

gnutls-cli exit status

One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

gnutls-cli See Also

gnutls-cli-debug(1), gnutls-serv(1)

gnutls-cli Examples

Connecting using PSK authentication

To connect to a server using PSK authentication, you need to enable the choice of PSK by
using a cipher priority parameter such as in the example below.

$./gnutls-cli -p 5556 localhost --pskusername psk_identity \

--pskkey 88f3824b3e5659f52d00e959bacab954b6540344 \

--priority NORMAL:-KX-ALL:+ECDHE-PSK:+DHE-PSK:+PSK

Resolving ’localhost’...

Connecting to ’127.0.0.1:5556’...

- PSK authentication.

- Version: TLS1.1

- Key Exchange: PSK

- Cipher: AES-128-CBC

Chapter 9: Other included programs 246

- MAC: SHA1

- Compression: NULL

- Handshake was completed

- Simple Client Mode:

By keeping the –pskusername parameter and removing the –pskkey parameter, it will query
only for the password during the handshake.

Listing ciphersuites in a priority string

To list the ciphersuites in a priority string:

$./gnutls-cli --priority SECURE192 -l

Cipher suites for SECURE192

TLS_ECDHE_ECDSA_AES_256_CBC_SHA384 0xc0, 0x24 TLS1.2

TLS_ECDHE_ECDSA_AES_256_GCM_SHA384 0xc0, 0x2e TLS1.2

TLS_ECDHE_RSA_AES_256_GCM_SHA384 0xc0, 0x30 TLS1.2

TLS_DHE_RSA_AES_256_CBC_SHA256 0x00, 0x6b TLS1.2

TLS_DHE_DSS_AES_256_CBC_SHA256 0x00, 0x6a TLS1.2

TLS_RSA_AES_256_CBC_SHA256 0x00, 0x3d TLS1.2

Certificate types: CTYPE-X.509

Protocols: VERS-TLS1.2, VERS-TLS1.1, VERS-TLS1.0, VERS-SSL3.0, VERS-DTLS1.0

Compression: COMP-NULL

Elliptic curves: CURVE-SECP384R1, CURVE-SECP521R1

PK-signatures: SIGN-RSA-SHA384, SIGN-ECDSA-SHA384, SIGN-RSA-SHA512, SIGN-ECDSA-SHA512

Connecting using a PKCS #11 token

To connect to a server using a certificate and a private key present in a PKCS #11 token
you need to substitute the PKCS 11 URLs in the x509certfile and x509keyfile parameters.

Those can be found using "p11tool –list-tokens" and then listing all the objects in the
needed token, and using the appropriate.

$ p11tool --list-tokens

Token 0:

URL: pkcs11:model=PKCS15;manufacturer=MyMan;serial=1234;token=Test

Label: Test

Manufacturer: EnterSafe

Model: PKCS15

Serial: 1234

$ p11tool --login --list-certs "pkcs11:model=PKCS15;manufacturer=MyMan;serial=1234;token=Test"

Object 0:

URL: pkcs11:model=PKCS15;manufacturer=MyMan;serial=1234;token=Test;object=client;object-type=cert

Type: X.509 Certificate

Label: client

ID: 2a:97:0d:58:d1:51:3c:23:07:ae:4e:0d:72:26:03:7d:99:06:02:6a

Chapter 9: Other included programs 247

$ export MYCERT="pkcs11:model=PKCS15;manufacturer=MyMan;serial=1234;token=Test;object=client;object-type=cert"

$ export MYKEY="pkcs11:model=PKCS15;manufacturer=MyMan;serial=1234;token=Test;object=client;object-type=private"

$ gnutls-cli www.example.com --x509keyfile $MYKEY --x509certfile MYCERT

Notice that the private key only differs from the certificate in the object-type.

9.2 Invoking gnutls-serv

Server program that listens to incoming TLS connections.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the gnutls-serv program. This software is released under the GNUGeneral
Public License, version 3 or later.

gnutls-serv help/usage (--help)

This is the automatically generated usage text for gnutls-serv.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

gnutls-serv - GnuTLS server

Usage: gnutls-serv [-<flag> [<val>] | --<name>[{=| }<val>]]...

-d, --debug=num Enable debugging

- it must be in the range:

0 to 9999

--sni-hostname=str Server’s hostname for server name extension

--sni-hostname-fatal Send fatal alert on sni-hostname mismatch

--noticket Don’t accept session tickets

-g, --generate Generate Diffie-Hellman parameters

-q, --quiet Suppress some messages

--nodb Do not use a resumption database

--http Act as an HTTP server

--echo Act as an Echo server

-u, --udp Use DTLS (datagram TLS) over UDP

--mtu=num Set MTU for datagram TLS

- it must be in the range:

0 to 17000

--srtp-profiles=str Offer SRTP profiles

-a, --disable-client-cert Do not request a client certificate

-r, --require-client-cert Require a client certificate

--verify-client-cert If a client certificate is sent then verify it.

-b, --heartbeat Activate heartbeat support

--x509fmtder Use DER format for certificates to read from

--priority=str Priorities string

Chapter 9: Other included programs 248

--dhparams=file DH params file to use

- file must pre-exist

--x509cafile=str Certificate file or PKCS #11 URL to use

--x509crlfile=file CRL file to use

- file must pre-exist

--pgpkeyfile=file PGP Key file to use

- file must pre-exist

--pgpkeyring=file PGP Key ring file to use

- file must pre-exist

--pgpcertfile=file PGP Public Key (certificate) file to use

- file must pre-exist

--x509keyfile=str X.509 key file or PKCS #11 URL to use

--x509certfile=str X.509 Certificate file or PKCS #11 URL to use

--x509dsakeyfile=str Alternative X.509 key file or PKCS #11 URL to use

--x509dsacertfile=str Alternative X.509 Certificate file or PKCS #11 URL to use

--x509ecckeyfile=str Alternative X.509 key file or PKCS #11 URL to use

--x509ecccertfile=str Alternative X.509 Certificate file or PKCS #11 URL to use

--pgpsubkey=str PGP subkey to use (hex or auto)

--srppasswd=file SRP password file to use

- file must pre-exist

--srppasswdconf=file SRP password configuration file to use

- file must pre-exist

--pskpasswd=file PSK password file to use

- file must pre-exist

--pskhint=str PSK identity hint to use

--ocsp-response=file The OCSP response to send to client

- file must pre-exist

-p, --port=num The port to connect to

-l, --list Print a list of the supported algorithms and modes

--provider=file Specify the PKCS #11 provider library

- file must pre-exist

-v, --version[=arg] output version information and exit

-h, --help display extended usage information and exit

-!, --more-help extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single

hyphen and the flag character.

Server program that listens to incoming TLS connections.

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the

debug level.

Chapter 9: Other included programs 249

verify-client-cert option

This is the “if a client certificate is sent then verify it.” option. Do not require, but if a

client certificate is sent then verify it and close the connection if invalid.

heartbeat option (-b)

This is the “activate heartbeat support” option. Regularly ping client via heartbeat exten-

sion messages

priority option

This is the “priorities string” option. This option takes a string argument. TLS algorithms
and protocols to enable. You can use predefined sets of ciphersuites such as PERFOR-
MANCE, NORMAL, SECURE128, SECURE256. The default is NORMAL.

Check the GnuTLS manual on section “Priority strings” for more information on allowed

keywords

ocsp-response option

This is the “the ocsp response to send to client” option. This option takes a file argument.

If the client requested an OCSP response, return data from this file to the client.

list option (-l)

This is the “print a list of the supported algorithms and modes” option. Print a list of

the supported algorithms and modes. If a priority string is given then only the enabled

ciphersuites are shown.

provider option

This is the “specify the pkcs #11 provider library” option. This option takes a file argument.

This will override the default options in /etc/gnutls/pkcs11.conf

gnutls-serv exit status

One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

gnutls-serv See Also

gnutls-cli-debug(1), gnutls-cli(1)

gnutls-serv Examples

Running your own TLS server based on GnuTLS can be useful when debugging clients
and/or GnuTLS itself. This section describes how to use gnutls-serv as a simple HTTPS
server.

The most basic server can be started as:

Chapter 9: Other included programs 250

gnutls-serv --http --priority "NORMAL:+ANON-ECDH:+ANON-DH"

It will only support anonymous ciphersuites, which many TLS clients refuse to use.

The next step is to add support for X.509. First we generate a CA:

$ certtool --generate-privkey > x509-ca-key.pem

$ echo ’cn = GnuTLS test CA’ > ca.tmpl

$ echo ’ca’ >> ca.tmpl

$ echo ’cert_signing_key’ >> ca.tmpl

$ certtool --generate-self-signed --load-privkey x509-ca-key.pem \

--template ca.tmpl --outfile x509-ca.pem

...

Then generate a server certificate. Remember to change the dns name value to the name
of your server host, or skip that command to avoid the field.

$ certtool --generate-privkey > x509-server-key.pem

$ echo ’organization = GnuTLS test server’ > server.tmpl

$ echo ’cn = test.gnutls.org’ >> server.tmpl

$ echo ’tls_www_server’ >> server.tmpl

$ echo ’encryption_key’ >> server.tmpl

$ echo ’signing_key’ >> server.tmpl

$ echo ’dns_name = test.gnutls.org’ >> server.tmpl

$ certtool --generate-certificate --load-privkey x509-server-key.pem \

--load-ca-certificate x509-ca.pem --load-ca-privkey x509-ca-key.pem \

--template server.tmpl --outfile x509-server.pem

...

For use in the client, you may want to generate a client certificate as well.

$ certtool --generate-privkey > x509-client-key.pem

$ echo ’cn = GnuTLS test client’ > client.tmpl

$ echo ’tls_www_client’ >> client.tmpl

$ echo ’encryption_key’ >> client.tmpl

$ echo ’signing_key’ >> client.tmpl

$ certtool --generate-certificate --load-privkey x509-client-key.pem \

--load-ca-certificate x509-ca.pem --load-ca-privkey x509-ca-key.pem \

--template client.tmpl --outfile x509-client.pem

...

To be able to import the client key/certificate into some applications, you will need to
convert them into a PKCS#12 structure. This also encrypts the security sensitive key with
a password.

$ certtool --to-p12 --load-ca-certificate x509-ca.pem \

--load-privkey x509-client-key.pem --load-certificate x509-client.pem \

--outder --outfile x509-client.p12

For icing, we’ll create a proxy certificate for the client too.

$ certtool --generate-privkey > x509-proxy-key.pem

$ echo ’cn = GnuTLS test client proxy’ > proxy.tmpl

$ certtool --generate-proxy --load-privkey x509-proxy-key.pem \

--load-ca-certificate x509-client.pem --load-ca-privkey x509-client-key.pem \

Chapter 9: Other included programs 251

--load-certificate x509-client.pem --template proxy.tmpl \

--outfile x509-proxy.pem

...

Then start the server again:

$ gnutls-serv --http \

--x509cafile x509-ca.pem \

--x509keyfile x509-server-key.pem \

--x509certfile x509-server.pem

Try connecting to the server using your web browser. Note that the server listens to port
5556 by default.

While you are at it, to allow connections using DSA, you can also create a DSA key and
certificate for the server. These credentials will be used in the final example below.

$ certtool --generate-privkey --dsa > x509-server-key-dsa.pem

$ certtool --generate-certificate --load-privkey x509-server-key-dsa.pem \

--load-ca-certificate x509-ca.pem --load-ca-privkey x509-ca-key.pem \

--template server.tmpl --outfile x509-server-dsa.pem

...

The next step is to create OpenPGP credentials for the server.

gpg --gen-key

...enter whatever details you want, use ’test.gnutls.org’ as name...

Make a note of the OpenPGP key identifier of the newly generated key, here it was 5D1D14D8.
You will need to export the key for GnuTLS to be able to use it.

gpg -a --export 5D1D14D8 > openpgp-server.txt

gpg --export 5D1D14D8 > openpgp-server.bin

gpg --export-secret-keys 5D1D14D8 > openpgp-server-key.bin

gpg -a --export-secret-keys 5D1D14D8 > openpgp-server-key.txt

Let’s start the server with support for OpenPGP credentials:

gnutls-serv --http --priority NORMAL:+CTYPE-OPENPGP \

--pgpkeyfile openpgp-server-key.txt \

--pgpcertfile openpgp-server.txt

The next step is to add support for SRP authentication. This requires an SRP password
file created with srptool. To start the server with SRP support:

gnutls-serv --http --priority NORMAL:+SRP-RSA:+SRP \

--srppasswdconf srp-tpasswd.conf \

--srppasswd srp-passwd.txt

Let’s also start a server with support for PSK. This would require a password file created
with psktool.

gnutls-serv --http --priority NORMAL:+ECDHE-PSK:+PSK \

--pskpasswd psk-passwd.txt

Finally, we start the server with all the earlier parameters and you get this command:

gnutls-serv --http --priority NORMAL:+PSK:+SRP:+CTYPE-OPENPGP \

--x509cafile x509-ca.pem \

--x509keyfile x509-server-key.pem \

Chapter 9: Other included programs 252

--x509certfile x509-server.pem \

--x509dsakeyfile x509-server-key-dsa.pem \

--x509dsacertfile x509-server-dsa.pem \

--pgpkeyfile openpgp-server-key.txt \

--pgpcertfile openpgp-server.txt \

--srppasswdconf srp-tpasswd.conf \

--srppasswd srp-passwd.txt \

--pskpasswd psk-passwd.txt

9.3 Invoking gnutls-cli-debug

TLS debug client. It sets up multiple TLS connections to a server and queries its capabilities.
It was created to assist in debugging GnuTLS, but it might be useful to extract a TLS
server’s capabilities. It connects to a TLS server, performs tests and print the server’s
capabilities. If called with the ‘-v’ parameter more checks will be performed. Can be used
to check for servers with special needs or bugs.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the gnutls-cli-debug program. This software is released under the GNU
General Public License, version 3 or later.

gnutls-cli-debug help/usage (--help)

This is the automatically generated usage text for gnutls-cli-debug.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

gnutls-cli-debug - GnuTLS debug client

Usage: gnutls-cli-debug [-<flag> [<val>] | --<name>[{=| }<val>]]...

-d, --debug=num Enable debugging

- it must be in the range:

0 to 9999

-V, --verbose More verbose output

- may appear multiple times

-p, --port=num The port to connect to

- it must be in the range:

0 to 65536

--app-proto=str an alias for the ’starttls-proto’ option

--starttls-proto=str The application protocol to be used to obtain the server’s certificate

(https, ftp, smtp, imap, ldap, xmpp)

-v, --version[=arg] output version information and exit

-h, --help display extended usage information and exit

-!, --more-help extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single

Chapter 9: Other included programs 253

hyphen and the flag character.

Operands and options may be intermixed. They will be reordered.

TLS debug client. It sets up multiple TLS connections to a server and

queries its capabilities. It was created to assist in debugging GnuTLS,

but it might be useful to extract a TLS server’s capabilities. It connects

to a TLS server, performs tests and print the server’s capabilities. If

called with the ‘-v’ parameter more checks will be performed. Can be used

to check for servers with special needs or bugs.

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the

debug level.

gnutls-cli-debug exit status

One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

gnutls-cli-debug See Also

gnutls-cli(1), gnutls-serv(1)

gnutls-cli-debug Examples

$../src/gnutls-cli-debug localhost

Resolving ’localhost’...

Connecting to ’127.0.0.1:443’...

Checking for SSL 3.0 support... yes

Checking whether %COMPAT is required... no

Checking for TLS 1.0 support... yes

Checking for TLS 1.1 support... no

Checking fallback from TLS 1.1 to... TLS 1.0

Checking for TLS 1.2 support... no

Checking whether we need to disable TLS 1.0... N/A

Checking for Safe renegotiation support... yes

Checking for Safe renegotiation support (SCSV)... yes

Checking for HTTPS server name... not checked

Checking for version rollback bug in RSA PMS... no

Checking for version rollback bug in Client Hello... no

Checking whether the server ignores the RSA PMS version... no

Checking whether the server can accept Hello Extensions... yes

Checking whether the server can accept small records (512 bytes)... yes

Checking whether the server can accept cipher suites not in SSL 3.0 spec... yes

Chapter 9: Other included programs 254

Checking whether the server can accept a bogus TLS record version in the client hello... yes

Checking for certificate information... N/A

Checking for trusted CAs... N/A

Checking whether the server understands TLS closure alerts... partially

Checking whether the server supports session resumption... yes

Checking for export-grade ciphersuite support... no

Checking RSA-export ciphersuite info... N/A

Checking for anonymous authentication support... no

Checking anonymous Diffie-Hellman group info... N/A

Checking for ephemeral Diffie-Hellman support... no

Checking ephemeral Diffie-Hellman group info... N/A

Checking for ephemeral EC Diffie-Hellman support... yes

Checking ephemeral EC Diffie-Hellman group info...

Curve SECP256R1

Checking for AES-GCM cipher support... no

Checking for AES-CBC cipher support... yes

Checking for CAMELLIA cipher support... no

Checking for 3DES-CBC cipher support... yes

Checking for ARCFOUR 128 cipher support... yes

Checking for ARCFOUR 40 cipher support... no

Checking for MD5 MAC support... yes

Checking for SHA1 MAC support... yes

Checking for SHA256 MAC support... no

Checking for ZLIB compression support... no

Checking for max record size... no

Checking for OpenPGP authentication support... no

Chapter 10: Internal Architecture of GnuTLS 255

10 Internal Architecture of GnuTLS

This chapter is to give a brief description of the way GnuTLS works. The focus is to give
an idea to potential developers and those who want to know what happens inside the black
box.

10.1 The TLS Protocol

The main use case for the TLS protocol is shown in 〈undefined〉 [fig-client-server], page 〈un-
defined〉. A user of a library implementing the protocol expects no less than this func-
tionality, i.e., to be able to set parameters such as the accepted security level, perform a
negotiation with the peer and be able to exchange data.

Client
Server

Handshake

Send data

Receive data

set session
parameters

Figure 10.1: TLS protocol use case.

10.2 TLS Handshake Protocol

The GnuTLS handshake protocol is implemented as a state machine that waits for input or
returns immediately when the non-blocking transport layer functions are used. The main
idea is shown in 〈undefined〉 [fig-gnutls-handshake], page 〈undefined〉.

Chapter 10: Internal Architecture of GnuTLS 256

gnutls_handshake

Awaiting handshake
message

Processing handshake
message

Figure 10.2: GnuTLS handshake state machine.

Also the way the input is processed varies per ciphersuite. Several implementations of the
internal handlers are available and [gnutls handshake], page 303 only multiplexes the input
to the appropriate handler. For example a PSK ciphersuite has a different implementation
of the process_client_key_exchange than a certificate ciphersuite. We illustrate the idea
in 〈undefined〉 [fig-gnutls-handshake-sequence], page 〈undefined〉.

handshake authentication_method
transport
layer

peer

Figure 10.3: GnuTLS handshake process sequence.

10.3 TLS Authentication Methods

In GnuTLS authentication methods can be implemented quite easily. Since the required
changes to add a new authentication method affect only the handshake protocol, a simple
interface is used. An authentication method needs to implement the functions shown below.

typedef struct

{

Chapter 10: Internal Architecture of GnuTLS 257

const char *name;

int (*gnutls_generate_server_certificate) (gnutls_session_t, gnutls_buffer_st*);

int (*gnutls_generate_client_certificate) (gnutls_session_t, gnutls_buffer_st*);

int (*gnutls_generate_server_kx) (gnutls_session_t, gnutls_buffer_st*);

int (*gnutls_generate_client_kx) (gnutls_session_t, gnutls_buffer_st*);

int (*gnutls_generate_client_cert_vrfy) (gnutls_session_t, gnutls_buffer_st *);

int (*gnutls_generate_server_certificate_request) (gnutls_session_t,

gnutls_buffer_st *);

int (*gnutls_process_server_certificate) (gnutls_session_t, opaque *,

size_t);

int (*gnutls_process_client_certificate) (gnutls_session_t, opaque *,

size_t);

int (*gnutls_process_server_kx) (gnutls_session_t, opaque *, size_t);

int (*gnutls_process_client_kx) (gnutls_session_t, opaque *, size_t);

int (*gnutls_process_client_cert_vrfy) (gnutls_session_t, opaque *, size_t);

int (*gnutls_process_server_certificate_request) (gnutls_session_t,

opaque *, size_t);

} mod_auth_st;

Those functions are responsible for the interpretation of the handshake protocol messages.
It is common for such functions to read data from one or more credentials_t structures1

and write data, such as certificates, usernames etc. to auth_info_t structures.

Simple examples of existing authentication methods can be seen in auth/psk.c for PSK
ciphersuites and auth/srp.c for SRP ciphersuites. After implementing these functions the
structure holding its pointers has to be registered in gnutls_algorithms.c in the _gnutls_
kx_algorithms structure.

10.4 TLS Extension Handling

As with authentication methods, the TLS extensions handlers can be implemented using
the interface shown below.

typedef int (*gnutls_ext_recv_func) (gnutls_session_t session,

const unsigned char *data, size_t len);

typedef int (*gnutls_ext_send_func) (gnutls_session_t session,

gnutls_buffer_st *extdata);

Here there are two functions, one for receiving the extension data and one for sending.
These functions have to check internally whether they operate in client or server side.

A simple example of an extension handler can be seen in ext/srp.c in GnuTLS’ source
code. After implementing these functions, together with the extension number they handle,
they have to be registered using _gnutls_ext_register in gnutls_extensions.c typically
within _gnutls_ext_init.

1 such as the gnutls_certificate_credentials_t structures

Chapter 10: Internal Architecture of GnuTLS 258

Adding a new TLS extension

Adding support for a new TLS extension is done from time to time, and the process to do
so is not difficult. Here are the steps you need to follow if you wish to do this yourself. For
sake of discussion, let’s consider adding support for the hypothetical TLS extension foobar.

Add configure option like --enable-foobar or --disable-foobar.

This step is useful when the extension code is large and it might be desirable to disable the
extension under some circumstances. Otherwise it can be safely skipped.

Whether to chose enable or disable depends on whether you intend to make the extension
be enabled by default. Look at existing checks (i.e., SRP, authz) for how to model the code.
For example:

AC_MSG_CHECKING([whether to disable foobar support])

AC_ARG_ENABLE(foobar,

AS_HELP_STRING([--disable-foobar],

[disable foobar support]),

ac_enable_foobar=no)

if test x$ac_enable_foobar != xno; then

AC_MSG_RESULT(no)

AC_DEFINE(ENABLE_FOOBAR, 1, [enable foobar])

else

ac_full=0

AC_MSG_RESULT(yes)

fi

AM_CONDITIONAL(ENABLE_FOOBAR, test "$ac_enable_foobar" != "no")

These lines should go in m4/hooks.m4.

Add IANA extension value to extensions_t in gnutls_int.h.

A good name for the value would be GNUTLS EXTENSION FOOBAR. Check with
http://www.iana.org/assignments/tls-extensiontype-values for allocated values.
For experiments, you could pick a number but remember that some consider it a bad idea
to deploy such modified version since it will lead to interoperability problems in the future
when the IANA allocates that number to someone else, or when the foobar protocol is
allocated another number.

Add an entry to _gnutls_extensions in gnutls_extensions.c.

A typical entry would be:

int ret;

#if ENABLE_FOOBAR

ret = _gnutls_ext_register (&foobar_ext);

if (ret != GNUTLS_E_SUCCESS)

return ret;

#endif

Most likely you’ll need to add an #include "ext/foobar.h", that will contain something
like like:

http://www.iana.org/assignments/tls-extensiontype-values

Chapter 10: Internal Architecture of GnuTLS 259

extension_entry_st foobar_ext = {

.name = "FOOBAR",

.type = GNUTLS_EXTENSION_FOOBAR,

.parse_type = GNUTLS_EXT_TLS,

.recv_func = _foobar_recv_params,

.send_func = _foobar_send_params,

.pack_func = _foobar_pack,

.unpack_func = _foobar_unpack,

.deinit_func = NULL

}

The GNUTLS EXTENSION FOOBAR is the integer value you added to gnutls_int.h

earlier. In this structure you specify the functions to read the extension from the hello
message, the function to send the reply to, and two more functions to pack and unpack
from stored session data (e.g. when resumming a session). The deinit function will be
called to deinitialize the extension’s private parameters, if any.

Note that the conditional ENABLE_FOOBAR definition should only be used if step 1 with the
configure options has taken place.

Add new files that implement the extension.

The functions you are responsible to add are those mentioned in the previous step. They
should be added in a file such as ext/foobar.c and headers should be placed in ext/

foobar.h. As a starter, you could add this:

int

_foobar_recv_params (gnutls_session_t session, const opaque * data,

size_t data_size)

{

return 0;

}

int

_foobar_send_params (gnutls_session_t session, gnutls_buffer_st* data)

{

return 0;

}

int

_foobar_pack (extension_priv_data_t epriv, gnutls_buffer_st * ps)

{

/* Append the extension’s internal state to buffer */

return 0;

}

int

_foobar_unpack (gnutls_buffer_st * ps, extension_priv_data_t * epriv)

{

/* Read the internal state from buffer */

Chapter 10: Internal Architecture of GnuTLS 260

return 0;

}

The _foobar_recv_params function is responsible for parsing incoming extension data
(both in the client and server).

The _foobar_send_params function is responsible for sending extension data (both in the
client and server).

If you receive length fields that don’t match, return GNUTLS_E_UNEXPECTED_PACKET_LENGTH.
If you receive invalid data, return GNUTLS_E_RECEIVED_ILLEGAL_PARAMETER. You can use
other error codes from the list in Appendix C [Error codes], page 258. Return 0 on success.

An extension typically stores private information in the session data for later usage. That
can be done using the functions _gnutls_ext_set_session_data and _gnutls_ext_get_

session_data. You can check simple examples at ext/max_record.c and ext/server_

name.c extensions. That private information can be saved and restored across session
resumption if the following functions are set:

The _foobar_pack function is responsible for packing internal extension data to save them
in the session resumption storage.

The _foobar_unpack function is responsible for restoring session data from the session
resumption storage.

Recall that both the client and server, send and receive parameters, and your code most
likely will need to do different things depending on which mode it is in. It may be useful to
make this distinction explicit in the code. Thus, for example, a better template than above
would be:

int

_gnutls_foobar_recv_params (gnutls_session_t session,

const opaque * data,

size_t data_size)

{

if (session->security_parameters.entity == GNUTLS_CLIENT)

return foobar_recv_client (session, data, data_size);

else

return foobar_recv_server (session, data, data_size);

}

int

_gnutls_foobar_send_params (gnutls_session_t session,

gnutls_buffer_st * data)

{

if (session->security_parameters.entity == GNUTLS_CLIENT)

return foobar_send_client (session, data);

else

return foobar_send_server (session, data);

}

The functions used would be declared as static functions, of the appropriate prototype, in
the same file. When adding the files, you’ll need to add them to ext/Makefile.am as well,
for example:

Chapter 10: Internal Architecture of GnuTLS 261

if ENABLE_FOOBAR

libgnutls_ext_la_SOURCES += ext/foobar.c ext/foobar.h

endif

Add API functions to enable/disable the extension.

It might be desirable to allow users of the extension to request use of the extension, or set
extension specific data. This can be implemented by adding extension specific function calls
that can be added to includes/gnutls/gnutls.h, as long as the LGPLv2.1+ applies. The
implementation of the function should lie in the ext/foobar.c file.

To make the API available in the shared library you need to add the symbol in lib/

libgnutls.map, so that the symbol is exported properly.

When writing GTK-DOC style documentation for your new APIs, don’t forget to add
Since: tags to indicate the GnuTLS version the API was introduced in.

Heartbeat extension.

One such extension is HeartBeat protocol (RFC6520: https://tools.ietf.org/html/

rfc6520) implementation. To enable it use option –heartbeat with example client and
server supplied with gnutls:

./doc/credentials/gnutls-http-serv --priority "NORMAL:-CIPHER-ALL:+NULL" -d 100 \

--heartbeat --echo

./src/gnutls-cli --priority "NORMAL:-CIPHER-ALL:+NULL" -d 100 localhost -p 5556 \

--insecure --heartbeat

After that pasting

HEARTBEAT

command into gnutls-cli will trigger corresponding command on the server and it will send
HeartBeat Request with random length to client.

Another way is to run capabilities check with:

./doc/credentials/gnutls-http-serv -d 100 --heartbeat

./src/gnutls-cli-debug localhost -p 5556

Adding a new Supplemental Data Handshake Message

TLS handshake extensions allow to send so called supplemental data handshake messages
[RFC4680]. This short section explains how to implement a supplemental data handshake
message for a given TLS extension.

First of all, modify your extension foobar in the way, the that flags session->security_
parameters.do_send_supplemental and session->security_parameters.do_recv_

supplemental are set:

int

_gnutls_foobar_recv_params (gnutls_session_t session, const opaque * data,

size_t _data_size)

{

...

session->security_parameters.do_recv_supplemental=1;

...

https://tools.ietf.org/html/rfc6520
https://tools.ietf.org/html/rfc6520

Chapter 10: Internal Architecture of GnuTLS 262

}

int

_gnutls_foobar_send_params (gnutls_session_t session, gnutls_buffer_st *extdata)

{

...

session->security_parameters.do_send_supplemental=1;

...

}

Furthermore add the functions _foobar_supp_recv_params and _foobar_supp_send_

params to _foobar.h and _foobar.c. The following example code shows how to send a
“Hello World” string in the supplemental data handshake message:

int

_foobar_supp_recv_params(gnutls_session_t session, const opaque *data, size_t _data_size)

{

uint8_t len = _data_size;

unsigned char *msg;

msg = gnutls_malloc(len);

if (msg == NULL) return GNUTLS_E_MEMORY_ERROR;

memcpy(msg, data, len);

msg[len]=’\0’;

/* do something with msg */

gnutls_free(msg);

return len;

}

int

_foobar_supp_send_params(gnutls_session_t session, gnutls_buffer_st *buf)

{

unsigned char *msg = "hello world";

int len = strlen(msg);

_gnutls_buffer_append_data_prefix(buf, 8, msg, len);

return len;

}

Afterwards, add the new supplemental data handshake message to lib/gnutls_

supplemental.c by adding a new entry to the _gnutls_supplemental[] structure:

gnutls_supplemental_entry _gnutls_supplemental[] =

{

{"foobar",

GNUTLS_SUPPLEMENTAL_FOOBAR_DATA,

Chapter 10: Internal Architecture of GnuTLS 263

_foobar_supp_recv_params,

_foobar_supp_send_params},

{0, 0, 0, 0}

};

You have to include your foobar.h header file as well:

#include "foobar.h"

Lastly, add the new supplemental data type to lib/includes/gnutls/gnutls.h:

typedef enum

{

GNUTLS_SUPPLEMENTAL_USER_MAPPING_DATA = 0,

GNUTLS_SUPPLEMENTAL_FOOBAR_DATA = 1

} gnutls_supplemental_data_format_type_t;

10.5 Cryptographic Backend

Today most new processors, either for embedded or desktop systems include either instruc-
tions intended to speed up cryptographic operations, or a co-processor with cryptographic
capabilities. Taking advantage of those is a challenging task for every cryptographic ap-
plication or library. Unfortunately the cryptographic library that GnuTLS is based on
takes no advantage of these capabilities. For this reason GnuTLS handles this internally
by following a layered approach to accessing cryptographic operations as in 〈undefined〉
[fig-crypto-layers], page 〈undefined〉.

TLS layer

Cryptography
Provider Layer

Cryptographic
Library

External cryptographic
provider

/dev/crypto
Kernel optimized
cryptography

libgcrypt nettle CPU-optimized
cryptography

Figure 10.4: GnuTLS cryptographic back-end design.

Chapter 10: Internal Architecture of GnuTLS 264

The TLS layer uses a cryptographic provider layer, that will in turn either use the default
crypto provider – a software crypto library, or use an external crypto provider, if available
in the local system. The reason of handling the external cryptographic provider in GnuTLS
and not delegating it to the cryptographic libraries, is that none of the supported cryp-
tographic libraries support /dev/crypto or CPU-optimized cryptography in an efficient
way.

Cryptographic library layer

The Cryptographic library layer, currently supports only libnettle. Older versions of
GnuTLS used to support libgcrypt, but it was switched with nettle mainly for performance
reasons2 and secondary because it is a simpler library to use. In the future other
cryptographic libraries might be supported as well.

External cryptography provider

Systems that include a cryptographic co-processor, typically come with kernel drivers to
utilize the operations from software. For this reason GnuTLS provides a layer where each
individual algorithm used can be replaced by another implementation, i.e., the one provided
by the driver. The FreeBSD, OpenBSD and Linux kernels3 include already a number of
hardware assisted implementations, and also provide an interface to access them, called
/dev/crypto. GnuTLS will take advantage of this interface if compiled with special options.
That is because in most systems where hardware-assisted cryptographic operations are not
available, using this interface might actually harm performance.

In systems that include cryptographic instructions with the CPU’s instructions set, using
the kernel interface will introduce an unneeded layer. For this reason GnuTLS includes
such optimizations found in popular processors such as the AES-NI or VIA PADLOCK
instruction sets. This is achieved using a mechanism that detects CPU capabilities and
overrides parts of crypto back-end at runtime. The next section discusses the registration
of a detected algorithm optimization. For more information please consult the GnuTLS

source code in lib/accelerated/.

Overriding specific algorithms

When an optimized implementation of a single algorithm is available, say a hardware as-
sisted version of AES-CBC then the following (internal) functions, from crypto-backend.h,
can be used to register those algorithms.

• gnutls_crypto_single_cipher_register: To register a cipher algorithm.

• gnutls_crypto_single_digest_register: To register a hash (digest) or MAC algo-
rithm.

Those registration functions will only replace the specified algorithm and leave the rest of
subsystem intact.

2 See http://lists.gnu.org/archive/html/gnutls-devel/2011-02/msg00079.html.
3 Check http://home.gna.org/cryptodev-linux/ for the Linux kernel implementation of /dev/crypto.

http://lists.gnu.org/archive/html/gnutls-devel/2011-02/msg00079.html
http://home.gna.org/cryptodev-linux/

Chapter 10: Internal Architecture of GnuTLS 265

Overriding the cryptographic library

In some systems, that might contain a broad acceleration engine, it might be desirable
to override big parts of the cryptographic back-end, or even all of them. The following
functions are provided for this reason.

• gnutls_crypto_cipher_register: To override the cryptographic algorithms back-
end.

• gnutls_crypto_digest_register: To override the digest algorithms back-end.

• gnutls_crypto_rnd_register: To override the random number generator back-end.

• gnutls_crypto_bigint_register: To override the big number number operations
back-end.

• gnutls_crypto_pk_register: To override the public key encryption back-end. This is
tied to the big number operations so either none or both of them should be overridden.

Appendix A: Upgrading from previous versions 266

Appendix A Upgrading from previous versions

The GnuTLS library typically maintains binary and source code compatibility across ver-
sions. The releases that have the major version increased break binary compatibility but
source compatibility is provided. This section lists exceptional cases where changes to
existing code are required due to library changes.

Upgrading to 2.12.x from previous versions

GnuTLS 2.12.x is binary compatible with previous versions but changes the semantics of
gnutls_transport_set_lowat, which might cause breakage in applications that relied on
its default value be 1. Two fixes are proposed:

• Quick fix. Explicitly call gnutls_transport_set_lowat (session, 1); after
[gnutls init], page 308.

• Long term fix. Because later versions of gnutls abolish the functionality of
using the system call select to check for gnutls pending data, the function
[gnutls record check pending], page 324 has to be used to achieve the same
functionality as described in Section 6.5.1 [Asynchronous operation], page 119.

Upgrading to 3.0.x from 2.12.x

GnuTLS 3.0.x is source compatible with previous versions except for the functions listed
below.

Old function Replacement

gnutls_transport_set_

lowat

To replace its functionality the function
[gnutls record check pending], page 324 has to be
used, as described in Section 6.5.1 [Asynchronous
operation], page 119

gnutls_session_

get_server_random,
gnutls_session_get_

client_random

They are replaced by the safer function
[gnutls session get random], page 332

gnutls_session_get_

master_secret

Replaced by the keying material exporters discussed
in 〈undefined〉 [Deriving keys for other applica-
tions/protocols], page 〈undefined〉

gnutls_transport_set_

global_errno

Replaced by using the system’s errno fascility or
[gnutls transport set errno], page 347.

gnutls_x509_privkey_

verify_data

Replaced by [gnutls pubkey verify data], page 503.

gnutls_certificate_

verify_peers

Replaced by [gnutls certificate verify peers2],
page 289.

Appendix A: Upgrading from previous versions 267

gnutls_psk_netconf_

derive_key

Removed. The key derivation function was never
standardized.

gnutls_session_set_

finished_function

Removed.

gnutls_ext_register Removed. Extension registration API is now inter-
nal to allow easier changes in the API.

gnutls_certificate_

get_x509_crls,
gnutls_certificate_

get_x509_cas

Removed to allow updating the internal structures.
Replaced by [gnutls certificate get issuer], page 277.

gnutls_certificate_

get_openpgp_keyring

Removed.

gnutls_ia_ Removed. The inner application extensions were
completely removed (they failed to be standardized).

Upgrading to 3.1.x from 3.0.x

GnuTLS 3.1.x is source and binary compatible with GnuTLS 3.0.x releases. Few functions
have been deprecated and are listed below.

Old function Replacement

gnutls_pubkey_verify_

hash

The function [gnutls pubkey verify hash2], page 504
is provided and is functionally equivalent and safer
to use.

gnutls_pubkey_verify_

data

The function [gnutls pubkey verify data2], page 504
is provided and is functionally equivalent and safer
to use.

Upgrading to 3.2.x from 3.1.x

GnuTLS 3.2.x is source and binary compatible with GnuTLS 3.1.x releases. Few functions
have been deprecated and are listed below.

Old function Replacement

gnutls_privkey_sign_

raw_data

The function [gnutls privkey sign hash], page 492
is equivalent when the flag GNUTLS_PRIVKEY_SIGN_

FLAG_TLS1_RSA is specified.

Appendix A: Upgrading from previous versions 268

Upgrading to 3.3.x from 3.2.x

GnuTLS 3.3.x is source and binary compatible with GnuTLS 3.2.x releases; however there
few changes in semantics which are listed below.

Old function Replacement

gnutls_global_init No longer required. The library is initialized using a
constructor.

gnutls_global_deinit No longer required. The library is deinitialized using
a destructor.

Appendix B: Support 269

Appendix B Support

B.1 Getting Help

A mailing list where users may help each other exists, and you can reach it by sending e-mail
to gnutls-help@gnutls.org. Archives of the mailing list discussions, and an interface to
manage subscriptions, is available through the World Wide Web at http://lists.gnutls.
org/pipermail/gnutls-help/.

A mailing list for developers are also available, see http://www.gnutls.org/lists.html.
Bug reports should be sent to bugs@gnutls.org, see Section B.3 [Bug Reports], page 255.

B.2 Commercial Support

Commercial support is available for users of GnuTLS. The kind of support that can be
purchased may include:

• Implement new features. Such as a new TLS extension.

• Port GnuTLS to new platforms. This could include porting to an embedded platforms
that may need memory or size optimization.

• Integrating TLS as a security environment in your existing project.

• System design of components related to TLS.

If you are interested, please write to:

Simon Josefsson Datakonsult

Hagagatan 24

113 47 Stockholm

Sweden

E-mail: simon@josefsson.org

If your company provides support related to GnuTLS and would like to be mentioned here,
contact the authors.

B.3 Bug Reports

If you think you have found a bug in GnuTLS, please investigate it and report it.

• Please make sure that the bug is really in GnuTLS, and preferably also check that it
hasn’t already been fixed in the latest version.

• You have to send us a test case that makes it possible for us to reproduce the bug.

• You also have to explain what is wrong; if you get a crash, or if the results printed are
not good and in that case, in what way. Make sure that the bug report includes all
information you would need to fix this kind of bug for someone else.

Please make an effort to produce a self-contained report, with something definite that can
be tested or debugged. Vague queries or piecemeal messages are difficult to act on and
don’t help the development effort.

If your bug report is good, we will do our best to help you to get a corrected version of the
software; if the bug report is poor, we won’t do anything about it (apart from asking you
to send better bug reports).

mailto:gnutls-help@gnutls.org
http://lists.gnutls.org/pipermail/gnutls-help/
http://lists.gnutls.org/pipermail/gnutls-help/
http://www.gnutls.org/lists.html
mailto:bugs@gnutls.org

Appendix B: Support 270

If you think something in this manual is unclear, or downright incorrect, or if the language
needs to be improved, please also send a note.

Send your bug report to:
‘bugs@gnutls.org’

B.4 Contributing

If you want to submit a patch for inclusion – from solving a typo you discovered, up to
adding support for a new feature – you should submit it as a bug report, using the process
in Section B.3 [Bug Reports], page 255. There are some things that you can do to increase
the chances for it to be included in the official package.

Unless your patch is very small (say, under 10 lines) we require that you assign the copyright
of your work to the Free Software Foundation. This is to protect the freedom of the project.
If you have not already signed papers, we will send you the necessary information when you
submit your contribution.

For contributions that doesn’t consist of actual programming code, the only guidelines are
common sense. For code contributions, a number of style guides will help you:

• Coding Style. Follow the GNU Standards document.

If you normally code using another coding standard, there is no problem, but you
should use ‘indent’ to reformat the code before submitting your work.

• Use the unified diff format ‘diff -u’.

• Return errors. No reason whatsoever should abort the execution of the library. Even
memory allocation errors, e.g. when malloc return NULL, should work although result
in an error code.

• Design with thread safety in mind. Don’t use global variables. Don’t even write to
per-handle global variables unless the documented behaviour of the function you write
is to write to the per-handle global variable.

• Avoid using the C math library. It causes problems for embedded implementations,
and in most situations it is very easy to avoid using it.

• Document your functions. Use comments before each function headers, that, if properly
formatted, are extracted into Texinfo manuals and GTK-DOC web pages.

• Supply a ChangeLog and NEWS entries, where appropriate.

B.5 Certification

Many cryptographic libraries claim certifications from national or international bodies.
These certifications are tied on a specific (and often restricted) version of the library or
a specific product using the library, and typically in the case of software they assure that
the algorithms implemented are correct. The major certifications known are:

• USA’s FIPS 140-2 at Level 1 which certifies that approved algorithms are used (see
http://en.wikipedia.org/wiki/FIPS_140-2);

• Common Criteria for Information Technology Security Evaluation (CC), an interna-
tional standard for verification of elaborate security claims (see http://en.wikipedia.
org/wiki/Common_Criteria).

http://en.wikipedia.org/wiki/FIPS_140-2
http://en.wikipedia.org/wiki/Common_Criteria
http://en.wikipedia.org/wiki/Common_Criteria

Appendix B: Support 271

Obtaining such a certification is an expensive and elaborate job that has no immediate
value for a continuously developed free software library (as the certification is tied to the
particular version tested). While, as a free software project, we are not actively pursuing
this kind of certification, GnuTLS has been FIPS-140-2 certified in several systems by third
parties. If you are, interested, see Section B.2 [Commercial Support], page 255.

Appendix C: Error Codes and Descriptions 272

Appendix C Error Codes and Descriptions

The error codes used throughout the library are described below. The return code GNUTLS_
E_SUCCESS indicates a successful operation, and is guaranteed to have the value 0, so you
can use it in logical expressions.

0 GNUTLS E SUCCESS Success.
-3 GNUTLS E UNKNOWN -

COMPRESSION ALGORITHM
Could not negotiate a sup-
ported compression method.

-6 GNUTLS E UNKNOWN -
CIPHER TYPE

The cipher type is
unsupported.

-7 GNUTLS E LARGE PACKET The transmitted packet is too
large (EMSGSIZE).

-8 GNUTLS E UNSUPPORTED -
VERSION PACKET

A packet with illegal or unsup-
ported version was received.

-9 GNUTLS E UNEXPECTED -
PACKET LENGTH

A TLS packet with unexpected
length was received.

-10 GNUTLS E INVALID SESSION The specified session has been
invalidated for some reason.

-12 GNUTLS E FATAL ALERT -
RECEIVED

A TLS fatal alert has been
received.

-15 GNUTLS E UNEXPECTED -
PACKET

An unexpected TLS packet was
received.

-16 GNUTLS E WARNING -
ALERT RECEIVED

A TLS warning alert has been
received.

-18 GNUTLS E ERROR IN -
FINISHED PACKET

An error was encountered
at the TLS Finished packet
calculation.

-19 GNUTLS E UNEXPECTED -
HANDSHAKE PACKET

An unexpected TLS handshake
packet was received.

-21 GNUTLS E UNKNOWN -
CIPHER SUITE

Could not negotiate a sup-
ported cipher suite.

-22 GNUTLS E UNWANTED -
ALGORITHM

An algorithm that is not en-
abled was negotiated.

-23 GNUTLS E MPI SCAN -
FAILED

The scanning of a large integer
has failed.

-24 GNUTLS E DECRYPTION -
FAILED

Decryption has failed.

-25 GNUTLS E MEMORY ERROR Internal error in memory
allocation.

-26 GNUTLS E -
DECOMPRESSION FAILED

Decompression of the TLS
record packet has failed.

-27 GNUTLS E COMPRESSION -
FAILED

Compression of the TLS record
packet has failed.

-28 GNUTLS E AGAIN Resource temporarily unavail-
able, try again.

Appendix C: Error Codes and Descriptions 273

-29 GNUTLS E EXPIRED The requested session has
expired.

-30 GNUTLS E DB ERROR Error in Database backend.
-31 GNUTLS E SRP PWD ERROR Error in password file.
-32 GNUTLS E INSUFFICIENT -

CREDENTIALS
Insufficient credentials for that
request.

-33 GNUTLS E HASH FAILED Hashing has failed.
-34 GNUTLS E BASE64 -

DECODING ERROR
Base64 decoding error.

-35 GNUTLS E MPI PRINT -
FAILED

Could not export a large
integer.

-37 GNUTLS E REHANDSHAKE Rehandshake was requested by
the peer.

-38 GNUTLS E GOT -
APPLICATION DATA

TLS Application data were re-
ceived, while expecting hand-
shake data.

-39 GNUTLS E RECORD LIMIT -
REACHED

The upper limit of record
packet sequence numbers has
been reached. Wow!

-40 GNUTLS E ENCRYPTION -
FAILED

Encryption has failed.

-43 GNUTLS E CERTIFICATE -
ERROR

Error in the certificate.

-44 GNUTLS E PK -
ENCRYPTION FAILED

Public key encryption has
failed.

-45 GNUTLS E PK -
DECRYPTION FAILED

Public key decryption has
failed.

-46 GNUTLS E PK SIGN FAILED Public key signing has failed.
-47 GNUTLS E X509 -

UNSUPPORTED CRITICAL -
EXTENSION

Unsupported critical extension
in X.509 certificate.

-48 GNUTLS E KEY USAGE -
VIOLATION

Key usage violation in certifi-
cate has been detected.

-49 GNUTLS E NO -
CERTIFICATE FOUND

No certificate was found.

-50 GNUTLS E INVALID -
REQUEST

The request is invalid.

-51 GNUTLS E SHORT -
MEMORY BUFFER

The given memory buffer is too
short to hold parameters.

-52 GNUTLS E INTERRUPTED Function was interrupted.
-53 GNUTLS E PUSH ERROR Error in the push function.
-54 GNUTLS E PULL ERROR Error in the pull function.
-55 GNUTLS E RECEIVED -

ILLEGAL PARAMETER
An illegal parameter has been
received.

Appendix C: Error Codes and Descriptions 274

-56 GNUTLS E REQUESTED -
DATA NOT AVAILABLE

The requested data were not
available.

-57 GNUTLS E PKCS1 WRONG -
PAD

Wrong padding in PKCS1
packet.

-58 GNUTLS E RECEIVED -
ILLEGAL EXTENSION

An illegal TLS extension was
received.

-59 GNUTLS E INTERNAL -
ERROR

GnuTLS internal error.

-60 GNUTLS E CERTIFICATE -
KEY MISMATCH

The certificate and the given
key do not match.

-61 GNUTLS E UNSUPPORTED -
CERTIFICATE TYPE

The certificate type is not
supported.

-62 GNUTLS E X509 -
UNKNOWN SAN

Unknown Subject Alternative
name in X.509 certificate.

-63 GNUTLS E DH PRIME -
UNACCEPTABLE

The Diffie-Hellman prime sent
by the server is not acceptable
(not long enough).

-64 GNUTLS E FILE ERROR Error while reading file.
-67 GNUTLS E ASN1 ELEMENT -

NOT FOUND
ASN1 parser: Element was not
found.

-68 GNUTLS E ASN1 -
IDENTIFIER NOT FOUND

ASN1 parser: Identifier was not
found

-69 GNUTLS E ASN1 DER -
ERROR

ASN1 parser: Error in DER
parsing.

-70 GNUTLS E ASN1 VALUE -
NOT FOUND

ASN1 parser: Value was not
found.

-71 GNUTLS E ASN1 GENERIC -
ERROR

ASN1 parser: Generic parsing
error.

-72 GNUTLS E ASN1 VALUE -
NOT VALID

ASN1 parser: Value is not
valid.

-73 GNUTLS E ASN1 TAG -
ERROR

ASN1 parser: Error in TAG.

-74 GNUTLS E ASN1 TAG -
IMPLICIT

ASN1 parser: error in implicit
tag

-75 GNUTLS E ASN1 TYPE -
ANY ERROR

ASN1 parser: Error in type
’ANY’.

-76 GNUTLS E ASN1 SYNTAX -
ERROR

ASN1 parser: Syntax error.

-77 GNUTLS E ASN1 DER -
OVERFLOW

ASN1 parser: Overflow in DER
parsing.

-78 GNUTLS E TOO MANY -
EMPTY PACKETS

Too many empty record pack-
ets have been received.

-79 GNUTLS E OPENPGP UID -
REVOKED

The OpenPGP User ID is
revoked.

Appendix C: Error Codes and Descriptions 275

-80 GNUTLS E UNKNOWN PK -
ALGORITHM

An unknown public key algo-
rithm was encountered.

-81 GNUTLS E TOO MANY -
HANDSHAKE PACKETS

Too many handshake packets
have been received.

-84 GNUTLS E NO -
TEMPORARY RSA PARAMS

No temporary RSA parameters
were found.

-86 GNUTLS E NO -
COMPRESSION -
ALGORITHMS

No supported compression al-
gorithms have been found.

-87 GNUTLS E NO CIPHER -
SUITES

No supported cipher suites
have been found.

-88 GNUTLS E OPENPGP -
GETKEY FAILED

Could not get OpenPGP key.

-89 GNUTLS E PK SIG VERIFY -
FAILED

Public key signature verifica-
tion has failed.

-90 GNUTLS E ILLEGAL SRP -
USERNAME

The SRP username supplied is
illegal.

-91 GNUTLS E SRP PWD -
PARSING ERROR

Parsing error in password file.

-93 GNUTLS E NO -
TEMPORARY DH PARAMS

No temporary DH parameters
were found.

-94 GNUTLS E OPENPGP -
FINGERPRINT -
UNSUPPORTED

The OpenPGP fingerprint is
not supported.

-95 GNUTLS E X509 -
UNSUPPORTED ATTRIBUTE

The certificate has unsup-
ported attributes.

-96 GNUTLS E UNKNOWN -
HASH ALGORITHM

The hash algorithm is
unknown.

-97 GNUTLS E UNKNOWN -
PKCS CONTENT TYPE

The PKCS structure’s content
type is unknown.

-98 GNUTLS E UNKNOWN -
PKCS BAG TYPE

The PKCS structure’s bag type
is unknown.

-99 GNUTLS E INVALID -
PASSWORD

The given password contains
invalid characters.

-100 GNUTLS E MAC VERIFY -
FAILED

The Message Authentication
Code verification failed.

-101 GNUTLS E CONSTRAINT -
ERROR

Some constraint limits were
reached.

-104 GNUTLS E IA VERIFY -
FAILED

Verifying TLS/IA phase check-
sum failed

-105 GNUTLS E UNKNOWN -
ALGORITHM

The specified algorithm or pro-
tocol is unknown.

-106 GNUTLS E UNSUPPORTED -
SIGNATURE ALGORITHM

The signature algorithm is not
supported.

Appendix C: Error Codes and Descriptions 276

-107 GNUTLS E SAFE -
RENEGOTIATION FAILED

Safe renegotiation failed.

-108 GNUTLS E UNSAFE -
RENEGOTIATION DENIED

Unsafe renegotiation denied.

-109 GNUTLS E UNKNOWN SRP -
USERNAME

The SRP username supplied is
unknown.

-110 GNUTLS E PREMATURE -
TERMINATION

The TLS connection was non-
properly terminated.

-201 GNUTLS E BASE64 -
ENCODING ERROR

Base64 encoding error.

-202 GNUTLS E INCOMPATIBLE -
GCRYPT LIBRARY

The crypto library version is
too old.

-203 GNUTLS E INCOMPATIBLE -
LIBTASN1 LIBRARY

The tasn1 library version is too
old.

-204 GNUTLS E OPENPGP -
KEYRING ERROR

Error loading the keyring.

-205 GNUTLS E X509 -
UNSUPPORTED OID

The OID is not supported.

-206 GNUTLS E RANDOM FAILED Failed to acquire random data.
-207 GNUTLS E BASE64 -

UNEXPECTED HEADER -
ERROR

Base64 unexpected header
error.

-208 GNUTLS E OPENPGP -
SUBKEY ERROR

Could not find OpenPGP
subkey.

-209 GNUTLS E CRYPTO -
ALREADY REGISTERED

There is already a crypto algo-
rithm with lower priority.

-210 GNUTLS E HANDSHAKE -
TOO LARGE

The handshake data size is too
large.

-211 GNUTLS E CRYPTODEV -
IOCTL ERROR

Error interfacing with
/dev/crypto

-212 GNUTLS E CRYPTODEV -
DEVICE ERROR

Error opening /dev/crypto

-213 GNUTLS E CHANNEL -
BINDING NOT AVAILABLE

Channel binding data not
available

-214 GNUTLS E BAD COOKIE The cookie was bad.
-215 GNUTLS E OPENPGP -

PREFERRED KEY ERROR
The OpenPGP key has not a
preferred key set.

-216 GNUTLS E INCOMPAT DSA -
KEY WITH TLS PROTOCOL

The given DSA key is incom-
patible with the selected TLS
protocol.

-292 GNUTLS E HEARTBEAT -
PONG RECEIVED

A heartbeat pong message was
received.

-293 GNUTLS E HEARTBEAT -
PING RECEIVED

A heartbeat ping message was
received.

-300 GNUTLS E PKCS11 ERROR PKCS #11 error.

Appendix C: Error Codes and Descriptions 277

-301 GNUTLS E PKCS11 LOAD -
ERROR

PKCS #11 initialization error.

-302 GNUTLS E PARSING ERROR Error in parsing.
-303 GNUTLS E PKCS11 PIN -

ERROR
Error in provided PIN.

-305 GNUTLS E PKCS11 SLOT -
ERROR

PKCS #11 error in slot

-306 GNUTLS E LOCKING ERROR Thread locking error
-307 GNUTLS E PKCS11 -

ATTRIBUTE ERROR
PKCS #11 error in attribute

-308 GNUTLS E PKCS11 DEVICE -
ERROR

PKCS #11 error in device

-309 GNUTLS E PKCS11 DATA -
ERROR

PKCS #11 error in data

-310 GNUTLS E PKCS11 -
UNSUPPORTED FEATURE -
ERROR

PKCS #11 unsupported
feature

-311 GNUTLS E PKCS11 KEY -
ERROR

PKCS #11 error in key

-312 GNUTLS E PKCS11 PIN -
EXPIRED

PKCS #11 PIN expired

-313 GNUTLS E PKCS11 PIN -
LOCKED

PKCS #11 PIN locked

-314 GNUTLS E PKCS11 -
SESSION ERROR

PKCS #11 error in session

-315 GNUTLS E PKCS11 -
SIGNATURE ERROR

PKCS #11 error in signature

-316 GNUTLS E PKCS11 TOKEN -
ERROR

PKCS #11 error in token

-317 GNUTLS E PKCS11 USER -
ERROR

PKCS #11 user error

-318 GNUTLS E CRYPTO INIT -
FAILED

The initialization of crypto
backend has failed.

-319 GNUTLS E TIMEDOUT The operation timed out
-320 GNUTLS E USER ERROR The operation was cancelled

due to user error

-321 GNUTLS E ECC NO -
SUPPORTED CURVES

No supported ECC curves were
found

-322 GNUTLS E ECC -
UNSUPPORTED CURVE

The curve is unsupported

-323 GNUTLS E PKCS11 -
REQUESTED OBJECT NOT -
AVAILBLE

The requested PKCS #11 ob-
ject is not available

Appendix C: Error Codes and Descriptions 278

-324 GNUTLS E CERTIFICATE -
LIST UNSORTED

The provided X.509 certificate
list is not sorted (in subject to
issuer order)

-325 GNUTLS E ILLEGAL -
PARAMETER

An illegal parameter was found.

-326 GNUTLS E NO PRIORITIES -
WERE SET

No or insufficient priorities
were set.

-327 GNUTLS E X509 -
UNSUPPORTED EXTENSION

Unsupported extension in
X.509 certificate.

-328 GNUTLS E SESSION EOF Peer has terminated the
connection

-329 GNUTLS E TPM ERROR TPM error.
-330 GNUTLS E TPM KEY -

PASSWORD ERROR
Error in provided password for
key to be loaded in TPM.

-331 GNUTLS E TPM SRK -
PASSWORD ERROR

Error in provided SRK pass-
word for TPM.

-332 GNUTLS E TPM SESSION -
ERROR

Cannot initialize a session with
the TPM.

-333 GNUTLS E TPM KEY NOT -
FOUND

TPM key was not found in per-
sistent storage.

-334 GNUTLS E TPM -
UNINITIALIZED

TPM is not initialized.

-335 GNUTLS E TPM NO LIB The TPM library (trousers)
cannot be found.

-340 GNUTLS E NO -
CERTIFICATE STATUS

There is no certificate status
(OCSP).

-341 GNUTLS E OCSP -
RESPONSE ERROR

The OCSP response is invalid

-342 GNUTLS E RANDOM -
DEVICE ERROR

Error in the system’s random-
ness device.

-343 GNUTLS E AUTH ERROR Could not authenticate peer.
-344 GNUTLS E NO -

APPLICATION PROTOCOL
No common application proto-
col could be negotiated.

-345 GNUTLS E SOCKETS INIT -
ERROR

Error in sockets initialization.

-400 GNUTLS E SELF TEST -
ERROR

Error while performing self
checks.

-401 GNUTLS E NO SELF TEST There is no self test for this
algorithm.

-402 GNUTLS E LIB IN ERROR -
STATE

An error has been detected in
the library and cannot continue
operations.

-403 GNUTLS E PK -
GENERATION ERROR

Error in public key generation.

Appendix D: Supported Ciphersuites 279

Appendix D Supported Ciphersuites

Ciphersuites

Ciphersuite name TLS ID Since
TLS RSA NULL MD5 0x00 0x01 SSL3.0
TLS RSA NULL SHA1 0x00 0x02 SSL3.0
TLS RSA NULL SHA256 0x00 0x3B TLS1.2
TLS RSA ARCFOUR 128 SHA1 0x00 0x05 SSL3.0
TLS RSA ARCFOUR 128 MD5 0x00 0x04 SSL3.0
TLS RSA 3DES EDE CBC SHA1 0x00 0x0A SSL3.0
TLS RSA AES 128 CBC SHA1 0x00 0x2F SSL3.0
TLS RSA AES 256 CBC SHA1 0x00 0x35 SSL3.0
TLS RSA CAMELLIA 128 CBC SHA256 0x00 0xBA TLS1.2
TLS RSA CAMELLIA 256 CBC SHA256 0x00 0xC0 TLS1.2
TLS RSA CAMELLIA 128 CBC SHA1 0x00 0x41 SSL3.0
TLS RSA CAMELLIA 256 CBC SHA1 0x00 0x84 SSL3.0
TLS RSA AES 128 CBC SHA256 0x00 0x3C TLS1.2
TLS RSA AES 256 CBC SHA256 0x00 0x3D TLS1.2
TLS RSA AES 128 GCM SHA256 0x00 0x9C TLS1.2
TLS RSA AES 256 GCM SHA384 0x00 0x9D TLS1.2
TLS RSA CAMELLIA 128 GCM SHA256 0xC0 0x7A TLS1.2
TLS RSA CAMELLIA 256 GCM SHA384 0xC0 0x7B TLS1.2
TLS RSA SALSA20 256 SHA1 0xE4 0x11 SSL3.0
TLS RSA ESTREAM SALSA20 256 SHA1 0xE4 0x10 SSL3.0
TLS DHE DSS ARCFOUR 128 SHA1 0x00 0x66 SSL3.0
TLS DHE DSS 3DES EDE CBC SHA1 0x00 0x13 SSL3.0
TLS DHE DSS AES 128 CBC SHA1 0x00 0x32 SSL3.0
TLS DHE DSS AES 256 CBC SHA1 0x00 0x38 SSL3.0
TLS DHE DSS CAMELLIA 128 CBC SHA256 0x00 0xBD TLS1.2
TLS DHE DSS CAMELLIA 256 CBC SHA256 0x00 0xC3 TLS1.2
TLS DHE DSS CAMELLIA 128 CBC SHA1 0x00 0x44 SSL3.0
TLS DHE DSS CAMELLIA 256 CBC SHA1 0x00 0x87 SSL3.0
TLS DHE DSS AES 128 CBC SHA256 0x00 0x40 TLS1.2
TLS DHE DSS AES 256 CBC SHA256 0x00 0x6A TLS1.2
TLS DHE DSS AES 128 GCM SHA256 0x00 0xA2 TLS1.2
TLS DHE DSS AES 256 GCM SHA384 0x00 0xA3 TLS1.2
TLS DHE DSS CAMELLIA 128 GCM SHA256 0xC0 0x80 TLS1.2
TLS DHE DSS CAMELLIA 256 GCM SHA384 0xC0 0x81 TLS1.2
TLS DHE RSA 3DES EDE CBC SHA1 0x00 0x16 SSL3.0
TLS DHE RSA AES 128 CBC SHA1 0x00 0x33 SSL3.0
TLS DHE RSA AES 256 CBC SHA1 0x00 0x39 SSL3.0
TLS DHE RSA CAMELLIA 128 CBC SHA256 0x00 0xBE TLS1.2
TLS DHE RSA CAMELLIA 256 CBC SHA256 0x00 0xC4 TLS1.2
TLS DHE RSA CAMELLIA 128 CBC SHA1 0x00 0x45 SSL3.0

Appendix D: Supported Ciphersuites 280

TLS DHE RSA CAMELLIA 256 CBC SHA1 0x00 0x88 SSL3.0
TLS DHE RSA AES 128 CBC SHA256 0x00 0x67 TLS1.2
TLS DHE RSA AES 256 CBC SHA256 0x00 0x6B TLS1.2
TLS DHE RSA AES 128 GCM SHA256 0x00 0x9E TLS1.2
TLS DHE RSA AES 256 GCM SHA384 0x00 0x9F TLS1.2
TLS DHE RSA CAMELLIA 128 GCM SHA256 0xC0 0x7C TLS1.2
TLS DHE RSA CAMELLIA 256 GCM SHA384 0xC0 0x7D TLS1.2
TLS ECDHE RSA NULL SHA1 0xC0 0x10 SSL3.0
TLS ECDHE RSA 3DES EDE CBC SHA1 0xC0 0x12 SSL3.0
TLS ECDHE RSA AES 128 CBC SHA1 0xC0 0x13 SSL3.0
TLS ECDHE RSA AES 256 CBC SHA1 0xC0 0x14 SSL3.0
TLS ECDHE RSA AES 256 CBC SHA384 0xC0 0x28 TLS1.2
TLS ECDHE RSA ARCFOUR 128 SHA1 0xC0 0x11 SSL3.0
TLS ECDHE RSA CAMELLIA 128 CBC SHA256 0xC0 0x76 TLS1.2
TLS ECDHE RSA CAMELLIA 256 CBC SHA384 0xC0 0x77 TLS1.2
TLS ECDHE ECDSA NULL SHA1 0xC0 0x06 SSL3.0
TLS ECDHE ECDSA 3DES EDE CBC SHA1 0xC0 0x08 SSL3.0
TLS ECDHE ECDSA AES 128 CBC SHA1 0xC0 0x09 SSL3.0
TLS ECDHE ECDSA AES 256 CBC SHA1 0xC0 0x0A SSL3.0
TLS ECDHE ECDSA ARCFOUR 128 SHA1 0xC0 0x07 SSL3.0
TLS ECDHE ECDSA CAMELLIA 128 CBC -
SHA256

0xC0 0x72 TLS1.2

TLS ECDHE ECDSA CAMELLIA 256 CBC -
SHA384

0xC0 0x73 TLS1.2

TLS ECDHE ECDSA AES 128 CBC SHA256 0xC0 0x23 TLS1.2
TLS ECDHE RSA AES 128 CBC SHA256 0xC0 0x27 TLS1.2
TLS ECDHE ECDSA CAMELLIA 128 GCM -
SHA256

0xC0 0x86 TLS1.2

TLS ECDHE ECDSA CAMELLIA 256 GCM -
SHA384

0xC0 0x87 TLS1.2

TLS ECDHE ECDSA AES 128 GCM SHA256 0xC0 0x2B TLS1.2
TLS ECDHE ECDSA AES 256 GCM SHA384 0xC0 0x2C TLS1.2
TLS ECDHE RSA AES 128 GCM SHA256 0xC0 0x2F TLS1.2
TLS ECDHE RSA AES 256 GCM SHA384 0xC0 0x30 TLS1.2
TLS ECDHE ECDSA AES 256 CBC SHA384 0xC0 0x24 TLS1.2
TLS ECDHE RSA CAMELLIA 128 GCM SHA256 0xC0 0x8A TLS1.2
TLS ECDHE RSA CAMELLIA 256 GCM SHA384 0xC0 0x8B TLS1.2
TLS ECDHE RSA SALSA20 256 SHA1 0xE4 0x13 SSL3.0
TLS ECDHE ECDSA SALSA20 256 SHA1 0xE4 0x15 SSL3.0
TLS ECDHE RSA ESTREAM SALSA20 256 SHA1 0xE4 0x12 SSL3.0
TLS ECDHE ECDSA ESTREAM SALSA20 256 -
SHA1

0xE4 0x14 SSL3.0

TLS ECDHE PSK 3DES EDE CBC SHA1 0xC0 0x34 SSL3.0
TLS ECDHE PSK AES 128 CBC SHA1 0xC0 0x35 SSL3.0
TLS ECDHE PSK AES 256 CBC SHA1 0xC0 0x36 SSL3.0
TLS ECDHE PSK AES 128 CBC SHA256 0xC0 0x37 TLS1.2

Appendix D: Supported Ciphersuites 281

TLS ECDHE PSK AES 256 CBC SHA384 0xC0 0x38 TLS1.2
TLS ECDHE PSK ARCFOUR 128 SHA1 0xC0 0x33 SSL3.0
TLS ECDHE PSK NULL SHA1 0xC0 0x39 SSL3.0
TLS ECDHE PSK NULL SHA256 0xC0 0x3A TLS1.2
TLS ECDHE PSK NULL SHA384 0xC0 0x3B TLS1.0
TLS ECDHE PSK CAMELLIA 128 CBC SHA256 0xC0 0x9A TLS1.2
TLS ECDHE PSK CAMELLIA 256 CBC SHA384 0xC0 0x9B TLS1.2
TLS ECDHE PSK SALSA20 256 SHA1 0xE4 0x19 SSL3.0
TLS ECDHE PSK ESTREAM SALSA20 256 SHA1 0xE4 0x18 SSL3.0
TLS PSK ARCFOUR 128 SHA1 0x00 0x8A SSL3.0
TLS PSK 3DES EDE CBC SHA1 0x00 0x8B SSL3.0
TLS PSK AES 128 CBC SHA1 0x00 0x8C SSL3.0
TLS PSK AES 256 CBC SHA1 0x00 0x8D SSL3.0
TLS PSK AES 128 CBC SHA256 0x00 0xAE TLS1.2
TLS PSK AES 256 GCM SHA384 0x00 0xA9 TLS1.2
TLS PSK CAMELLIA 128 GCM SHA256 0xC0 0x8E TLS1.2
TLS PSK CAMELLIA 256 GCM SHA384 0xC0 0x8F TLS1.2
TLS PSK AES 128 GCM SHA256 0x00 0xA8 TLS1.2
TLS PSK NULL SHA1 0x00 0x2C SSL3.0
TLS PSK NULL SHA256 0x00 0xB0 TLS1.2
TLS PSK CAMELLIA 128 CBC SHA256 0xC0 0x94 TLS1.2
TLS PSK CAMELLIA 256 CBC SHA384 0xC0 0x95 TLS1.2
TLS PSK SALSA20 256 SHA1 0xE4 0x17 SSL3.0
TLS PSK ESTREAM SALSA20 256 SHA1 0xE4 0x16 SSL3.0
TLS PSK AES 256 CBC SHA384 0x00 0xAF TLS1.2
TLS PSK NULL SHA384 0x00 0xB1 TLS1.2
TLS RSA PSK ARCFOUR 128 SHA1 0x00 0x92 TLS1.0
TLS RSA PSK 3DES EDE CBC SHA1 0x00 0x93 TLS1.0
TLS RSA PSK AES 128 CBC SHA1 0x00 0x94 TLS1.0
TLS RSA PSK AES 256 CBC SHA1 0x00 0x95 TLS1.0
TLS RSA PSK CAMELLIA 128 GCM SHA256 0xC0 0x92 TLS1.2
TLS RSA PSK CAMELLIA 256 GCM SHA384 0xC0 0x93 TLS1.2
TLS RSA PSK AES 128 GCM SHA256 0x00 0xAC TLS1.2
TLS RSA PSK AES 128 CBC SHA256 0x00 0xB6 TLS1.2
TLS RSA PSK NULL SHA1 0x00 0x2E TLS1.0
TLS RSA PSK NULL SHA256 0x00 0xB8 TLS1.2
TLS RSA PSK AES 256 GCM SHA384 0x00 0xAD TLS1.2
TLS RSA PSK AES 256 CBC SHA384 0x00 0xB7 TLS1.2
TLS RSA PSK NULL SHA384 0x00 0xB9 TLS1.2
TLS RSA PSK CAMELLIA 128 CBC SHA256 0xC0 0x98 TLS1.2
TLS RSA PSK CAMELLIA 256 CBC SHA384 0xC0 0x99 TLS1.2
TLS DHE PSK ARCFOUR 128 SHA1 0x00 0x8E SSL3.0
TLS DHE PSK 3DES EDE CBC SHA1 0x00 0x8F SSL3.0
TLS DHE PSK AES 128 CBC SHA1 0x00 0x90 SSL3.0
TLS DHE PSK AES 256 CBC SHA1 0x00 0x91 SSL3.0
TLS DHE PSK AES 128 CBC SHA256 0x00 0xB2 TLS1.2
TLS DHE PSK AES 128 GCM SHA256 0x00 0xAA TLS1.2

Appendix D: Supported Ciphersuites 282

TLS DHE PSK NULL SHA1 0x00 0x2D SSL3.0
TLS DHE PSK NULL SHA256 0x00 0xB4 TLS1.2
TLS DHE PSK NULL SHA384 0x00 0xB5 TLS1.2
TLS DHE PSK AES 256 CBC SHA384 0x00 0xB3 TLS1.2
TLS DHE PSK AES 256 GCM SHA384 0x00 0xAB TLS1.2
TLS DHE PSK CAMELLIA 128 CBC SHA256 0xC0 0x96 TLS1.2
TLS DHE PSK CAMELLIA 256 CBC SHA384 0xC0 0x97 TLS1.2
TLS DHE PSK CAMELLIA 128 GCM SHA256 0xC0 0x90 TLS1.2
TLS DHE PSK CAMELLIA 256 GCM SHA384 0xC0 0x91 TLS1.2
TLS DH ANON ARCFOUR 128 MD5 0x00 0x18 SSL3.0
TLS DH ANON 3DES EDE CBC SHA1 0x00 0x1B SSL3.0
TLS DH ANON AES 128 CBC SHA1 0x00 0x34 SSL3.0
TLS DH ANON AES 256 CBC SHA1 0x00 0x3A SSL3.0
TLS DH ANON CAMELLIA 128 CBC SHA256 0x00 0xBF TLS1.2
TLS DH ANON CAMELLIA 256 CBC SHA256 0x00 0xC5 TLS1.2
TLS DH ANON CAMELLIA 128 CBC SHA1 0x00 0x46 SSL3.0
TLS DH ANON CAMELLIA 256 CBC SHA1 0x00 0x89 SSL3.0
TLS DH ANON AES 128 CBC SHA256 0x00 0x6C TLS1.2
TLS DH ANON AES 256 CBC SHA256 0x00 0x6D TLS1.2
TLS DH ANON AES 128 GCM SHA256 0x00 0xA6 TLS1.2
TLS DH ANON AES 256 GCM SHA384 0x00 0xA7 TLS1.2
TLS DH ANON CAMELLIA 128 GCM SHA256 0xC0 0x84 TLS1.2
TLS DH ANON CAMELLIA 256 GCM SHA384 0xC0 0x85 TLS1.2
TLS ECDH ANON NULL SHA1 0xC0 0x15 SSL3.0
TLS ECDH ANON 3DES EDE CBC SHA1 0xC0 0x17 SSL3.0
TLS ECDH ANON AES 128 CBC SHA1 0xC0 0x18 SSL3.0
TLS ECDH ANON AES 256 CBC SHA1 0xC0 0x19 SSL3.0
TLS ECDH ANON ARCFOUR 128 SHA1 0xC0 0x16 SSL3.0
TLS SRP SHA 3DES EDE CBC SHA1 0xC0 0x1A SSL3.0
TLS SRP SHA AES 128 CBC SHA1 0xC0 0x1D SSL3.0
TLS SRP SHA AES 256 CBC SHA1 0xC0 0x20 SSL3.0
TLS SRP SHA DSS 3DES EDE CBC SHA1 0xC0 0x1C SSL3.0
TLS SRP SHA RSA 3DES EDE CBC SHA1 0xC0 0x1B SSL3.0
TLS SRP SHA DSS AES 128 CBC SHA1 0xC0 0x1F SSL3.0
TLS SRP SHA RSA AES 128 CBC SHA1 0xC0 0x1E SSL3.0
TLS SRP SHA DSS AES 256 CBC SHA1 0xC0 0x22 SSL3.0
TLS SRP SHA RSA AES 256 CBC SHA1 0xC0 0x21 SSL3.0

Certificate types

X.509

OPENPGP

Protocols

SSL3.0

TLS1.0

Appendix D: Supported Ciphersuites 283

TLS1.1

TLS1.2

DTLS0.9

DTLS1.0

DTLS1.2

Ciphers

AES-256-CBC

AES-192-CBC

AES-128-CBC

AES-128-GCM

AES-256-GCM

ARCFOUR-128

ESTREAM-SALSA20-256

SALSA20-256

CAMELLIA-256-CBC

CAMELLIA-192-CBC

CAMELLIA-128-CBC

CAMELLIA-128-GCM

CAMELLIA-256-GCM

3DES-CBC

DES-CBC

ARCFOUR-40

RC2-40

NULL

MAC algorithms

SHA1

MD5

SHA256

SHA384

SHA512

SHA224

UMAC-96

UMAC-128

AEAD

Appendix D: Supported Ciphersuites 284

Key exchange methods

ANON-DH

ANON-ECDH

RSA

DHE-RSA

DHE-DSS

ECDHE-RSA

ECDHE-ECDSA

SRP-DSS

SRP-RSA

SRP

PSK

RSA-PSK

DHE-PSK

ECDHE-PSK

RSA-EXPORT

Public key algorithms

RSA

DSA

EC

Public key signature algorithms

RSA-SHA1

RSA-SHA1

RSA-SHA224

RSA-SHA256

RSA-SHA384

RSA-SHA512

RSA-RMD160

DSA-SHA1

DSA-SHA1

DSA-SHA224

DSA-SHA256

RSA-MD5

RSA-MD5

RSA-MD2

Appendix D: Supported Ciphersuites 285

ECDSA-SHA1

ECDSA-SHA224

ECDSA-SHA256

ECDSA-SHA384

ECDSA-SHA512

Elliptic curves

SECP192R1

SECP224R1

SECP256R1

SECP384R1

SECP521R1

Compression methods

DEFLATE

NULL

Appendix E: API reference 286

Appendix E API reference

E.1 Core TLS API

The prototypes for the following functions lie in gnutls/gnutls.h.

gnutls alert get

[Function]gnutls_alert_description_t gnutls_alert_get (gnutls session t
session)

session: is a gnutls_session_t structure.

This function will return the last alert number received. This function should be called
when GNUTLS_E_WARNING_ALERT_RECEIVED or GNUTLS_E_FATAL_ALERT_RECEIVED er-
rors are returned by a gnutls function. The peer may send alerts if he encounters an
error. If no alert has been received the returned value is undefined.

Returns: the last alert received, a gnutls_alert_description_t value.

gnutls alert get name

[Function]const char * gnutls_alert_get_name (gnutls alert description t
alert)

alert: is an alert number.

This function will return a string that describes the given alert number, or NULL . See
gnutls_alert_get() .

Returns: string corresponding to gnutls_alert_description_t value.

gnutls alert get strname

[Function]const char * gnutls_alert_get_strname (gnutls alert description t
alert)

alert: is an alert number.

This function will return a string of the name of the alert.

Returns: string corresponding to gnutls_alert_description_t value.

Since: 3.0

gnutls alert send

[Function]int gnutls_alert_send (gnutls session t session, gnutls alert level t
level, gnutls alert description t desc)

session: is a gnutls_session_t structure.

level: is the level of the alert

desc: is the alert description

This function will send an alert to the peer in order to inform him of something
important (eg. his Certificate could not be verified). If the alert level is Fatal then
the peer is expected to close the connection, otherwise he may ignore the alert and
continue.

Appendix E: API reference 287

The error code of the underlying record send function will be returned, so you may
also receive GNUTLS_E_INTERRUPTED or GNUTLS_E_AGAIN as well.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls alert send appropriate

[Function]int gnutls_alert_send_appropriate (gnutls session t session, int
err)

session: is a gnutls_session_t structure.

err: is an integer

Sends an alert to the peer depending on the error code returned by a gnutls function.
This function will call gnutls_error_to_alert() to determine the appropriate alert
to send.

This function may also return GNUTLS_E_AGAIN , or GNUTLS_E_INTERRUPTED .

If the return value is GNUTLS_E_INVALID_REQUEST , then no alert has been sent to
the peer.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls alpn get selected protocol

[Function]int gnutls_alpn_get_selected_protocol (gnutls session t
session, gnutls datum t * protocol)

session: is a gnutls_session_t structure.

protocol: will hold the protocol name

This function allows you to get the negotiated protocol name. The returned protocol
should be treated as opaque, constant value and only valid during the session life.

The selected protocol is the first supported by the list sent by the client.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

Since 3.2.0

gnutls alpn set protocols

[Function]int gnutls_alpn_set_protocols (gnutls session t session, const
gnutls datum t * protocols, unsigned protocols_size, unsigned int
flags)

session: is a gnutls_session_t structure.

protocols: is the protocol names to add.

protocols size: the number of protocols to add.

flags: zero or GNUTLS_ALPN_ *

This function is to be used by both clients and servers, to declare the supported
ALPN protocols, which are used during negotiation with peer.

Appendix E: API reference 288

If GNUTLS_ALPN_MAND is specified the connection will be aborted if no matching ALPN
protocol is found.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

Since 3.2.0

gnutls anon allocate client credentials

[Function]int gnutls_anon_allocate_client_credentials
(gnutls anon client credentials t * sc)

sc: is a pointer to a gnutls_anon_client_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls anon allocate server credentials

[Function]int gnutls_anon_allocate_server_credentials
(gnutls anon server credentials t * sc)

sc: is a pointer to a gnutls_anon_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls anon free client credentials

[Function]void gnutls_anon_free_client_credentials
(gnutls anon client credentials t sc)

sc: is a gnutls_anon_client_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

gnutls anon free server credentials

[Function]void gnutls_anon_free_server_credentials
(gnutls anon server credentials t sc)

sc: is a gnutls_anon_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

gnutls anon set params function

[Function]void gnutls_anon_set_params_function
(gnutls anon server credentials t res, gnutls params function * func)

res: is a gnutls anon server credentials t structure

func: is the function to be called

Appendix E: API reference 289

This function will set a callback in order for the server to get the Diffie-Hellman or
RSA parameters for anonymous authentication. The callback should return GNUTLS_

E_SUCCESS (0) on success.

gnutls anon set server dh params

[Function]void gnutls_anon_set_server_dh_params
(gnutls anon server credentials t res, gnutls dh params t dh_params)

res: is a gnutls anon server credentials t structure

dh params: is a structure that holds Diffie-Hellman parameters.

This function will set the Diffie-Hellman parameters for an anonymous server to use.
These parameters will be used in Anonymous Diffie-Hellman cipher suites.

gnutls anon set server params function

[Function]void gnutls_anon_set_server_params_function
(gnutls anon server credentials t res, gnutls params function * func)

res: is a gnutls certificate credentials t structure

func: is the function to be called

This function will set a callback in order for the server to get the Diffie-Hellman
parameters for anonymous authentication. The callback should return GNUTLS_E_

SUCCESS (0) on success.

gnutls auth client get type

[Function]gnutls_credentials_type_t gnutls_auth_client_get_type
(gnutls session t session)

session: is a gnutls_session_t structure.

Returns the type of credentials that were used for client authentication. The returned
information is to be used to distinguish the function used to access authentication
data.

Returns: The type of credentials for the client authentication schema, a gnutls_

credentials_type_t type.

gnutls auth get type

[Function]gnutls_credentials_type_t gnutls_auth_get_type
(gnutls session t session)

session: is a gnutls_session_t structure.

Returns type of credentials for the current authentication schema. The returned
information is to be used to distinguish the function used to access authentication
data.

Eg. for CERTIFICATE ciphersuites (key exchange algorithms: GNUTLS_KX_RSA ,
GNUTLS_KX_DHE_RSA), the same function are to be used to access the authentication
data.

Returns: The type of credentials for the current authentication schema, a gnutls_

credentials_type_t type.

Appendix E: API reference 290

gnutls auth server get type

[Function]gnutls_credentials_type_t gnutls_auth_server_get_type
(gnutls session t session)

session: is a gnutls_session_t structure.

Returns the type of credentials that were used for server authentication. The returned
information is to be used to distinguish the function used to access authentication
data.

Returns: The type of credentials for the server authentication schema, a gnutls_

credentials_type_t type.

gnutls bye

[Function]int gnutls_bye (gnutls session t session, gnutls close request t how)
session: is a gnutls_session_t structure.

how : is an integer

Terminates the current TLS/SSL connection. The connection should have been initi-
ated using gnutls_handshake() . how should be one of GNUTLS_SHUT_RDWR , GNUTLS_
SHUT_WR .

In case of GNUTLS_SHUT_RDWR the TLS session gets terminated and further receives
and sends will be disallowed. If the return value is zero you may continue using
the underlying transport layer. GNUTLS_SHUT_RDWR sends an alert containing a close
request and waits for the peer to reply with the same message.

In case of GNUTLS_SHUT_WR the TLS session gets terminated and further sends will
be disallowed. In order to reuse the connection you should wait for an EOF from the
peer. GNUTLS_SHUT_WR sends an alert containing a close request.

Note that not all implementations will properly terminate a TLS connection. Some of
them, usually for performance reasons, will terminate only the underlying transport
layer, and thus not distinguishing between a malicious party prematurely terminating
the connection and normal termination.

This function may also return GNUTLS_E_AGAIN or GNUTLS_E_INTERRUPTED ; cf.
gnutls_record_get_direction() .

Returns: GNUTLS_E_SUCCESS on success, or an error code, see function documentation
for entire semantics.

gnutls certificate activation time peers

[Function]time_t gnutls_certificate_activation_time_peers
(gnutls session t session)

session: is a gnutls session

This function will return the peer’s certificate activation time. This is the creation
time for openpgp keys.

Returns: (time t)-1 on error.

Deprecated: gnutls_certificate_verify_peers2() now verifies activation times.

Appendix E: API reference 291

gnutls certificate allocate credentials

[Function]int gnutls_certificate_allocate_credentials
(gnutls certificate credentials t * res)

res: is a pointer to a gnutls_certificate_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls certificate client get request status

[Function]int gnutls_certificate_client_get_request_status
(gnutls session t session)

session: is a gnutls session

Get whether client certificate is requested or not.

Returns: 0 if the peer (server) did not request client authentication or 1 otherwise.

gnutls certificate expiration time peers

[Function]time_t gnutls_certificate_expiration_time_peers
(gnutls session t session)

session: is a gnutls session

This function will return the peer’s certificate expiration time.

Returns: (time t)-1 on error.

Deprecated: gnutls_certificate_verify_peers2() now verifies expiration times.

gnutls certificate free ca names

[Function]void gnutls_certificate_free_ca_names
(gnutls certificate credentials t sc)

sc: is a gnutls_certificate_credentials_t structure.

This function will delete all the CA name in the given credentials. Clients may call
this to save some memory since in client side the CA names are not used. Servers
might want to use this function if a large list of trusted CAs is present and sending the
names of it would just consume bandwidth without providing information to client.

CA names are used by servers to advertise the CAs they support to clients.

gnutls certificate free cas

[Function]void gnutls_certificate_free_cas (gnutls certificate credentials t
sc)

sc: is a gnutls_certificate_credentials_t structure.

This function will delete all the CAs associated with the given credentials. Servers
that do not use gnutls_certificate_verify_peers2() may call this to save some
memory.

Appendix E: API reference 292

gnutls certificate free credentials

[Function]void gnutls_certificate_free_credentials
(gnutls certificate credentials t sc)

sc: is a gnutls_certificate_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

This function does not free any temporary parameters associated with this structure
(ie RSA and DH parameters are not freed by this function).

gnutls certificate free crls

[Function]void gnutls_certificate_free_crls (gnutls certificate credentials t
sc)

sc: is a gnutls_certificate_credentials_t structure.

This function will delete all the CRLs associated with the given credentials.

gnutls certificate free keys

[Function]void gnutls_certificate_free_keys (gnutls certificate credentials t
sc)

sc: is a gnutls_certificate_credentials_t structure.

This function will delete all the keys and the certificates associated with the given
credentials. This function must not be called when a TLS negotiation that uses the
credentials is in progress.

gnutls certificate get crt raw

[Function]int gnutls_certificate_get_crt_raw
(gnutls certificate credentials t sc, unsigned idx1, unsigned idx2,
gnutls datum t * cert)

sc: is a gnutls_certificate_credentials_t structure.

idx1: the index of the certificate if multiple are present

idx2: the index in the certificate list. Zero gives the server’s certificate.

cert: Will hold the DER encoded certificate.

This function will return the DER encoded certificate of the server or any other
certificate on its certificate chain (based on idx2). The returned data should be
treated as constant and only accessible during the lifetime of sc .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative er-
ror value. In case the indexes are out of bounds GNUTLS_E_REQUESTED_DATA_NOT_

AVAILABLE is returned.

Since: 3.2.5

Appendix E: API reference 293

gnutls certificate get issuer

[Function]int gnutls_certificate_get_issuer (gnutls certificate credentials t
sc, gnutls x509 crt t cert, gnutls x509 crt t * issuer, unsigned int flags)

sc: is a gnutls_certificate_credentials_t structure.

cert: is the certificate to find issuer for

issuer: Will hold the issuer if any. Should be treated as constant.

flags: Use zero or GNUTLS_TL_GET_COPY

This function will return the issuer of a given certificate. As with gnutls_x509_

trust_list_get_issuer() this function requires the GNUTLS_TL_GET_COPY flag in
order to operate with PKCS 11 trust lists. In that case the issuer must be freed using
gnutls_x509_crt_deinit() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

gnutls certificate get ours

[Function]const gnutls_datum_t * gnutls_certificate_get_ours
(gnutls session t session)

session: is a gnutls session

Gets the certificate as sent to the peer in the last handshake. The certificate is in raw
(DER) format. No certificate list is being returned. Only the first certificate.

Returns: a pointer to a gnutls_datum_t containing our certificate, or NULL in case
of an error or if no certificate was used.

gnutls certificate get peers

[Function]const gnutls_datum_t * gnutls_certificate_get_peers
(gnutls session t session, unsigned int * list_size)

session: is a gnutls session

list size: is the length of the certificate list (may be NULL)

Get the peer’s raw certificate (chain) as sent by the peer. These certificates are in raw
format (DER encoded for X.509). In case of a X.509 then a certificate list may be
present. The first certificate in the list is the peer’s certificate, following the issuer’s
certificate, then the issuer’s issuer etc.

In case of OpenPGP keys a single key will be returned in raw format.

Returns: a pointer to a gnutls_datum_t containing the peer’s certificates, or NULL
in case of an error or if no certificate was used.

gnutls certificate get peers subkey id

[Function]int gnutls_certificate_get_peers_subkey_id (gnutls session t
session, gnutls datum t * id)

session: is a gnutls session

Appendix E: API reference 294

id: will contain the ID

Get the peer’s subkey ID when OpenPGP certificates are used. The returned id

should be treated as constant.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

Since: 3.1.3

gnutls certificate send x509 rdn sequence

[Function]void gnutls_certificate_send_x509_rdn_sequence
(gnutls session t session, int status)

session: is a pointer to a gnutls_session_t structure.

status: is 0 or 1

If status is non zero, this function will order gnutls not to send the rdnSequence in
the certificate request message. That is the server will not advertise its trusted CAs
to the peer. If status is zero then the default behaviour will take effect, which is to
advertise the server’s trusted CAs.

This function has no effect in clients, and in authentication methods other than
certificate with X.509 certificates.

gnutls certificate server set request

[Function]void gnutls_certificate_server_set_request (gnutls session t
session, gnutls certificate request t req)

session: is a gnutls_session_t structure.

req: is one of GNUTLS CERT REQUEST, GNUTLS CERT REQUIRE

This function specifies if we (in case of a server) are going to send a certificate request
message to the client. If req is GNUTLS CERT REQUIRE then the server will
return an error if the peer does not provide a certificate. If you do not call this
function then the client will not be asked to send a certificate.

gnutls certificate set dh params

[Function]void gnutls_certificate_set_dh_params
(gnutls certificate credentials t res, gnutls dh params t dh_params)

res: is a gnutls certificate credentials t structure

dh params: is a structure that holds Diffie-Hellman parameters.

This function will set the Diffie-Hellman parameters for a certificate server to use.
These parameters will be used in Ephemeral Diffie-Hellman cipher suites. Note that
only a pointer to the parameters are stored in the certificate handle, so you must not
deallocate the parameters before the certificate is deallocated.

gnutls certificate set ocsp status request file

[Function]int gnutls_certificate_set_ocsp_status_request_file
(gnutls certificate credentials t sc, const char * response_file, unsigned int
flags)

sc: is a credentials structure.

Appendix E: API reference 295

response file: a filename of the OCSP response

flags: should be zero

This function sets the filename of an OCSP response, that will be sent to the client if
requests an OCSP certificate status. This is a convenience function which is inefficient
on busy servers since the file is opened on every access. Use gnutls_certificate_

set_ocsp_status_request_function() to fine-tune file accesses.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

Since: 3.1.3

gnutls certificate set ocsp status request function

[Function]void gnutls_certificate_set_ocsp_status_request_function
(gnutls certificate credentials t sc, gnutls status request ocsp func
ocsp_func, void * ptr)

sc: is a gnutls_certificate_credentials_t structure.

ocsp func: function pointer to OCSP status request callback.

ptr: opaque pointer passed to callback function

This function is to be used by server to register a callback to handle OCSP status
requests from the client. The callback will be invoked if the client supplied a status-
request OCSP extension. The callback function prototype is:

typedef int (*gnutls status request ocsp func) (gnutls session t session, void *ptr,
gnutls datum t *ocsp response);

The callback will be invoked if the client requests an OCSP certificate status. The
callback may return GNUTLS_E_NO_CERTIFICATE_STATUS , if there is no recent OCSP
response. If the callback returns GNUTLS_E_SUCCESS , the server will provide the
client with the ocsp response.

The response must be a value allocated using gnutls_malloc() , and will be deini-
tialized when needed.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

Since: 3.1.3

gnutls certificate set params function

[Function]void gnutls_certificate_set_params_function
(gnutls certificate credentials t res, gnutls params function * func)

res: is a gnutls certificate credentials t structure

func: is the function to be called

This function will set a callback in order for the server to get the Diffie-Hellman or
RSA parameters for certificate authentication. The callback should return GNUTLS_

E_SUCCESS (0) on success.

Appendix E: API reference 296

gnutls certificate set pin function

[Function]void gnutls_certificate_set_pin_function
(gnutls certificate credentials t cred, gnutls pin callback t fn, void *
userdata)

cred: is a gnutls_certificate_credentials_t structure.

fn: A PIN callback

userdata: Data to be passed in the callback

This function will set a callback function to be used when required to access a pro-
tected object. This function overrides any other global PIN functions.

Note that this function must be called right after initialization to have effect.

Since: 3.1.0

gnutls certificate set retrieve function

[Function]void gnutls_certificate_set_retrieve_function
(gnutls certificate credentials t cred, gnutls certificate retrieve function *
func)

cred: is a gnutls_certificate_credentials_t structure.

func: is the callback function

This function sets a callback to be called in order to retrieve the certificate to be
used in the handshake. You are advised to use gnutls_certificate_set_retrieve_
function2() because it is much more efficient in the processing it requires from
gnutls.

The callback’s function prototype is: int (*callback)(gnutls session t, const
gnutls datum t* req ca dn, int nreqs, const gnutls pk algorithm t* pk algos, int
pk algos length, gnutls retr2 st* st);

req_ca_dn is only used in X.509 certificates. Contains a list with the CA names that
the server considers trusted. Normally we should send a certificate that is signed by
one of these CAs. These names are DER encoded. To get a more meaningful value
use the function gnutls_x509_rdn_get() .

pk_algos contains a list with server’s acceptable signature algorithms. The certificate
returned should support the server’s given algorithms.

st should contain the certificates and private keys.

If the callback function is provided then gnutls will call it, in the handshake, after
the certificate request message has been received.

In server side pk algos and req ca dn are NULL.

The callback function should set the certificate list to be sent, and return 0 on success.
If no certificate was selected then the number of certificates should be set to zero.
The value (-1) indicates error and the handshake will be terminated.

Since: 3.0

Appendix E: API reference 297

gnutls certificate set verify flags

[Function]void gnutls_certificate_set_verify_flags
(gnutls certificate credentials t res, unsigned int flags)

res: is a gnutls certificate credentials t structure

flags: are the flags

This function will set the flags to be used for verification of certificates and override
any defaults. The provided flags must be an OR of the gnutls_certificate_verify_
flags enumerations.

gnutls certificate set verify function

[Function]void gnutls_certificate_set_verify_function
(gnutls certificate credentials t cred, gnutls certificate verify function * func)

cred: is a gnutls_certificate_credentials_t structure.

func: is the callback function

This function sets a callback to be called when peer’s certificate has been received in
order to verify it on receipt rather than doing after the handshake is completed.

The callback’s function prototype is: int (*callback)(gnutls session t);

If the callback function is provided then gnutls will call it, in the handshake, just
after the certificate message has been received. To verify or obtain the certificate
the gnutls_certificate_verify_peers2() , gnutls_certificate_type_get() ,
gnutls_certificate_get_peers() functions can be used.

The callback function should return 0 for the handshake to continue or non-zero to
terminate.

Since: 2.10.0

gnutls certificate set verify limits

[Function]void gnutls_certificate_set_verify_limits
(gnutls certificate credentials t res, unsigned int max_bits, unsigned int
max_depth)

res: is a gnutls certificate credentials structure

max bits: is the number of bits of an acceptable certificate (default 8200)

max depth: is maximum depth of the verification of a certificate chain (default 5)

This function will set some upper limits for the default verification function, gnutls_
certificate_verify_peers2() , to avoid denial of service attacks. You can set them
to zero to disable limits.

gnutls certificate set x509 crl

[Function]int gnutls_certificate_set_x509_crl
(gnutls certificate credentials t res, gnutls x509 crl t * crl_list, int
crl_list_size)

res: is a gnutls_certificate_credentials_t structure.

crl list: is a list of trusted CRLs. They should have been verified before.

Appendix E: API reference 298

crl list size: holds the size of the crl list

This function adds the trusted CRLs in order to verify client or server certificates.
In case of a client this is not required to be called if the certificates are not verified
using gnutls_certificate_verify_peers2() . This function may be called multiple
times.

Returns: number of CRLs processed, or a negative error code on error.

Since: 2.4.0

gnutls certificate set x509 crl file

[Function]int gnutls_certificate_set_x509_crl_file
(gnutls certificate credentials t res, const char * crlfile,
gnutls x509 crt fmt t type)

res: is a gnutls_certificate_credentials_t structure.

crlfile: is a file containing the list of verified CRLs (DER or PEM list)

type: is PEM or DER

This function adds the trusted CRLs in order to verify client or server certificates.
In case of a client this is not required to be called if the certificates are not verified
using gnutls_certificate_verify_peers2() . This function may be called multiple
times.

Returns: number of CRLs processed or a negative error code on error.

gnutls certificate set x509 crl mem

[Function]int gnutls_certificate_set_x509_crl_mem
(gnutls certificate credentials t res, const gnutls datum t * CRL,
gnutls x509 crt fmt t type)

res: is a gnutls_certificate_credentials_t structure.

CRL: is a list of trusted CRLs. They should have been verified before.

type: is DER or PEM

This function adds the trusted CRLs in order to verify client or server certificates.
In case of a client this is not required to be called if the certificates are not verified
using gnutls_certificate_verify_peers2() . This function may be called multiple
times.

Returns: number of CRLs processed, or a negative error code on error.

gnutls certificate set x509 key

[Function]int gnutls_certificate_set_x509_key
(gnutls certificate credentials t res, gnutls x509 crt t * cert_list, int
cert_list_size, gnutls x509 privkey t key)

res: is a gnutls_certificate_credentials_t structure.

cert list: contains a certificate list (path) for the specified private key

cert list size: holds the size of the certificate list

key : is a gnutls_x509_privkey_t key

Appendix E: API reference 299

This function sets a certificate/private key pair in the gnutls certificate credentials t
structure. This function may be called more than once, in case multiple
keys/certificates exist for the server. For clients that wants to send more than their
own end entity certificate (e.g., also an intermediate CA cert) then put the certificate
chain in cert_list .

Note that the certificates and keys provided, can be safely deinitialized after this
function is called.

If that function fails to load the res structure is at an undefined state, it must not
be reused to load other keys or certificates.

Returns: GNUTLS_E_SUCCESS (0) on success, or a negative error code.

Since: 2.4.0

gnutls certificate set x509 key file

[Function]int gnutls_certificate_set_x509_key_file
(gnutls certificate credentials t res, const char * certfile, const char *
keyfile, gnutls x509 crt fmt t type)

res: is a gnutls_certificate_credentials_t structure.

certfile: is a file that containing the certificate list (path) for the specified private key,
in PKCS7 format, or a list of certificates

keyfile: is a file that contains the private key

type: is PEM or DER

This function sets a certificate/private key pair in the gnutls certificate credentials t
structure. This function may be called more than once, in case multiple
keys/certificates exist for the server. For clients that need to send more than its own
end entity certificate, e.g., also an intermediate CA cert, then the certfile must
contain the ordered certificate chain.

Note that the names in the certificate provided will be considered when selecting the
appropriate certificate to use (in case of multiple certificate/key pairs).

This function can also accept URLs at keyfile and certfile . In that case it will
import the private key and certificate indicated by the URLs. Note that the supported
URLs are the ones indicated by gnutls_url_is_supported() .

In case the certfile is provided as a PKCS 11 URL, then the certificate, and its
present issuers in the token are are imported (i.e., the required trust chain).

If that function fails to load the res structure is at an undefined state, it must not
be reused to load other keys or certificates.

Returns: GNUTLS_E_SUCCESS (0) on success, or a negative error code.

gnutls certificate set x509 key file2

[Function]int gnutls_certificate_set_x509_key_file2
(gnutls certificate credentials t res, const char * certfile, const char *
keyfile, gnutls x509 crt fmt t type, const char * pass, unsigned int flags)

res: is a gnutls_certificate_credentials_t structure.

Appendix E: API reference 300

certfile: is a file that containing the certificate list (path) for the specified private key,
in PKCS7 format, or a list of certificates

keyfile: is a file that contains the private key

type: is PEM or DER

pass: is the password of the key

flags: an ORed sequence of gnutls pkcs encrypt flags t

This function sets a certificate/private key pair in the gnutls certificate credentials t
structure. This function may be called more than once, in case multiple
keys/certificates exist for the server. For clients that need to send more than its own
end entity certificate, e.g., also an intermediate CA cert, then the certfile must
contain the ordered certificate chain.

Note that the names in the certificate provided will be considered when selecting the
appropriate certificate to use (in case of multiple certificate/key pairs).

This function can also accept URLs at keyfile and certfile . In that case it will
import the private key and certificate indicated by the URLs. Note that the supported
URLs are the ones indicated by gnutls_url_is_supported() .

In case the certfile is provided as a PKCS 11 URL, then the certificate, and its
present issuers in the token are are imported (i.e., the required trust chain).

If that function fails to load the res structure is at an undefined state, it must not
be reused to load other keys or certificates.

Returns: GNUTLS_E_SUCCESS (0) on success, or a negative error code.

gnutls certificate set x509 key mem

[Function]int gnutls_certificate_set_x509_key_mem
(gnutls certificate credentials t res, const gnutls datum t * cert, const
gnutls datum t * key, gnutls x509 crt fmt t type)

res: is a gnutls_certificate_credentials_t structure.

cert: contains a certificate list (path) for the specified private key

key : is the private key, or NULL

type: is PEM or DER

This function sets a certificate/private key pair in the gnutls certificate credentials t
structure. This function may be called more than once, in case multiple
keys/certificates exist for the server.

Note that the keyUsage (2.5.29.15) PKIX extension in X.509 certificates is supported.
This means that certificates intended for signing cannot be used for ciphersuites that
require encryption.

If the certificate and the private key are given in PEM encoding then the strings that
hold their values must be null terminated.

The key may be NULL if you are using a sign callback, see gnutls_sign_callback_

set() .

Returns: GNUTLS_E_SUCCESS (0) on success, or a negative error code.

Appendix E: API reference 301

gnutls certificate set x509 key mem2

[Function]int gnutls_certificate_set_x509_key_mem2
(gnutls certificate credentials t res, const gnutls datum t * cert, const
gnutls datum t * key, gnutls x509 crt fmt t type, const char * pass,
unsigned int flags)

res: is a gnutls_certificate_credentials_t structure.

cert: contains a certificate list (path) for the specified private key

key : is the private key, or NULL

type: is PEM or DER

pass: is the key’s password

flags: an ORed sequence of gnutls pkcs encrypt flags t

This function sets a certificate/private key pair in the gnutls certificate credentials t
structure. This function may be called more than once, in case multiple
keys/certificates exist for the server.

Note that the keyUsage (2.5.29.15) PKIX extension in X.509 certificates is supported.
This means that certificates intended for signing cannot be used for ciphersuites that
require encryption.

If the certificate and the private key are given in PEM encoding then the strings that
hold their values must be null terminated.

The key may be NULL if you are using a sign callback, see gnutls_sign_callback_

set() .

Returns: GNUTLS_E_SUCCESS (0) on success, or a negative error code.

gnutls certificate set x509 simple pkcs12 file

[Function]int gnutls_certificate_set_x509_simple_pkcs12_file
(gnutls certificate credentials t res, const char * pkcs12file,
gnutls x509 crt fmt t type, const char * password)

res: is a gnutls_certificate_credentials_t structure.

pkcs12file: filename of file containing PKCS12 blob.

type: is PEM or DER of the pkcs12file .

password: optional password used to decrypt PKCS12 file, bags and keys.

This function sets a certificate/private key pair and/or a CRL in the
gnutls certificate credentials t structure. This function may be called more than
once (in case multiple keys/certificates exist for the server).

PKCS12 files with a MAC, encrypted bags and PKCS 8 private keys are supported.
However, only password based security, and the same password for all operations, are
supported.

PKCS12 file may contain many keys and/or certificates, and this function will try to
auto-detect based on the key ID the certificate and key pair to use. If the PKCS12
file contain the issuer of the selected certificate, it will be appended to the certificate
to form a chain.

Appendix E: API reference 302

If more than one private keys are stored in the PKCS12 file, then only one key will
be read (and it is undefined which one).

It is believed that the limitations of this function is acceptable for most usage, and
that any more flexibility would introduce complexity that would make it harder to
use this functionality at all.

Returns: GNUTLS_E_SUCCESS (0) on success, or a negative error code.

gnutls certificate set x509 simple pkcs12 mem

[Function]int gnutls_certificate_set_x509_simple_pkcs12_mem
(gnutls certificate credentials t res, const gnutls datum t * p12blob,
gnutls x509 crt fmt t type, const char * password)

res: is a gnutls_certificate_credentials_t structure.

p12blob: the PKCS12 blob.

type: is PEM or DER of the pkcs12file .

password: optional password used to decrypt PKCS12 file, bags and keys.

This function sets a certificate/private key pair and/or a CRL in the
gnutls certificate credentials t structure. This function may be called more than
once (in case multiple keys/certificates exist for the server).

Encrypted PKCS12 bags and PKCS8 private keys are supported. However, only
password based security, and the same password for all operations, are supported.

PKCS12 file may contain many keys and/or certificates, and this function will try to
auto-detect based on the key ID the certificate and key pair to use. If the PKCS12
file contain the issuer of the selected certificate, it will be appended to the certificate
to form a chain.

If more than one private keys are stored in the PKCS12 file, then only one key will
be read (and it is undefined which one).

It is believed that the limitations of this function is acceptable for most usage, and
that any more flexibility would introduce complexity that would make it harder to
use this functionality at all.

Returns: GNUTLS_E_SUCCESS (0) on success, or a negative error code.

Since: 2.8.0

gnutls certificate set x509 system trust

[Function]int gnutls_certificate_set_x509_system_trust
(gnutls certificate credentials t cred)

cred: is a gnutls_certificate_credentials_t structure.

This function adds the system’s default trusted CAs in order to verify client or server
certificates.

In the case the system is currently unsupported GNUTLS_E_UNIMPLEMENTED_FEATURE

is returned.

Returns: the number of certificates processed or a negative error code on error.

Since: 3.0.20

Appendix E: API reference 303

gnutls certificate set x509 trust

[Function]int gnutls_certificate_set_x509_trust
(gnutls certificate credentials t res, gnutls x509 crt t * ca_list, int
ca_list_size)

res: is a gnutls_certificate_credentials_t structure.

ca list: is a list of trusted CAs

ca list size: holds the size of the CA list

This function adds the trusted CAs in order to verify client or server certificates.
In case of a client this is not required to be called if the certificates are not verified
using gnutls_certificate_verify_peers2() . This function may be called multiple
times.

In case of a server the CAs set here will be sent to the client if a certificate request is
sent. This can be disabled using gnutls_certificate_send_x509_rdn_sequence()

.

Returns: the number of certificates processed or a negative error code on error.

Since: 2.4.0

gnutls certificate set x509 trust dir

[Function]int gnutls_certificate_set_x509_trust_dir
(gnutls certificate credentials t cred, const char * ca_dir,
gnutls x509 crt fmt t type)

cred: is a gnutls_certificate_credentials_t structure.

ca dir: is a directory containing the list of trusted CAs (DER or PEM list)

type: is PEM or DER

This function adds the trusted CAs present in the directory in order to verify client
or server certificates. This function is identical to gnutls_certificate_set_x509_

trust_file() but loads all certificates in a directory.

Returns: the number of certificates processed

Since: 3.3.6

gnutls certificate set x509 trust file

[Function]int gnutls_certificate_set_x509_trust_file
(gnutls certificate credentials t cred, const char * cafile,
gnutls x509 crt fmt t type)

cred: is a gnutls_certificate_credentials_t structure.

cafile: is a file containing the list of trusted CAs (DER or PEM list)

type: is PEM or DER

This function adds the trusted CAs in order to verify client or server certificates.
In case of a client this is not required to be called if the certificates are not verified
using gnutls_certificate_verify_peers2() . This function may be called multiple
times.

Appendix E: API reference 304

In case of a server the names of the CAs set here will be sent to the client if a certificate
request is sent. This can be disabled using gnutls_certificate_send_x509_rdn_

sequence() .

This function can also accept URLs. In that case it will import all certificates that
are marked as trusted. Note that the supported URLs are the ones indicated by
gnutls_url_is_supported() .

Returns: the number of certificates processed

gnutls certificate set x509 trust mem

[Function]int gnutls_certificate_set_x509_trust_mem
(gnutls certificate credentials t res, const gnutls datum t * ca,
gnutls x509 crt fmt t type)

res: is a gnutls_certificate_credentials_t structure.

ca: is a list of trusted CAs or a DER certificate

type: is DER or PEM

This function adds the trusted CAs in order to verify client or server certificates.
In case of a client this is not required to be called if the certificates are not verified
using gnutls_certificate_verify_peers2() . This function may be called multiple
times.

In case of a server the CAs set here will be sent to the client if a certificate request is
sent. This can be disabled using gnutls_certificate_send_x509_rdn_sequence()

.

Returns: the number of certificates processed or a negative error code on error.

gnutls certificate type get

[Function]gnutls_certificate_type_t gnutls_certificate_type_get
(gnutls session t session)

session: is a gnutls_session_t structure.

The certificate type is by default X.509, unless it is negotiated as a TLS extension.

Returns: the currently used gnutls_certificate_type_t certificate type.

gnutls certificate type get id

[Function]gnutls_certificate_type_t gnutls_certificate_type_get_id
(const char * name)

name: is a certificate type name

The names are compared in a case insensitive way.

Returns: a gnutls_certificate_type_t for the specified in a string certificate type,
or GNUTLS_CRT_UNKNOWN on error.

gnutls certificate type get name

[Function]const char * gnutls_certificate_type_get_name
(gnutls certificate type t type)

type: is a certificate type

Appendix E: API reference 305

Convert a gnutls_certificate_type_t type to a string.

Returns: a string that contains the name of the specified certificate type, or NULL in
case of unknown types.

gnutls certificate type list

[Function]const gnutls_certificate_type_t *
gnutls_certificate_type_list (void)

Get a list of certificate types.

Returns: a (0)-terminated list of gnutls_certificate_type_t integers indicating
the available certificate types.

gnutls certificate verification status print

[Function]int gnutls_certificate_verification_status_print (unsigned
int status, gnutls certificate type t type, gnutls datum t * out, unsigned int
flags)

status: The status flags to be printed

type: The certificate type

out: Newly allocated datum with (0) terminated string.

flags: should be zero

This function will pretty print the status of a verification process – eg. the one
obtained by gnutls_certificate_verify_peers3() .

The output out needs to be deallocated using gnutls_free() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.4

gnutls certificate verify peers

[Function]int gnutls_certificate_verify_peers (gnutls session t session,
gnutls typed vdata st * data, unsigned int elements, unsigned int * status)

session: is a gnutls session

data: an array of typed data

elements: the number of data elements

status: is the output of the verification

This function will verify the peer’s certificate and store the status in the status

variable as a bitwise or’d gnutls certificate status t values or zero if the certificate
is trusted. Note that value in status is set only when the return value of this
function is success (i.e, failure to trust a certificate does not imply a negative return
value). The default verification flags used by this function can be overridden using
gnutls_certificate_set_verify_flags() . See the documentation of gnutls_

certificate_verify_peers2() for details in the verification process.

The acceptable data types are GNUTLS_DT_DNS_HOSTNAME and GNUTLS_DT_KEY_

PURPOSE_OID . The former accepts as data a null-terminated hostname, and the latter

Appendix E: API reference 306

a null-terminated object identifier (e.g., GNUTLS_KP_TLS_WWW_SERVER). If a DNS
hostname is provided then this function will compare the hostname in the certificate
against the given. If names do not match the GNUTLS_CERT_UNEXPECTED_OWNER

status flag will be set. If a key purpose OID is provided and the end-certificate
contains the extended key usage PKIX extension, it will be required to be have the
provided key purpose or be marked for any purpose, otherwise verification will fail
with GNUTLS_CERT_SIGNER_CONSTRAINTS_FAILURE status.

Returns: a negative error code on error and GNUTLS_E_SUCCESS (0) when the peer’s
certificate was successfully parsed, irrespective of whether it was verified.

Since: 3.3.0

gnutls certificate verify peers2

[Function]int gnutls_certificate_verify_peers2 (gnutls session t session,
unsigned int * status)

session: is a gnutls session

status: is the output of the verification

This function will verify the peer’s certificate and store the status in the status

variable as a bitwise or’d gnutls certificate status t values or zero if the certificate is
trusted. Note that value in status is set only when the return value of this function
is success (i.e, failure to trust a certificate does not imply a negative return value).
The default verification flags used by this function can be overridden using gnutls_

certificate_set_verify_flags() .

This function will take into account the OCSP Certificate Status TLS extension, as
well as the following X.509 certificate extensions: Name Constraints, Key Usage, and
Basic Constraints (pathlen).

To avoid denial of service attacks some default upper limits regarding the certificate
key size and chain size are set. To override them use gnutls_certificate_set_

verify_limits() .

Note that you must also check the peer’s name in order to check if the verified cer-
tificate belongs to the actual peer, see gnutls_x509_crt_check_hostname() , or use
gnutls_certificate_verify_peers3() .

Returns: a negative error code on error and GNUTLS_E_SUCCESS (0) when the peer’s
certificate was successfully parsed, irrespective of whether it was verified.

gnutls certificate verify peers3

[Function]int gnutls_certificate_verify_peers3 (gnutls session t session,
const char * hostname, unsigned int * status)

session: is a gnutls session

hostname: is the expected name of the peer; may be NULL

status: is the output of the verification

This function will verify the peer’s certificate and store the status in the status

variable as a bitwise or’d gnutls certificate status t values or zero if the certificate
is trusted. Note that value in status is set only when the return value of this

Appendix E: API reference 307

function is success (i.e, failure to trust a certificate does not imply a negative return
value). The default verification flags used by this function can be overridden using
gnutls_certificate_set_verify_flags() . See the documentation of gnutls_

certificate_verify_peers2() for details in the verification process.

If the hostname provided is non-NULL then this function will compare the hostname
in the certificate against the given. The comparison will be accurate for ascii names;
non-ascii names are compared byte-by-byte. If names do not match the GNUTLS_

CERT_UNEXPECTED_OWNER status flag will be set.

In order to verify the purpose of the end-certificate (by checking the extended key
usage), use gnutls_certificate_verify_peers() .

Returns: a negative error code on error and GNUTLS_E_SUCCESS (0) when the peer’s
certificate was successfully parsed, irrespective of whether it was verified.

Since: 3.1.4

gnutls check version

[Function]const char * gnutls_check_version (const char * req_version)
req version: version string to compare with, or NULL .

Check GnuTLS Library version.

See GNUTLS_VERSION for a suitable req_version string.

Returns: Check that the version of the library is at minimum the one given as a
string in req_version and return the actual version string of the library; return NULL

if the condition is not met. If NULL is passed to this function no check is done and
only the version string is returned.

gnutls cipher get

[Function]gnutls_cipher_algorithm_t gnutls_cipher_get (gnutls session t
session)

session: is a gnutls_session_t structure.

Get currently used cipher.

Returns: the currently used cipher, a gnutls_cipher_algorithm_t type.

gnutls cipher get id

[Function]gnutls_cipher_algorithm_t gnutls_cipher_get_id (const char *
name)

name: is a cipher algorithm name

The names are compared in a case insensitive way.

Returns: return a gnutls_cipher_algorithm_t value corresponding to the specified
cipher, or GNUTLS_CIPHER_UNKNOWN on error.

gnutls cipher get key size

[Function]size_t gnutls_cipher_get_key_size (gnutls cipher algorithm t
algorithm)

algorithm: is an encryption algorithm

Appendix E: API reference 308

Get key size for cipher.

Returns: length (in bytes) of the given cipher’s key size, or 0 if the given cipher is
invalid.

gnutls cipher get name

[Function]const char * gnutls_cipher_get_name (gnutls cipher algorithm t
algorithm)

algorithm: is an encryption algorithm

Convert a gnutls_cipher_algorithm_t type to a string.

Returns: a pointer to a string that contains the name of the specified cipher, or NULL
.

gnutls cipher list

[Function]const gnutls_cipher_algorithm_t * gnutls_cipher_list (
void)

Get a list of supported cipher algorithms. Note that not necessarily all ciphers are
supported as TLS cipher suites. For example, DES is not supported as a cipher suite,
but is supported for other purposes (e.g., PKCS8 or similar).

This function is not thread safe.

Returns: a (0)-terminated list of gnutls_cipher_algorithm_t integers indicating
the available ciphers.

gnutls cipher suite get name

[Function]const char * gnutls_cipher_suite_get_name
(gnutls kx algorithm t kx_algorithm, gnutls cipher algorithm t
cipher_algorithm, gnutls mac algorithm t mac_algorithm)

kx algorithm: is a Key exchange algorithm

cipher algorithm: is a cipher algorithm

mac algorithm: is a MAC algorithm

Note that the full cipher suite name must be prepended by TLS or SSL depending of
the protocol in use.

Returns: a string that contains the name of a TLS cipher suite, specified by the given
algorithms, or NULL .

gnutls cipher suite info

[Function]const char * gnutls_cipher_suite_info (size t idx, unsigned char
* cs_id, gnutls kx algorithm t * kx, gnutls cipher algorithm t * cipher,
gnutls mac algorithm t * mac, gnutls protocol t * min_version)

idx: index of cipher suite to get information about, starts on 0.

cs id: output buffer with room for 2 bytes, indicating cipher suite value

kx: output variable indicating key exchange algorithm, or NULL .

cipher: output variable indicating cipher, or NULL .

Appendix E: API reference 309

mac: output variable indicating MAC algorithm, or NULL .

min version: output variable indicating TLS protocol version, or NULL .

Get information about supported cipher suites. Use the function iteratively to get
information about all supported cipher suites. Call with idx=0 to get information
about first cipher suite, then idx=1 and so on until the function returns NULL.

Returns: the name of idx cipher suite, and set the information about the cipher suite
in the output variables. If idx is out of bounds, NULL is returned.

gnutls compression get

[Function]gnutls_compression_method_t gnutls_compression_get
(gnutls session t session)

session: is a gnutls_session_t structure.

Get currently used compression algorithm.

Returns: the currently used compression method, a gnutls_compression_method_t

value.

gnutls compression get id

[Function]gnutls_compression_method_t gnutls_compression_get_id
(const char * name)

name: is a compression method name

The names are compared in a case insensitive way.

Returns: an id of the specified in a string compression method, or GNUTLS_COMP_

UNKNOWN on error.

gnutls compression get name

[Function]const char * gnutls_compression_get_name
(gnutls compression method t algorithm)

algorithm: is a Compression algorithm

Convert a gnutls_compression_method_t value to a string.

Returns: a pointer to a string that contains the name of the specified compression
algorithm, or NULL .

gnutls compression list

[Function]const gnutls_compression_method_t *
gnutls_compression_list (void)

Get a list of compression methods.

Returns: a zero-terminated list of gnutls_compression_method_t integers indicat-
ing the available compression methods.

gnutls credentials clear

[Function]void gnutls_credentials_clear (gnutls session t session)
session: is a gnutls_session_t structure.

Clears all the credentials previously set in this session.

Appendix E: API reference 310

gnutls credentials get

[Function]int gnutls_credentials_get (gnutls session t session,
gnutls credentials type t type, void ** cred)

session: is a gnutls_session_t structure.

type: is the type of the credentials to return

cred: will contain the pointer to the credentials structure.

Returns the previously provided credentials structures.

For GNUTLS_CRD_ANON , cred will be gnutls_anon_client_credentials_t in case
of a client. In case of a server it should be gnutls_anon_server_credentials_t .

For GNUTLS_CRD_SRP , cred will be gnutls_srp_client_credentials_t in case of a
client, and gnutls_srp_server_credentials_t , in case of a server.

For GNUTLS_CRD_CERTIFICATE , cred will be gnutls_certificate_credentials_t

.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls credentials set

[Function]int gnutls_credentials_set (gnutls session t session,
gnutls credentials type t type, void * cred)

session: is a gnutls_session_t structure.

type: is the type of the credentials

cred: is a pointer to a structure.

Sets the needed credentials for the specified type. Eg username, password - or public
and private keys etc. The cred parameter is a structure that depends on the specified
type and on the current session (client or server).

In order to minimize memory usage, and share credentials between several threads
gnutls keeps a pointer to cred, and not the whole cred structure. Thus you will have
to keep the structure allocated until you call gnutls_deinit() .

For GNUTLS_CRD_ANON , cred should be gnutls_anon_client_credentials_t in case
of a client. In case of a server it should be gnutls_anon_server_credentials_t .

For GNUTLS_CRD_SRP , cred should be gnutls_srp_client_credentials_t in case
of a client, and gnutls_srp_server_credentials_t , in case of a server.

For GNUTLS_CRD_CERTIFICATE , cred should be gnutls_certificate_credentials_
t .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls db check entry

[Function]int gnutls_db_check_entry (gnutls session t session,
gnutls datum t session_entry)

session: is a gnutls_session_t structure.

Appendix E: API reference 311

session entry : is the session data (not key)

This function has no effect.

Returns: Returns GNUTLS_E_EXPIRED , if the database entry has expired or 0 other-
wise.

gnutls db check entry time

[Function]time_t gnutls_db_check_entry_time (gnutls datum t * entry)
entry : is a pointer to a gnutls_datum_t structure.

This function returns the time that this entry was active. It can be used for database
entry expiration.

Returns: The time this entry was created, or zero on error.

gnutls db get default cache expiration

[Function]unsigned gnutls_db_get_default_cache_expiration (void)
Returns the expiration time (in seconds) of stored sessions for resumption.

gnutls db get ptr

[Function]void * gnutls_db_get_ptr (gnutls session t session)
session: is a gnutls_session_t structure.

Get db function pointer.

Returns: the pointer that will be sent to db store, retrieve and delete functions, as
the first argument.

gnutls db remove session

[Function]void gnutls_db_remove_session (gnutls session t session)
session: is a gnutls_session_t structure.

This function will remove the current session data from the session database. This
will prevent future handshakes reusing these session data. This function should be
called if a session was terminated abnormally, and before gnutls_deinit() is called.

Normally gnutls_deinit() will remove abnormally terminated sessions.

gnutls db set cache expiration

[Function]void gnutls_db_set_cache_expiration (gnutls session t session,
int seconds)

session: is a gnutls_session_t structure.

seconds: is the number of seconds.

Set the expiration time for resumed sessions. The default is 3600 (one hour) at the
time of this writing.

Appendix E: API reference 312

gnutls db set ptr

[Function]void gnutls_db_set_ptr (gnutls session t session, void * ptr)
session: is a gnutls_session_t structure.

ptr: is the pointer

Sets the pointer that will be provided to db store, retrieve and delete functions, as
the first argument.

gnutls db set remove function

[Function]void gnutls_db_set_remove_function (gnutls session t session,
gnutls db remove func rem_func)

session: is a gnutls_session_t structure.

rem func: is the function.

Sets the function that will be used to remove data from the resumed sessions database.
This function must return 0 on success.

The first argument to rem_func will be null unless gnutls_db_set_ptr() has been
called.

gnutls db set retrieve function

[Function]void gnutls_db_set_retrieve_function (gnutls session t session,
gnutls db retr func retr_func)

session: is a gnutls_session_t structure.

retr func: is the function.

Sets the function that will be used to retrieve data from the resumed sessions database.
This function must return a gnutls datum t containing the data on success, or a
gnutls datum t containing null and 0 on failure.

The datum’s data must be allocated using the function gnutls_malloc() .

The first argument to retr_func will be null unless gnutls_db_set_ptr() has been
called.

gnutls db set store function

[Function]void gnutls_db_set_store_function (gnutls session t session,
gnutls db store func store_func)

session: is a gnutls_session_t structure.

store func: is the function

Sets the function that will be used to store data in the resumed sessions database.
This function must return 0 on success.

The first argument to store_func will be null unless gnutls_db_set_ptr() has been
called.

Appendix E: API reference 313

gnutls deinit

[Function]void gnutls_deinit (gnutls session t session)
session: is a gnutls_session_t structure.

This function clears all buffers associated with the session . This function will
also remove session data from the session database if the session was terminated
abnormally.

gnutls dh get group

[Function]int gnutls_dh_get_group (gnutls session t session, gnutls datum t *
raw_gen, gnutls datum t * raw_prime)

session: is a gnutls session

raw gen: will hold the generator.

raw prime: will hold the prime.

This function will return the group parameters used in the last Diffie-Hellman key
exchange with the peer. These are the prime and the generator used. This func-
tion should be used for both anonymous and ephemeral Diffie-Hellman. The output
parameters must be freed with gnutls_free() .

Note, that the prime and generator are exported as non-negative integers and may
include a leading zero byte.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls dh get peers public bits

[Function]int gnutls_dh_get_peers_public_bits (gnutls session t session)
session: is a gnutls session

Get the Diffie-Hellman public key bit size. Can be used for both anonymous and
ephemeral Diffie-Hellman.

Returns: The public key bit size used in the last Diffie-Hellman key exchange with
the peer, or a negative error code in case of error.

gnutls dh get prime bits

[Function]int gnutls_dh_get_prime_bits (gnutls session t session)
session: is a gnutls session

This function will return the bits of the prime used in the last Diffie-Hellman key
exchange with the peer. Should be used for both anonymous and ephemeral Diffie-
Hellman. Note that some ciphers, like RSA and DSA without DHE, do not use a
Diffie-Hellman key exchange, and then this function will return 0.

Returns: The Diffie-Hellman bit strength is returned, or 0 if no Diffie-Hellman key
exchange was done, or a negative error code on failure.

Appendix E: API reference 314

gnutls dh get pubkey

[Function]int gnutls_dh_get_pubkey (gnutls session t session, gnutls datum t
* raw_key)

session: is a gnutls session

raw key : will hold the public key.

This function will return the peer’s public key used in the last Diffie-Hellman key
exchange. This function should be used for both anonymous and ephemeral Diffie-
Hellman. The output parameters must be freed with gnutls_free() .

Note, that public key is exported as non-negative integer and may include a leading
zero byte.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls dh get secret bits

[Function]int gnutls_dh_get_secret_bits (gnutls session t session)
session: is a gnutls session

This function will return the bits used in the last Diffie-Hellman key exchange with
the peer. Should be used for both anonymous and ephemeral Diffie-Hellman.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls dh params cpy

[Function]int gnutls_dh_params_cpy (gnutls dh params t dst,
gnutls dh params t src)

dst: Is the destination structure, which should be initialized.

src: Is the source structure

This function will copy the DH parameters structure from source to destination.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls dh params deinit

[Function]void gnutls_dh_params_deinit (gnutls dh params t dh_params)
dh params: Is a structure that holds the prime numbers

This function will deinitialize the DH parameters structure.

gnutls dh params export2 pkcs3

[Function]int gnutls_dh_params_export2_pkcs3 (gnutls dh params t params,
gnutls x509 crt fmt t format, gnutls datum t * out)

params: Holds the DH parameters

format: the format of output params. One of PEM or DER.

out: will contain a PKCS3 DHParams structure PEM or DER encoded

Appendix E: API reference 315

This function will export the given dh parameters to a PKCS3 DHParams structure.
This is the format generated by "openssl dhparam" tool. The data in out will be
allocated using gnutls_malloc() .

If the structure is PEM encoded, it will have a header of "BEGIN DH PARAME-
TERS".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

Since: 3.1.3

gnutls dh params export pkcs3

[Function]int gnutls_dh_params_export_pkcs3 (gnutls dh params t params,
gnutls x509 crt fmt t format, unsigned char * params_data, size t *
params_data_size)

params: Holds the DH parameters

format: the format of output params. One of PEM or DER.

params data: will contain a PKCS3 DHParams structure PEM or DER encoded

params data size: holds the size of params data (and will be replaced by the actual
size of parameters)

This function will export the given dh parameters to a PKCS3 DHParams structure.
This is the format generated by "openssl dhparam" tool. If the buffer provided is
not long enough to hold the output, then GNUTLS E SHORT MEMORY BUFFER
will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN DH PARAME-
TERS".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls dh params export raw

[Function]int gnutls_dh_params_export_raw (gnutls dh params t params,
gnutls datum t * prime, gnutls datum t * generator, unsigned int * bits)

params: Holds the DH parameters

prime: will hold the new prime

generator: will hold the new generator

bits: if non null will hold the secret key’s number of bits

This function will export the pair of prime and generator for use in the Diffie-Hellman
key exchange. The new parameters will be allocated using gnutls_malloc() and will
be stored in the appropriate datum.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

Appendix E: API reference 316

gnutls dh params generate2

[Function]int gnutls_dh_params_generate2 (gnutls dh params t dparams,
unsigned int bits)

dparams: Is the structure that the DH parameters will be stored

bits: is the prime’s number of bits

This function will generate a new pair of prime and generator for use in the Diffie-
Hellman key exchange. The new parameters will be allocated using gnutls_malloc()
and will be stored in the appropriate datum. This function is normally slow.

Do not set the number of bits directly, use gnutls_sec_param_to_pk_bits() to get
bits for GNUTLS_PK_DSA . Also note that the DH parameters are only useful to servers.
Since clients use the parameters sent by the server, it’s of no use to call this in client
side.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls dh params import pkcs3

[Function]int gnutls_dh_params_import_pkcs3 (gnutls dh params t params,
const gnutls datum t * pkcs3_params, gnutls x509 crt fmt t format)

params: A structure where the parameters will be copied to

pkcs3 params: should contain a PKCS3 DHParams structure PEM or DER encoded

format: the format of params. PEM or DER.

This function will extract the DHParams found in a PKCS3 formatted structure.
This is the format generated by "openssl dhparam" tool.

If the structure is PEM encoded, it should have a header of "BEGIN DH PARAME-
TERS".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls dh params import raw

[Function]int gnutls_dh_params_import_raw (gnutls dh params t dh_params,
const gnutls datum t * prime, const gnutls datum t * generator)

dh params: Is a structure that will hold the prime numbers

prime: holds the new prime

generator: holds the new generator

This function will replace the pair of prime and generator for use in the Diffie-Hellman
key exchange. The new parameters should be stored in the appropriate gnutls datum.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

Appendix E: API reference 317

gnutls dh params init

[Function]int gnutls_dh_params_init (gnutls dh params t * dh_params)
dh params: Is a structure that will hold the prime numbers

This function will initialize the DH parameters structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls dh set prime bits

[Function]void gnutls_dh_set_prime_bits (gnutls session t session, unsigned
int bits)

session: is a gnutls_session_t structure.

bits: is the number of bits

This function sets the number of bits, for use in a Diffie-Hellman key exchange. This
is used both in DH ephemeral and DH anonymous cipher suites. This will set the
minimum size of the prime that will be used for the handshake.

In the client side it sets the minimum accepted number of bits. If a server sends a
prime with less bits than that GNUTLS_E_DH_PRIME_UNACCEPTABLE will be returned
by the handshake.

Note that this function will warn via the audit log for value that are believed to be
weak.

The function has no effect in server side.

Note that since 3.1.7 this function is deprecated. The minimum number of bits is set
by the priority string level. Also this function must be called after gnutls_priority_
set_direct() or the set value may be overridden by the selected priority options.

gnutls digest get id

[Function]gnutls_digest_algorithm_t gnutls_digest_get_id (const char *
name)

name: is a digest algorithm name

Convert a string to a gnutls_digest_algorithm_t value. The names are compared
in a case insensitive way.

Returns: a gnutls_digest_algorithm_t id of the specified MAC algorithm string,
or GNUTLS_DIG_UNKNOWN on failures.

gnutls digest get name

[Function]const char * gnutls_digest_get_name (gnutls digest algorithm t
algorithm)

algorithm: is a digest algorithm

Convert a gnutls_digest_algorithm_t value to a string.

Returns: a string that contains the name of the specified digest algorithm, or NULL .

Appendix E: API reference 318

gnutls digest list

[Function]const gnutls_digest_algorithm_t * gnutls_digest_list (
void)

Get a list of hash (digest) algorithms supported by GnuTLS.

This function is not thread safe.

Returns: Return a (0)-terminated list of gnutls_digest_algorithm_t integers indi-
cating the available digests.

gnutls ecc curve get

[Function]gnutls_ecc_curve_t gnutls_ecc_curve_get (gnutls session t
session)

session: is a gnutls_session_t structure.

Returns the currently used elliptic curve. Only valid when using an elliptic curve
ciphersuite.

Returns: the currently used curve, a gnutls_ecc_curve_t type.

Since: 3.0

gnutls ecc curve get name

[Function]const char * gnutls_ecc_curve_get_name (gnutls ecc curve t
curve)

curve: is an ECC curve

Convert a gnutls_ecc_curve_t value to a string.

Returns: a string that contains the name of the specified curve or NULL .

Since: 3.0

gnutls ecc curve get size

[Function]int gnutls_ecc_curve_get_size (gnutls ecc curve t curve)
curve: is an ECC curve

Returns the size in bytes of the curve.

Returns: a the size or (0).

Since: 3.0

gnutls ecc curve list

[Function]const gnutls_ecc_curve_t * gnutls_ecc_curve_list (void)
Get the list of supported elliptic curves.

This function is not thread safe.

Returns: Return a (0)-terminated list of gnutls_ecc_curve_t integers indicating the
available curves.

Appendix E: API reference 319

gnutls error is fatal

[Function]int gnutls_error_is_fatal (int error)
error: is a GnuTLS error code, a negative error code

If a GnuTLS function returns a negative error code you may feed that value to this
function to see if the error condition is fatal to a TLS session (i.e., must be terminated).

Note that you may also want to check the error code manually, since some non-fatal
errors to the protocol (such as a warning alert or a rehandshake request) may be fatal
for your program.

This function is only useful if you are dealing with errors from functions that relate
to a TLS session (e.g., record layer or handshake layer handling functions).

Returns: Non-zero value on fatal errors or zero on non-fatal.

gnutls error to alert

[Function]int gnutls_error_to_alert (int err, int * level)
err: is a negative integer

level: the alert level will be stored there

Get an alert depending on the error code returned by a gnutls function. All alerts
sent by this function should be considered fatal. The only exception is when err is
GNUTLS_E_REHANDSHAKE , where a warning alert should be sent to the peer indicating
that no renegotiation will be performed.

If there is no mapping to a valid alert the alert to indicate internal error is returned.

Returns: the alert code to use for a particular error code.

gnutls est record overhead size

[Function]size_t gnutls_est_record_overhead_size (gnutls protocol t
version, gnutls cipher algorithm t cipher, gnutls mac algorithm t mac,
gnutls compression method t comp, unsigned int flags)

version: is a gnutls_protocol_t value

cipher: is a gnutls_cipher_algorithm_t value

mac: is a gnutls_mac_algorithm_t value

comp: is a gnutls_compression_method_t value

flags: must be zero

This function will return the set size in bytes of the overhead due to TLS (or DTLS)
per record.

Note that this function may provide inacurate values when TLS extensions that mod-
ify the record format are negotiated. In these cases a more accurate value can be
obtained using gnutls_record_overhead_size() after a completed handshake.

Since: 3.2.2

Appendix E: API reference 320

gnutls fingerprint

[Function]int gnutls_fingerprint (gnutls digest algorithm t algo, const
gnutls datum t * data, void * result, size t * result_size)

algo: is a digest algorithm

data: is the data

result: is the place where the result will be copied (may be null).

result size: should hold the size of the result. The actual size of the returned result
will also be copied there.

This function will calculate a fingerprint (actually a hash), of the given data. The
result is not printable data. You should convert it to hex, or to something else
printable.

This is the usual way to calculate a fingerprint of an X.509 DER encoded certificate.
Note however that the fingerprint of an OpenPGP certificate is not just a hash and
cannot be calculated with this function.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls fips140 mode enabled

[Function]int gnutls_fips140_mode_enabled (void)
Checks whether this library is in FIPS140 mode.

Returns: return non-zero if true or zero if false.

Since: 3.3.0

gnutls global deinit

[Function]void gnutls_global_deinit (void)
This function deinitializes the global data, that were initialized using gnutls_global_
init() .

gnutls global init

[Function]int gnutls_global_init (void)
This function performs any required precalculations, detects the supported CPU ca-
pabilities and initializes the underlying cryptographic backend. In order to free any
resources taken by this call you should gnutls_global_deinit() when gnutls usage
is no longer needed.

This function increments a global counter, so that gnutls_global_deinit() only
releases resources when it has been called as many times as gnutls_global_init()
. This is useful when GnuTLS is used by more than one library in an application.
This function can be called many times, but will only do something the first time.

Since GnuTLS 3.3.0 this function is only required in systems that do not support
library constructors and static linking. This function also became thread safe.

A subsequent call of this function if the initial has failed will return the same error
code.

Appendix E: API reference 321

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls global set audit log function

[Function]void gnutls_global_set_audit_log_function
(gnutls audit log func log_func)

log func: it is the audit log function

This is the function to set the audit logging function. This is a function to report im-
portant issues, such as possible attacks in the protocol. This is different from gnutls_

global_set_log_function() because it will report also session-specific events. The
session parameter will be null if there is no corresponding TLS session.

gnutls_audit_log_func is of the form, void (*gnutls audit log func)(
gnutls session t, const char*);

Since: 3.0

gnutls global set log function

[Function]void gnutls_global_set_log_function (gnutls log func log_func)
log func: it’s a log function

This is the function where you set the logging function gnutls is going to use. This
function only accepts a character array. Normally you may not use this function since
it is only used for debugging purposes.

gnutls_log_func is of the form, void (*gnutls log func)(int level, const char*);

gnutls global set log level

[Function]void gnutls_global_set_log_level (int level)
level: it’s an integer from 0 to 99.

This is the function that allows you to set the log level. The level is an integer between
0 and 9. Higher values mean more verbosity. The default value is 0. Larger values
should only be used with care, since they may reveal sensitive information.

Use a log level over 10 to enable all debugging options.

gnutls global set mutex

[Function]void gnutls_global_set_mutex (mutex init func init,
mutex deinit func deinit, mutex lock func lock, mutex unlock func
unlock)

init: mutex initialization function

deinit: mutex deinitialization function

lock: mutex locking function

unlock: mutex unlocking function

With this function you are allowed to override the default mutex locks used in some
parts of gnutls and dependent libraries. This function should be used if you have
complete control of your program and libraries. Do not call this function from a

Appendix E: API reference 322

library, or preferrably from any application unless really needed to. GnuTLS will use
the appropriate locks for the running system.

This function must be called prior to any other gnutls function.

Since: 2.12.0

gnutls global set time function

[Function]void gnutls_global_set_time_function (gnutls time func
time_func)

time func: it’s the system time function, a gnutls_time_func() callback.

This is the function where you can override the default system time function. The
application provided function should behave the same as the standard function.

Since: 2.12.0

gnutls handshake

[Function]int gnutls_handshake (gnutls session t session)
session: is a gnutls_session_t structure.

This function does the handshake of the TLS/SSL protocol, and initializes the TLS
connection.

This function will fail if any problem is encountered, and will return a negative error
code. In case of a client, if the client has asked to resume a session, but the server
couldn’t, then a full handshake will be performed.

The non-fatal errors expected by this function are: GNUTLS_E_INTERRUPTED , GNUTLS_
E_AGAIN , GNUTLS_E_WARNING_ALERT_RECEIVED , and GNUTLS_E_GOT_APPLICATION_

DATA , the latter only in a case of rehandshake.

The former two interrupt the handshake procedure due to the lower layer being inter-
rupted, and the latter because of an alert that may be sent by a server (it is always a
good idea to check any received alerts). On these errors call this function again, until
it returns 0; cf. gnutls_record_get_direction() and gnutls_error_is_fatal()

. In DTLS sessions the non-fatal error GNUTLS_E_LARGE_PACKET is also possible, and
indicates that the MTU should be adjusted.

If this function is called by a server after a rehandshake request then GNUTLS_E_GOT_

APPLICATION_DATA or GNUTLS_E_WARNING_ALERT_RECEIVED may be returned. Note
that these are non fatal errors, only in the specific case of a rehandshake. Their
meaning is that the client rejected the rehandshake request or in the case of GNUTLS_
E_GOT_APPLICATION_DATA it could also mean that some data were pending.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

gnutls handshake description get name

[Function]const char * gnutls_handshake_description_get_name
(gnutls handshake description t type)

type: is a handshake message description

Convert a gnutls_handshake_description_t value to a string.

Returns: a string that contains the name of the specified handshake message or NULL
.

Appendix E: API reference 323

gnutls handshake get last in

[Function]gnutls_handshake_description_t
gnutls_handshake_get_last_in (gnutls session t session)

session: is a gnutls_session_t structure.

This function is only useful to check where the last performed handshake failed. If
the previous handshake succeed or was not performed at all then no meaningful value
will be returned.

Check gnutls_handshake_description_t in gnutls.h for the available handshake
descriptions.

Returns: the last handshake message type received, a gnutls_handshake_

description_t .

gnutls handshake get last out

[Function]gnutls_handshake_description_t
gnutls_handshake_get_last_out (gnutls session t session)

session: is a gnutls_session_t structure.

This function is only useful to check where the last performed handshake failed. If
the previous handshake succeed or was not performed at all then no meaningful value
will be returned.

Check gnutls_handshake_description_t in gnutls.h for the available handshake
descriptions.

Returns: the last handshake message type sent, a gnutls_handshake_description_

t .

gnutls handshake set hook function

[Function]void gnutls_handshake_set_hook_function (gnutls session t
session, unsigned int htype, int post, gnutls handshake hook func func)

session: is a gnutls_session_t structure

htype: the gnutls_handshake_description_t of the message to hook at

post: GNUTLS_HOOK_ * depending on when the hook function should be called

func: is the function to be called

This function will set a callback to be called after or before the specified hand-
shake message has been received or generated. This is a generalization of gnutls_
handshake_set_post_client_hello_function() .

To call the hook function prior to the message being sent/generated use GNUTLS_HOOK_
PRE as post parameter, GNUTLS_HOOK_POST to call after, and GNUTLS_HOOK_BOTH for
both cases.

This callback must return 0 on success or a gnutls error code to terminate the hand-
shake.

Note to hook at all handshake messages use an htype of GNUTLS_HANDSHAKE_ANY .

Warning: You should not use this function to terminate the handshake based on client
input unless you know what you are doing. Before the handshake is finished there is
no way to know if there is a man-in-the-middle attack being performed.

Appendix E: API reference 324

gnutls handshake set max packet length

[Function]void gnutls_handshake_set_max_packet_length (gnutls session t
session, size t max)

session: is a gnutls_session_t structure.

max: is the maximum number.

This function will set the maximum size of all handshake messages. Handshakes over
this size are rejected with GNUTLS_E_HANDSHAKE_TOO_LARGE error code. The default
value is 128kb which is typically large enough. Set this to 0 if you do not want to set
an upper limit.

The reason for restricting the handshake message sizes are to limit Denial of Service
attacks.

Note that the maximum handshake size was increased to 128kb from 48kb in GnuTLS
3.3.25.

gnutls handshake set post client hello function

[Function]void gnutls_handshake_set_post_client_hello_function
(gnutls session t session, gnutls handshake post client hello func func)

session: is a gnutls_session_t structure.

func: is the function to be called

This function will set a callback to be called after the client hello has been received
(callback valid in server side only). This allows the server to adjust settings based on
received extensions.

Those settings could be ciphersuites, requesting certificate, or anything else except
for version negotiation (this is done before the hello message is parsed).

This callback must return 0 on success or a gnutls error code to terminate the hand-
shake.

Since GnuTLS 3.3.5 the callback is allowed to return GNUTLS_E_AGAIN or GNUTLS_E_
INTERRUPTED to put the handshake on hold. In that case gnutls_handshake() will
return GNUTLS_E_INTERRUPTED and can be resumed when needed.

Warning: You should not use this function to terminate the handshake based on client
input unless you know what you are doing. Before the handshake is finished there is
no way to know if there is a man-in-the-middle attack being performed.

gnutls handshake set private extensions

[Function]void gnutls_handshake_set_private_extensions (gnutls session t
session, int allow)

session: is a gnutls_session_t structure.

allow : is an integer (0 or 1)

This function will enable or disable the use of private cipher suites (the ones that start
with 0xFF). By default or if allow is 0 then these cipher suites will not be advertised
nor used.

Currently GnuTLS does not include such cipher-suites or compression algorithms.

Appendix E: API reference 325

Enabling the private ciphersuites when talking to other than gnutls servers and clients
may cause interoperability problems.

gnutls handshake set random

[Function]int gnutls_handshake_set_random (gnutls session t session, const
gnutls datum t * random)

session: is a gnutls_session_t structure.

random: a random value of 32-bytes

This function will explicitly set the server or client hello random value in the subse-
quent TLS handshake. The random value should be a 32-byte value.

Note that this function should not normally be used as gnutls will select automatically
a random value for the handshake.

This function should not be used when resuming a session.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Since 3.1.9

gnutls handshake set timeout

[Function]void gnutls_handshake_set_timeout (gnutls session t session,
unsigned int ms)

session: is a gnutls_session_t structure.

ms: is a timeout value in milliseconds

This function sets the timeout for the handshake process to the provided value. Use
an ms value of zero to disable timeout, or GNUTLS_DEFAULT_HANDSHAKE_TIMEOUT for
a reasonable default value.

Since: 3.1.0

gnutls heartbeat allowed

[Function]int gnutls_heartbeat_allowed (gnutls session t session, unsigned
int type)

session: is a gnutls_session_t structure.

type: one of GNUTLS_HB_LOCAL_ALLOWED_TO_SEND and GNUTLS_HB_PEER_ALLOWED_

TO_SEND

This function will check whether heartbeats are allowed to be sent or received in this
session.

Returns: Non zero if heartbeats are allowed.

Since: 3.1.2

gnutls heartbeat enable

[Function]void gnutls_heartbeat_enable (gnutls session t session, unsigned
int type)

session: is a gnutls_session_t structure.

Appendix E: API reference 326

type: one of the GNUTLS HB * flags

If this function is called with the GNUTLS_HB_PEER_ALLOWED_TO_SEND type , GnuTLS
will allow heartbeat messages to be received. Moreover it also request the peer to
accept heartbeat messages.

If the type used is GNUTLS_HB_LOCAL_ALLOWED_TO_SEND , then the peer will be asked
to accept heartbeat messages but not send ones.

The function gnutls_heartbeat_allowed() can be used to test Whether locally
generated heartbeat messages can be accepted by the peer.

Since: 3.1.2

gnutls heartbeat get timeout

[Function]unsigned int gnutls_heartbeat_get_timeout (gnutls session t
session)

session: is a gnutls_session_t structure.

This function will return the milliseconds remaining for a retransmission of the pre-
viously sent ping message. This function is useful when ping is used in non-blocking
mode, to estimate when to call gnutls_heartbeat_ping() if no packets have been
received.

Returns: the remaining time in milliseconds.

Since: 3.1.2

gnutls heartbeat ping

[Function]int gnutls_heartbeat_ping (gnutls session t session, size t
data_size, unsigned int max_tries, unsigned int flags)

session: is a gnutls_session_t structure.

data size: is the length of the ping payload.

max tries: if flags is GNUTLS_HEARTBEAT_WAIT then this sets the number of retrans-
missions. Use zero for indefinite (until timeout).

flags: if GNUTLS_HEARTBEAT_WAIT then wait for pong or timeout instead of returning
immediately.

This function sends a ping to the peer. If the flags is set to GNUTLS_HEARTBEAT_WAIT
then it waits for a reply from the peer.

Note that it is highly recommended to use this function with the flag GNUTLS_

HEARTBEAT_WAIT , or you need to handle retransmissions and timeouts manually.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 3.1.2

gnutls heartbeat pong

[Function]int gnutls_heartbeat_pong (gnutls session t session, unsigned int
flags)

session: is a gnutls_session_t structure.

flags: should be zero

Appendix E: API reference 327

This function replies to a ping by sending a pong to the peer.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 3.1.2

gnutls heartbeat set timeouts

[Function]void gnutls_heartbeat_set_timeouts (gnutls session t session,
unsigned int retrans_timeout, unsigned int total_timeout)

session: is a gnutls_session_t structure.

retrans timeout: The time at which a retransmission will occur in milliseconds

total timeout: The time at which the connection will be aborted, in milliseconds.

This function will override the timeouts for the DTLS heartbeat protocol. The re-
transmission timeout is the time after which a message from the peer is not received,
the previous request will be retransmitted. The total timeout is the time after which
the handshake will be aborted with GNUTLS_E_TIMEDOUT .

If the retransmission timeout is zero then the handshake will operate in a non-blocking
way, i.e., return GNUTLS_E_AGAIN .

Since: 3.1.2

gnutls hex2bin

[Function]int gnutls_hex2bin (const char * hex_data, size t hex_size, void *
bin_data, size t * bin_size)

hex data: string with data in hex format

hex size: size of hex data

bin data: output array with binary data

bin size: when calling should hold maximum size of bin_data , on return will hold
actual length of bin_data .

Convert a buffer with hex data to binary data.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 2.4.0

gnutls hex decode

[Function]int gnutls_hex_decode (const gnutls datum t * hex_data, void *
result, size t * result_size)

hex data: contain the encoded data

result: the place where decoded data will be copied

result size: holds the size of the result

This function will decode the given encoded data, using the hex encoding used by
PSK password files.

Note that hex data should be null terminated.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the buffer given is not long enough, or
0 on success.

Appendix E: API reference 328

gnutls hex encode

[Function]int gnutls_hex_encode (const gnutls datum t * data, char * result,
size t * result_size)

data: contain the raw data

result: the place where hex data will be copied

result size: holds the size of the result

This function will convert the given data to printable data, using the hex encoding,
as used in the PSK password files.

Note that the size of the result includes the null terminator.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the buffer given is not long enough, or
0 on success.

gnutls init

[Function]int gnutls_init (gnutls session t * session, unsigned int flags)
session: is a pointer to a gnutls_session_t structure.

flags: indicate if this session is to be used for server or client.

This function initializes the current session to null. Every session must be initialized
before use, so internal structures can be allocated. This function allocates structures
which can only be free’d by calling gnutls_deinit() . Returns GNUTLS_E_SUCCESS
(0) on success.

flags can be one of GNUTLS_CLIENT and GNUTLS_SERVER . For a DTLS entity, the
flags GNUTLS_DATAGRAM and GNUTLS_NONBLOCK are also available. The latter flag will
enable a non-blocking operation of the DTLS timers.

The flag GNUTLS_NO_REPLAY_PROTECTION will disable any replay protection in DTLS
mode. That must only used when replay protection is achieved using other means.

Note that since version 3.1.2 this function enables some common TLS extensions such
as session tickets and OCSP certificate status request in client side by default. To
prevent that use the GNUTLS_NO_EXTENSIONS flag.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls key generate

[Function]int gnutls_key_generate (gnutls datum t * key, unsigned int
key_size)

key : is a pointer to a gnutls_datum_t which will contain a newly created key.

key size: The number of bytes of the key.

Generates a random key of key_size bytes.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

Since: 3.0

Appendix E: API reference 329

gnutls kx get

[Function]gnutls_kx_algorithm_t gnutls_kx_get (gnutls session t session)
session: is a gnutls_session_t structure.

Get currently used key exchange algorithm.

Returns: the key exchange algorithm used in the last handshake, a gnutls_kx_

algorithm_t value.

gnutls kx get id

[Function]gnutls_kx_algorithm_t gnutls_kx_get_id (const char * name)
name: is a KX name

Convert a string to a gnutls_kx_algorithm_t value. The names are compared in a
case insensitive way.

Returns: an id of the specified KX algorithm, or GNUTLS_KX_UNKNOWN on error.

gnutls kx get name

[Function]const char * gnutls_kx_get_name (gnutls kx algorithm t
algorithm)

algorithm: is a key exchange algorithm

Convert a gnutls_kx_algorithm_t value to a string.

Returns: a pointer to a string that contains the name of the specified key exchange
algorithm, or NULL .

gnutls kx list

[Function]const gnutls_kx_algorithm_t * gnutls_kx_list (void)
Get a list of supported key exchange algorithms.

This function is not thread safe.

Returns: a (0)-terminated list of gnutls_kx_algorithm_t integers indicating the
available key exchange algorithms.

gnutls load file

[Function]int gnutls_load_file (const char * filename, gnutls datum t *
data)

filename: the name of the file to load

data: Where the file will be stored

This function will load a file into a datum. The data are zero terminated but the
terminating null is not included in length. The returned data are allocated using
gnutls_malloc() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

Since 3.1.0

Appendix E: API reference 330

gnutls mac get

[Function]gnutls_mac_algorithm_t gnutls_mac_get (gnutls session t
session)

session: is a gnutls_session_t structure.

Get currently used MAC algorithm.

Returns: the currently used mac algorithm, a gnutls_mac_algorithm_t value.

gnutls mac get id

[Function]gnutls_mac_algorithm_t gnutls_mac_get_id (const char * name)
name: is a MAC algorithm name

Convert a string to a gnutls_mac_algorithm_t value. The names are compared in
a case insensitive way.

Returns: a gnutls_mac_algorithm_t id of the specified MAC algorithm string, or
GNUTLS_MAC_UNKNOWN on failures.

gnutls mac get key size

[Function]size_t gnutls_mac_get_key_size (gnutls mac algorithm t
algorithm)

algorithm: is an encryption algorithm

Returns the size of the MAC key used in TLS.

Returns: length (in bytes) of the given MAC key size, or 0 if the given MAC algorithm
is invalid.

gnutls mac get name

[Function]const char * gnutls_mac_get_name (gnutls mac algorithm t
algorithm)

algorithm: is a MAC algorithm

Convert a gnutls_mac_algorithm_t value to a string.

Returns: a string that contains the name of the specified MAC algorithm, or NULL .

gnutls mac list

[Function]const gnutls_mac_algorithm_t * gnutls_mac_list (void)
Get a list of hash algorithms for use as MACs. Note that not necessarily all MACs
are supported in TLS cipher suites. This function is not thread safe.

Returns: Return a (0)-terminated list of gnutls_mac_algorithm_t integers indicat-
ing the available MACs.

gnutls ocsp status request enable client

[Function]int gnutls_ocsp_status_request_enable_client (gnutls session t
session, gnutls datum t * responder_id, size t responder_id_size,
gnutls datum t * extensions)

session: is a gnutls_session_t structure.

Appendix E: API reference 331

responder id: array with gnutls_datum_t with DER data of responder id

responder id size: number of members in responder_id array

extensions: a gnutls_datum_t with DER encoded OCSP extensions

This function is to be used by clients to request OCSP response from the server, using
the "status request" TLS extension. Only OCSP status type is supported.

The responder_id array, its containing elements as well as the data of extensions
, must be allocated using gnutls_malloc() . They will be deinitialized on session
cleanup.

Due to the difficult semantics of the responder_id and extensions parameters, it
is recommended to only call this function with these parameters set to NULL .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

Since: 3.1.3

gnutls ocsp status request get

[Function]int gnutls_ocsp_status_request_get (gnutls session t session,
gnutls datum t * response)

session: is a gnutls_session_t structure.

response: a gnutls_datum_t with DER encoded OCSP response

This function returns the OCSP status response received from the TLS server. The
response should be treated as constant. If no OCSP response is available then
GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

Since: 3.1.3

gnutls ocsp status request is checked

[Function]int gnutls_ocsp_status_request_is_checked (gnutls session t
session, unsigned int flags)

session: is a gnutls session

flags: should be zero

Check whether an OCSP status response was included in the handshake and whether
it was checked and valid (not too old or superseded). This is a helper function when
needing to decide whether to perform an OCSP validity check on the peer’s certificate.
Must be called after gnutls_certificate_verify_peers3() is called.

Returns: non zero it was valid, or a zero if it wasn’t sent, or sent and was invalid.

gnutls openpgp send cert

[Function]void gnutls_openpgp_send_cert (gnutls session t session,
gnutls openpgp crt status t status)

session: is a pointer to a gnutls_session_t structure.

status: is one of GNUTLS OPENPGP CERT, or GNUTLS OPENPGP CERT FINGERPRINT

Appendix E: API reference 332

This function will order gnutls to send the key fingerprint instead of the key in the
initial handshake procedure. This should be used with care and only when there is
indication or knowledge that the server can obtain the client’s key.

gnutls packet deinit

[Function]void gnutls_packet_deinit (gnutls packet t packet)
packet: is a pointer to a gnutls_packet_st structure.

This function will deinitialize all data associated with the received packet.

Since: 3.3.5

gnutls packet get

[Function]void gnutls_packet_get (gnutls packet t packet, gnutls datum t *
data, unsigned char * sequence)

packet: is a gnutls_packet_t structure.

data: will contain the data present in the packet structure (may be NULL)

sequence: the 8-bytes of the packet sequence number (may be NULL)

This function returns the data and sequence number associated with the received
packet.

Since: 3.3.5

gnutls pem base64 decode

[Function]int gnutls_pem_base64_decode (const char * header, const
gnutls datum t * b64_data, unsigned char * result, size t * result_size)

header: A null terminated string with the PEM header (eg. CERTIFICATE)

b64 data: contain the encoded data

result: the place where decoded data will be copied

result size: holds the size of the result

This function will decode the given encoded data. If the header given is non null this
function will search for "—–BEGIN header" and decode only this part. Otherwise it
will decode the first PEM packet found.

Returns: On success GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_SHORT_MEMORY_
BUFFER is returned if the buffer given is not long enough, or 0 on success.

gnutls pem base64 decode alloc

[Function]int gnutls_pem_base64_decode_alloc (const char * header, const
gnutls datum t * b64_data, gnutls datum t * result)

header: The PEM header (eg. CERTIFICATE)

b64 data: contains the encoded data

result: the place where decoded data lie

This function will decode the given encoded data. The decoded data will be allocated,
and stored into result. If the header given is non null this function will search for

Appendix E: API reference 333

"—–BEGIN header" and decode only this part. Otherwise it will decode the first
PEM packet found.

You should use gnutls_free() to free the returned data.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls pem base64 encode

[Function]int gnutls_pem_base64_encode (const char * msg, const
gnutls datum t * data, char * result, size t * result_size)

msg : is a message to be put in the header

data: contain the raw data

result: the place where base64 data will be copied

result size: holds the size of the result

This function will convert the given data to printable data, using the base64 encoding.
This is the encoding used in PEM messages.

The output string will be null terminated, although the size will not include the
terminating null.

Returns: On success GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_SHORT_MEMORY_
BUFFER is returned if the buffer given is not long enough, or 0 on success.

gnutls pem base64 encode alloc

[Function]int gnutls_pem_base64_encode_alloc (const char * msg, const
gnutls datum t * data, gnutls datum t * result)

msg : is a message to be put in the encoded header

data: contains the raw data

result: will hold the newly allocated encoded data

This function will convert the given data to printable data, using the base64 encoding.
This is the encoding used in PEM messages. This function will allocate the required
memory to hold the encoded data.

You should use gnutls_free() to free the returned data.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls perror

[Function]void gnutls_perror (int error)
error: is a GnuTLS error code, a negative error code

This function is like perror() . The only difference is that it accepts an error number
returned by a gnutls function.

Appendix E: API reference 334

gnutls pk algorithm get name

[Function]const char * gnutls_pk_algorithm_get_name
(gnutls pk algorithm t algorithm)

algorithm: is a pk algorithm

Convert a gnutls_pk_algorithm_t value to a string.

Returns: a string that contains the name of the specified public key algorithm, or
NULL .

gnutls pk bits to sec param

[Function]gnutls_sec_param_t gnutls_pk_bits_to_sec_param
(gnutls pk algorithm t algo, unsigned int bits)

algo: is a public key algorithm

bits: is the number of bits

This is the inverse of gnutls_sec_param_to_pk_bits() . Given an algorithm and
the number of bits, it will return the security parameter. This is a rough indication.

Returns: The security parameter.

Since: 2.12.0

gnutls pk get id

[Function]gnutls_pk_algorithm_t gnutls_pk_get_id (const char * name)
name: is a string containing a public key algorithm name.

Convert a string to a gnutls_pk_algorithm_t value. The names are compared in a
case insensitive way. For example, gnutls pk get id("RSA") will return GNUTLS_PK_

RSA .

Returns: a gnutls_pk_algorithm_t id of the specified public key algorithm string,
or GNUTLS_PK_UNKNOWN on failures.

Since: 2.6.0

gnutls pk get name

[Function]const char * gnutls_pk_get_name (gnutls pk algorithm t
algorithm)

algorithm: is a public key algorithm

Convert a gnutls_pk_algorithm_t value to a string.

Returns: a pointer to a string that contains the name of the specified public key
algorithm, or NULL .

Since: 2.6.0

gnutls pk list

[Function]const gnutls_pk_algorithm_t * gnutls_pk_list (void)
Get a list of supported public key algorithms.

This function is not thread safe.

Appendix E: API reference 335

Returns: a (0)-terminated list of gnutls_pk_algorithm_t integers indicating the
available ciphers.

Since: 2.6.0

gnutls pk to sign

[Function]gnutls_sign_algorithm_t gnutls_pk_to_sign
(gnutls pk algorithm t pk, gnutls digest algorithm t hash)

pk: is a public key algorithm

hash: a hash algorithm

This function maps public key and hash algorithms combinations to signature algo-
rithms.

Returns: return a gnutls_sign_algorithm_t value, or GNUTLS_SIGN_UNKNOWN on
error.

gnutls prf

[Function]int gnutls_prf (gnutls session t session, size t label_size, const
char * label, int server_random_first, size t extra_size, const char *
extra, size t outsize, char * out)

session: is a gnutls_session_t structure.

label size: length of the label variable.

label: label used in PRF computation, typically a short string.

server random first: non-zero if server random field should be first in seed

extra size: length of the extra variable.

extra: optional extra data to seed the PRF with.

outsize: size of pre-allocated output buffer to hold the output.

out: pre-allocated buffer to hold the generated data.

Applies the TLS Pseudo-Random-Function (PRF) on the master secret and the pro-
vided data, seeded with the client and server random fields.

The output of this function is identical to RFC5705 extractor if extra and extra_

size are set to zero. Otherwise, extra should contain the context value prefixed by
a two-byte length.

The label variable usually contains a string denoting the purpose for the generated
data. The server_random_first indicates whether the client random field or the
server random field should be first in the seed. Non-zero indicates that the server
random field is first, 0 that the client random field is first.

The extra variable can be used to add more data to the seed, after the random
variables. It can be used to make sure the generated output is strongly connected to
some additional data (e.g., a string used in user authentication).

The output is placed in out , which must be pre-allocated.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Appendix E: API reference 336

gnutls prf raw

[Function]int gnutls_prf_raw (gnutls session t session, size t label_size,
const char * label, size t seed_size, const char * seed, size t outsize,
char * out)

session: is a gnutls_session_t structure.

label size: length of the label variable.

label: label used in PRF computation, typically a short string.

seed size: length of the seed variable.

seed: optional extra data to seed the PRF with.

outsize: size of pre-allocated output buffer to hold the output.

out: pre-allocated buffer to hold the generated data.

Apply the TLS Pseudo-Random-Function (PRF) on the master secret and the pro-
vided data.

The label variable usually contains a string denoting the purpose for the generated
data. The seed usually contains data such as the client and server random, perhaps
together with some additional data that is added to guarantee uniqueness of the
output for a particular purpose.

Because the output is not guaranteed to be unique for a particular session unless seed
includes the client random and server random fields (the PRF would output the same
data on another connection resumed from the first one), it is not recommended to
use this function directly. The gnutls_prf() function seeds the PRF with the client
and server random fields directly, and is recommended if you want to generate pseudo
random data unique for each session.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls priority certificate type list

[Function]int gnutls_priority_certificate_type_list (gnutls priority t
pcache, const unsigned int ** list)

pcache: is a gnutls_prioritity_t structure.

list: will point to an integer list

Get a list of available certificate types in the priority structure.

Returns: the number of certificate types, or an error code.

Since: 3.0

gnutls priority cipher list

[Function]int gnutls_priority_cipher_list (gnutls priority t pcache, const
unsigned int ** list)

pcache: is a gnutls_prioritity_t structure.

list: will point to an integer list

Get a list of available ciphers in the priority structure.

Returns: the number of curves, or an error code.

Since: 3.2.3

Appendix E: API reference 337

gnutls priority compression list

[Function]int gnutls_priority_compression_list (gnutls priority t pcache,
const unsigned int ** list)

pcache: is a gnutls_prioritity_t structure.

list: will point to an integer list

Get a list of available compression method in the priority structure.

Returns: the number of methods, or an error code.

Since: 3.0

gnutls priority deinit

[Function]void gnutls_priority_deinit (gnutls priority t priority_cache)
priority cache: is a gnutls_prioritity_t structure.

Deinitializes the priority cache.

gnutls priority ecc curve list

[Function]int gnutls_priority_ecc_curve_list (gnutls priority t pcache,
const unsigned int ** list)

pcache: is a gnutls_prioritity_t structure.

list: will point to an integer list

Get a list of available elliptic curves in the priority structure.

Returns: the number of curves, or an error code.

Since: 3.0

gnutls priority get cipher suite index

[Function]int gnutls_priority_get_cipher_suite_index (gnutls priority t
pcache, unsigned int idx, unsigned int * sidx)

pcache: is a gnutls_prioritity_t structure.

idx: is an index number.

sidx: internal index of cipher suite to get information about.

Provides the internal ciphersuite index to be used with gnutls_cipher_suite_

info() . The index idx provided is an index kept at the priorities structure. It
might be that a valid priorities index does not correspond to a ciphersuite and
in that case GNUTLS_E_UNKNOWN_CIPHER_SUITE will be returned. Once the last
available index is crossed then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE will be
returned.

Returns: On success it returns GNUTLS_E_SUCCESS (0), or a negative error value
otherwise.

Appendix E: API reference 338

gnutls priority init

[Function]int gnutls_priority_init (gnutls priority t * priority_cache,
const char * priorities, const char ** err_pos)

priority cache: is a gnutls_prioritity_t structure.

priorities: is a string describing priorities (may be NULL)

err pos: In case of an error this will have the position in the string the error occurred

Sets priorities for the ciphers, key exchange methods, macs and compression methods.

The priorities option allows you to specify a colon separated list of the cipher
priorities to enable. Some keywords are defined to provide quick access to common
preferences.

Unless there is a special need, use the "NORMAL" keyword to apply a reasonable
security level, or "NORMAL:COMPAT " for compatibility.

"PERFORMANCE" means all the "secure" ciphersuites are enabled, limited to 128
bit ciphers and sorted by terms of speed performance.

"LEGACY" the NORMAL settings for GnuTLS 3.2.x or earlier. There is no verifi-
cation profile set, and the allowed DH primes are considered weak today.

"NORMAL" means all "secure" ciphersuites. The 256-bit ciphers are included as a
fallback only. The ciphers are sorted by security margin.

"PFS" means all "secure" ciphersuites that support perfect forward secrecy. The
256-bit ciphers are included as a fallback only. The ciphers are sorted by security
margin.

"SECURE128" means all "secure" ciphersuites of security level 128-bit or more.

"SECURE192" means all "secure" ciphersuites of security level 192-bit or more.

"SUITEB128" means all the NSA SuiteB ciphersuites with security level of 128.

"SUITEB192" means all the NSA SuiteB ciphersuites with security level of 192.

"EXPORT" means all ciphersuites are enabled, including the low-security 40 bit
ciphers.

"NONE" means nothing is enabled. This disables even protocols and compression
methods.

" KEYWORD " The system administrator imposed settings. The provided keywords will
be expanded from a configuration-time provided file - default is: /etc/gnutls/default-
priorities. Any keywords that follow it, will be appended to the expanded string. If
there is no system string, then the function will fail. The system file should be for-
matted as "KEYWORD=VALUE", e.g., "SYSTEM=NORMAL:-ARCFOUR-128".

Special keywords are "!", "-" and "+". "!" or "-" appended with an algorithm will
remove this algorithm. "+" appended with an algorithm will add this algorithm.

Check the GnuTLS manual section "Priority strings" for detailed information.

Examples: "NONE:+VERS-TLS-ALL:+MAC-ALL:+RSA:+AES-128-CBC:+SIGN-
ALL:+COMP-NULL"

"NORMAL:-ARCFOUR-128" means normal ciphers except for ARCFOUR-128.

"SECURE128:-VERS-SSL3.0:+COMP-DEFLATE" means that only secure ciphers
are enabled, SSL3.0 is disabled, and libz compression enabled.

Appendix E: API reference 339

"NONE:+VERS-TLS-ALL:+AES-128-CBC:+RSA:+SHA1:+COMP-NULL:+SIGN-
RSA-SHA1",

"NONE:+VERS-TLS-ALL:+AES-128-CBC:+ECDHE-RSA:+SHA1:+COMP-
NULL:+SIGN-RSA-SHA1:+CURVE-SECP256R1",

"SECURE256:+SECURE128",

Note that "NORMAL:COMPAT " is the most compatible mode.

A NULL priorities string indicates the default priorities to be used (this is available
since GnuTLS 3.3.0).

Returns: On syntax error GNUTLS_E_INVALID_REQUEST is returned, GNUTLS_E_

SUCCESS on success, or an error code.

gnutls priority kx list

[Function]int gnutls_priority_kx_list (gnutls priority t pcache, const
unsigned int ** list)

pcache: is a gnutls_prioritity_t structure.

list: will point to an integer list

Get a list of available key exchange methods in the priority structure.

Returns: the number of curves, or an error code.

Since: 3.2.3

gnutls priority mac list

[Function]int gnutls_priority_mac_list (gnutls priority t pcache, const
unsigned int ** list)

pcache: is a gnutls_prioritity_t structure.

list: will point to an integer list

Get a list of available MAC algorithms in the priority structure.

Returns: the number of curves, or an error code.

Since: 3.2.3

gnutls priority protocol list

[Function]int gnutls_priority_protocol_list (gnutls priority t pcache,
const unsigned int ** list)

pcache: is a gnutls_prioritity_t structure.

list: will point to an integer list

Get a list of available TLS version numbers in the priority structure.

Returns: the number of protocols, or an error code.

Since: 3.0

Appendix E: API reference 340

gnutls priority set

[Function]int gnutls_priority_set (gnutls session t session, gnutls priority t
priority)

session: is a gnutls_session_t structure.

priority : is a gnutls_priority_t structure.

Sets the priorities to use on the ciphers, key exchange methods, macs and compression
methods.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls priority set direct

[Function]int gnutls_priority_set_direct (gnutls session t session, const
char * priorities, const char ** err_pos)

session: is a gnutls_session_t structure.

priorities: is a string describing priorities

err pos: In case of an error this will have the position in the string the error occured

Sets the priorities to use on the ciphers, key exchange methods, macs and compression
methods. This function avoids keeping a priority cache and is used to directly set
string priorities to a TLS session. For documentation check the gnutls_priority_

init() .

To simply use a reasonable default, consider using gnutls_set_default_priority()
.

Returns: On syntax error GNUTLS_E_INVALID_REQUEST is returned, GNUTLS_E_

SUCCESS on success, or an error code.

gnutls priority sign list

[Function]int gnutls_priority_sign_list (gnutls priority t pcache, const
unsigned int ** list)

pcache: is a gnutls_prioritity_t structure.

list: will point to an integer list

Get a list of available signature algorithms in the priority structure.

Returns: the number of algorithms, or an error code.

Since: 3.0

gnutls protocol get id

[Function]gnutls_protocol_t gnutls_protocol_get_id (const char * name)
name: is a protocol name

The names are compared in a case insensitive way.

Returns: an id of the specified protocol, or GNUTLS_VERSION_UNKNOWN on error.

Appendix E: API reference 341

gnutls protocol get name

[Function]const char * gnutls_protocol_get_name (gnutls protocol t
version)

version: is a (gnutls) version number

Convert a gnutls_protocol_t value to a string.

Returns: a string that contains the name of the specified TLS version (e.g.,
"TLS1.0"), or NULL .

gnutls protocol get version

[Function]gnutls_protocol_t gnutls_protocol_get_version
(gnutls session t session)

session: is a gnutls_session_t structure.

Get TLS version, a gnutls_protocol_t value.

Returns: The version of the currently used protocol.

gnutls protocol list

[Function]const gnutls_protocol_t * gnutls_protocol_list (void)
Get a list of supported protocols, e.g. SSL 3.0, TLS 1.0 etc.

This function is not thread safe.

Returns: a (0)-terminated list of gnutls_protocol_t integers indicating the available
protocols.

gnutls psk allocate client credentials

[Function]int gnutls_psk_allocate_client_credentials
(gnutls psk client credentials t * sc)

sc: is a pointer to a gnutls_psk_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls psk allocate server credentials

[Function]int gnutls_psk_allocate_server_credentials
(gnutls psk server credentials t * sc)

sc: is a pointer to a gnutls_psk_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

Appendix E: API reference 342

gnutls psk client get hint

[Function]const char * gnutls_psk_client_get_hint (gnutls session t
session)

session: is a gnutls session

The PSK identity hint may give the client help in deciding which username to use.
This should only be called in case of PSK authentication and in case of a client.

Returns: the identity hint of the peer, or NULL in case of an error.

Since: 2.4.0

gnutls psk free client credentials

[Function]void gnutls_psk_free_client_credentials
(gnutls psk client credentials t sc)

sc: is a gnutls_psk_client_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

gnutls psk free server credentials

[Function]void gnutls_psk_free_server_credentials
(gnutls psk server credentials t sc)

sc: is a gnutls_psk_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

gnutls psk server get username

[Function]const char * gnutls_psk_server_get_username (gnutls session t
session)

session: is a gnutls session

This should only be called in case of PSK authentication and in case of a server.

Returns: the username of the peer, or NULL in case of an error.

gnutls psk set client credentials

[Function]int gnutls_psk_set_client_credentials
(gnutls psk client credentials t res, const char * username, const
gnutls datum t * key, gnutls psk key flags flags)

res: is a gnutls_psk_client_credentials_t structure.

username: is the user’s zero-terminated userid

key : is the user’s key

flags: indicate the format of the key, either GNUTLS_PSK_KEY_RAW or GNUTLS_PSK_

KEY_HEX .

This function sets the username and password, in a gnutls psk client credentials t
structure. Those will be used in PSK authentication. username should be an ASCII

Appendix E: API reference 343

string or UTF-8 strings prepared using the "SASLprep" profile of "stringprep". The
key can be either in raw byte format or in Hex format (without the 0x prefix).

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls psk set client credentials function

[Function]void gnutls_psk_set_client_credentials_function
(gnutls psk client credentials t cred, gnutls psk client credentials function *
func)

cred: is a gnutls_psk_server_credentials_t structure.

func: is the callback function

This function can be used to set a callback to retrieve the username and pass-
word for client PSK authentication. The callback’s function form is: int (*call-
back)(gnutls session t, char** username, gnutls datum t* key);

The username and key ->data must be allocated using gnutls_malloc() . username
should be ASCII strings or UTF-8 strings prepared using the "SASLprep" profile of
"stringprep".

The callback function will be called once per handshake.

The callback function should return 0 on success. -1 indicates an error.

gnutls psk set params function

[Function]void gnutls_psk_set_params_function
(gnutls psk server credentials t res, gnutls params function * func)

res: is a gnutls psk server credentials t structure

func: is the function to be called

This function will set a callback in order for the server to get the Diffie-Hellman
or RSA parameters for PSK authentication. The callback should return GNUTLS_E_

SUCCESS (0) on success.

gnutls psk set server credentials file

[Function]int gnutls_psk_set_server_credentials_file
(gnutls psk server credentials t res, const char * password_file)

res: is a gnutls_psk_server_credentials_t structure.

password file: is the PSK password file (passwd.psk)

This function sets the password file, in a gnutls_psk_server_credentials_t struc-
ture. This password file holds usernames and keys and will be used for PSK authen-
tication.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

Appendix E: API reference 344

gnutls psk set server credentials function

[Function]void gnutls_psk_set_server_credentials_function
(gnutls psk server credentials t cred, gnutls psk server credentials function *
func)

cred: is a gnutls_psk_server_credentials_t structure.

func: is the callback function

This function can be used to set a callback to retrieve the user’s PSK credentials. The
callback’s function form is: int (*callback)(gnutls session t, const char* username,
gnutls datum t* key);

username contains the actual username. The key must be filled in using the gnutls_
malloc() .

In case the callback returned a negative number then gnutls will assume that the
username does not exist.

The callback function will only be called once per handshake. The callback function
should return 0 on success, while -1 indicates an error.

gnutls psk set server credentials hint

[Function]int gnutls_psk_set_server_credentials_hint
(gnutls psk server credentials t res, const char * hint)

res: is a gnutls_psk_server_credentials_t structure.

hint: is the PSK identity hint string

This function sets the identity hint, in a gnutls_psk_server_credentials_t struc-
ture. This hint is sent to the client to help it chose a good PSK credential (i.e.,
username and password).

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

Since: 2.4.0

gnutls psk set server dh params

[Function]void gnutls_psk_set_server_dh_params
(gnutls psk server credentials t res, gnutls dh params t dh_params)

res: is a gnutls psk server credentials t structure

dh params: is a structure that holds Diffie-Hellman parameters.

This function will set the Diffie-Hellman parameters for an anonymous server to use.
These parameters will be used in Diffie-Hellman exchange with PSK cipher suites.

gnutls psk set server params function

[Function]void gnutls_psk_set_server_params_function
(gnutls psk server credentials t res, gnutls params function * func)

res: is a gnutls_certificate_credentials_t structure

func: is the function to be called

Appendix E: API reference 345

This function will set a callback in order for the server to get the Diffie-Hellman
parameters for PSK authentication. The callback should return GNUTLS_E_SUCCESS

(0) on success.

gnutls random art

[Function]int gnutls_random_art (gnutls random art t type, const char *
key_type, unsigned int key_size, void * fpr, size t fpr_size,
gnutls datum t * art)

type: The type of the random art (for now only GNUTLS_RANDOM_ART_OPENSSH is
supported)

key type: The type of the key (RSA, DSA etc.)

key size: The size of the key in bits

fpr: The fingerprint of the key

fpr size: The size of the fingerprint

art: The returned random art

This function will convert a given fingerprint to an "artistic" image. The returned
image is allocated using gnutls_malloc() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls range split

[Function]int gnutls_range_split (gnutls session t session, const
gnutls range st * orig, gnutls range st * next, gnutls range st * remainder)

session: is a gnutls_session_t structure

orig : is the original range provided by the user

next: is the returned range that can be conveyed in a TLS record

remainder: is the returned remaining range

This function should be used when it is required to hide the length of very long data
that cannot be directly provided to gnutls_record_send_range() . In that case this
function should be called with the desired length hiding range in orig . The returned
next value should then be used in the next call to gnutls_record_send_range()

with the partial data. That process should be repeated until remainder is (0,0).

Returns: 0 in case splitting succeeds, non zero in case of error. Note that orig is not
changed, while the values of next and remainder are modified to store the resulting
values.

gnutls record can use length hiding

[Function]int gnutls_record_can_use_length_hiding (gnutls session t
session)

session: is a gnutls_session_t structure.

If the session supports length-hiding padding, you can invoke gnutls_range_send_

message() to send a message whose length is hidden in the given range. If the session

Appendix E: API reference 346

does not support length hiding padding, you can use the standard gnutls_record_

send() function, or gnutls_range_send_message() making sure that the range is
the same as the length of the message you are trying to send.

Returns: true (1) if the current session supports length-hiding padding, false (0) if
the current session does not.

gnutls record check corked

[Function]size_t gnutls_record_check_corked (gnutls session t session)
session: is a gnutls_session_t structure.

This function checks if there pending corked data in the gnutls buffers –see gnutls_
record_cork() .

Returns: Returns the size of the corked data or zero.

Since: 3.2.8

gnutls record check pending

[Function]size_t gnutls_record_check_pending (gnutls session t session)
session: is a gnutls_session_t structure.

This function checks if there are unread data in the gnutls buffers. If the return value
is non-zero the next call to gnutls_record_recv() is guaranteed not to block.

Returns: Returns the size of the data or zero.

gnutls record cork

[Function]void gnutls_record_cork (gnutls session t session)
session: is a gnutls_session_t structure.

If called, gnutls_record_send() will no longer send any records. Any sent records
will be cached until gnutls_record_uncork() is called.

This function is safe to use with DTLS after GnuTLS 3.3.0.

Since: 3.1.9

gnutls record disable padding

[Function]void gnutls_record_disable_padding (gnutls session t session)
session: is a gnutls_session_t structure.

Used to disabled padding in TLS 1.0 and above. Normally you do not need to use
this function, but there are buggy clients that complain if a server pads the encrypted
data. This of course will disable protection against statistical attacks on the data.

This functions is defunt since 3.1.7. Random padding is disabled by default unless
requested using gnutls_range_send_message() .

Appendix E: API reference 347

gnutls record get direction

[Function]int gnutls_record_get_direction (gnutls session t session)
session: is a gnutls_session_t structure.

This function provides information about the internals of the record protocol and is
only useful if a prior gnutls function call (e.g. gnutls_handshake()) was interrupted
for some reason, that is, if a function returned GNUTLS_E_INTERRUPTED or GNUTLS_
E_AGAIN . In such a case, you might want to call select() or poll() before calling
the interrupted gnutls function again. To tell you whether a file descriptor should be
selected for either reading or writing, gnutls_record_get_direction() returns 0 if
the interrupted function was trying to read data, and 1 if it was trying to write data.

This function’s output is unreliable if you are using the session in different threads,
for sending and receiving.

Returns: 0 if trying to read data, 1 if trying to write data.

gnutls record get max size

[Function]size_t gnutls_record_get_max_size (gnutls session t session)
session: is a gnutls_session_t structure.

Get the record size. The maximum record size is negotiated by the client after the
first handshake message.

Returns: The maximum record packet size in this connection.

gnutls record overhead size

[Function]size_t gnutls_record_overhead_size (gnutls session t session)
session: is gnutls_session_t

This function will return the set size in bytes of the overhead due to TLS (or DTLS)
per record.

Since: 3.2.2

gnutls record recv

[Function]ssize_t gnutls_record_recv (gnutls session t session, void * data,
size t data_size)

session: is a gnutls_session_t structure.

data: the buffer that the data will be read into

data size: the number of requested bytes

This function has the similar semantics with recv() . The only difference is that it
accepts a GnuTLS session, and uses different error codes. In the special case that
a server requests a renegotiation, the client may receive an error code of GNUTLS_E_
REHANDSHAKE . This message may be simply ignored, replied with an alert GNUTLS_
A_NO_RENEGOTIATION , or replied with a new handshake, depending on the client’s
will. If EINTR is returned by the internal push function (the default is recv()) then
GNUTLS_E_INTERRUPTED will be returned. If GNUTLS_E_INTERRUPTED or GNUTLS_E_

AGAIN is returned, you must call this function again to get the data. See also gnutls_
record_get_direction() . A server may also receive GNUTLS_E_REHANDSHAKE when

Appendix E: API reference 348

a client has initiated a handshake. In that case the server can only initiate a handshake
or terminate the connection.

Returns: The number of bytes received and zero on EOF (for stream connections).
A negative error code is returned in case of an error. The number of bytes received
might be less than the requested data_size .

gnutls record recv packet

[Function]ssize_t gnutls_record_recv_packet (gnutls session t session,
gnutls packet t * packet)

session: is a gnutls_session_t structure.

packet: the structure that will hold the packet data

This is a lower-level function thatn gnutls_record_recv() and allows to directly
receive the whole decrypted packet. That avoids a memory copy, and is mostly
applicable to applications seeking high performance.

The received packet is accessed using gnutls_packet_get() and must be deinitialized
using gnutls_packet_deinit() . The returned packet will be NULL if the return value
is zero (EOF).

Returns: The number of bytes received and zero on EOF (for stream connections).
A negative error code is returned in case of an error.

Since: 3.3.5

gnutls record recv seq

[Function]ssize_t gnutls_record_recv_seq (gnutls session t session, void *
data, size t data_size, unsigned char * seq)

session: is a gnutls_session_t structure.

data: the buffer that the data will be read into

data size: the number of requested bytes

seq: is the packet’s 64-bit sequence number. Should have space for 8 bytes.

This function is the same as gnutls_record_recv() , except that it returns in addi-
tion to data, the sequence number of the data. This is useful in DTLS where record
packets might be received out-of-order. The returned 8-byte sequence number is an
integer in big-endian format and should be treated as a unique message identification.

Returns: The number of bytes received and zero on EOF. A negative error code
is returned in case of an error. The number of bytes received might be less than
data_size .

Since: 3.0

gnutls record send

[Function]ssize_t gnutls_record_send (gnutls session t session, const void *
data, size t data_size)

session: is a gnutls_session_t structure.

data: contains the data to send

Appendix E: API reference 349

data size: is the length of the data

This function has the similar semantics with send() . The only difference is that
it accepts a GnuTLS session, and uses different error codes. Note that if the send
buffer is full, send() will block this function. See the send() documentation for more
information.

You can replace the default push function which is send() , by using gnutls_

transport_set_push_function() .

If the EINTR is returned by the internal push function then GNUTLS_E_INTERRUPTED

will be returned. If GNUTLS_E_INTERRUPTED or GNUTLS_E_AGAIN is returned, you
must call this function again, with the exact same parameters; alternatively you could
provide a NULL pointer for data, and 0 for size. cf. gnutls_record_get_direction()
.

Note that in DTLS this function will return the GNUTLS_E_LARGE_PACKET error code
if the send data exceed the data MTU value - as returned by gnutls_dtls_get_

data_mtu() . The errno value EMSGSIZE also maps to GNUTLS_E_LARGE_PACKET .
Note that since 3.2.13 this function can be called under cork in DTLS mode, and will
refuse to send data over the MTU size by returning GNUTLS_E_LARGE_PACKET .

Returns: The number of bytes sent, or a negative error code. The number of bytes
sent might be less than data_size . The maximum number of bytes this function
can send in a single call depends on the negotiated maximum record size.

gnutls record send range

[Function]ssize_t gnutls_record_send_range (gnutls session t session, const
void * data, size t data_size, const gnutls range st * range)

session: is a gnutls_session_t structure.

data: contains the data to send.

data size: is the length of the data.

range: is the range of lengths in which the real data length must be hidden.

This function operates like gnutls_record_send() but, while gnutls_record_

send() adds minimal padding to each TLS record, this function uses the
TLS extra-padding feature to conceal the real data size within the range of
lengths provided. Some TLS sessions do not support extra padding (e.g.
stream ciphers in standard TLS or SSL3 sessions). To know whether the
current session supports extra padding, and hence length hiding, use the
gnutls_record_can_use_length_hiding() function.

Note: This function currently is only limited to blocking sockets.

Returns: The number of bytes sent (that is data size in a successful invocation), or
a negative error code.

gnutls record set max empty records

[Function]void gnutls_record_set_max_empty_records (gnutls session t
session, const unsigned int i)

session: is a gnutls_session_t structure.

Appendix E: API reference 350

i: is the desired value of maximum empty records that can be accepted in a row.

Used to set the maximum number of empty fragments that can be accepted in a
row. Accepting many empty fragments is useful for receiving length-hidden content,
where empty fragments filled with pad are sent to hide the real length of a message.
However, a malicious peer could send empty fragments to mount a DoS attack, so as
a safety measure, a maximum number of empty fragments is accepted by default. If
you know your application must accept a given number of empty fragments in a row,
you can use this function to set the desired value.

gnutls record set max size

[Function]ssize_t gnutls_record_set_max_size (gnutls session t session,
size t size)

session: is a gnutls_session_t structure.

size: is the new size

This function sets the maximum record packet size in this connection. This property
can only be set to clients. The server may choose not to accept the requested size.

Acceptable values are 512(=2^9), 1024(=2^10), 2048(=2^11) and 4096(=2^12). The
requested record size does get in effect immediately only while sending data. The
receive part will take effect after a successful handshake.

This function uses a TLS extension called ’max record size’. Not all TLS implemen-
tations use or even understand this extension.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls record set timeout

[Function]void gnutls_record_set_timeout (gnutls session t session,
unsigned int ms)

session: is a gnutls_session_t structure.

ms: is a timeout value in milliseconds

This function sets the receive timeout for the record layer to the provided value. Use
an ms value of zero to disable timeout (the default).

Since: 3.1.7

gnutls record uncork

[Function]int gnutls_record_uncork (gnutls session t session, unsigned int
flags)

session: is a gnutls_session_t structure.

flags: Could be zero or GNUTLS_RECORD_WAIT

This resets the effect of gnutls_record_cork() , and flushes any pending data. If
the GNUTLS_RECORD_WAIT flag is specified then this function will block until the data
is sent or a fatal error occurs (i.e., the function will retry on GNUTLS_E_AGAIN and
GNUTLS_E_INTERRUPTED).

Appendix E: API reference 351

If the flag GNUTLS_RECORD_WAIT is not specified and the function is interrupted then
the GNUTLS_E_AGAIN or GNUTLS_E_INTERRUPTED errors will be returned. To obtain
the data left in the corked buffer use gnutls_record_check_corked() .

Returns: On success the number of transmitted data is returned, or otherwise a
negative error code.

Since: 3.1.9

gnutls rehandshake

[Function]int gnutls_rehandshake (gnutls session t session)
session: is a gnutls_session_t structure.

This function will renegotiate security parameters with the client. This should only
be called in case of a server.

This message informs the peer that we want to renegotiate parameters (perform a
handshake).

If this function succeeds (returns 0), you must call the gnutls_handshake() function
in order to negotiate the new parameters.

Since TLS is full duplex some application data might have been sent during peer’s
processing of this message. In that case one should call gnutls_record_recv() until
GNUTLS E REHANDSHAKE is returned to clear any pending data. Care must
be taken if rehandshake is mandatory to terminate if it does not start after some
threshold.

If the client does not wish to renegotiate parameters he should reply with an alert
message, thus the return code will be GNUTLS_E_WARNING_ALERT_RECEIVED and the
alert will be GNUTLS_A_NO_RENEGOTIATION . A client may also choose to ignore this
message.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

gnutls safe renegotiation status

[Function]int gnutls_safe_renegotiation_status (gnutls session t session)
session: is a gnutls_session_t structure.

Can be used to check whether safe renegotiation is being used in the current session.

Returns: 0 when safe renegotiation is not used and non (0) when safe renegotiation
is used.

Since: 2.10.0

gnutls sec param get name

[Function]const char * gnutls_sec_param_get_name (gnutls sec param t
param)

param: is a security parameter

Convert a gnutls_sec_param_t value to a string.

Returns: a pointer to a string that contains the name of the specified security level,
or NULL .

Since: 2.12.0

Appendix E: API reference 352

gnutls sec param to pk bits

[Function]unsigned int gnutls_sec_param_to_pk_bits
(gnutls pk algorithm t algo, gnutls sec param t param)

algo: is a public key algorithm

param: is a security parameter

When generating private and public key pairs a difficult question is which size of
"bits" the modulus will be in RSA and the group size in DSA. The easy answer
is 1024, which is also wrong. This function will convert a human understandable
security parameter to an appropriate size for the specific algorithm.

Returns: The number of bits, or (0).

Since: 2.12.0

gnutls sec param to symmetric bits

[Function]unsigned int gnutls_sec_param_to_symmetric_bits
(gnutls sec param t param)

param: is a security parameter

This function will return the number of bits that correspond to symmetric cipher
strength for the given security parameter.

Returns: The number of bits, or (0).

Since: 3.3.0

gnutls server name get

[Function]int gnutls_server_name_get (gnutls session t session, void * data,
size t * data_length, unsigned int * type, unsigned int indx)

session: is a gnutls_session_t structure.

data: will hold the data

data length: will hold the data length. Must hold the maximum size of data.

type: will hold the server name indicator type

indx: is the index of the server name

This function will allow you to get the name indication (if any), a client has sent.
The name indication may be any of the enumeration gnutls server name type t.

If type is GNUTLS NAME DNS, then this function is to be used by servers that
support virtual hosting, and the data will be a null terminated UTF-8 string.

If data has not enough size to hold the server name GNUTLS E SHORT MEMORY BUFFER
is returned, and data_length will hold the required size.

index is used to retrieve more than one server names (if sent by the client). The first
server name has an index of 0, the second 1 and so on. If no name with the given
index exists GNUTLS E REQUESTED DATA NOT AVAILABLE is returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

Appendix E: API reference 353

gnutls server name set

[Function]int gnutls_server_name_set (gnutls session t session,
gnutls server name type t type, const void * name, size t name_length)

session: is a gnutls_session_t structure.

type: specifies the indicator type

name: is a string that contains the server name.

name length: holds the length of name

This function is to be used by clients that want to inform (via a TLS extension
mechanism) the server of the name they connected to. This should be used by clients
that connect to servers that do virtual hosting.

The value of name depends on the type type. In case of GNUTLS_NAME_DNS , an ASCII
(0)-terminated domain name string, without the trailing dot, is expected. IPv4 or
IPv6 addresses are not permitted.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls session channel binding

[Function]int gnutls_session_channel_binding (gnutls session t session,
gnutls channel binding t cbtype, gnutls datum t * cb)

session: is a gnutls_session_t structure.

cbtype: an gnutls_channel_binding_t enumeration type

cb: output buffer array with data

Extract given channel binding data of the cbtype (e.g., GNUTLS_CB_TLS_UNIQUE)
type.

Returns: GNUTLS_E_SUCCESS on success, GNUTLS_E_UNIMPLEMENTED_FEATURE if the
cbtype is unsupported, GNUTLS_E_CHANNEL_BINDING_NOT_AVAILABLE if the data is
not currently available, or an error code.

Since: 2.12.0

gnutls session enable compatibility mode

[Function]void gnutls_session_enable_compatibility_mode
(gnutls session t session)

session: is a gnutls_session_t structure.

This function can be used to disable certain (security) features in TLS in order to
maintain maximum compatibility with buggy clients. Because several trade-offs with
security are enabled, if required they will be reported through the audit subsystem.

Normally only servers that require maximum compatibility with everything out there,
need to call this function.

Note that this function must be called after any call to gnutls priority functions.

Appendix E: API reference 354

gnutls session force valid

[Function]void gnutls_session_force_valid (gnutls session t session)
session: is a gnutls_session_t structure.

Clears the invalid flag in a session. That means that sessions were corrupt or invalid
data were received can be re-used. Use only when debugging or experimenting with
the TLS protocol. Should not be used in typical applications.

gnutls session get data

[Function]int gnutls_session_get_data (gnutls session t session, void *
session_data, size t * session_data_size)

session: is a gnutls_session_t structure.

session data: is a pointer to space to hold the session.

session data size: is the session data’s size, or it will be set by the function.

Returns all session parameters needed to be stored to support resumption. The client
should call this, and store the returned session data. A session may be resumed
later by calling gnutls_session_set_data() . This function must be called after a
successful (full) handshake. It should not be used in resumed sessions –see gnutls_

session_is_resumed() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls session get data2

[Function]int gnutls_session_get_data2 (gnutls session t session,
gnutls datum t * data)

session: is a gnutls_session_t structure.

data: is a pointer to a datum that will hold the session.

Returns all session parameters needed to be stored to support resumption. The client
should call this, and store the returned session data. A session may be resumed
later by calling gnutls_session_set_data() . This function must be called after a
successful (full) handshake. It should not be used in resumed sessions –see gnutls_

session_is_resumed() .

The returned data are allocated and must be released using gnutls_free() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls session get desc

[Function]char * gnutls_session_get_desc (gnutls session t session)
session: is a gnutls session

This function returns a string describing the current session. The string is null ter-
minated and allocated using gnutls_malloc() .

Returns: a description of the protocols and algorithms in the current session.

Since: 3.1.10

Appendix E: API reference 355

gnutls session get id

[Function]int gnutls_session_get_id (gnutls session t session, void *
session_id, size t * session_id_size)

session: is a gnutls_session_t structure.

session id: is a pointer to space to hold the session id.

session id size: initially should contain the maximum session_id size and will be
updated.

Returns the current session ID. This can be used if you want to check if the next
session you tried to resume was actually resumed. That is because resumed sessions
share the same session ID with the original session.

The session ID is selected by the server, that identify the current session. In TLS 1.0
and SSL 3.0 session id is always less than 32 bytes.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls session get id2

[Function]int gnutls_session_get_id2 (gnutls session t session,
gnutls datum t * session_id)

session: is a gnutls_session_t structure.

session id: will point to the session ID.

Returns the current session ID. The returned data should be treated as constant.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

Since: 3.1.4

gnutls session get ptr

[Function]void * gnutls_session_get_ptr (gnutls session t session)
session: is a gnutls_session_t structure.

Get user pointer for session. Useful in callbacks. This is the pointer set with gnutls_

session_set_ptr() .

Returns: the user given pointer from the session structure, or NULL if it was never
set.

gnutls session get random

[Function]void gnutls_session_get_random (gnutls session t session,
gnutls datum t * client, gnutls datum t * server)

session: is a gnutls_session_t structure.

client: the client part of the random

server: the server part of the random

This function returns pointers to the client and server random fields used in the TLS
handshake. The pointers are not to be modified or deallocated.

If a client random value has not yet been established, the output will be garbage.

Since: 3.0

Appendix E: API reference 356

gnutls session is resumed

[Function]int gnutls_session_is_resumed (gnutls session t session)
session: is a gnutls_session_t structure.

Check whether session is resumed or not.

Returns: non zero if this session is resumed, or a zero if this is a new session.

gnutls session resumption requested

[Function]int gnutls_session_resumption_requested (gnutls session t
session)

session: is a gnutls_session_t structure.

Check whether the client has asked for session resumption. This function is valid only
on server side.

Returns: non zero if session resumption was asked, or a zero if not.

gnutls session set data

[Function]int gnutls_session_set_data (gnutls session t session, const void *
session_data, size t session_data_size)

session: is a gnutls_session_t structure.

session data: is a pointer to space to hold the session.

session data size: is the session’s size

Sets all session parameters, in order to resume a previously established session. The
session data given must be the one returned by gnutls_session_get_data() . This
function should be called before gnutls_handshake() .

Keep in mind that session resuming is advisory. The server may choose not to resume
the session, thus a full handshake will be performed.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls session set id

[Function]int gnutls_session_set_id (gnutls session t session, const
gnutls datum t * sid)

session: is a gnutls_session_t structure.

sid: the session identifier

This function sets the session ID to be used in a client hello. This is a function
intended for exceptional uses. Do not use this function unless you are implementing
a custom protocol.

To set session resumption parameters use gnutls_session_set_data() instead.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

Appendix E: API reference 357

gnutls session set premaster

[Function]int gnutls_session_set_premaster (gnutls session t session,
unsigned int entity, gnutls protocol t version, gnutls kx algorithm t kx,
gnutls cipher algorithm t cipher, gnutls mac algorithm t mac,
gnutls compression method t comp, const gnutls datum t * master, const
gnutls datum t * session_id)

session: is a gnutls_session_t structure.

entity : GNUTLS SERVER or GNUTLS CLIENT

version: the TLS protocol version

kx: the key exchange method

cipher: the cipher

mac: the MAC algorithm

comp: the compression method

master: the master key to use

session id: the session identifier

This function sets the premaster secret in a session. This is a function intended for
exceptional uses. Do not use this function unless you are implementing a legacy
protocol. Use gnutls_session_set_data() instead.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls session set ptr

[Function]void gnutls_session_set_ptr (gnutls session t session, void * ptr)
session: is a gnutls_session_t structure.

ptr: is the user pointer

This function will set (associate) the user given pointer ptr to the session structure.
This pointer can be accessed with gnutls_session_get_ptr() .

gnutls session ticket enable client

[Function]int gnutls_session_ticket_enable_client (gnutls session t
session)

session: is a gnutls_session_t structure.

Request that the client should attempt session resumption using SessionTicket.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

Since: 2.10.0

gnutls session ticket enable server

[Function]int gnutls_session_ticket_enable_server (gnutls session t
session, const gnutls datum t * key)

session: is a gnutls_session_t structure.

key : key to encrypt session parameters.

Appendix E: API reference 358

Request that the server should attempt session resumption using SessionTicket. key
must be initialized with gnutls_session_ticket_key_generate() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

Since: 2.10.0

gnutls session ticket key generate

[Function]int gnutls_session_ticket_key_generate (gnutls datum t * key)
key : is a pointer to a gnutls_datum_t which will contain a newly created key.

Generate a random key to encrypt security parameters within SessionTicket.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

Since: 2.10.0

gnutls set default priority

[Function]int gnutls_set_default_priority (gnutls session t session)
session: is a gnutls_session_t structure.

Sets the default priority on the ciphers, key exchange methods, macs and compression
methods. For more fine-tuning you could use gnutls_priority_set_direct() or
gnutls_priority_set() instead.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls sign algorithm get

[Function]int gnutls_sign_algorithm_get (gnutls session t session)
session: is a gnutls_session_t structure.

Returns the signature algorithm that is (or will be) used in this session by the server
to sign data.

Returns: The sign algorithm or GNUTLS_SIGN_UNKNOWN .

Since: 3.1.1

gnutls sign algorithm get client

[Function]int gnutls_sign_algorithm_get_client (gnutls session t session)
session: is a gnutls_session_t structure.

Returns the signature algorithm that is (or will be) used in this session by the client
to sign data.

Returns: The sign algorithm or GNUTLS_SIGN_UNKNOWN .

Since: 3.1.11

gnutls sign algorithm get requested

[Function]int gnutls_sign_algorithm_get_requested (gnutls session t
session, size t indx, gnutls sign algorithm t * algo)

session: is a gnutls_session_t structure.

indx: is an index of the signature algorithm to return

Appendix E: API reference 359

algo: the returned certificate type will be stored there

Returns the signature algorithm specified by index that was requested by the peer. If
the specified index has no data available this function returns GNUTLS_E_REQUESTED_
DATA_NOT_AVAILABLE . If the negotiated TLS version does not support signature
algorithms then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE will be returned even
for the first index. The first index is 0.

This function is useful in the certificate callback functions to assist in selecting the
correct certificate.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

Since: 2.10.0

gnutls sign get hash algorithm

[Function]gnutls_digest_algorithm_t gnutls_sign_get_hash_algorithm
(gnutls sign algorithm t sign)

sign: is a signature algorithm

This function returns the digest algorithm corresponding to the given signature algo-
rithms.

Since: 3.1.1

Returns: return a gnutls_digest_algorithm_t value, or GNUTLS_DIG_UNKNOWN on
error.

gnutls sign get id

[Function]gnutls_sign_algorithm_t gnutls_sign_get_id (const char * name)
name: is a sign algorithm name

The names are compared in a case insensitive way.

Returns: return a gnutls_sign_algorithm_t value corresponding to the specified
algorithm, or GNUTLS_SIGN_UNKNOWN on error.

gnutls sign get name

[Function]const char * gnutls_sign_get_name (gnutls sign algorithm t
algorithm)

algorithm: is a sign algorithm

Convert a gnutls_sign_algorithm_t value to a string.

Returns: a string that contains the name of the specified sign algorithm, or NULL .

gnutls sign get pk algorithm

[Function]gnutls_pk_algorithm_t gnutls_sign_get_pk_algorithm
(gnutls sign algorithm t sign)

sign: is a signature algorithm

This function returns the public key algorithm corresponding to the given signature
algorithms.

Appendix E: API reference 360

Since: 3.1.1

Returns: return a gnutls_pk_algorithm_t value, or GNUTLS_PK_UNKNOWN on error.

gnutls sign is secure

[Function]int gnutls_sign_is_secure (gnutls sign algorithm t algorithm)
algorithm: is a sign algorithm

Returns: Non-zero if the provided signature algorithm is considered to be secure.

gnutls sign list

[Function]const gnutls_sign_algorithm_t * gnutls_sign_list (void)
Get a list of supported public key signature algorithms.

Returns: a (0)-terminated list of gnutls_sign_algorithm_t integers indicating the
available ciphers.

gnutls srp allocate client credentials

[Function]int gnutls_srp_allocate_client_credentials
(gnutls srp client credentials t * sc)

sc: is a pointer to a gnutls_srp_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

gnutls srp allocate server credentials

[Function]int gnutls_srp_allocate_server_credentials
(gnutls srp server credentials t * sc)

sc: is a pointer to a gnutls_srp_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

gnutls srp base64 decode

[Function]int gnutls_srp_base64_decode (const gnutls datum t * b64_data,
char * result, size t * result_size)

b64 data: contain the encoded data

result: the place where decoded data will be copied

result size: holds the size of the result

This function will decode the given encoded data, using the base64 encoding found
in libsrp.

Note that b64_data should be null terminated.

Warning! This base64 encoding is not the "standard" encoding, so do not use it for
non-SRP purposes.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the buffer given is not long enough, or
0 on success.

Appendix E: API reference 361

gnutls srp base64 decode alloc

[Function]int gnutls_srp_base64_decode_alloc (const gnutls datum t *
b64_data, gnutls datum t * result)

b64 data: contains the encoded data

result: the place where decoded data lie

This function will decode the given encoded data. The decoded data will be allocated,
and stored into result. It will decode using the base64 algorithm as used in libsrp.

You should use gnutls_free() to free the returned data.

Warning! This base64 encoding is not the "standard" encoding, so do not use it for
non-SRP purposes.

Returns: 0 on success, or an error code.

gnutls srp base64 encode

[Function]int gnutls_srp_base64_encode (const gnutls datum t * data, char *
result, size t * result_size)

data: contain the raw data

result: the place where base64 data will be copied

result size: holds the size of the result

This function will convert the given data to printable data, using the base64 encoding,
as used in the libsrp. This is the encoding used in SRP password files. If the provided
buffer is not long enough GNUTLS E SHORT MEMORY BUFFER is returned.

Warning! This base64 encoding is not the "standard" encoding, so do not use it for
non-SRP purposes.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the buffer given is not long enough, or
0 on success.

gnutls srp base64 encode alloc

[Function]int gnutls_srp_base64_encode_alloc (const gnutls datum t * data,
gnutls datum t * result)

data: contains the raw data

result: will hold the newly allocated encoded data

This function will convert the given data to printable data, using the base64 encoding.
This is the encoding used in SRP password files. This function will allocate the
required memory to hold the encoded data.

You should use gnutls_free() to free the returned data.

Warning! This base64 encoding is not the "standard" encoding, so do not use it for
non-SRP purposes.

Returns: 0 on success, or an error code.

Appendix E: API reference 362

gnutls srp free client credentials

[Function]void gnutls_srp_free_client_credentials
(gnutls srp client credentials t sc)

sc: is a gnutls_srp_client_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

gnutls srp free server credentials

[Function]void gnutls_srp_free_server_credentials
(gnutls srp server credentials t sc)

sc: is a gnutls_srp_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

gnutls srp server get username

[Function]const char * gnutls_srp_server_get_username (gnutls session t
session)

session: is a gnutls session

This function will return the username of the peer. This should only be called in case
of SRP authentication and in case of a server. Returns NULL in case of an error.

Returns: SRP username of the peer, or NULL in case of error.

gnutls srp set client credentials

[Function]int gnutls_srp_set_client_credentials
(gnutls srp client credentials t res, const char * username, const char *
password)

res: is a gnutls_srp_client_credentials_t structure.

username: is the user’s userid

password: is the user’s password

This function sets the username and password, in a gnutls_srp_client_

credentials_t structure. Those will be used in SRP authentication. username and
password should be ASCII strings or UTF-8 strings prepared using the "SASLprep"
profile of "stringprep".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

gnutls srp set client credentials function

[Function]void gnutls_srp_set_client_credentials_function
(gnutls srp client credentials t cred, gnutls srp client credentials function *
func)

cred: is a gnutls_srp_server_credentials_t structure.

func: is the callback function

Appendix E: API reference 363

This function can be used to set a callback to retrieve the username and password for
client SRP authentication. The callback’s function form is:

int (*callback)(gnutls session t, char** username, char**password);

The username and password must be allocated using gnutls_malloc() . username
and password should be ASCII strings or UTF-8 strings prepared using the "SASL-
prep" profile of "stringprep".

The callback function will be called once per handshake before the initial hello message
is sent.

The callback should not return a negative error code the second time called, since the
handshake procedure will be aborted.

The callback function should return 0 on success. -1 indicates an error.

gnutls srp set prime bits

[Function]void gnutls_srp_set_prime_bits (gnutls session t session,
unsigned int bits)

session: is a gnutls_session_t structure.

bits: is the number of bits

This function sets the minimum accepted number of bits, for use in an SRP key
exchange. If zero, the default 2048 bits will be used.

In the client side it sets the minimum accepted number of bits. If a server sends
a prime with less bits than that GNUTLS_E_RECEIVED_ILLEGAL_PARAMETER will be
returned by the handshake.

This function has no effect in server side.

Since: 2.6.0

gnutls srp set server credentials file

[Function]int gnutls_srp_set_server_credentials_file
(gnutls srp server credentials t res, const char * password_file, const char
* password_conf_file)

res: is a gnutls_srp_server_credentials_t structure.

password file: is the SRP password file (tpasswd)

password conf file: is the SRP password conf file (tpasswd.conf)

This function sets the password files, in a gnutls_srp_server_credentials_t struc-
ture. Those password files hold usernames and verifiers and will be used for SRP
authentication.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

gnutls srp set server credentials function

[Function]void gnutls_srp_set_server_credentials_function
(gnutls srp server credentials t cred, gnutls srp server credentials function *
func)

cred: is a gnutls_srp_server_credentials_t structure.

Appendix E: API reference 364

func: is the callback function

This function can be used to set a callback to retrieve the user’s SRP credentials.
The callback’s function form is:

int (*callback)(gnutls session t, const char* username, gnutls datum t *salt,
gnutls datum t *verifier, gnutls datum t *generator, gnutls datum t *prime);

username contains the actual username. The salt , verifier , generator and prime

must be filled in using the gnutls_malloc() . For convenience prime and generator

may also be one of the static parameters defined in gnutls.h.

Initially, the data field is NULL in every gnutls_datum_t structure that the callback
has to fill in. When the callback is done GnuTLS deallocates all of those buffers which
are non-NULL, regardless of the return value.

In order to prevent attackers from guessing valid usernames, if a user does not exist,
g and n values should be filled in using a random user’s parameters. In that case
the callback must return the special value (1). See gnutls_srp_set_server_fake_

salt_seed too. If this is not required for your application, return a negative number
from the callback to abort the handshake.

The callback function will only be called once per handshake. The callback function
should return 0 on success, while -1 indicates an error.

gnutls srp set server fake salt seed

[Function]void gnutls_srp_set_server_fake_salt_seed
(gnutls srp server credentials t cred, const gnutls datum t * seed, unsigned
int salt_length)

cred: is a gnutls_srp_server_credentials_t structure

seed: is the seed data, only needs to be valid until the function returns; size of the
seed must be greater than zero

salt length: is the length of the generated fake salts

This function sets the seed that is used to generate salts for invalid (non-existent)
usernames.

In order to prevent attackers from guessing valid usernames, when a user does not exist
gnutls generates a salt and a verifier and proceeds with the protocol as usual. The
authentication will ultimately fail, but the client cannot tell whether the username is
valid (exists) or invalid.

If an attacker learns the seed, given a salt (which is part of the handshake) which was
generated when the seed was in use, it can tell whether or not the authentication failed
because of an unknown username. This seed cannot be used to reveal application data
or passwords.

salt_length should represent the salt length your application uses. Generating fake
salts longer than 20 bytes is not supported.

By default the seed is a random value, different each time a gnutls_srp_server_

credentials_t is allocated and fake salts are 16 bytes long.

Since: 3.3.0

Appendix E: API reference 365

gnutls srp verifier

[Function]int gnutls_srp_verifier (const char * username, const char *
password, const gnutls datum t * salt, const gnutls datum t * generator,
const gnutls datum t * prime, gnutls datum t * res)

username: is the user’s name

password: is the user’s password

salt: should be some randomly generated bytes

generator: is the generator of the group

prime: is the group’s prime

res: where the verifier will be stored.

This function will create an SRP verifier, as specified in RFC2945. The prime and
generator should be one of the static parameters defined in gnutls/gnutls.h or may
be generated.

The verifier will be allocated with gnutls_malloc () and will be stored in res using
binary format.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

gnutls srtp get keys

[Function]int gnutls_srtp_get_keys (gnutls session t session, void *
key_material, unsigned int key_material_size, gnutls datum t *
client_key, gnutls datum t * client_salt, gnutls datum t *
server_key, gnutls datum t * server_salt)

session: is a gnutls_session_t structure.

key material: Space to hold the generated key material

key material size: The maximum size of the key material

client key : The master client write key, pointing inside the key material

client salt: The master client write salt, pointing inside the key material

server key : The master server write key, pointing inside the key material

server salt: The master server write salt, pointing inside the key material

This is a helper function to generate the keying material for SRTP. It requires the
space of the key material to be pre-allocated (should be at least 2x the maximum key
size and salt size). The client_key , client_salt , server_key and server_salt

are convenience datums that point inside the key material. They may be NULL .

Returns: On success the size of the key material is returned, otherwise, GNUTLS_E_
SHORT_MEMORY_BUFFER if the buffer given is not sufficient, or a negative error code.

Since 3.1.4

gnutls srtp get mki

[Function]int gnutls_srtp_get_mki (gnutls session t session, gnutls datum t *
mki)

session: is a gnutls_session_t structure.

Appendix E: API reference 366

mki: will hold the MKI

This function exports the negotiated Master Key Identifier, received by the peer if
any. The returned value in mki should be treated as constant and valid only during
the session’s lifetime.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

Since 3.1.4

gnutls srtp get profile id

[Function]int gnutls_srtp_get_profile_id (const char * name,
gnutls srtp profile t * profile)

name: The name of the profile to look up

profile: Will hold the profile id

This function allows you to look up a profile based on a string.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

Since 3.1.4

gnutls srtp get profile name

[Function]const char * gnutls_srtp_get_profile_name (gnutls srtp profile t
profile)

profile: The profile to look up a string for

This function allows you to get the corresponding name for a SRTP protection profile.

Returns: On success, the name of a SRTP profile as a string, otherwise NULL.

Since 3.1.4

gnutls srtp get selected profile

[Function]int gnutls_srtp_get_selected_profile (gnutls session t session,
gnutls srtp profile t * profile)

session: is a gnutls_session_t structure.

profile: will hold the profile

This function allows you to get the negotiated SRTP profile.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

Since 3.1.4

gnutls srtp set mki

[Function]int gnutls_srtp_set_mki (gnutls session t session, const
gnutls datum t * mki)

session: is a gnutls_session_t structure.

mki: holds the MKI

Appendix E: API reference 367

This function sets the Master Key Identifier, to be used by this session (if any).

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

Since 3.1.4

gnutls srtp set profile

[Function]int gnutls_srtp_set_profile (gnutls session t session,
gnutls srtp profile t profile)

session: is a gnutls_session_t structure.

profile: is the profile id to add.

This function is to be used by both clients and servers, to declare what SRTP profiles
they support, to negotiate with the peer.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

Since 3.1.4

gnutls srtp set profile direct

[Function]int gnutls_srtp_set_profile_direct (gnutls session t session,
const char * profiles, const char ** err_pos)

session: is a gnutls_session_t structure.

profiles: is a string that contains the supported SRTP profiles, separated by colons.

err pos: In case of an error this will have the position in the string the error occured,
may be NULL.

This function is to be used by both clients and servers, to declare what SRTP profiles
they support, to negotiate with the peer.

Returns: On syntax error GNUTLS_E_INVALID_REQUEST is returned, GNUTLS_E_

SUCCESS on success, or an error code.

Since 3.1.4

gnutls store commitment

[Function]int gnutls_store_commitment (const char * db_name, gnutls tdb t
tdb, const char * host, const char * service, gnutls digest algorithm t
hash_algo, const gnutls datum t * hash, time t expiration, unsigned int
flags)

db name: A file specifying the stored keys (use NULL for the default)

tdb: A storage structure or NULL to use the default

host: The peer’s name

service: non-NULL if this key is specific to a service (e.g. http)

hash algo: The hash algorithm type

hash: The raw hash

expiration: The expiration time (use 0 to disable expiration)

Appendix E: API reference 368

flags: should be 0.

This function will store the provided hash commitment to the list of stored public keys.
The key with the given hash will be considered valid until the provided expiration
time.

The store variable if non-null specifies a custom backend for the storage of entries.
If it is NULL then the default file backend will be used.

Note that this function is not thread safe with the default backend.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

gnutls store pubkey

[Function]int gnutls_store_pubkey (const char * db_name, gnutls tdb t tdb,
const char * host, const char * service, gnutls certificate type t cert_type,
const gnutls datum t * cert, time t expiration, unsigned int flags)

db name: A file specifying the stored keys (use NULL for the default)

tdb: A storage structure or NULL to use the default

host: The peer’s name

service: non-NULL if this key is specific to a service (e.g. http)

cert type: The type of the certificate

cert: The data of the certificate

expiration: The expiration time (use 0 to disable expiration)

flags: should be 0.

This function will store the provided (raw or DER-encoded) certificate to the list of
stored public keys. The key will be considered valid until the provided expiration
time.

The store variable if non-null specifies a custom backend for the storage of entries.
If it is NULL then the default file backend will be used.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0.13

gnutls strerror

[Function]const char * gnutls_strerror (int error)
error: is a GnuTLS error code, a negative error code

This function is similar to strerror. The difference is that it accepts an error number
returned by a gnutls function; In case of an unknown error a descriptive string is sent
instead of NULL .

Error codes are always a negative error code.

Returns: A string explaining the GnuTLS error message.

Appendix E: API reference 369

gnutls strerror name

[Function]const char * gnutls_strerror_name (int error)
error: is an error returned by a gnutls function.

Return the GnuTLS error code define as a string. For example, gnutls strerror name
(GNUTLS E DH PRIME UNACCEPTABLE) will return the string
"GNUTLS E DH PRIME UNACCEPTABLE".

Returns: A string corresponding to the symbol name of the error code.

Since: 2.6.0

gnutls supplemental get name

[Function]const char * gnutls_supplemental_get_name
(gnutls supplemental data format type t type)

type: is a supplemental data format type

Convert a gnutls_supplemental_data_format_type_t value to a string.

Returns: a string that contains the name of the specified supplemental data format
type, or NULL for unknown types.

gnutls tdb deinit

[Function]void gnutls_tdb_deinit (gnutls tdb t tdb)
tdb: The structure to be deinitialized

This function will deinitialize a public key trust storage structure.

gnutls tdb init

[Function]int gnutls_tdb_init (gnutls tdb t * tdb)
tdb: The structure to be initialized

This function will initialize a public key trust storage structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls tdb set store commitment func

[Function]void gnutls_tdb_set_store_commitment_func (gnutls tdb t tdb,
gnutls tdb store commitment func cstore)

tdb: The trust storage

cstore: The commitment storage function

This function will associate a commitment (hash) storage function with the trust
storage structure. The function is of the following form.

int gnutls tdb store commitment func(const char* db name, const char* host, const
char* service, time t expiration, gnutls digest algorithm t, const gnutls datum t*
hash);

The db_name should be used to pass any private data to this function.

Appendix E: API reference 370

gnutls tdb set store func

[Function]void gnutls_tdb_set_store_func (gnutls tdb t tdb,
gnutls tdb store func store)

tdb: The trust storage

store: The storage function

This function will associate a storage function with the trust storage structure. The
function is of the following form.

int gnutls tdb store func(const char* db name, const char* host, const char* service,
time t expiration, const gnutls datum t* pubkey);

The db_name should be used to pass any private data to this function.

gnutls tdb set verify func

[Function]void gnutls_tdb_set_verify_func (gnutls tdb t tdb,
gnutls tdb verify func verify)

tdb: The trust storage

verify : The verification function

This function will associate a retrieval function with the trust storage structure. The
function is of the following form.

int gnutls tdb verify func(const char* db name, const char* host, const char* service,
const gnutls datum t* pubkey);

The verify function should return zero on a match, GNUTLS_E_CERTIFICATE_KEY_
MISMATCH if there is a mismatch and any other negative error code otherwise.

The db_name should be used to pass any private data to this function.

gnutls transport get int

[Function]int gnutls_transport_get_int (gnutls session t session)
session: is a gnutls_session_t structure.

Used to get the first argument of the transport function (like PUSH and PULL). This
must have been set using gnutls_transport_set_int() .

Returns: The first argument of the transport function.

Since: 3.1.9

gnutls transport get int2

[Function]void gnutls_transport_get_int2 (gnutls session t session, int *
recv_int, int * send_int)

session: is a gnutls_session_t structure.

recv int: will hold the value for the pull function

send int: will hold the value for the push function

Used to get the arguments of the transport functions (like PUSH and PULL). These
should have been set using gnutls_transport_set_int2() .

Since: 3.1.9

Appendix E: API reference 371

gnutls transport get ptr

[Function]gnutls_transport_ptr_t gnutls_transport_get_ptr
(gnutls session t session)

session: is a gnutls_session_t structure.

Used to get the first argument of the transport function (like PUSH and PULL). This
must have been set using gnutls_transport_set_ptr() .

Returns: The first argument of the transport function.

gnutls transport get ptr2

[Function]void gnutls_transport_get_ptr2 (gnutls session t session,
gnutls transport ptr t * recv_ptr, gnutls transport ptr t * send_ptr)

session: is a gnutls_session_t structure.

recv ptr: will hold the value for the pull function

send ptr: will hold the value for the push function

Used to get the arguments of the transport functions (like PUSH and PULL). These
should have been set using gnutls_transport_set_ptr2() .

gnutls transport set errno

[Function]void gnutls_transport_set_errno (gnutls session t session, int
err)

session: is a gnutls_session_t structure.

err: error value to store in session-specific errno variable.

Store err in the session-specific errno variable. Useful values for err are EINTR,
EAGAIN and EMSGSIZE, other values are treated will be treated as real errors in
the push/pull function.

This function is useful in replacement push and pull functions set by gnutls_

transport_set_push_function() and gnutls_transport_set_pull_function()

under Windows, where the replacements may not have access to the same errno

variable that is used by GnuTLS (e.g., the application is linked to msvcr71.dll and
gnutls is linked to msvcrt.dll).

gnutls transport set errno function

[Function]void gnutls_transport_set_errno_function (gnutls session t
session, gnutls errno func errno_func)

session: is a gnutls_session_t structure.

errno func: a callback function similar to write()

This is the function where you set a function to retrieve errno after a failed push or
pull operation.

errno_func is of the form, int (*gnutls errno func)(gnutls transport ptr t); and
should return the errno.

Since: 2.12.0

Appendix E: API reference 372

gnutls transport set int

[Function]void gnutls_transport_set_int (gnutls session t session, int i)
session: is a gnutls_session_t structure.

i: is the value.

Used to set the first argument of the transport function (for push and pull callbacks)
for berkeley style sockets.

Since: 3.1.9

gnutls transport set int2

[Function]void gnutls_transport_set_int2 (gnutls session t session, int
recv_int, int send_int)

session: is a gnutls_session_t structure.

recv int: is the value for the pull function

send int: is the value for the push function

Used to set the first argument of the transport function (for push and pull callbacks),
when using the berkeley style sockets. With this function you can set two different
pointers for receiving and sending.

Since: 3.1.9

gnutls transport set ptr

[Function]void gnutls_transport_set_ptr (gnutls session t session,
gnutls transport ptr t ptr)

session: is a gnutls_session_t structure.

ptr: is the value.

Used to set the first argument of the transport function (for push and pull callbacks).
In berkeley style sockets this function will set the connection descriptor.

gnutls transport set ptr2

[Function]void gnutls_transport_set_ptr2 (gnutls session t session,
gnutls transport ptr t recv_ptr, gnutls transport ptr t send_ptr)

session: is a gnutls_session_t structure.

recv ptr: is the value for the pull function

send ptr: is the value for the push function

Used to set the first argument of the transport function (for push and pull callbacks).
In berkeley style sockets this function will set the connection descriptor. With this
function you can use two different pointers for receiving and sending.

gnutls transport set pull function

[Function]void gnutls_transport_set_pull_function (gnutls session t
session, gnutls pull func pull_func)

session: is a gnutls_session_t structure.

Appendix E: API reference 373

pull func: a callback function similar to read()

This is the function where you set a function for gnutls to receive data. Normally,
if you use berkeley style sockets, do not need to use this function since the default
recv(2) will probably be ok. The callback should return 0 on connection termination,
a positive number indicating the number of bytes received, and -1 on error.

gnutls_pull_func is of the form, ssize t (*gnutls pull func)(gnutls transport ptr t,
void*, size t);

gnutls transport set pull timeout function

[Function]void gnutls_transport_set_pull_timeout_function
(gnutls session t session, gnutls pull timeout func func)

session: is a gnutls_session_t structure.

func: a callback function

This is the function where you set a function for gnutls to know whether data are
ready to be received. It should wait for data a given time frame in milliseconds. The
callback should return 0 on timeout, a positive number if data can be received, and
-1 on error. You’ll need to override this function if select() is not suitable for the
provided transport calls.

As with select() , if the timeout value is zero the callback should return zero if no
data are immediately available.

gnutls_pull_timeout_func is of the form, int (*gnutls pull timeout func)(gnutls transport ptr t,
unsigned int ms);

Since: 3.0

gnutls transport set push function

[Function]void gnutls_transport_set_push_function (gnutls session t
session, gnutls push func push_func)

session: is a gnutls_session_t structure.

push func: a callback function similar to write()

This is the function where you set a push function for gnutls to use in order to send
data. If you are going to use berkeley style sockets, you do not need to use this
function since the default send(2) will probably be ok. Otherwise you should specify
this function for gnutls to be able to send data. The callback should return a positive
number indicating the bytes sent, and -1 on error.

push_func is of the form, ssize t (*gnutls push func)(gnutls transport ptr t, const
void*, size t);

gnutls transport set vec push function

[Function]void gnutls_transport_set_vec_push_function (gnutls session t
session, gnutls vec push func vec_func)

session: is a gnutls_session_t structure.

vec func: a callback function similar to writev()

Appendix E: API reference 374

Using this function you can override the default writev(2) function for gnutls to send
data. Setting this callback instead of gnutls_transport_set_push_function() is
recommended since it introduces less overhead in the TLS handshake process.

vec_func is of the form, ssize t (*gnutls vec push func) (gnutls transport ptr t,
const giovec t * iov, int iovcnt);

Since: 2.12.0

gnutls url is supported

[Function]int gnutls_url_is_supported (const char * url)
url: A PKCS 11 url

Check whether url is supported. Depending on the system libraries GnuTLS may
support pkcs11 or tpmkey URLs.

Returns: return non-zero if the given URL is supported, and zero if it is not known.

Since: 3.1.0

gnutls verify stored pubkey

[Function]int gnutls_verify_stored_pubkey (const char * db_name,
gnutls tdb t tdb, const char * host, const char * service,
gnutls certificate type t cert_type, const gnutls datum t * cert, unsigned
int flags)

db name: A file specifying the stored keys (use NULL for the default)

tdb: A storage structure or NULL to use the default

host: The peer’s name

service: non-NULL if this key is specific to a service (e.g. http)

cert type: The type of the certificate

cert: The raw (der) data of the certificate

flags: should be 0.

This function will try to verify the provided (raw or DER-encoded) certificate using
a list of stored public keys. The service field if non-NULL should be a port number.

The retrieve variable if non-null specifies a custom backend for the retrieval of
entries. If it is NULL then the default file backend will be used. In POSIX-like
systems the file backend uses the $HOME/.gnutls/known hosts file.

Note that if the custom storage backend is provided the retrieval function should
return GNUTLS_E_CERTIFICATE_KEY_MISMATCH if the host/service pair is found but
key doesn’t match, GNUTLS_E_NO_CERTIFICATE_FOUND if no such host/service with
the given key is found, and 0 if it was found. The storage function should return 0
on success.

Returns: If no associated public key is found then GNUTLS_E_NO_CERTIFICATE_FOUND

will be returned. If a key is found but does not match GNUTLS_E_CERTIFICATE_KEY_

MISMATCH is returned. On success, GNUTLS_E_SUCCESS (0) is returned, or a negative
error value on other errors.

Since: 3.0.13

Appendix E: API reference 375

E.2 Datagram TLS API

The prototypes for the following functions lie in gnutls/dtls.h.

gnutls dtls cookie send

[Function]int gnutls_dtls_cookie_send (gnutls datum t * key, void *
client_data, size t client_data_size, gnutls dtls prestate st *
prestate, gnutls transport ptr t ptr, gnutls push func push_func)

key : is a random key to be used at cookie generation

client data: contains data identifying the client (i.e. address)

client data size: The size of client’s data

prestate: The previous cookie returned by gnutls_dtls_cookie_verify()

ptr: A transport pointer to be used by push_func

push func: A function that will be used to reply

This function can be used to prevent denial of service attacks to a DTLS server by
requiring the client to reply using a cookie sent by this function. That way it can be
ensured that a client we allocated resources for (i.e. gnutls_session_t) is the one
that the original incoming packet was originated from.

This function must be called at the first incoming packet, prior to allocating any
resources and must be succeeded by gnutls_dtls_cookie_verify() .

Returns: the number of bytes sent, or a negative error code.

Since: 3.0

gnutls dtls cookie verify

[Function]int gnutls_dtls_cookie_verify (gnutls datum t * key, void *
client_data, size t client_data_size, void * _msg, size t msg_size,
gnutls dtls prestate st * prestate)

key : is a random key to be used at cookie generation

client data: contains data identifying the client (i.e. address)

client data size: The size of client’s data

msg : An incoming message that initiates a connection.

msg size: The size of the message.

prestate: The cookie of this client.

This function will verify the received message for a valid cookie. If a valid cookie is
returned then it should be associated with the session using gnutls_dtls_prestate_
set() ;

This function must be called after gnutls_dtls_cookie_send() .

Returns: GNUTLS_E_SUCCESS (0) on success, or a negative error code.

Since: 3.0

Appendix E: API reference 376

gnutls dtls get data mtu

[Function]unsigned int gnutls_dtls_get_data_mtu (gnutls session t
session)

session: is a gnutls_session_t structure.

This function will return the actual maximum transfer unit for application data. I.e.
DTLS headers are subtracted from the actual MTU which is set using gnutls_dtls_

set_mtu() .

Returns: the maximum allowed transfer unit.

Since: 3.0

gnutls dtls get mtu

[Function]unsigned int gnutls_dtls_get_mtu (gnutls session t session)
session: is a gnutls_session_t structure.

This function will return the MTU size as set with gnutls_dtls_set_mtu() . This
is not the actual MTU of data you can transmit. Use gnutls_dtls_get_data_mtu()
for that reason.

Returns: the set maximum transfer unit.

Since: 3.0

gnutls dtls get timeout

[Function]unsigned int gnutls_dtls_get_timeout (gnutls session t session)
session: is a gnutls_session_t structure.

This function will return the milliseconds remaining for a retransmission of the pre-
viously sent handshake message. This function is useful when DTLS is used in non-
blocking mode, to estimate when to call gnutls_handshake() if no packets have been
received.

Returns: the remaining time in milliseconds.

Since: 3.0

gnutls dtls prestate set

[Function]void gnutls_dtls_prestate_set (gnutls session t session,
gnutls dtls prestate st * prestate)

session: a new session

prestate: contains the client’s prestate

This function will associate the prestate acquired by the cookie authentication with
the client, with the newly established session.

This functions must be called after a successful gnutls_dtls_cookie_verify() and
should be succeeded by the actual DTLS handshake using gnutls_handshake() .

Since: 3.0

Appendix E: API reference 377

gnutls dtls set data mtu

[Function]int gnutls_dtls_set_data_mtu (gnutls session t session, unsigned
int mtu)

session: is a gnutls_session_t structure.

mtu: The maximum unencrypted transfer unit of the session

This function will set the maximum size of the *unencrypted* records which will be
sent over a DTLS session. It is equivalent to calculating the DTLS packet overhead
with the current encryption parameters, and calling gnutls_dtls_set_mtu() with
that value. In particular, this means that you may need to call this function again after
any negotiation or renegotiation, in order to ensure that the MTU is still sufficient to
account for the new protocol overhead.

In most cases you only need to call gnutls_dtls_set_mtu() with the maximumMTU
of your transport layer.

Returns: GNUTLS_E_SUCCESS (0) on success, or a negative error code.

Since: 3.1

gnutls dtls set mtu

[Function]void gnutls_dtls_set_mtu (gnutls session t session, unsigned int
mtu)

session: is a gnutls_session_t structure.

mtu: The maximum transfer unit of the transport

This function will set the maximum transfer unit of the transport that DTLS packets
are sent over. Note that this should exclude the IP (or IPv6) and UDP headers. So
for DTLS over IPv6 on an Ethenet device with MTU 1500, the DTLS MTU set with
this function would be 1500 - 40 (IPV6 header) - 8 (UDP header) = 1452.

Since: 3.0

gnutls dtls set timeouts

[Function]void gnutls_dtls_set_timeouts (gnutls session t session, unsigned
int retrans_timeout, unsigned int total_timeout)

session: is a gnutls_session_t structure.

retrans timeout: The time at which a retransmission will occur in milliseconds

total timeout: The time at which the connection will be aborted, in milliseconds.

This function will set the timeouts required for the DTLS handshake protocol. The
retransmission timeout is the time after which a message from the peer is not received,
the previous messages will be retransmitted. The total timeout is the time after which
the handshake will be aborted with GNUTLS_E_TIMEDOUT .

The DTLS protocol recommends the values of 1 sec and 60 seconds respectively.

To disable retransmissions set a retrans_timeout larger than the total_timeout .

Since: 3.0

Appendix E: API reference 378

gnutls record get discarded

[Function]unsigned int gnutls_record_get_discarded (gnutls session t
session)

session: is a gnutls_session_t structure.

Returns the number of discarded packets in a DTLS connection.

Returns: The number of discarded packets.

Since: 3.0

E.3 X.509 certificate API

The following functions are to be used for X.509 certificate handling. Their prototypes lie
in gnutls/x509.h.

gnutls certificate set trust list

[Function]void gnutls_certificate_set_trust_list
(gnutls certificate credentials t res, gnutls x509 trust list t tlist, unsigned
flags)

res: is a gnutls_certificate_credentials_t structure.

tlist: is a gnutls_x509_trust_list_t structure

flags: must be zero

This function sets a trust list in the gnutls certificate credentials t structure.

Note that the tlist will become part of the credentials structure and must not be
deallocated. It will be automatically deallocated when the res structure is deinitial-
ized.

Returns: GNUTLS_E_SUCCESS (0) on success, or a negative error code.

Since: 3.2.2

gnutls pkcs7 deinit

[Function]void gnutls_pkcs7_deinit (gnutls pkcs7 t pkcs7)
pkcs7: The structure to be initialized

This function will deinitialize a PKCS7 structure.

gnutls pkcs7 delete crl

[Function]int gnutls_pkcs7_delete_crl (gnutls pkcs7 t pkcs7, int indx)
pkcs7: should contain a gnutls_pkcs7_t structure

indx: the index of the crl to delete

This function will delete a crl from a PKCS7 or RFC2630 crl set. Index starts from
0. Returns 0 on success.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 379

gnutls pkcs7 delete crt

[Function]int gnutls_pkcs7_delete_crt (gnutls pkcs7 t pkcs7, int indx)
pkcs7: should contain a gnutls pkcs7 t structure

indx: the index of the certificate to delete

This function will delete a certificate from a PKCS7 or RFC2630 certificate set. Index
starts from 0. Returns 0 on success.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs7 export

[Function]int gnutls_pkcs7_export (gnutls pkcs7 t pkcs7,
gnutls x509 crt fmt t format, void * output_data, size t *
output_data_size)

pkcs7: Holds the pkcs7 structure

format: the format of output params. One of PEM or DER.

output data: will contain a structure PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the pkcs7 structure to DER or PEM format.

If the buffer provided is not long enough to hold the output, then * output_data_size
is updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN PKCS7".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs7 export2

[Function]int gnutls_pkcs7_export2 (gnutls pkcs7 t pkcs7,
gnutls x509 crt fmt t format, gnutls datum t * out)

pkcs7: Holds the pkcs7 structure

format: the format of output params. One of PEM or DER.

out: will contain a structure PEM or DER encoded

This function will export the pkcs7 structure to DER or PEM format.

The output buffer is allocated using gnutls_malloc() .

If the structure is PEM encoded, it will have a header of "BEGIN PKCS7".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.3

Appendix E: API reference 380

gnutls pkcs7 get crl count

[Function]int gnutls_pkcs7_get_crl_count (gnutls pkcs7 t pkcs7)
pkcs7: should contain a gnutls pkcs7 t structure

This function will return the number of certifcates in the PKCS7 or RFC2630 crl set.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs7 get crl raw

[Function]int gnutls_pkcs7_get_crl_raw (gnutls pkcs7 t pkcs7, int indx, void
* crl, size t * crl_size)

pkcs7: should contain a gnutls_pkcs7_t structure

indx: contains the index of the crl to extract

crl: the contents of the crl will be copied there (may be null)

crl size: should hold the size of the crl

This function will return a crl of the PKCS7 or RFC2630 crl set.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative er-
ror value. If the provided buffer is not long enough, then crl_size is updated
and GNUTLS_E_SHORT_MEMORY_BUFFER is returned. After the last crl has been read
GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE will be returned.

gnutls pkcs7 get crt count

[Function]int gnutls_pkcs7_get_crt_count (gnutls pkcs7 t pkcs7)
pkcs7: should contain a gnutls_pkcs7_t structure

This function will return the number of certifcates in the PKCS7 or RFC2630 certifi-
cate set.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs7 get crt raw

[Function]int gnutls_pkcs7_get_crt_raw (gnutls pkcs7 t pkcs7, int indx, void
* certificate, size t * certificate_size)

pkcs7: should contain a gnutls pkcs7 t structure

indx: contains the index of the certificate to extract

certificate: the contents of the certificate will be copied there (may be null)

certificate size: should hold the size of the certificate

This function will return a certificate of the PKCS7 or RFC2630 certificate set.

After the last certificate has been read GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE

will be returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. If the provided buffer is not long enough, then certificate_size is updated
and GNUTLS_E_SHORT_MEMORY_BUFFER is returned.

Appendix E: API reference 381

gnutls pkcs7 import

[Function]int gnutls_pkcs7_import (gnutls pkcs7 t pkcs7, const
gnutls datum t * data, gnutls x509 crt fmt t format)

pkcs7: The structure to store the parsed PKCS7.

data: The DER or PEM encoded PKCS7.

format: One of DER or PEM

This function will convert the given DER or PEM encoded PKCS7 to the native
gnutls_pkcs7_t format. The output will be stored in pkcs7 .

If the PKCS7 is PEM encoded it should have a header of "PKCS7".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs7 init

[Function]int gnutls_pkcs7_init (gnutls pkcs7 t * pkcs7)
pkcs7: The structure to be initialized

This function will initialize a PKCS7 structure. PKCS7 structures usually contain
lists of X.509 Certificates and X.509 Certificate revocation lists.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs7 set crl

[Function]int gnutls_pkcs7_set_crl (gnutls pkcs7 t pkcs7, gnutls x509 crl t
crl)

pkcs7: should contain a gnutls_pkcs7_t structure

crl: the DER encoded crl to be added

This function will add a parsed CRL to the PKCS7 or RFC2630 crl set.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs7 set crl raw

[Function]int gnutls_pkcs7_set_crl_raw (gnutls pkcs7 t pkcs7, const
gnutls datum t * crl)

pkcs7: should contain a gnutls_pkcs7_t structure

crl: the DER encoded crl to be added

This function will add a crl to the PKCS7 or RFC2630 crl set.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 382

gnutls pkcs7 set crt

[Function]int gnutls_pkcs7_set_crt (gnutls pkcs7 t pkcs7, gnutls x509 crt t
crt)

pkcs7: should contain a gnutls_pkcs7_t structure

crt: the certificate to be copied.

This function will add a parsed certificate to the PKCS7 or RFC2630 certificate set.
This is a wrapper function over gnutls_pkcs7_set_crt_raw() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs7 set crt raw

[Function]int gnutls_pkcs7_set_crt_raw (gnutls pkcs7 t pkcs7, const
gnutls datum t * crt)

pkcs7: should contain a gnutls_pkcs7_t structure

crt: the DER encoded certificate to be added

This function will add a certificate to the PKCS7 or RFC2630 certificate set.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls subject alt names deinit

[Function]void gnutls_subject_alt_names_deinit (gnutls subject alt names t
sans)

sans: The alternative names structure

This function will deinitialize an alternative names structure.

Since: 3.3.0

gnutls subject alt names get

[Function]int gnutls_subject_alt_names_get (gnutls subject alt names t
sans, unsigned int seq, unsigned int * san_type, gnutls datum t * san,
gnutls datum t * othername_oid)

sans: The alternative names structure

seq: The index of the name to get

san type: Will hold the type of the name (of gnutls_subject_alt_names_t)

san: The alternative name data (should be treated as constant)

othername oid: The object identifier if san_type is GNUTLS_SAN_OTHERNAME (should
be treated as constant)

This function will return a specific alternative name as stored in the sans structure.
The returned values should be treated as constant and valid for the lifetime of sans .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_REQUESTED_

DATA_NOT_AVAILABLE if the index is out of bounds, otherwise a negative error value.

Since: 3.3.0

Appendix E: API reference 383

gnutls subject alt names init

[Function]int gnutls_subject_alt_names_init (gnutls subject alt names t *
sans)

sans: The alternative names structure

This function will initialize an alternative names structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls subject alt names set

[Function]int gnutls_subject_alt_names_set (gnutls subject alt names t
sans, unsigned int san_type, const gnutls datum t * san, const char *
othername_oid)

sans: The alternative names structure

san type: The type of the name (of gnutls_subject_alt_names_t)

san: The alternative name data

othername oid: The object identifier if san_type is GNUTLS_SAN_OTHERNAME

This function will store the specified alternative name in the sans structure.

Returns: On success, GNUTLS_E_SUCCESS (0), otherwise a negative error value.

Since: 3.3.0

gnutls x509 aia deinit

[Function]void gnutls_x509_aia_deinit (gnutls x509 aia t aia)
aia: The authority info access structure

This function will deinitialize a CRL distribution points structure.

Since: 3.3.0

gnutls x509 aia get

[Function]int gnutls_x509_aia_get (gnutls x509 aia t aia, unsigned int seq,
gnutls datum t * oid, unsigned * san_type, gnutls datum t * san)

aia: The authority info access structure

seq: specifies the sequence number of the access descriptor (0 for the first one, 1 for
the second etc.)

oid: the type of available data; to be treated as constant.

san type: Will hold the type of the name of gnutls_subject_alt_names_t (may be
null).

san: the access location name; to be treated as constant (may be null).

This function reads from the Authority Information Access structure.

The seq input parameter is used to indicate which member of the sequence the caller
is interested in. The first member is 0, the second member 1 and so on. When the
seq value is out of bounds, GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is returned.

Appendix E: API reference 384

Typically oid is GNUTLS_OID_AD_CAISSUERS or GNUTLS_OID_AD_OCSP .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 aia init

[Function]int gnutls_x509_aia_init (gnutls x509 aia t * aia)
aia: The authority info access structure

This function will initialize a CRL distribution points structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 aia set

[Function]int gnutls_x509_aia_set (gnutls x509 aia t aia, const char * oid,
unsigned san_type, const gnutls datum t * san)

aia: The authority info access structure

oid: the type of data.

san type: The type of the name (of gnutls_subject_alt_names_t)

san: The alternative name data

This function will store the specified alternative name in the aia structure.

Typically the value for oid should be GNUTLS_OID_AD_OCSP , or GNUTLS_OID_AD_

CAISSUERS .

Returns: On success, GNUTLS_E_SUCCESS (0), otherwise a negative error value.

Since: 3.3.0

gnutls x509 aki deinit

[Function]void gnutls_x509_aki_deinit (gnutls x509 aki t aki)
aki: The authority key identifier structure

This function will deinitialize an authority key identifier structure.

Since: 3.3.0

gnutls x509 aki get cert issuer

[Function]int gnutls_x509_aki_get_cert_issuer (gnutls x509 aki t aki,
unsigned int seq, unsigned int * san_type, gnutls datum t * san,
gnutls datum t * othername_oid, gnutls datum t * serial)

aki: The authority key ID structure

seq: The index of the name to get

san type: Will hold the type of the name (of gnutls_subject_alt_names_t)

san: The alternative name data

othername oid: The object identifier if san_type is GNUTLS_SAN_OTHERNAME

Appendix E: API reference 385

serial: The authorityCertSerialNumber number

This function will return a specific authorityCertIssuer name as stored in the aki

structure, as well as the authorityCertSerialNumber. All the returned values should
be treated as constant, and may be set to NULL when are not required.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_REQUESTED_

DATA_NOT_AVAILABLE if the index is out of bounds, otherwise a negative error value.

Since: 3.3.0

gnutls x509 aki get id

[Function]int gnutls_x509_aki_get_id (gnutls x509 aki t aki, gnutls datum t
* id)

aki: The authority key ID structure

id: Will hold the identifier

This function will return the key identifier as stored in the aki structure. The iden-
tifier should be treated as constant.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_REQUESTED_

DATA_NOT_AVAILABLE if the index is out of bounds, otherwise a negative error value.

Since: 3.3.0

gnutls x509 aki init

[Function]int gnutls_x509_aki_init (gnutls x509 aki t * aki)
aki: The authority key ID structure

This function will initialize an authority key ID structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 aki set cert issuer

[Function]int gnutls_x509_aki_set_cert_issuer (gnutls x509 aki t aki,
unsigned int san_type, const gnutls datum t * san, const char *
othername_oid, const gnutls datum t * serial)

aki: The authority key ID structure

san type: the type of the name (of gnutls_subject_alt_names_t), may be null

san: The alternative name data

othername oid: The object identifier if san_type is GNUTLS_SAN_OTHERNAME

serial: The authorityCertSerialNumber number (may be null)

This function will set the authorityCertIssuer name and the authorityCertSerialNum-
ber to be stored in the aki structure. When storing multiple names, the serial should
be set on the first call, and subsequent calls should use a NULL serial.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

Appendix E: API reference 386

gnutls x509 aki set id

[Function]int gnutls_x509_aki_set_id (gnutls x509 aki t aki, const
gnutls datum t * id)

aki: The authority key ID structure

id: the key identifier

This function will set the keyIdentifier to be stored in the aki structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 crl check issuer

[Function]int gnutls_x509_crl_check_issuer (gnutls x509 crl t crl,
gnutls x509 crt t issuer)

crl: is the CRL to be checked

issuer: is the certificate of a possible issuer

This function will check if the given CRL was issued by the given issuer certificate.

Returns: true (1) if the given CRL was issued by the given issuer, and false (0) if not.

gnutls x509 crl deinit

[Function]void gnutls_x509_crl_deinit (gnutls x509 crl t crl)
crl: The structure to be deinitialized

This function will deinitialize a CRL structure.

gnutls x509 crl dist points deinit

[Function]void gnutls_x509_crl_dist_points_deinit
(gnutls x509 crl dist points t cdp)

cdp: The CRL distribution points structure

This function will deinitialize a CRL distribution points structure.

Since: 3.3.0

gnutls x509 crl dist points get

[Function]int gnutls_x509_crl_dist_points_get
(gnutls x509 crl dist points t cdp, unsigned int seq, unsigned int * type,
gnutls datum t * san, unsigned int * reasons)

cdp: The CRL distribution points structure

seq: specifies the sequence number of the distribution point (0 for the first one, 1 for
the second etc.)

type: The name type of the corresponding name (gnutls x509 subject alt name t)

san: The distribution point names (to be treated as constant)

reasons: Revocation reasons. An ORed sequence of flags from gnutls_x509_crl_

reason_flags_t .

Appendix E: API reference 387

This function retrieves the individual CRL distribution points (2.5.29.31), contained
in provided structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_REQUESTED_

DATA_NOT_AVAILABLE if the index is out of bounds, otherwise a negative error value.

gnutls x509 crl dist points init

[Function]int gnutls_x509_crl_dist_points_init
(gnutls x509 crl dist points t * cdp)

cdp: The CRL distribution points structure

This function will initialize a CRL distribution points structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 crl dist points set

[Function]int gnutls_x509_crl_dist_points_set
(gnutls x509 crl dist points t cdp, gnutls x509 subject alt name t type,
const gnutls datum t * san, unsigned int reasons)

cdp: The CRL distribution points structure

type: The type of the name (of gnutls_subject_alt_names_t)

san: The point name data

reasons: Revocation reasons. An ORed sequence of flags from gnutls_x509_crl_

reason_flags_t .

This function will store the specified CRL distibution point value the cdp structure.

Returns: On success, GNUTLS_E_SUCCESS (0), otherwise a negative error value.

Since: 3.3.0

gnutls x509 crl export

[Function]int gnutls_x509_crl_export (gnutls x509 crl t crl,
gnutls x509 crt fmt t format, void * output_data, size t *
output_data_size)

crl: Holds the revocation list

format: the format of output params. One of PEM or DER.

output data: will contain a private key PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the revocation list to DER or PEM format.

If the buffer provided is not long enough to hold the output, then GNUTLS_E_SHORT_

MEMORY_BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN X509 CRL".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 388

gnutls x509 crl export2

[Function]int gnutls_x509_crl_export2 (gnutls x509 crl t crl,
gnutls x509 crt fmt t format, gnutls datum t * out)

crl: Holds the revocation list

format: the format of output params. One of PEM or DER.

out: will contain a private key PEM or DER encoded

This function will export the revocation list to DER or PEM format.

The output buffer is allocated using gnutls_malloc() .

If the structure is PEM encoded, it will have a header of "BEGIN X509 CRL".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since 3.1.3

gnutls x509 crl get authority key gn serial

[Function]int gnutls_x509_crl_get_authority_key_gn_serial
(gnutls x509 crl t crl, unsigned int seq, void * alt, size t * alt_size,
unsigned int * alt_type, void * serial, size t * serial_size, unsigned int
* critical)

crl: should contain a gnutls_x509_crl_t structure

seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)

alt: is the place where the alternative name will be copied to

alt size: holds the size of alt.

alt type: holds the type of the alternative name (one of gnutls x509 subject alt name t).

serial: buffer to store the serial number (may be null)

serial size: Holds the size of the serial field (may be null)

critical: will be non-zero if the extension is marked as critical (may be null)

This function will return the X.509 authority key identifier when stored as a general
name (authorityCertIssuer) and serial number.

Because more than one general names might be stored seq can be used as a counter
to request them all until GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is returned.

Returns: Returns 0 on success, or an error code.

Since: 3.0

gnutls x509 crl get authority key id

[Function]int gnutls_x509_crl_get_authority_key_id (gnutls x509 crl t
crl, void * id, size t * id_size, unsigned int * critical)

crl: should contain a gnutls_x509_crl_t structure

id: The place where the identifier will be copied

id size: Holds the size of the result field.

Appendix E: API reference 389

critical: will be non-zero if the extension is marked as critical (may be null)

This function will return the CRL authority’s key identifier. This is obtained by the
X.509 Authority Key identifier extension field (2.5.29.35). Note that this function only
returns the keyIdentifier field of the extension and GNUTLS_E_X509_UNSUPPORTED_

EXTENSION , if the extension contains the name and serial number of the certificate.
In that case gnutls_x509_crl_get_authority_key_gn_serial() may be used.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code in case of an error.

Since: 2.8.0

gnutls x509 crl get crt count

[Function]int gnutls_x509_crl_get_crt_count (gnutls x509 crl t crl)
crl: should contain a gnutls_x509_crl_t structure

This function will return the number of revoked certificates in the given CRL.

Returns: number of certificates, a negative error code on failure.

gnutls x509 crl get crt serial

[Function]int gnutls_x509_crl_get_crt_serial (gnutls x509 crl t crl, int
indx, unsigned char * serial, size t * serial_size, time t * t)

crl: should contain a gnutls_x509_crl_t structure

indx: the index of the certificate to extract (starting from 0)

serial: where the serial number will be copied

serial size: initially holds the size of serial

t: if non null, will hold the time this certificate was revoked

This function will retrieve the serial number of the specified, by the index, revoked
certificate.

Note that this function will have performance issues in large sequences of revoked
certificates. In that case use gnutls_x509_crl_iter_crt_serial() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crl get dn oid

[Function]int gnutls_x509_crl_get_dn_oid (gnutls x509 crl t crl, int indx,
void * oid, size t * sizeof_oid)

crl: should contain a gnutls x509 crl t structure

indx: Specifies which DN OID to send. Use (0) to get the first one.

oid: a pointer to a structure to hold the name (may be null)

sizeof oid: initially holds the size of ’oid’

This function will extract the requested OID of the name of the CRL issuer, specified
by the given index.

If oid is null then only the size will be filled.

Appendix E: API reference 390

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the sizeof oid will be updated with the required size. On success 0
is returned.

gnutls x509 crl get extension data

[Function]int gnutls_x509_crl_get_extension_data (gnutls x509 crl t crl,
int indx, void * data, size t * sizeof_data)

crl: should contain a gnutls_x509_crl_t structure

indx: Specifies which extension OID to send. Use (0) to get the first one.

data: a pointer to a structure to hold the data (may be null)

sizeof data: initially holds the size of oid

This function will return the requested extension data in the CRL. The extension
data will be stored as a string in the provided buffer.

Use gnutls_x509_crl_get_extension_info() to extract the OID and critical flag.
Use gnutls_x509_crl_get_extension_info() instead, if you want to get data in-
dexed by the extension OID rather than sequence.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code in case of an error. If your have reached the last extension available GNUTLS_E_
REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crl get extension data2

[Function]int gnutls_x509_crl_get_extension_data2 (gnutls x509 crl t crl,
unsigned indx, gnutls datum t * data)

crl: should contain a gnutls_x509_crl_t structure

indx: Specifies which extension OID to read. Use (0) to get the first one.

data: will contain the extension DER-encoded data

This function will return the requested by the index extension data in the certificate
revocation list. The extension data will be allocated using gnutls_malloc() .

Use gnutls_x509_crt_get_extension_info() to extract the OID.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative er-
ror code is returned. If you have reached the last extension available GNUTLS_E_

REQUESTED_DATA_NOT_AVAILABLE will be returned.

gnutls x509 crl get extension info

[Function]int gnutls_x509_crl_get_extension_info (gnutls x509 crl t crl,
int indx, void * oid, size t * sizeof_oid, unsigned int * critical)

crl: should contain a gnutls_x509_crl_t structure

indx: Specifies which extension OID to send, use (0) to get the first one.

oid: a pointer to a structure to hold the OID

sizeof oid: initially holds the maximum size of oid , on return holds actual size of
oid .

Appendix E: API reference 391

critical: output variable with critical flag, may be NULL.

This function will return the requested extension OID in the CRL, and the critical
flag for it. The extension OID will be stored as a string in the provided buffer. Use
gnutls_x509_crl_get_extension_data() to extract the data.

If the buffer provided is not long enough to hold the output, then * sizeof_oid is
updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code in case of an error. If your have reached the last extension available GNUTLS_E_
REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crl get extension oid

[Function]int gnutls_x509_crl_get_extension_oid (gnutls x509 crl t crl, int
indx, void * oid, size t * sizeof_oid)

crl: should contain a gnutls_x509_crl_t structure

indx: Specifies which extension OID to send, use (0) to get the first one.

oid: a pointer to a structure to hold the OID (may be null)

sizeof oid: initially holds the size of oid

This function will return the requested extension OID in the CRL. The extension
OID will be stored as a string in the provided buffer.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code in case of an error. If your have reached the last extension available GNUTLS_E_
REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crl get issuer dn

[Function]int gnutls_x509_crl_get_issuer_dn (const gnutls x509 crl t crl,
char * buf, size t * sizeof_buf)

crl: should contain a gnutls x509 crl t structure

buf : a pointer to a structure to hold the peer’s name (may be null)

sizeof buf : initially holds the size of buf

This function will copy the name of the CRL issuer in the provided buffer. The name
will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC4514. The
output string will be ASCII or UTF-8 encoded, depending on the certificate data.

If buf is NULL then only the size will be filled.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the sizeof buf will be updated with the required size, and 0 on success.

gnutls x509 crl get issuer dn2

[Function]int gnutls_x509_crl_get_issuer_dn2 (gnutls x509 crl t crl,
gnutls datum t * dn)

crl: should contain a gnutls_x509_crl_t structure

Appendix E: API reference 392

dn: a pointer to a structure to hold the name

This function will allocate buffer and copy the name of the CRL issuer. The name will
be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC4514. The output
string will be ASCII or UTF-8 encoded, depending on the certificate data.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.10

gnutls x509 crl get issuer dn by oid

[Function]int gnutls_x509_crl_get_issuer_dn_by_oid (gnutls x509 crl t
crl, const char * oid, int indx, unsigned int raw_flag, void * buf, size t *
sizeof_buf)

crl: should contain a gnutls x509 crl t structure

oid: holds an Object Identified in null terminated string

indx: In case multiple same OIDs exist in the RDN, this specifies which to send. Use
(0) to get the first one.

raw flag : If non-zero returns the raw DER data of the DN part.

buf : a pointer to a structure to hold the peer’s name (may be null)

sizeof buf : initially holds the size of buf

This function will extract the part of the name of the CRL issuer specified by the
given OID. The output will be encoded as described in RFC4514. The output string
will be ASCII or UTF-8 encoded, depending on the certificate data.

Some helper macros with popular OIDs can be found in gnutls/x509.h If raw flag
is (0), this function will only return known OIDs as text. Other OIDs will be DER
encoded, as described in RFC4514 – in hex format with a ’#’ prefix. You can check
about known OIDs using gnutls_x509_dn_oid_known() .

If buf is null then only the size will be filled.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the sizeof buf will be updated with the required size, and 0 on success.

gnutls x509 crl get next update

[Function]time_t gnutls_x509_crl_get_next_update (gnutls x509 crl t crl)
crl: should contain a gnutls_x509_crl_t structure

This function will return the time the next CRL will be issued. This field is optional
in a CRL so it might be normal to get an error instead.

Returns: when the next CRL will be issued, or (time t)-1 on error.

gnutls x509 crl get number

[Function]int gnutls_x509_crl_get_number (gnutls x509 crl t crl, void * ret,
size t * ret_size, unsigned int * critical)

crl: should contain a gnutls_x509_crl_t structure

ret: The place where the number will be copied

Appendix E: API reference 393

ret size: Holds the size of the result field.

critical: will be non-zero if the extension is marked as critical (may be null)

This function will return the CRL number extension. This is obtained by the CRL
Number extension field (2.5.29.20).

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code in case of an error.

Since: 2.8.0

gnutls x509 crl get raw issuer dn

[Function]int gnutls_x509_crl_get_raw_issuer_dn (gnutls x509 crl t crl,
gnutls datum t * dn)

crl: should contain a gnutls x509 crl t structure

dn: will hold the starting point of the DN

This function will return a pointer to the DER encoded DN structure and the length.

Returns: a negative error code on error, and (0) on success.

Since: 2.12.0

gnutls x509 crl get signature

[Function]int gnutls_x509_crl_get_signature (gnutls x509 crl t crl, char *
sig, size t * sizeof_sig)

crl: should contain a gnutls x509 crl t structure

sig : a pointer where the signature part will be copied (may be null).

sizeof sig : initially holds the size of sig

This function will extract the signature field of a CRL.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crl get signature algorithm

[Function]int gnutls_x509_crl_get_signature_algorithm (gnutls x509 crl t
crl)

crl: should contain a gnutls_x509_crl_t structure

This function will return a value of the gnutls_sign_algorithm_t enumeration that
is the signature algorithm.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crl get this update

[Function]time_t gnutls_x509_crl_get_this_update (gnutls x509 crl t crl)
crl: should contain a gnutls_x509_crl_t structure

This function will return the time this CRL was issued.

Returns: when the CRL was issued, or (time t)-1 on error.

Appendix E: API reference 394

gnutls x509 crl get version

[Function]int gnutls_x509_crl_get_version (gnutls x509 crl t crl)
crl: should contain a gnutls_x509_crl_t structure

This function will return the version of the specified CRL.

Returns: The version number, or a negative error code on error.

gnutls x509 crl import

[Function]int gnutls_x509_crl_import (gnutls x509 crl t crl, const
gnutls datum t * data, gnutls x509 crt fmt t format)

crl: The structure to store the parsed CRL.

data: The DER or PEM encoded CRL.

format: One of DER or PEM

This function will convert the given DER or PEM encoded CRL to the native gnutls_
x509_crl_t format. The output will be stored in ’crl’.

If the CRL is PEM encoded it should have a header of "X509 CRL".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crl init

[Function]int gnutls_x509_crl_init (gnutls x509 crl t * crl)
crl: The structure to be initialized

This function will initialize a CRL structure. CRL stands for Certificate Revoca-
tion List. A revocation list usually contains lists of certificate serial numbers that
have been revoked by an Authority. The revocation lists are always signed with the
authority’s private key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crl iter crt serial

[Function]int gnutls_x509_crl_iter_crt_serial (gnutls x509 crl t crl,
gnutls x509 crl iter t * iter, unsigned char * serial, size t * serial_size,
time t * t)

crl: should contain a gnutls_x509_crl_t structure

iter: A pointer to an iterator (initially the iterator should be NULL)

serial: where the serial number will be copied

serial size: initially holds the size of serial

t: if non null, will hold the time this certificate was revoked

This function performs the same as gnutls_x509_crl_get_crt_serial() , but reads
sequentially and keeps state in the iterator between calls. That allows it to provide
better performance in sequences with many elements (50000+).

Appendix E: API reference 395

When past the last element is accessed GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE

is returned and the iterator is reset.

After use, the iterator must be deinitialized using gnutls_x509_crl_iter_deinit()

.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crl iter deinit

[Function]void gnutls_x509_crl_iter_deinit (gnutls x509 crl iter t iter)
iter: The iterator structure to be deinitialized

This function will deinitialize an iterator structure.

gnutls x509 crl list import

[Function]int gnutls_x509_crl_list_import (gnutls x509 crl t * crls,
unsigned int * crl_max, const gnutls datum t * data, gnutls x509 crt fmt t
format, unsigned int flags)

crls: The structures to store the parsed CRLs. Must not be initialized.

crl max: Initially must hold the maximum number of crls. It will be updated with
the number of crls available.

data: The PEM encoded CRLs

format: One of DER or PEM.

flags: must be (0) or an OR’d sequence of gnutls certificate import flags.

This function will convert the given PEM encoded CRL list to the native
gnutls x509 crl t format. The output will be stored in crls . They will be
automatically initialized.

If the Certificate is PEM encoded it should have a header of "X509 CRL".

Returns: the number of certificates read or a negative error value.

Since: 3.0

gnutls x509 crl list import2

[Function]int gnutls_x509_crl_list_import2 (gnutls x509 crl t ** crls,
unsigned int * size, const gnutls datum t * data, gnutls x509 crt fmt t
format, unsigned int flags)

crls: The structures to store the parsed crl list. Must not be initialized.

size: It will contain the size of the list.

data: The PEM encoded CRL.

format: One of DER or PEM.

flags: must be (0) or an OR’d sequence of gnutls certificate import flags.

This function will convert the given PEM encoded CRL list to the native
gnutls x509 crl t format. The output will be stored in crls . They will be
automatically initialized.

Appendix E: API reference 396

If the Certificate is PEM encoded it should have a header of "X509 CRL".

Returns: the number of certificates read or a negative error value.

Since: 3.0

gnutls x509 crl print

[Function]int gnutls_x509_crl_print (gnutls x509 crl t crl,
gnutls certificate print formats t format, gnutls datum t * out)

crl: The structure to be printed

format: Indicate the format to use

out: Newly allocated datum with null terminated string.

This function will pretty print a X.509 certificate revocation list, suitable for display
to a human.

The output out needs to be deallocated using gnutls_free() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crl set authority key id

[Function]int gnutls_x509_crl_set_authority_key_id (gnutls x509 crl t
crl, const void * id, size t id_size)

crl: a CRL of type gnutls_x509_crl_t

id: The key ID

id size: Holds the size of the serial field.

This function will set the CRL’s authority key ID extension. Only the keyIdentifier
field can be set with this function. This may be used by an authority that holds
multiple private keys, to distinguish the used key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.8.0

gnutls x509 crl set crt

[Function]int gnutls_x509_crl_set_crt (gnutls x509 crl t crl,
gnutls x509 crt t crt, time t revocation_time)

crl: should contain a gnutls x509 crl t structure

crt: a certificate of type gnutls_x509_crt_t with the revoked certificate

revocation time: The time this certificate was revoked

This function will set a revoked certificate’s serial number to the CRL.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 397

gnutls x509 crl set crt serial

[Function]int gnutls_x509_crl_set_crt_serial (gnutls x509 crl t crl, const
void * serial, size t serial_size, time t revocation_time)

crl: should contain a gnutls x509 crl t structure

serial: The revoked certificate’s serial number

serial size: Holds the size of the serial field.

revocation time: The time this certificate was revoked

This function will set a revoked certificate’s serial number to the CRL.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crl set next update

[Function]int gnutls_x509_crl_set_next_update (gnutls x509 crl t crl,
time t exp_time)

crl: should contain a gnutls x509 crl t structure

exp time: The actual time

This function will set the time this CRL will be updated.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crl set number

[Function]int gnutls_x509_crl_set_number (gnutls x509 crl t crl, const void *
nr, size t nr_size)

crl: a CRL of type gnutls_x509_crl_t

nr: The CRL number

nr size: Holds the size of the nr field.

This function will set the CRL’s number extension. This is to be used as a unique
and monotonic number assigned to the CRL by the authority.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.8.0

gnutls x509 crl set this update

[Function]int gnutls_x509_crl_set_this_update (gnutls x509 crl t crl,
time t act_time)

crl: should contain a gnutls x509 crl t structure

act time: The actual time

This function will set the time this CRL was issued.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 398

gnutls x509 crl set version

[Function]int gnutls_x509_crl_set_version (gnutls x509 crl t crl, unsigned
int version)

crl: should contain a gnutls x509 crl t structure

version: holds the version number. For CRLv1 crls must be 1.

This function will set the version of the CRL. This must be one for CRL version 1,
and so on. The CRLs generated by gnutls should have a version number of 2.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crl sign2

[Function]int gnutls_x509_crl_sign2 (gnutls x509 crl t crl, gnutls x509 crt t
issuer, gnutls x509 privkey t issuer_key, gnutls digest algorithm t dig,
unsigned int flags)

crl: should contain a gnutls x509 crl t structure

issuer: is the certificate of the certificate issuer

issuer key : holds the issuer’s private key

dig : The message digest to use. GNUTLS DIG SHA1 is the safe choice unless you
know what you’re doing.

flags: must be 0

This function will sign the CRL with the issuer’s private key, and will copy the issuer’s
information into the CRL.

This must be the last step in a certificate CRL since all the previously set parameters
are now signed.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crl verify

[Function]int gnutls_x509_crl_verify (gnutls x509 crl t crl, const
gnutls x509 crt t * trusted_cas, int tcas_size, unsigned int flags,
unsigned int * verify)

crl: is the crl to be verified

trusted cas: is a certificate list that is considered to be trusted one

tcas size: holds the number of CA certificates in CA list

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls certificate verify flags enumerations.

verify : will hold the crl verification output.

This function will try to verify the given crl and return its verification status. See
gnutls_x509_crt_list_verify() for a detailed description of return values. Note
that since GnuTLS 3.1.4 this function includes the time checks.

Note that value in verify is set only when the return value of this function is success
(i.e, failure to trust a CRL a certificate does not imply a negative return value).

Appendix E: API reference 399

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crq deinit

[Function]void gnutls_x509_crq_deinit (gnutls x509 crq t crq)
crq: The structure to be initialized

This function will deinitialize a PKCS10 certificate request structure.

gnutls x509 crq export

[Function]int gnutls_x509_crq_export (gnutls x509 crq t crq,
gnutls x509 crt fmt t format, void * output_data, size t *
output_data_size)

crq: should contain a gnutls_x509_crq_t structure

format: the format of output params. One of PEM or DER.

output data: will contain a certificate request PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the certificate request to a PEM or DER encoded PKCS10
structure.

If the buffer provided is not long enough to hold the output, then GNUTLS_E_SHORT_

MEMORY_BUFFER will be returned and * output_data_size will be updated.

If the structure is PEM encoded, it will have a header of "BEGIN NEW CERTIFI-
CATE REQUEST".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crq export2

[Function]int gnutls_x509_crq_export2 (gnutls x509 crq t crq,
gnutls x509 crt fmt t format, gnutls datum t * out)

crq: should contain a gnutls_x509_crq_t structure

format: the format of output params. One of PEM or DER.

out: will contain a certificate request PEM or DER encoded

This function will export the certificate request to a PEM or DER encoded PKCS10
structure.

The output buffer is allocated using gnutls_malloc() .

If the structure is PEM encoded, it will have a header of "BEGIN NEW CERTIFI-
CATE REQUEST".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since 3.1.3

Appendix E: API reference 400

gnutls x509 crq get attribute by oid

[Function]int gnutls_x509_crq_get_attribute_by_oid (gnutls x509 crq t
crq, const char * oid, int indx, void * buf, size t * buf_size)

crq: should contain a gnutls_x509_crq_t structure

oid: holds an Object Identifier in null-terminated string

indx: In case multiple same OIDs exist in the attribute list, this specifies which to
get, use (0) to get the first one

buf : a pointer to a structure to hold the attribute data (may be NULL)

buf size: initially holds the size of buf

This function will return the attribute in the certificate request specified by the given
Object ID. The attribute will be DER encoded.

Attributes in a certificate request is an optional set of data appended to the request.
Their interpretation depends on the CA policy.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crq get attribute data

[Function]int gnutls_x509_crq_get_attribute_data (gnutls x509 crq t crq,
int indx, void * data, size t * sizeof_data)

crq: should contain a gnutls_x509_crq_t structure

indx: Specifies which attribute number to get. Use (0) to get the first one.

data: a pointer to a structure to hold the data (may be null)

sizeof data: initially holds the size of oid

This function will return the requested attribute data in the certificate request. The
attribute data will be stored as a string in the provided buffer.

Use gnutls_x509_crq_get_attribute_info() to extract the OID. Use gnutls_

x509_crq_get_attribute_by_oid() instead, if you want to get data indexed by
the attribute OID rather than sequence.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code in case of an error. If your have reached the last extension available GNUTLS_E_
REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crq get attribute info

[Function]int gnutls_x509_crq_get_attribute_info (gnutls x509 crq t crq,
int indx, void * oid, size t * sizeof_oid)

crq: should contain a gnutls_x509_crq_t structure

indx: Specifies which attribute number to get. Use (0) to get the first one.

oid: a pointer to a structure to hold the OID

sizeof oid: initially holds the maximum size of oid , on return holds actual size of
oid .

Appendix E: API reference 401

This function will return the requested attribute OID in the certificate, and the critical
flag for it. The attribute OID will be stored as a string in the provided buffer. Use
gnutls_x509_crq_get_attribute_data() to extract the data.

If the buffer provided is not long enough to hold the output, then * sizeof_oid is
updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code in case of an error. If your have reached the last extension available GNUTLS_E_
REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crq get basic constraints

[Function]int gnutls_x509_crq_get_basic_constraints (gnutls x509 crq t
crq, unsigned int * critical, unsigned int * ca, int * pathlen)

crq: should contain a gnutls_x509_crq_t structure

critical: will be non-zero if the extension is marked as critical

ca: pointer to output integer indicating CA status, may be NULL, value is 1 if the
certificate CA flag is set, 0 otherwise.

pathlen: pointer to output integer indicating path length (may be NULL), non-
negative error codes indicate a present pathLenConstraint field and the actual value,
-1 indicate that the field is absent.

This function will read the certificate’s basic constraints, and return the certificates
CA status. It reads the basicConstraints X.509 extension (2.5.29.19).

Returns: If the certificate is a CA a positive value will be returned, or (0) if the
certificate does not have CA flag set. A negative error code may be returned in case
of errors. If the certificate does not contain the basicConstraints extension GNUTLS_

E_REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crq get challenge password

[Function]int gnutls_x509_crq_get_challenge_password (gnutls x509 crq t
crq, char * pass, size t * pass_size)

crq: should contain a gnutls_x509_crq_t structure

pass: will hold a (0)-terminated password string

pass size: Initially holds the size of pass .

This function will return the challenge password in the request. The challenge pass-
word is intended to be used for requesting a revocation of the certificate.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crq get dn

[Function]int gnutls_x509_crq_get_dn (gnutls x509 crq t crq, char * buf,
size t * buf_size)

crq: should contain a gnutls_x509_crq_t structure

Appendix E: API reference 402

buf : a pointer to a structure to hold the name (may be NULL)

buf size: initially holds the size of buf

This function will copy the name of the Certificate request subject to the provided
buffer. The name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in
RFC 2253. The output string buf will be ASCII or UTF-8 encoded, depending on
the certificate data.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the * buf_size will be updated with the required size. On success
0 is returned.

gnutls x509 crq get dn2

[Function]int gnutls_x509_crq_get_dn2 (gnutls x509 crq t crq, gnutls datum t
* dn)

crq: should contain a gnutls_x509_crq_t structure

dn: a pointer to a structure to hold the name

This function will allocate buffer and copy the name of the Certificate request. The
name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC4514. The
output string will be ASCII or UTF-8 encoded, depending on the certificate data.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. and a negative error code on error.

Since: 3.1.10

gnutls x509 crq get dn by oid

[Function]int gnutls_x509_crq_get_dn_by_oid (gnutls x509 crq t crq, const
char * oid, int indx, unsigned int raw_flag, void * buf, size t * buf_size)

crq: should contain a gnutls x509 crq t structure

oid: holds an Object Identifier in a null terminated string

indx: In case multiple same OIDs exist in the RDN, this specifies which to get. Use
(0) to get the first one.

raw flag : If non-zero returns the raw DER data of the DN part.

buf : a pointer to a structure to hold the name (may be NULL)

buf size: initially holds the size of buf

This function will extract the part of the name of the Certificate request subject,
specified by the given OID. The output will be encoded as described in RFC2253.
The output string will be ASCII or UTF-8 encoded, depending on the certificate data.

Some helper macros with popular OIDs can be found in gnutls/x509.h If raw flag
is (0), this function will only return known OIDs as text. Other OIDs will be DER
encoded, as described in RFC2253 – in hex format with a ’\#’ prefix. You can check
about known OIDs using gnutls_x509_dn_oid_known() .

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the * buf_size will be updated with the required size. On success
0 is returned.

Appendix E: API reference 403

gnutls x509 crq get dn oid

[Function]int gnutls_x509_crq_get_dn_oid (gnutls x509 crq t crq, int indx,
void * oid, size t * sizeof_oid)

crq: should contain a gnutls x509 crq t structure

indx: Specifies which DN OID to get. Use (0) to get the first one.

oid: a pointer to a structure to hold the name (may be NULL)

sizeof oid: initially holds the size of oid

This function will extract the requested OID of the name of the certificate request
subject, specified by the given index.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the * sizeof_oid will be updated with the required size. On success
0 is returned.

gnutls x509 crq get extension by oid

[Function]int gnutls_x509_crq_get_extension_by_oid (gnutls x509 crq t
crq, const char * oid, int indx, void * buf, size t * buf_size, unsigned int *
critical)

crq: should contain a gnutls_x509_crq_t structure

oid: holds an Object Identifier in a null terminated string

indx: In case multiple same OIDs exist in the extensions, this specifies which to get.
Use (0) to get the first one.

buf : a pointer to a structure to hold the name (may be null)

buf size: initially holds the size of buf

critical: will be non-zero if the extension is marked as critical

This function will return the extension specified by the OID in the certificate. The
extensions will be returned as binary data DER encoded, in the provided buffer.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code in case of an error. If the certificate does not contain the specified extension
GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crq get extension by oid2

[Function]int gnutls_x509_crq_get_extension_by_oid2 (gnutls x509 crq t
crq, const char * oid, int indx, gnutls datum t * output, unsigned int *
critical)

crq: should contain a gnutls_x509_crq_t structure

oid: holds an Object Identifier in a null terminated string

indx: In case multiple same OIDs exist in the extensions, this specifies which to get.
Use (0) to get the first one.

output: will hold the allocated extension data

critical: will be non-zero if the extension is marked as critical

Appendix E: API reference 404

This function will return the extension specified by the OID in the certificate. The
extensions will be returned as binary data DER encoded, in the provided buffer.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code in case of an error. If the certificate does not contain the specified extension
GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 3.3.8

gnutls x509 crq get extension data

[Function]int gnutls_x509_crq_get_extension_data (gnutls x509 crq t crq,
int indx, void * data, size t * sizeof_data)

crq: should contain a gnutls_x509_crq_t structure

indx: Specifies which extension number to get. Use (0) to get the first one.

data: a pointer to a structure to hold the data (may be null)

sizeof data: initially holds the size of oid

This function will return the requested extension data in the certificate. The extension
data will be stored as a string in the provided buffer.

Use gnutls_x509_crq_get_extension_info() to extract the OID and critical flag.
Use gnutls_x509_crq_get_extension_by_oid() instead, if you want to get data
indexed by the extension OID rather than sequence.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code in case of an error. If your have reached the last extension available GNUTLS_E_
REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crq get extension data2

[Function]int gnutls_x509_crq_get_extension_data2 (gnutls x509 crq t crq,
unsigned indx, gnutls datum t * data)

crq: should contain a gnutls_x509_crq_t structure

indx: Specifies which extension OID to read. Use (0) to get the first one.

data: will contain the extension DER-encoded data

This function will return the requested extension data in the certificate request. The
extension data will be allocated using gnutls_malloc() .

Use gnutls_x509_crq_get_extension_info() to extract the OID.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative er-
ror code is returned. If you have reached the last extension available GNUTLS_E_

REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 3.3.0

gnutls x509 crq get extension info

[Function]int gnutls_x509_crq_get_extension_info (gnutls x509 crq t crq,
int indx, void * oid, size t * sizeof_oid, unsigned int * critical)

crq: should contain a gnutls_x509_crq_t structure

Appendix E: API reference 405

indx: Specifies which extension number to get. Use (0) to get the first one.

oid: a pointer to a structure to hold the OID

sizeof oid: initially holds the maximum size of oid , on return holds actual size of
oid .

critical: output variable with critical flag, may be NULL.

This function will return the requested extension OID in the certificate, and the
critical flag for it. The extension OID will be stored as a string in the provided
buffer. Use gnutls_x509_crq_get_extension_data() to extract the data.

If the buffer provided is not long enough to hold the output, then * sizeof_oid is
updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code in case of an error. If your have reached the last extension available GNUTLS_E_
REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crq get key id

[Function]int gnutls_x509_crq_get_key_id (gnutls x509 crq t crq, unsigned
int flags, unsigned char * output_data, size t * output_data_size)

crq: a certificate of type gnutls_x509_crq_t

flags: should be 0 for now

output data: will contain the key ID

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will return a unique ID that depends on the public key parameters. This
ID can be used in checking whether a certificate corresponds to the given private key.

If the buffer provided is not long enough to hold the output, then * output_data_

size is updated and GNUTLS E SHORT MEMORY BUFFER will be returned.
The output will normally be a SHA-1 hash output, which is 20 bytes.

Returns: In case of failure a negative error code will be returned, and 0 on success.

Since: 2.8.0

gnutls x509 crq get key purpose oid

[Function]int gnutls_x509_crq_get_key_purpose_oid (gnutls x509 crq t crq,
int indx, void * oid, size t * sizeof_oid, unsigned int * critical)

crq: should contain a gnutls_x509_crq_t structure

indx: This specifies which OID to return, use (0) to get the first one

oid: a pointer to a buffer to hold the OID (may be NULL)

sizeof oid: initially holds the size of oid

critical: output variable with critical flag, may be NULL .

This function will extract the key purpose OIDs of the Certificate specified by the
given index. These are stored in the Extended Key Usage extension (2.5.29.37). See
the GNUTLS KP * definitions for human readable names.

Appendix E: API reference 406

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the * sizeof_oid will be updated with the required size. On success
0 is returned.

Since: 2.8.0

gnutls x509 crq get key rsa raw

[Function]int gnutls_x509_crq_get_key_rsa_raw (gnutls x509 crq t crq,
gnutls datum t * m, gnutls datum t * e)

crq: Holds the certificate

m: will hold the modulus

e: will hold the public exponent

This function will export the RSA public key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.8.0

gnutls x509 crq get key usage

[Function]int gnutls_x509_crq_get_key_usage (gnutls x509 crq t crq,
unsigned int * key_usage, unsigned int * critical)

crq: should contain a gnutls_x509_crq_t structure

key usage: where the key usage bits will be stored

critical: will be non-zero if the extension is marked as critical

This function will return certificate’s key usage, by reading the keyUsage
X.509 extension (2.5.29.15). The key usage value will ORed values of
the: GNUTLS_KEY_DIGITAL_SIGNATURE , GNUTLS_KEY_NON_REPUDIATION ,
GNUTLS_KEY_KEY_ENCIPHERMENT , GNUTLS_KEY_DATA_ENCIPHERMENT , GNUTLS_

KEY_KEY_AGREEMENT , GNUTLS_KEY_KEY_CERT_SIGN , GNUTLS_KEY_CRL_SIGN ,
GNUTLS_KEY_ENCIPHER_ONLY , GNUTLS_KEY_DECIPHER_ONLY .

Returns: the certificate key usage, or a negative error code in case of parsing error. If
the certificate does not contain the keyUsage extension GNUTLS_E_REQUESTED_DATA_

NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crq get pk algorithm

[Function]int gnutls_x509_crq_get_pk_algorithm (gnutls x509 crq t crq,
unsigned int * bits)

crq: should contain a gnutls_x509_crq_t structure

bits: if bits is non-NULL it will hold the size of the parameters’ in bits

This function will return the public key algorithm of a PKCS10 certificate request.

Appendix E: API reference 407

If bits is non-NULL , it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or a
negative error code on error.

gnutls x509 crq get private key usage period

[Function]int gnutls_x509_crq_get_private_key_usage_period
(gnutls x509 crq t crq, time t * activation, time t * expiration,
unsigned int * critical)

crq: should contain a gnutls_x509_crq_t structure

activation: The activation time

expiration: The expiration time

critical: the extension status

This function will return the expiration and activation times of the private key of the
certificate.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_REQUESTED_

DATA_NOT_AVAILABLE if the extension is not present, otherwise a negative error value.

gnutls x509 crq get subject alt name

[Function]int gnutls_x509_crq_get_subject_alt_name (gnutls x509 crq t
crq, unsigned int seq, void * ret, size t * ret_size, unsigned int *
ret_type, unsigned int * critical)

crq: should contain a gnutls_x509_crq_t structure

seq: specifies the sequence number of the alt name, 0 for the first one, 1 for the second
etc.

ret: is the place where the alternative name will be copied to

ret size: holds the size of ret.

ret type: holds the gnutls_x509_subject_alt_name_t name type

critical: will be non-zero if the extension is marked as critical (may be null)

This function will return the alternative names, contained in the given certificate. It
is the same as gnutls_x509_crq_get_subject_alt_name() except for the fact that
it will return the type of the alternative name in ret_type even if the function fails
for some reason (i.e. the buffer provided is not enough).

Returns: the alternative subject name type on success, one of the enumerated
gnutls_x509_subject_alt_name_t . It will return GNUTLS_E_SHORT_MEMORY_

BUFFER if ret_size is not large enough to hold the value. In that case
ret_size will be updated with the required size. If the certificate request
does not have an Alternative name with the specified sequence number then
GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is returned.

Since: 2.8.0

Appendix E: API reference 408

gnutls x509 crq get subject alt othername oid

[Function]int gnutls_x509_crq_get_subject_alt_othername_oid
(gnutls x509 crq t crq, unsigned int seq, void * ret, size t * ret_size)

crq: should contain a gnutls_x509_crq_t structure

seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)

ret: is the place where the otherName OID will be copied to

ret size: holds the size of ret.

This function will extract the type OID of an otherName Subject Alternative Name,
contained in the given certificate, and return the type as an enumerated element.

This function is only useful if gnutls_x509_crq_get_subject_alt_name() returned
GNUTLS_SAN_OTHERNAME .

Returns: the alternative subject name type on success, one of the enumerated
gnutls x509 subject alt name t. For supported OIDs, it will return one of the virtual
(GNUTLS SAN OTHERNAME *) types, e.g. GNUTLS_SAN_OTHERNAME_XMPP ,
and GNUTLS_SAN_OTHERNAME for unknown OIDs. It will return GNUTLS_E_SHORT_

MEMORY_BUFFER if ret_size is not large enough to hold the value. In that case
ret_size will be updated with the required size. If the certificate does not have an
Alternative name with the specified sequence number and with the otherName type
then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is returned.

Since: 2.8.0

gnutls x509 crq get version

[Function]int gnutls_x509_crq_get_version (gnutls x509 crq t crq)
crq: should contain a gnutls_x509_crq_t structure

This function will return the version of the specified Certificate request.

Returns: version of certificate request, or a negative error code on error.

gnutls x509 crq import

[Function]int gnutls_x509_crq_import (gnutls x509 crq t crq, const
gnutls datum t * data, gnutls x509 crt fmt t format)

crq: The structure to store the parsed certificate request.

data: The DER or PEM encoded certificate.

format: One of DER or PEM

This function will convert the given DER or PEM encoded certificate request to a
gnutls_x509_crq_t structure. The output will be stored in crq .

If the Certificate is PEM encoded it should have a header of "NEW CERTIFICATE
REQUEST".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 409

gnutls x509 crq init

[Function]int gnutls_x509_crq_init (gnutls x509 crq t * crq)
crq: The structure to be initialized

This function will initialize a PKCS10 certificate request structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crq print

[Function]int gnutls_x509_crq_print (gnutls x509 crq t crq,
gnutls certificate print formats t format, gnutls datum t * out)

crq: The structure to be printed

format: Indicate the format to use

out: Newly allocated datum with null terminated string.

This function will pretty print a certificate request, suitable for display to a human.

The output out needs to be deallocated using gnutls_free() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.8.0

gnutls x509 crq set attribute by oid

[Function]int gnutls_x509_crq_set_attribute_by_oid (gnutls x509 crq t
crq, const char * oid, void * buf, size t buf_size)

crq: should contain a gnutls_x509_crq_t structure

oid: holds an Object Identifier in a null-terminated string

buf : a pointer to a structure that holds the attribute data

buf size: holds the size of buf

This function will set the attribute in the certificate request specified by the given
Object ID. The provided attribute must be be DER encoded.

Attributes in a certificate request is an optional set of data appended to the request.
Their interpretation depends on the CA policy.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crq set basic constraints

[Function]int gnutls_x509_crq_set_basic_constraints (gnutls x509 crq t
crq, unsigned int ca, int pathLenConstraint)

crq: a certificate request of type gnutls_x509_crq_t

ca: true(1) or false(0) depending on the Certificate authority status.

pathLenConstraint: non-negative error codes indicate maximum length of path, and
negative error codes indicate that the pathLenConstraints field should not be present.

This function will set the basicConstraints certificate extension.

Appendix E: API reference 410

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.8.0

gnutls x509 crq set challenge password

[Function]int gnutls_x509_crq_set_challenge_password (gnutls x509 crq t
crq, const char * pass)

crq: should contain a gnutls_x509_crq_t structure

pass: holds a (0)-terminated password

This function will set a challenge password to be used when revoking the request.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crq set dn

[Function]int gnutls_x509_crq_set_dn (gnutls x509 crq t crq, const char * dn,
const char ** err)

crq: a certificate of type gnutls_x509_crq_t

dn: a comma separated DN string (RFC4514)

err: indicates the error position (if any)

This function will set the DN on the provided certificate. The input string should be
plain ASCII or UTF-8 encoded.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crq set dn by oid

[Function]int gnutls_x509_crq_set_dn_by_oid (gnutls x509 crq t crq, const
char * oid, unsigned int raw_flag, const void * data, unsigned int
sizeof_data)

crq: should contain a gnutls_x509_crq_t structure

oid: holds an Object Identifier in a (0)-terminated string

raw flag : must be 0, or 1 if the data are DER encoded

data: a pointer to the input data

sizeof data: holds the size of data

This function will set the part of the name of the Certificate request subject, specified
by the given OID. The input string should be ASCII or UTF-8 encoded.

Some helper macros with popular OIDs can be found in gnutls/x509.h With this
function you can only set the known OIDs. You can test for known OIDs using
gnutls_x509_dn_oid_known() . For OIDs that are not known (by gnutls) you should
properly DER encode your data, and call this function with raw flag set.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 411

gnutls x509 crq set key

[Function]int gnutls_x509_crq_set_key (gnutls x509 crq t crq,
gnutls x509 privkey t key)

crq: should contain a gnutls_x509_crq_t structure

key : holds a private key

This function will set the public parameters from the given private key to the request.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crq set key purpose oid

[Function]int gnutls_x509_crq_set_key_purpose_oid (gnutls x509 crq t crq,
const void * oid, unsigned int critical)

crq: a certificate of type gnutls_x509_crq_t

oid: a pointer to a (0)-terminated string that holds the OID

critical: Whether this extension will be critical or not

This function will set the key purpose OIDs of the Certificate. These are stored in
the Extended Key Usage extension (2.5.29.37) See the GNUTLS KP * definitions for
human readable names.

Subsequent calls to this function will append OIDs to the OID list.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.8.0

gnutls x509 crq set key rsa raw

[Function]int gnutls_x509_crq_set_key_rsa_raw (gnutls x509 crq t crq,
const gnutls datum t * m, const gnutls datum t * e)

crq: should contain a gnutls_x509_crq_t structure

m: holds the modulus

e: holds the public exponent

This function will set the public parameters from the given private key to the request.
Only RSA keys are currently supported.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.6.0

gnutls x509 crq set key usage

[Function]int gnutls_x509_crq_set_key_usage (gnutls x509 crq t crq,
unsigned int usage)

crq: a certificate request of type gnutls_x509_crq_t

usage: an ORed sequence of the GNUTLS KEY * elements.

This function will set the keyUsage certificate extension.

Appendix E: API reference 412

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.8.0

gnutls x509 crq set private key usage period

[Function]int gnutls_x509_crq_set_private_key_usage_period
(gnutls x509 crq t crq, time t activation, time t expiration)

crq: a certificate of type gnutls_x509_crq_t

activation: The activation time

expiration: The expiration time

This function will set the private key usage period extension (2.5.29.16).

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crq set subject alt name

[Function]int gnutls_x509_crq_set_subject_alt_name (gnutls x509 crq t
crq, gnutls x509 subject alt name t nt, const void * data, unsigned int
data_size, unsigned int flags)

crq: a certificate request of type gnutls_x509_crq_t

nt: is one of the gnutls_x509_subject_alt_name_t enumerations

data: The data to be set

data size: The size of data to be set

flags: GNUTLS_FSAN_SET to clear previous data or GNUTLS_FSAN_APPEND to append.

This function will set the subject alternative name certificate extension. It can set
the following types:

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.8.0

gnutls x509 crq set version

[Function]int gnutls_x509_crq_set_version (gnutls x509 crq t crq, unsigned
int version)

crq: should contain a gnutls_x509_crq_t structure

version: holds the version number, for v1 Requests must be 1

This function will set the version of the certificate request. For version 1 requests this
must be one.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 413

gnutls x509 crq sign2

[Function]int gnutls_x509_crq_sign2 (gnutls x509 crq t crq,
gnutls x509 privkey t key, gnutls digest algorithm t dig, unsigned int flags)

crq: should contain a gnutls_x509_crq_t structure

key : holds a private key

dig : The message digest to use, i.e., GNUTLS_DIG_SHA1

flags: must be 0

This function will sign the certificate request with a private key. This must be the
same key as the one used in gnutls_x509_crt_set_key() since a certificate request
is self signed.

This must be the last step in a certificate request generation since all the previously
set parameters are now signed.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code. GNUTLS_E_
ASN1_VALUE_NOT_FOUND is returned if you didn’t set all information in the certificate
request (e.g., the version using gnutls_x509_crq_set_version()).

gnutls x509 crq verify

[Function]int gnutls_x509_crq_verify (gnutls x509 crq t crq, unsigned int
flags)

crq: is the crq to be verified

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls certificate verify flags enumerations.

This function will verify self signature in the certificate request and return its status.

Returns: In case of a verification failure GNUTLS_E_PK_SIG_VERIFY_FAILED is re-
turned, and zero or positive code on success.

Since 2.12.0

gnutls x509 crt check hostname

[Function]int gnutls_x509_crt_check_hostname (gnutls x509 crt t cert, const
char * hostname)

cert: should contain an gnutls x509 crt t structure

hostname: A null terminated string that contains a DNS name

This function will check if the given certificate’s subject matches the given hostname.
This is a basic implementation of the matching described in RFC6125, and takes into
account wildcards, and the DNSName/IPAddress subject alternative name PKIX
extension.

For details see also gnutls_x509_crt_check_hostname2() .

Returns: non-zero for a successful match, and zero on failure.

Appendix E: API reference 414

gnutls x509 crt check hostname2

[Function]int gnutls_x509_crt_check_hostname2 (gnutls x509 crt t cert,
const char * hostname, unsigned int flags)

cert: should contain an gnutls x509 crt t structure

hostname: A null terminated string that contains a DNS name

flags: gnutls certificate verify flags

This function will check if the given certificate’s subject matches the given hostname.
This is a basic implementation of the matching described in RFC6125, and takes into
account wildcards, and the DNSName/IPAddress subject alternative name PKIX
extension.

IPv4 addresses are accepted by this function in the dotted-decimal format (e.g,
ddd.ddd.ddd.ddd), and IPv6 addresses in the hexadecimal x:x:x:x:x:x:x:x format. For
them the IPAddress subject alternative name extension is consulted, as well as the
DNSNames in case of a non-match. The latter fallback exists due to misconfiguration
of many servers which place an IPAddress inside the DNSName extension.

The comparison of dns names may have false-negatives as it is done byte by byte in
non-ascii names.

When the flag GNUTLS_VERIFY_DO_NOT_ALLOW_WILDCARDS is specified no wildcards
are considered. Otherwise they are only considered if the domain name consists of
three components or more, and the wildcard starts at the leftmost position.

Returns: non-zero for a successful match, and zero on failure.

gnutls x509 crt check issuer

[Function]int gnutls_x509_crt_check_issuer (gnutls x509 crt t cert,
gnutls x509 crt t issuer)

cert: is the certificate to be checked

issuer: is the certificate of a possible issuer

This function will check if the given certificate was issued by the given issuer. It
checks the DN fields and the authority key identifier and subject key identifier fields
match.

If the same certificate is provided at the cert and issuer fields, it will check whether
the certificate is self-signed.

Returns: It will return true (1) if the given certificate is issued by the given issuer,
and false (0) if not.

gnutls x509 crt check revocation

[Function]int gnutls_x509_crt_check_revocation (gnutls x509 crt t cert,
const gnutls x509 crl t * crl_list, int crl_list_length)

cert: should contain a gnutls_x509_crt_t structure

crl list: should contain a list of gnutls x509 crl t structures

crl list length: the length of the crl list

Appendix E: API reference 415

This function will return check if the given certificate is revoked. It is assumed that
the CRLs have been verified before.

Returns: 0 if the certificate is NOT revoked, and 1 if it is. A negative error code is
returned on error.

gnutls x509 crt cpy crl dist points

[Function]int gnutls_x509_crt_cpy_crl_dist_points (gnutls x509 crt t dst,
gnutls x509 crt t src)

dst: a certificate of type gnutls_x509_crt_t

src: the certificate where the dist points will be copied from

This function will copy the CRL distribution points certificate extension, from the
source to the destination certificate. This may be useful to copy from a CA certificate
to issued ones.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt deinit

[Function]void gnutls_x509_crt_deinit (gnutls x509 crt t cert)
cert: The structure to be deinitialized

This function will deinitialize a certificate structure.

gnutls x509 crt export

[Function]int gnutls_x509_crt_export (gnutls x509 crt t cert,
gnutls x509 crt fmt t format, void * output_data, size t *
output_data_size)

cert: Holds the certificate

format: the format of output params. One of PEM or DER.

output data: will contain a certificate PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the certificate to DER or PEM format.

If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS E SHORT MEMORY BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN CERTIFICATE".

Returns: In case of failure a negative error code will be returned, and 0 on success.

gnutls x509 crt export2

[Function]int gnutls_x509_crt_export2 (gnutls x509 crt t cert,
gnutls x509 crt fmt t format, gnutls datum t * out)

cert: Holds the certificate

format: the format of output params. One of PEM or DER.

Appendix E: API reference 416

out: will contain a certificate PEM or DER encoded

This function will export the certificate to DER or PEM format. The output buffer
is allocated using gnutls_malloc() .

If the structure is PEM encoded, it will have a header of "BEGIN CERTIFICATE".

Returns: In case of failure a negative error code will be returned, and 0 on success.

Since: 3.1.3

gnutls x509 crt get activation time

[Function]time_t gnutls_x509_crt_get_activation_time (gnutls x509 crt t
cert)

cert: should contain a gnutls_x509_crt_t structure

This function will return the time this Certificate was or will be activated.

Returns: activation time, or (time t)-1 on error.

gnutls x509 crt get authority info access

[Function]int gnutls_x509_crt_get_authority_info_access
(gnutls x509 crt t crt, unsigned int seq, int what, gnutls datum t * data,
unsigned int * critical)

crt: Holds the certificate

seq: specifies the sequence number of the access descriptor (0 for the first one, 1 for
the second etc.)

what: what data to get, a gnutls_info_access_what_t type.

data: output data to be freed with gnutls_free() .

critical: pointer to output integer that is set to non-zero if the extension is marked
as critical (may be NULL)

Note that a simpler API to access the authority info data is provided by gnutls_

x509_aia_get() and gnutls_x509_ext_import_aia() .

This function extracts the Authority Information Access (AIA) extension, see RFC
5280 section 4.2.2.1 for more information. The AIA extension holds a sequence of
AccessDescription (AD) data.

The seq input parameter is used to indicate which member of the sequence the caller
is interested in. The first member is 0, the second member 1 and so on. When the
seq value is out of bounds, GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is returned.

The type of data returned in data is specified via what which should be gnutls_

info_access_what_t values.

If what is GNUTLS_IA_ACCESSMETHOD_OID then data will hold the accessMethod OID
(e.g., "1.3.6.1.5.5.7.48.1").

If what is GNUTLS_IA_ACCESSLOCATION_GENERALNAME_TYPE , data will hold the ac-
cessLocation GeneralName type (e.g., "uniformResourceIdentifier").

If what is GNUTLS_IA_URI , data will hold the accessLocation URI data. Requesting
this what value leads to an error if the accessLocation is not of the "uniformResour-
ceIdentifier" type.

Appendix E: API reference 417

If what is GNUTLS_IA_OCSP_URI , data will hold the OCSP URI. Requesting this
what value leads to an error if the accessMethod is not 1.3.6.1.5.5.7.48.1 aka OSCP,
or if accessLocation is not of the "uniformResourceIdentifier" type. In that case
GNUTLS_E_UNKNOWN_ALGORITHM will be returned, and seq should be increased and
this function called again.

If what is GNUTLS_IA_CAISSUERS_URI , data will hold the caIssuers URI. Requesting
this what value leads to an error if the accessMethod is not 1.3.6.1.5.5.7.48.2 aka
caIssuers, or if accessLocation is not of the "uniformResourceIdentifier" type. In that
case handle as in GNUTLS_IA_OCSP_URI .

More what values may be allocated in the future as needed.

If data is NULL, the function does the same without storing the output data, that
is, it will set critical and do error checking as usual.

The value of the critical flag is returned in * critical . Supply a NULL critical if
you want the function to make sure the extension is non-critical, as required by RFC
5280.

Returns: GNUTLS_E_SUCCESS on success, GNUTLS_E_INVALID_REQUEST on invalid crt

, GNUTLS_E_CONSTRAINT_ERROR if the extension is incorrectly marked as critical (use
a non-NULL critical to override), GNUTLS_E_UNKNOWN_ALGORITHM if the requested
OID does not match (e.g., when using GNUTLS_IA_OCSP_URI), otherwise a negative
error code.

Since: 3.0

gnutls x509 crt get authority key gn serial

[Function]int gnutls_x509_crt_get_authority_key_gn_serial
(gnutls x509 crt t cert, unsigned int seq, void * alt, size t * alt_size,
unsigned int * alt_type, void * serial, size t * serial_size, unsigned int
* critical)

cert: should contain a gnutls_x509_crt_t structure

seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)

alt: is the place where the alternative name will be copied to

alt size: holds the size of alt.

alt type: holds the type of the alternative name (one of gnutls x509 subject alt name t).

serial: buffer to store the serial number (may be null)

serial size: Holds the size of the serial field (may be null)

critical: will be non-zero if the extension is marked as critical (may be null)

This function will return the X.509 authority key identifier when stored as a general
name (authorityCertIssuer) and serial number.

Because more than one general names might be stored seq can be used as a counter
to request them all until GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_REQUESTED_

DATA_NOT_AVAILABLE if the extension is not present, otherwise a negative error value.

Since: 3.0

Appendix E: API reference 418

gnutls x509 crt get authority key id

[Function]int gnutls_x509_crt_get_authority_key_id (gnutls x509 crt t
cert, void * id, size t * id_size, unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

id: The place where the identifier will be copied

id size: Holds the size of the id field.

critical: will be non-zero if the extension is marked as critical (may be null)

This function will return the X.509v3 certificate authority’s key identifier. This is
obtained by the X.509 Authority Key identifier extension field (2.5.29.35). Note that
this function only returns the keyIdentifier field of the extension and GNUTLS_E_X509_

UNSUPPORTED_EXTENSION , if the extension contains the name and serial number of
the certificate. In that case gnutls_x509_crt_get_authority_key_gn_serial()

may be used.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_REQUESTED_

DATA_NOT_AVAILABLE if the extension is not present, otherwise a negative error value.

gnutls x509 crt get basic constraints

[Function]int gnutls_x509_crt_get_basic_constraints (gnutls x509 crt t
cert, unsigned int * critical, unsigned int * ca, int * pathlen)

cert: should contain a gnutls_x509_crt_t structure

critical: will be non-zero if the extension is marked as critical

ca: pointer to output integer indicating CA status, may be NULL, value is 1 if the
certificate CA flag is set, 0 otherwise.

pathlen: pointer to output integer indicating path length (may be NULL), non-
negative error codes indicate a present pathLenConstraint field and the actual value,
-1 indicate that the field is absent.

This function will read the certificate’s basic constraints, and return the certificates
CA status. It reads the basicConstraints X.509 extension (2.5.29.19).

Returns: If the certificate is a CA a positive value will be returned, or (0) if the
certificate does not have CA flag set. A negative error code may be returned in
case of errors. If the certificate does not contain the basicConstraints extension
GNUTLS E REQUESTED DATA NOT AVAILABLE will be returned.

gnutls x509 crt get ca status

[Function]int gnutls_x509_crt_get_ca_status (gnutls x509 crt t cert,
unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

critical: will be non-zero if the extension is marked as critical

This function will return certificates CA status, by reading the basicConstraints X.509
extension (2.5.29.19). If the certificate is a CA a positive value will be returned, or
(0) if the certificate does not have CA flag set.

Appendix E: API reference 419

Use gnutls_x509_crt_get_basic_constraints() if you want to read the pathLen-
Constraint field too.

Returns: If the certificate is a CA a positive value will be returned, or (0) if the
certificate does not have CA flag set. A negative error code may be returned in
case of errors. If the certificate does not contain the basicConstraints extension
GNUTLS E REQUESTED DATA NOT AVAILABLE will be returned.

gnutls x509 crt get crl dist points

[Function]int gnutls_x509_crt_get_crl_dist_points (gnutls x509 crt t
cert, unsigned int seq, void * san, size t * san_size, unsigned int *
reason_flags, unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

seq: specifies the sequence number of the distribution point (0 for the first one, 1 for
the second etc.)

san: is the place where the distribution point will be copied to

san size: holds the size of ret.

reason flags: Revocation reasons. An ORed sequence of flags from gnutls_x509_

crl_reason_flags_t .

critical: will be non-zero if the extension is marked as critical (may be null)

This function retrieves the CRL distribution points (2.5.29.31), contained in the given
certificate in the X509v3 Certificate Extensions.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER and updates ret_size if ret_size is
not enough to hold the distribution point, or the type of the distribution point if
everything was ok. The type is one of the enumerated gnutls_x509_subject_alt_

name_t . If the certificate does not have an Alternative name with the specified
sequence number then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is returned.

gnutls x509 crt get dn

[Function]int gnutls_x509_crt_get_dn (gnutls x509 crt t cert, char * buf,
size t * buf_size)

cert: should contain a gnutls_x509_crt_t structure

buf : a pointer to a structure to hold the name (may be null)

buf size: initially holds the size of buf

This function will copy the name of the Certificate in the provided buffer. The name
will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC4514. The
output string will be ASCII or UTF-8 encoded, depending on the certificate data.

If buf is null then only the size will be filled.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the buf_size will be updated with the required size. On success 0
is returned.

Appendix E: API reference 420

gnutls x509 crt get dn2

[Function]int gnutls_x509_crt_get_dn2 (gnutls x509 crt t cert,
gnutls datum t * dn)

cert: should contain a gnutls_x509_crt_t structure

dn: a pointer to a structure to hold the name

This function will allocate buffer and copy the name of the Certificate. The name will
be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC4514. The output
string will be ASCII or UTF-8 encoded, depending on the certificate data.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. and a negative error code on error.

Since: 3.1.10

gnutls x509 crt get dn by oid

[Function]int gnutls_x509_crt_get_dn_by_oid (gnutls x509 crt t cert, const
char * oid, int indx, unsigned int raw_flag, void * buf, size t * buf_size)

cert: should contain a gnutls_x509_crt_t structure

oid: holds an Object Identified in null terminated string

indx: In case multiple same OIDs exist in the RDN, this specifies which to send. Use
(0) to get the first one.

raw flag : If non-zero returns the raw DER data of the DN part.

buf : a pointer where the DN part will be copied (may be null).

buf size: initially holds the size of buf

This function will extract the part of the name of the Certificate subject specified by
the given OID. The output, if the raw flag is not used, will be encoded as described
in RFC4514. Thus a string that is ASCII or UTF-8 encoded, depending on the
certificate data.

Some helper macros with popular OIDs can be found in gnutls/x509.h If raw flag
is (0), this function will only return known OIDs as text. Other OIDs will be DER
encoded, as described in RFC4514 – in hex format with a ’#’ prefix. You can check
about known OIDs using gnutls_x509_dn_oid_known() .

If buf is null then only the size will be filled. If the raw_flag is not specified the
output is always null terminated, although the buf_size will not include the null
character.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the buf_size will be updated with the required size. GNUTLS_

E_REQUESTED_DATA_NOT_AVAILABLE if there are no data in the current index. On
success 0 is returned.

gnutls x509 crt get dn oid

[Function]int gnutls_x509_crt_get_dn_oid (gnutls x509 crt t cert, int indx,
void * oid, size t * oid_size)

cert: should contain a gnutls_x509_crt_t structure

Appendix E: API reference 421

indx: This specifies which OID to return. Use (0) to get the first one.

oid: a pointer to a buffer to hold the OID (may be null)

oid size: initially holds the size of oid

This function will extract the OIDs of the name of the Certificate subject specified
by the given index.

If oid is null then only the size will be filled. The oid returned will be null terminated,
although oid_size will not account for the trailing null.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the buf_size will be updated with the required size. GNUTLS_

E_REQUESTED_DATA_NOT_AVAILABLE if there are no data in the current index. On
success 0 is returned.

gnutls x509 crt get expiration time

[Function]time_t gnutls_x509_crt_get_expiration_time (gnutls x509 crt t
cert)

cert: should contain a gnutls_x509_crt_t structure

This function will return the time this Certificate was or will be expired.

The no well defined expiration time can be checked against with the GNUTLS_X509_

NO_WELL_DEFINED_EXPIRATION macro.

Returns: expiration time, or (time t)-1 on error.

gnutls x509 crt get extension by oid

[Function]int gnutls_x509_crt_get_extension_by_oid (gnutls x509 crt t
cert, const char * oid, int indx, void * buf, size t * buf_size, unsigned int
* critical)

cert: should contain a gnutls_x509_crt_t structure

oid: holds an Object Identified in null terminated string

indx: In case multiple same OIDs exist in the extensions, this specifies which to send.
Use (0) to get the first one.

buf : a pointer to a structure to hold the name (may be null)

buf size: initially holds the size of buf

critical: will be non-zero if the extension is marked as critical

This function will return the extension specified by the OID in the certificate. The
extensions will be returned as binary data DER encoded, in the provided buffer.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative er-
ror code is returned. If the certificate does not contain the specified extension
GNUTLS E REQUESTED DATA NOT AVAILABLE will be returned.

gnutls x509 crt get extension by oid2

[Function]int gnutls_x509_crt_get_extension_by_oid2 (gnutls x509 crt t
cert, const char * oid, int indx, gnutls datum t * output, unsigned int *
critical)

cert: should contain a gnutls_x509_crt_t structure

Appendix E: API reference 422

oid: holds an Object Identified in null terminated string

indx: In case multiple same OIDs exist in the extensions, this specifies which to send.
Use (0) to get the first one.

output: will hold the allocated extension data

critical: will be non-zero if the extension is marked as critical

This function will return the extension specified by the OID in the certificate. The
extensions will be returned as binary data DER encoded, in the provided buffer.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative er-
ror code is returned. If the certificate does not contain the specified extension
GNUTLS E REQUESTED DATA NOT AVAILABLE will be returned.

Since: 3.3.8

gnutls x509 crt get extension data

[Function]int gnutls_x509_crt_get_extension_data (gnutls x509 crt t cert,
int indx, void * data, size t * sizeof_data)

cert: should contain a gnutls_x509_crt_t structure

indx: Specifies which extension OID to send. Use (0) to get the first one.

data: a pointer to a structure to hold the data (may be null)

sizeof data: initially holds the size of data

This function will return the requested extension data in the certificate. The extension
data will be stored in the provided buffer.

Use gnutls_x509_crt_get_extension_info() to extract the OID and critical flag.
Use gnutls_x509_crt_get_extension_by_oid() instead, if you want to get data
indexed by the extension OID rather than sequence.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative er-
ror code is returned. If you have reached the last extension available GNUTLS_E_

REQUESTED_DATA_NOT_AVAILABLE will be returned.

gnutls x509 crt get extension data2

[Function]int gnutls_x509_crt_get_extension_data2 (gnutls x509 crt t
cert, unsigned indx, gnutls datum t * data)

cert: should contain a gnutls_x509_crt_t structure

indx: Specifies which extension OID to read. Use (0) to get the first one.

data: will contain the extension DER-encoded data

This function will return the requested by the index extension data in the certificate.
The extension data will be allocated using gnutls_malloc() .

Use gnutls_x509_crt_get_extension_info() to extract the OID.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative er-
ror code is returned. If you have reached the last extension available GNUTLS_E_

REQUESTED_DATA_NOT_AVAILABLE will be returned.

Appendix E: API reference 423

gnutls x509 crt get extension info

[Function]int gnutls_x509_crt_get_extension_info (gnutls x509 crt t cert,
int indx, void * oid, size t * oid_size, unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

indx: Specifies which extension OID to send. Use (0) to get the first one.

oid: a pointer to a structure to hold the OID

oid size: initially holds the maximum size of oid , on return holds actual size of oid
.

critical: output variable with critical flag, may be NULL.

This function will return the requested extension OID in the certificate, and the
critical flag for it. The extension OID will be stored as a string in the provided
buffer. Use gnutls_x509_crt_get_extension() to extract the data.

If the buffer provided is not long enough to hold the output, then oid_size is updated
and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned. The oid returned will be null
terminated, although oid_size will not account for the trailing null.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative er-
ror code is returned. If you have reached the last extension available GNUTLS_E_

REQUESTED_DATA_NOT_AVAILABLE will be returned.

gnutls x509 crt get extension oid

[Function]int gnutls_x509_crt_get_extension_oid (gnutls x509 crt t cert,
int indx, void * oid, size t * oid_size)

cert: should contain a gnutls_x509_crt_t structure

indx: Specifies which extension OID to send. Use (0) to get the first one.

oid: a pointer to a structure to hold the OID (may be null)

oid size: initially holds the size of oid

This function will return the requested extension OID in the certificate. The extension
OID will be stored as a string in the provided buffer.

The oid returned will be null terminated, although oid_size will not account for the
trailing null.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative er-
ror code is returned. If you have reached the last extension available GNUTLS_E_

REQUESTED_DATA_NOT_AVAILABLE will be returned.

gnutls x509 crt get fingerprint

[Function]int gnutls_x509_crt_get_fingerprint (gnutls x509 crt t cert,
gnutls digest algorithm t algo, void * buf, size t * buf_size)

cert: should contain a gnutls_x509_crt_t structure

algo: is a digest algorithm

buf : a pointer to a structure to hold the fingerprint (may be null)

buf size: initially holds the size of buf

Appendix E: API reference 424

This function will calculate and copy the certificate’s fingerprint in the provided buffer.
The fingerprint is a hash of the DER-encoded data of the certificate.

If the buffer is null then only the size will be filled.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the *buf size will be updated with the required size. On success 0 is
returned.

gnutls x509 crt get issuer

[Function]int gnutls_x509_crt_get_issuer (gnutls x509 crt t cert,
gnutls x509 dn t * dn)

cert: should contain a gnutls_x509_crt_t structure

dn: output variable with pointer to uint8 t DN

Return the Certificate’s Issuer DN as a gnutls_x509_dn_t data type, that can be
decoded using gnutls_x509_dn_get_rdn_ava() .

Note that dn should be treated as constant. Because it points into the cert object,
you should not use dn after cert is deallocated.

Returns: Returns 0 on success, or an error code.

gnutls x509 crt get issuer alt name

[Function]int gnutls_x509_crt_get_issuer_alt_name (gnutls x509 crt t
cert, unsigned int seq, void * ian, size t * ian_size, unsigned int *
critical)

cert: should contain a gnutls_x509_crt_t structure

seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)

ian: is the place where the alternative name will be copied to

ian size: holds the size of ian.

critical: will be non-zero if the extension is marked as critical (may be null)

This function retrieves the Issuer Alternative Name (2.5.29.18), contained in the given
certificate in the X509v3 Certificate Extensions.

When the SAN type is otherName, it will extract the data in the otherName’s value
field, and GNUTLS_SAN_OTHERNAME is returned. You may use gnutls_x509_crt_get_
subject_alt_othername_oid() to get the corresponding OID and the "virtual" SAN
types (e.g., GNUTLS_SAN_OTHERNAME_XMPP).

If an otherName OID is known, the data will be decoded. Otherwise the returned
data will be DER encoded, and you will have to decode it yourself. Currently, only
the RFC 3920 id-on-xmppAddr Issuer AltName is recognized.

Returns: the alternative issuer name type on success, one of the enumerated gnutls_

x509_subject_alt_name_t . It will return GNUTLS_E_SHORT_MEMORY_BUFFER if ian_
size is not large enough to hold the value. In that case ian_size will be updated
with the required size. If the certificate does not have an Alternative name with
the specified sequence number then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is
returned.

Since: 2.10.0

Appendix E: API reference 425

gnutls x509 crt get issuer alt name2

[Function]int gnutls_x509_crt_get_issuer_alt_name2 (gnutls x509 crt t
cert, unsigned int seq, void * ian, size t * ian_size, unsigned int *
ian_type, unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)

ian: is the place where the alternative name will be copied to

ian size: holds the size of ret.

ian type: holds the type of the alternative name (one of gnutls x509 subject alt name t).

critical: will be non-zero if the extension is marked as critical (may be null)

This function will return the alternative names, contained in the given certificate. It
is the same as gnutls_x509_crt_get_issuer_alt_name() except for the fact that
it will return the type of the alternative name in ian_type even if the function fails
for some reason (i.e. the buffer provided is not enough).

Returns: the alternative issuer name type on success, one of the enumerated gnutls_

x509_subject_alt_name_t . It will return GNUTLS_E_SHORT_MEMORY_BUFFER if ian_
size is not large enough to hold the value. In that case ian_size will be updated
with the required size. If the certificate does not have an Alternative name with
the specified sequence number then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is
returned.

Since: 2.10.0

gnutls x509 crt get issuer alt othername oid

[Function]int gnutls_x509_crt_get_issuer_alt_othername_oid
(gnutls x509 crt t cert, unsigned int seq, void * ret, size t * ret_size)

cert: should contain a gnutls_x509_crt_t structure

seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)

ret: is the place where the otherName OID will be copied to

ret size: holds the size of ret.

This function will extract the type OID of an otherName Subject Alternative Name,
contained in the given certificate, and return the type as an enumerated element.

If oid is null then only the size will be filled. The oid returned will be null terminated,
although oid_size will not account for the trailing null.

This function is only useful if gnutls_x509_crt_get_issuer_alt_name() returned
GNUTLS_SAN_OTHERNAME .

Returns: the alternative issuer name type on success, one of the enumerated
gnutls x509 subject alt name t. For supported OIDs, it will return one of the virtual
(GNUTLS SAN OTHERNAME *) types, e.g. GNUTLS_SAN_OTHERNAME_XMPP ,
and GNUTLS_SAN_OTHERNAME for unknown OIDs. It will return GNUTLS_E_SHORT_

MEMORY_BUFFER if ret_size is not large enough to hold the value. In that case

Appendix E: API reference 426

ret_size will be updated with the required size. If the certificate does not have an
Alternative name with the specified sequence number and with the otherName type
then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is returned.

Since: 2.10.0

gnutls x509 crt get issuer dn

[Function]int gnutls_x509_crt_get_issuer_dn (gnutls x509 crt t cert, char *
buf, size t * buf_size)

cert: should contain a gnutls_x509_crt_t structure

buf : a pointer to a structure to hold the name (may be null)

buf size: initially holds the size of buf

This function will copy the name of the Certificate issuer in the provided buffer. The
name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC4514. The
output string will be ASCII or UTF-8 encoded, depending on the certificate data.

If buf is null then only the size will be filled.

Returns: GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not
long enough, and in that case the buf_size will be updated with the required size.
On success 0 is returned.

gnutls x509 crt get issuer dn2

[Function]int gnutls_x509_crt_get_issuer_dn2 (gnutls x509 crt t cert,
gnutls datum t * dn)

cert: should contain a gnutls_x509_crt_t structure

dn: a pointer to a structure to hold the name

This function will allocate buffer and copy the name of issuer of the Certificate. The
name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC4514. The
output string will be ASCII or UTF-8 encoded, depending on the certificate data.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. and a negative error code on error.

Since: 3.1.10

gnutls x509 crt get issuer dn by oid

[Function]int gnutls_x509_crt_get_issuer_dn_by_oid (gnutls x509 crt t
cert, const char * oid, int indx, unsigned int raw_flag, void * buf, size t *
buf_size)

cert: should contain a gnutls_x509_crt_t structure

oid: holds an Object Identified in null terminated string

indx: In case multiple same OIDs exist in the RDN, this specifies which to send. Use
(0) to get the first one.

raw flag : If non-zero returns the raw DER data of the DN part.

buf : a pointer to a structure to hold the name (may be null)

buf size: initially holds the size of buf

Appendix E: API reference 427

This function will extract the part of the name of the Certificate issuer specified by
the given OID. The output, if the raw flag is not used, will be encoded as described
in RFC4514. Thus a string that is ASCII or UTF-8 encoded, depending on the
certificate data.

Some helper macros with popular OIDs can be found in gnutls/x509.h If raw flag
is (0), this function will only return known OIDs as text. Other OIDs will be DER
encoded, as described in RFC4514 – in hex format with a ’#’ prefix. You can check
about known OIDs using gnutls_x509_dn_oid_known() .

If buf is null then only the size will be filled. If the raw_flag is not specified the
output is always null terminated, although the buf_size will not include the null
character.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the buf_size will be updated with the required size. GNUTLS_

E_REQUESTED_DATA_NOT_AVAILABLE if there are no data in the current index. On
success 0 is returned.

gnutls x509 crt get issuer dn oid

[Function]int gnutls_x509_crt_get_issuer_dn_oid (gnutls x509 crt t cert,
int indx, void * oid, size t * oid_size)

cert: should contain a gnutls_x509_crt_t structure

indx: This specifies which OID to return. Use (0) to get the first one.

oid: a pointer to a buffer to hold the OID (may be null)

oid size: initially holds the size of oid

This function will extract the OIDs of the name of the Certificate issuer specified by
the given index.

If oid is null then only the size will be filled. The oid returned will be null terminated,
although oid_size will not account for the trailing null.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the buf_size will be updated with the required size. GNUTLS_

E_REQUESTED_DATA_NOT_AVAILABLE if there are no data in the current index. On
success 0 is returned.

gnutls x509 crt get issuer unique id

[Function]int gnutls_x509_crt_get_issuer_unique_id (gnutls x509 crt t
crt, char * buf, size t * buf_size)

crt: Holds the certificate

buf : user allocated memory buffer, will hold the unique id

buf size: size of user allocated memory buffer (on input), will hold actual size of the
unique ID on return.

This function will extract the issuerUniqueID value (if present) for the given certifi-
cate.

If the user allocated memory buffer is not large enough to hold the full subjectU-
niqueID, then a GNUTLS E SHORT MEMORY BUFFER error will be returned,
and buf size will be set to the actual length.

Appendix E: API reference 428

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 2.12.0

gnutls x509 crt get key id

[Function]int gnutls_x509_crt_get_key_id (gnutls x509 crt t crt, unsigned
int flags, unsigned char * output_data, size t * output_data_size)

crt: Holds the certificate

flags: should be 0 for now

output data: will contain the key ID

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will return a unique ID that depends on the public key parameters. This
ID can be used in checking whether a certificate corresponds to the given private key.

If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS E SHORT MEMORY BUFFER will be returned. The
output will normally be a SHA-1 hash output, which is 20 bytes.

Returns: In case of failure a negative error code will be returned, and 0 on success.

gnutls x509 crt get key purpose oid

[Function]int gnutls_x509_crt_get_key_purpose_oid (gnutls x509 crt t
cert, int indx, void * oid, size t * oid_size, unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

indx: This specifies which OID to return. Use (0) to get the first one.

oid: a pointer to a buffer to hold the OID (may be null)

oid size: initially holds the size of oid

critical: output flag to indicate criticality of extension

This function will extract the key purpose OIDs of the Certificate specified by the
given index. These are stored in the Extended Key Usage extension (2.5.29.37) See
the GNUTLS KP * definitions for human readable names.

If oid is null then only the size will be filled. The oid returned will be null terminated,
although oid_size will not account for the trailing null.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the *oid size will be updated with the required size. On success 0 is
returned.

gnutls x509 crt get key usage

[Function]int gnutls_x509_crt_get_key_usage (gnutls x509 crt t cert,
unsigned int * key_usage, unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

key usage: where the key usage bits will be stored

critical: will be non-zero if the extension is marked as critical

Appendix E: API reference 429

This function will return certificate’s key usage, by reading the keyUsage
X.509 extension (2.5.29.15). The key usage value will ORed values of
the: GNUTLS_KEY_DIGITAL_SIGNATURE , GNUTLS_KEY_NON_REPUDIATION ,
GNUTLS_KEY_KEY_ENCIPHERMENT , GNUTLS_KEY_DATA_ENCIPHERMENT , GNUTLS_

KEY_KEY_AGREEMENT , GNUTLS_KEY_KEY_CERT_SIGN , GNUTLS_KEY_CRL_SIGN ,
GNUTLS_KEY_ENCIPHER_ONLY , GNUTLS_KEY_DECIPHER_ONLY .

Returns: the certificate key usage, or a negative error code in case of parsing error. If
the certificate does not contain the keyUsage extension GNUTLS_E_REQUESTED_DATA_

NOT_AVAILABLE will be returned.

gnutls x509 crt get name constraints

[Function]int gnutls_x509_crt_get_name_constraints (gnutls x509 crt t
crt, gnutls x509 name constraints t nc, unsigned int flags, unsigned int *
critical)

crt: should contain a gnutls_x509_crt_t structure

nc: The nameconstraints intermediate structure

flags: zero or GNUTLS_NAME_CONSTRAINTS_FLAG_APPEND

critical: the extension status

This function will return an intermediate structure containing the name constraints of
the provided CA certificate. That structure can be used in combination with gnutls_

x509_name_constraints_check() to verify whether a server’s name is in accordance
with the constraints.

When the flags is set to GNUTLS_NAME_CONSTRAINTS_FLAG_APPEND , then if the nc

structure is empty this function will behave identically as if the flag was not set.
Otherwise if there are elements in the nc structure then only the excluded constraints
will be appended to the constraints.

Note that nc must be initialized prior to calling this function.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_REQUESTED_

DATA_NOT_AVAILABLE if the extension is not present, otherwise a negative error value.

Since: 3.3.0

gnutls x509 crt get pk algorithm

[Function]int gnutls_x509_crt_get_pk_algorithm (gnutls x509 crt t cert,
unsigned int * bits)

cert: should contain a gnutls_x509_crt_t structure

bits: if bits is non null it will hold the size of the parameters’ in bits

This function will return the public key algorithm of an X.509 certificate.

If bits is non null, it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or a
negative error code on error.

Appendix E: API reference 430

gnutls x509 crt get pk dsa raw

[Function]int gnutls_x509_crt_get_pk_dsa_raw (gnutls x509 crt t crt,
gnutls datum t * p, gnutls datum t * q, gnutls datum t * g, gnutls datum t *
y)

crt: Holds the certificate

p: will hold the p

q: will hold the q

g : will hold the g

y : will hold the y

This function will export the DSA public key’s parameters found in the given cer-
tificate. The new parameters will be allocated using gnutls_malloc() and will be
stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

gnutls x509 crt get pk rsa raw

[Function]int gnutls_x509_crt_get_pk_rsa_raw (gnutls x509 crt t crt,
gnutls datum t * m, gnutls datum t * e)

crt: Holds the certificate

m: will hold the modulus

e: will hold the public exponent

This function will export the RSA public key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

gnutls x509 crt get policy

[Function]int gnutls_x509_crt_get_policy (gnutls x509 crt t crt, int indx,
struct gnutls x509 policy st * policy, unsigned int * critical)

crt: should contain a gnutls_x509_crt_t structure

indx: This specifies which policy to return. Use (0) to get the first one.

policy : A pointer to a policy structure.

critical: will be non-zero if the extension is marked as critical

This function will extract the certificate policy (extension 2.5.29.32) specified by the
given index.

The policy returned by this function must be deinitialized by using gnutls_x509_

policy_release() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_REQUESTED_

DATA_NOT_AVAILABLE if the extension is not present, otherwise a negative error value.

Since: 3.1.5

Appendix E: API reference 431

gnutls x509 crt get private key usage period

[Function]int gnutls_x509_crt_get_private_key_usage_period
(gnutls x509 crt t cert, time t * activation, time t * expiration,
unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

activation: The activation time

expiration: The expiration time

critical: the extension status

This function will return the expiration and activation times of the private key of the
certificate. It relies on the PKIX extension 2.5.29.16 being present.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_REQUESTED_

DATA_NOT_AVAILABLE if the extension is not present, otherwise a negative error value.

gnutls x509 crt get proxy

[Function]int gnutls_x509_crt_get_proxy (gnutls x509 crt t cert, unsigned
int * critical, int * pathlen, char ** policyLanguage, char ** policy,
size t * sizeof_policy)

cert: should contain a gnutls_x509_crt_t structure

critical: will be non-zero if the extension is marked as critical

pathlen: pointer to output integer indicating path length (may be NULL), non-
negative error codes indicate a present pCPathLenConstraint field and the actual
value, -1 indicate that the field is absent.

policyLanguage: output variable with OID of policy language

policy : output variable with policy data

sizeof policy : output variable size of policy data

This function will get information from a proxy certificate. It reads the ProxyCertInfo
X.509 extension (1.3.6.1.5.5.7.1.14).

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls x509 crt get raw dn

[Function]int gnutls_x509_crt_get_raw_dn (gnutls x509 crt t cert,
gnutls datum t * dn)

cert: should contain a gnutls_x509_crt_t structure

dn: will hold the starting point of the DN

This function will return a pointer to the DER encoded DN structure and the length.
This points to allocated data that must be free’d using gnutls_free() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. or a negative error code on error.

Appendix E: API reference 432

gnutls x509 crt get raw issuer dn

[Function]int gnutls_x509_crt_get_raw_issuer_dn (gnutls x509 crt t cert,
gnutls datum t * dn)

cert: should contain a gnutls_x509_crt_t structure

dn: will hold the starting point of the DN

This function will return a pointer to the DER encoded DN structure and the length.
This points to allocated data that must be free’d using gnutls_free() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.or a negative error code on error.

gnutls x509 crt get serial

[Function]int gnutls_x509_crt_get_serial (gnutls x509 crt t cert, void *
result, size t * result_size)

cert: should contain a gnutls_x509_crt_t structure

result: The place where the serial number will be copied

result size: Holds the size of the result field.

This function will return the X.509 certificate’s serial number. This is obtained by
the X509 Certificate serialNumber field. Serial is not always a 32 or 64bit number.
Some CAs use large serial numbers, thus it may be wise to handle it as something
uint8 t.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt get signature

[Function]int gnutls_x509_crt_get_signature (gnutls x509 crt t cert, char *
sig, size t * sig_size)

cert: should contain a gnutls_x509_crt_t structure

sig : a pointer where the signature part will be copied (may be null).

sig size: initially holds the size of sig

This function will extract the signature field of a certificate.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. and a negative error code on error.

gnutls x509 crt get signature algorithm

[Function]int gnutls_x509_crt_get_signature_algorithm (gnutls x509 crt t
cert)

cert: should contain a gnutls_x509_crt_t structure

This function will return a value of the gnutls_sign_algorithm_t enumeration that
is the signature algorithm that has been used to sign this certificate.

Returns: a gnutls_sign_algorithm_t value, or a negative error code on error.

Appendix E: API reference 433

gnutls x509 crt get subject

[Function]int gnutls_x509_crt_get_subject (gnutls x509 crt t cert,
gnutls x509 dn t * dn)

cert: should contain a gnutls_x509_crt_t structure

dn: output variable with pointer to uint8 t DN.

Return the Certificate’s Subject DN as a gnutls_x509_dn_t data type, that can be
decoded using gnutls_x509_dn_get_rdn_ava() .

Note that dn should be treated as constant. Because it points into the cert object,
you should not use dn after cert is deallocated.

Returns: Returns 0 on success, or an error code.

gnutls x509 crt get subject alt name

[Function]int gnutls_x509_crt_get_subject_alt_name (gnutls x509 crt t
cert, unsigned int seq, void * san, size t * san_size, unsigned int *
critical)

cert: should contain a gnutls_x509_crt_t structure

seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)

san: is the place where the alternative name will be copied to

san size: holds the size of san.

critical: will be non-zero if the extension is marked as critical (may be null)

This function retrieves the Alternative Name (2.5.29.17), contained in the given cer-
tificate in the X509v3 Certificate Extensions.

When the SAN type is otherName, it will extract the data in the otherName’s value
field, and GNUTLS_SAN_OTHERNAME is returned. You may use gnutls_x509_crt_get_
subject_alt_othername_oid() to get the corresponding OID and the "virtual" SAN
types (e.g., GNUTLS_SAN_OTHERNAME_XMPP).

If an otherName OID is known, the data will be decoded. Otherwise the returned
data will be DER encoded, and you will have to decode it yourself. Currently, only
the RFC 3920 id-on-xmppAddr SAN is recognized.

Returns: the alternative subject name type on success, one of the enumerated
gnutls_x509_subject_alt_name_t . It will return GNUTLS_E_SHORT_MEMORY_

BUFFER if san_size is not large enough to hold the value. In that case
san_size will be updated with the required size. If the certificate does
not have an Alternative name with the specified sequence number then
GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is returned.

gnutls x509 crt get subject alt name2

[Function]int gnutls_x509_crt_get_subject_alt_name2 (gnutls x509 crt t
cert, unsigned int seq, void * san, size t * san_size, unsigned int *
san_type, unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

Appendix E: API reference 434

seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)

san: is the place where the alternative name will be copied to

san size: holds the size of ret.

san type: holds the type of the alternative name (one of gnutls x509 subject alt name t).

critical: will be non-zero if the extension is marked as critical (may be null)

This function will return the alternative names, contained in the given certificate. It
is the same as gnutls_x509_crt_get_subject_alt_name() except for the fact that
it will return the type of the alternative name in san_type even if the function fails
for some reason (i.e. the buffer provided is not enough).

Returns: the alternative subject name type on success, one of the enumerated
gnutls_x509_subject_alt_name_t . It will return GNUTLS_E_SHORT_MEMORY_

BUFFER if san_size is not large enough to hold the value. In that case
san_size will be updated with the required size. If the certificate does
not have an Alternative name with the specified sequence number then
GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is returned.

gnutls x509 crt get subject alt othername oid

[Function]int gnutls_x509_crt_get_subject_alt_othername_oid
(gnutls x509 crt t cert, unsigned int seq, void * oid, size t * oid_size)

cert: should contain a gnutls_x509_crt_t structure

seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)

oid: is the place where the otherName OID will be copied to

oid size: holds the size of ret.

This function will extract the type OID of an otherName Subject Alternative Name,
contained in the given certificate, and return the type as an enumerated element.

This function is only useful if gnutls_x509_crt_get_subject_alt_name() returned
GNUTLS_SAN_OTHERNAME .

If oid is null then only the size will be filled. The oid returned will be null terminated,
although oid_size will not account for the trailing null.

Returns: the alternative subject name type on success, one of the enumerated
gnutls x509 subject alt name t. For supported OIDs, it will return one of the virtual
(GNUTLS SAN OTHERNAME *) types, e.g. GNUTLS_SAN_OTHERNAME_XMPP ,
and GNUTLS_SAN_OTHERNAME for unknown OIDs. It will return GNUTLS_E_SHORT_

MEMORY_BUFFER if ian_size is not large enough to hold the value. In that case
ian_size will be updated with the required size. If the certificate does not have an
Alternative name with the specified sequence number and with the otherName type
then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is returned.

gnutls x509 crt get subject key id

[Function]int gnutls_x509_crt_get_subject_key_id (gnutls x509 crt t cert,
void * ret, size t * ret_size, unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

Appendix E: API reference 435

ret: The place where the identifier will be copied

ret size: Holds the size of the result field.

critical: will be non-zero if the extension is marked as critical (may be null)

This function will return the X.509v3 certificate’s subject key identifier. This is
obtained by the X.509 Subject Key identifier extension field (2.5.29.14).

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_REQUESTED_

DATA_NOT_AVAILABLE if the extension is not present, otherwise a negative error value.

gnutls x509 crt get subject unique id

[Function]int gnutls_x509_crt_get_subject_unique_id (gnutls x509 crt t
crt, char * buf, size t * buf_size)

crt: Holds the certificate

buf : user allocated memory buffer, will hold the unique id

buf size: size of user allocated memory buffer (on input), will hold actual size of the
unique ID on return.

This function will extract the subjectUniqueID value (if present) for the given certifi-
cate.

If the user allocated memory buffer is not large enough to hold the full subjectU-
niqueID, then a GNUTLS E SHORT MEMORY BUFFER error will be returned,
and buf size will be set to the actual length.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

gnutls x509 crt get version

[Function]int gnutls_x509_crt_get_version (gnutls x509 crt t cert)
cert: should contain a gnutls_x509_crt_t structure

This function will return the version of the specified Certificate.

Returns: version of certificate, or a negative error code on error.

gnutls x509 crt import

[Function]int gnutls_x509_crt_import (gnutls x509 crt t cert, const
gnutls datum t * data, gnutls x509 crt fmt t format)

cert: The structure to store the parsed certificate.

data: The DER or PEM encoded certificate.

format: One of DER or PEM

This function will convert the given DER or PEM encoded Certificate to the native
gnutls x509 crt t format. The output will be stored in cert .

If the Certificate is PEM encoded it should have a header of "X509 CERTIFICATE",
or "CERTIFICATE".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 436

gnutls x509 crt init

[Function]int gnutls_x509_crt_init (gnutls x509 crt t * cert)
cert: The structure to be initialized

This function will initialize an X.509 certificate structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt list import

[Function]int gnutls_x509_crt_list_import (gnutls x509 crt t * certs,
unsigned int * cert_max, const gnutls datum t * data, gnutls x509 crt fmt t
format, unsigned int flags)

certs: The structures to store the parsed certificate. Must not be initialized.

cert max: Initially must hold the maximum number of certs. It will be updated with
the number of certs available.

data: The PEM encoded certificate.

format: One of DER or PEM.

flags: must be (0) or an OR’d sequence of gnutls certificate import flags.

This function will convert the given PEM encoded certificate list to the native
gnutls x509 crt t format. The output will be stored in certs . They will be
automatically initialized.

The flag GNUTLS_X509_CRT_LIST_IMPORT_FAIL_IF_EXCEED will cause import to fail
if the certificates in the provided buffer are more than the available structures. The
GNUTLS_X509_CRT_LIST_FAIL_IF_UNSORTED flag will cause the function to fail if the
provided list is not sorted from subject to issuer.

If the Certificate is PEM encoded it should have a header of "X509 CERTIFICATE",
or "CERTIFICATE".

Returns: the number of certificates read or a negative error value.

gnutls x509 crt list import2

[Function]int gnutls_x509_crt_list_import2 (gnutls x509 crt t ** certs,
unsigned int * size, const gnutls datum t * data, gnutls x509 crt fmt t
format, unsigned int flags)

certs: The structures to store the parsed certificate. Must not be initialized.

size: It will contain the size of the list.

data: The PEM encoded certificate.

format: One of DER or PEM.

flags: must be (0) or an OR’d sequence of gnutls certificate import flags.

This function will convert the given PEM encoded certificate list to the native
gnutls x509 crt t format. The output will be stored in certs which will allocated
and initialized.

If the Certificate is PEM encoded it should have a header of "X509 CERTIFICATE",
or "CERTIFICATE".

Appendix E: API reference 437

To deinitialize certs , you need to deinitialize each crt structure independently, and
use gnutls_free() at

Returns: the number of certificates read or a negative error value.

Since: 3.0

gnutls x509 crt list verify

[Function]int gnutls_x509_crt_list_verify (const gnutls x509 crt t *
cert_list, int cert_list_length, const gnutls x509 crt t * CA_list, int
CA_list_length, const gnutls x509 crl t * CRL_list, int
CRL_list_length, unsigned int flags, unsigned int * verify)

cert list: is the certificate list to be verified

cert list length: holds the number of certificate in cert list

CA list: is the CA list which will be used in verification

CA list length: holds the number of CA certificate in CA list

CRL list: holds a list of CRLs.

CRL list length: the length of CRL list.

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls certificate verify flags enumerations.

verify : will hold the certificate verification output.

This function will try to verify the given certificate list and return its status. If no
flags are specified (0), this function will use the basicConstraints (2.5.29.19) PKIX
extension. This means that only a certificate authority is allowed to sign a certificate.

You must also check the peer’s name in order to check if the verified certificate belongs
to the actual peer.

The certificate verification output will be put in verify and will be one or more of
the gnutls certificate status t enumerated elements bitwise or’d. For a more detailed
verification status use gnutls_x509_crt_verify() per list element.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt print

[Function]int gnutls_x509_crt_print (gnutls x509 crt t cert,
gnutls certificate print formats t format, gnutls datum t * out)

cert: The structure to be printed

format: Indicate the format to use

out: Newly allocated datum with null terminated string.

This function will pretty print a X.509 certificate, suitable for display to a human.

If the format is GNUTLS_CRT_PRINT_FULL then all fields of the certificate will be
output, on multiple lines. The GNUTLS_CRT_PRINT_ONELINE format will generate
one line with some selected fields, which is useful for logging purposes.

The output out needs to be deallocated using gnutls_free() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 438

gnutls x509 crt set activation time

[Function]int gnutls_x509_crt_set_activation_time (gnutls x509 crt t
cert, time t act_time)

cert: a certificate of type gnutls_x509_crt_t

act time: The actual time

This function will set the time this Certificate was or will be activated.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set authority info access

[Function]int gnutls_x509_crt_set_authority_info_access
(gnutls x509 crt t crt, int what, gnutls datum t * data)

crt: Holds the certificate

what: what data to get, a gnutls_info_access_what_t type.

data: output data to be freed with gnutls_free() .

This function sets the Authority Information Access (AIA) extension, see RFC 5280
section 4.2.2.1 for more information.

The type of data stored in data is specified via what which should be gnutls_info_
access_what_t values.

If what is GNUTLS_IA_OCSP_URI , data will hold the OCSP URI. If what is GNUTLS_
IA_CAISSUERS_URI , data will hold the caIssuers URI.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

gnutls x509 crt set authority key id

[Function]int gnutls_x509_crt_set_authority_key_id (gnutls x509 crt t
cert, const void * id, size t id_size)

cert: a certificate of type gnutls_x509_crt_t

id: The key ID

id size: Holds the size of the key ID field.

This function will set the X.509 certificate’s authority key ID extension. Only the
keyIdentifier field can be set with this function.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set basic constraints

[Function]int gnutls_x509_crt_set_basic_constraints (gnutls x509 crt t
crt, unsigned int ca, int pathLenConstraint)

crt: a certificate of type gnutls_x509_crt_t

ca: true(1) or false(0). Depending on the Certificate authority status.

Appendix E: API reference 439

pathLenConstraint: non-negative error codes indicate maximum length of path, and
negative error codes indicate that the pathLenConstraints field should not be present.

This function will set the basicConstraints certificate extension.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set ca status

[Function]int gnutls_x509_crt_set_ca_status (gnutls x509 crt t crt,
unsigned int ca)

crt: a certificate of type gnutls_x509_crt_t

ca: true(1) or false(0). Depending on the Certificate authority status.

This function will set the basicConstraints certificate extension. Use gnutls_x509_

crt_set_basic_constraints() if you want to control the pathLenConstraint field
too.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set crl dist points

[Function]int gnutls_x509_crt_set_crl_dist_points (gnutls x509 crt t crt,
gnutls x509 subject alt name t type, const void * data_string, unsigned int
reason_flags)

crt: a certificate of type gnutls_x509_crt_t

type: is one of the gnutls x509 subject alt name t enumerations

data string : The data to be set

reason flags: revocation reasons

This function will set the CRL distribution points certificate extension.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set crl dist points2

[Function]int gnutls_x509_crt_set_crl_dist_points2 (gnutls x509 crt t
crt, gnutls x509 subject alt name t type, const void * data, unsigned int
data_size, unsigned int reason_flags)

crt: a certificate of type gnutls_x509_crt_t

type: is one of the gnutls x509 subject alt name t enumerations

data: The data to be set

data size: The data size

reason flags: revocation reasons

This function will set the CRL distribution points certificate extension.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.6.0

Appendix E: API reference 440

gnutls x509 crt set crq

[Function]int gnutls_x509_crt_set_crq (gnutls x509 crt t crt,
gnutls x509 crq t crq)

crt: a certificate of type gnutls_x509_crt_t

crq: holds a certificate request

This function will set the name and public parameters as well as the extensions from
the given certificate request to the certificate. Only RSA keys are currently supported.

Note that this function will only set the crq if it is self signed and the signature is
correct. See gnutls_x509_crq_sign2() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set crq extensions

[Function]int gnutls_x509_crt_set_crq_extensions (gnutls x509 crt t crt,
gnutls x509 crq t crq)

crt: a certificate of type gnutls_x509_crt_t

crq: holds a certificate request

This function will set extensions from the given request to the certificate.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.8.0

gnutls x509 crt set dn

[Function]int gnutls_x509_crt_set_dn (gnutls x509 crt t crt, const char * dn,
const char ** err)

crt: a certificate of type gnutls_x509_crt_t

dn: a comma separated DN string (RFC4514)

err: indicates the error position (if any)

This function will set the DN on the provided certificate. The input string should be
plain ASCII or UTF-8 encoded.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set dn by oid

[Function]int gnutls_x509_crt_set_dn_by_oid (gnutls x509 crt t crt, const
char * oid, unsigned int raw_flag, const void * name, unsigned int
sizeof_name)

crt: a certificate of type gnutls_x509_crt_t

oid: holds an Object Identifier in a null terminated string

raw flag : must be 0, or 1 if the data are DER encoded

name: a pointer to the name

Appendix E: API reference 441

sizeof name: holds the size of name

This function will set the part of the name of the Certificate subject, specified by the
given OID. The input string should be ASCII or UTF-8 encoded.

Some helper macros with popular OIDs can be found in gnutls/x509.h With this
function you can only set the known OIDs. You can test for known OIDs using
gnutls_x509_dn_oid_known() . For OIDs that are not known (by gnutls) you should
properly DER encode your data, and call this function with raw_flag set.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set expiration time

[Function]int gnutls_x509_crt_set_expiration_time (gnutls x509 crt t
cert, time t exp_time)

cert: a certificate of type gnutls_x509_crt_t

exp time: The actual time

This function will set the time this Certificate will expire. Setting an expiration time
to (time t)-1 or to GNUTLS_X509_NO_WELL_DEFINED_EXPIRATION will set to the no
well-defined expiration date value.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set extension by oid

[Function]int gnutls_x509_crt_set_extension_by_oid (gnutls x509 crt t
crt, const char * oid, const void * buf, size t sizeof_buf, unsigned int
critical)

crt: a certificate of type gnutls_x509_crt_t

oid: holds an Object Identified in null terminated string

buf : a pointer to a DER encoded data

sizeof buf : holds the size of buf

critical: should be non-zero if the extension is to be marked as critical

This function will set an the extension, by the specified OID, in the certificate. The
extension data should be binary data DER encoded.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set issuer alt name

[Function]int gnutls_x509_crt_set_issuer_alt_name (gnutls x509 crt t crt,
gnutls x509 subject alt name t type, const void * data, unsigned int
data_size, unsigned int flags)

crt: a certificate of type gnutls_x509_crt_t

type: is one of the gnutls x509 subject alt name t enumerations

data: The data to be set

Appendix E: API reference 442

data size: The size of data to be set

flags: GNUTLS FSAN SET to clear previous data or GNUTLS FSAN APPEND to
append.

This function will set the issuer alternative name certificate extension. It can set the
same types as gnutls_x509_crt_set_subject_alt_name() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 crt set issuer dn

[Function]int gnutls_x509_crt_set_issuer_dn (gnutls x509 crt t crt, const
char * dn, const char ** err)

crt: a certificate of type gnutls_x509_crt_t

dn: a comma separated DN string (RFC4514)

err: indicates the error position (if any)

This function will set the DN on the provided certificate. The input string should be
plain ASCII or UTF-8 encoded.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set issuer dn by oid

[Function]int gnutls_x509_crt_set_issuer_dn_by_oid (gnutls x509 crt t
crt, const char * oid, unsigned int raw_flag, const void * name, unsigned int
sizeof_name)

crt: a certificate of type gnutls_x509_crt_t

oid: holds an Object Identifier in a null terminated string

raw flag : must be 0, or 1 if the data are DER encoded

name: a pointer to the name

sizeof name: holds the size of name

This function will set the part of the name of the Certificate issuer, specified by the
given OID. The input string should be ASCII or UTF-8 encoded.

Some helper macros with popular OIDs can be found in gnutls/x509.h With this
function you can only set the known OIDs. You can test for known OIDs using
gnutls_x509_dn_oid_known() . For OIDs that are not known (by gnutls) you should
properly DER encode your data, and call this function with raw_flag set.

Normally you do not need to call this function, since the signing operation will copy
the signer’s name as the issuer of the certificate.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 443

gnutls x509 crt set issuer unique id

[Function]int gnutls_x509_crt_set_issuer_unique_id (gnutls x509 crt t
cert, const void * id, size t id_size)

cert: a certificate of type gnutls_x509_crt_t

id: The unique ID

id size: Holds the size of the unique ID.

This function will set the X.509 certificate’s issuer unique ID field.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set key

[Function]int gnutls_x509_crt_set_key (gnutls x509 crt t crt,
gnutls x509 privkey t key)

crt: a certificate of type gnutls_x509_crt_t

key : holds a private key

This function will set the public parameters from the given private key to the certifi-
cate. Only RSA keys are currently supported.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set key purpose oid

[Function]int gnutls_x509_crt_set_key_purpose_oid (gnutls x509 crt t
cert, const void * oid, unsigned int critical)

cert: a certificate of type gnutls_x509_crt_t

oid: a pointer to a null terminated string that holds the OID

critical: Whether this extension will be critical or not

This function will set the key purpose OIDs of the Certificate. These are stored in
the Extended Key Usage extension (2.5.29.37) See the GNUTLS KP * definitions for
human readable names.

Subsequent calls to this function will append OIDs to the OID list.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls x509 crt set key usage

[Function]int gnutls_x509_crt_set_key_usage (gnutls x509 crt t crt,
unsigned int usage)

crt: a certificate of type gnutls_x509_crt_t

usage: an ORed sequence of the GNUTLS KEY * elements.

This function will set the keyUsage certificate extension.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 444

gnutls x509 crt set name constraints

[Function]int gnutls_x509_crt_set_name_constraints (gnutls x509 crt t
crt, gnutls x509 name constraints t nc, unsigned int critical)

crt: The certificate structure

nc: The nameconstraints structure

critical: whether this extension will be critical

This function will set the provided name constraints to the certificate extension list.
This extension is always marked as critical.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 crt set pin function

[Function]void gnutls_x509_crt_set_pin_function (gnutls x509 crt t crt,
gnutls pin callback t fn, void * userdata)

crt: The certificate structure

fn: the callback

userdata: data associated with the callback

This function will set a callback function to be used when it is required to access
a protected object. This function overrides the global function set using gnutls_

pkcs11_set_pin_function() .

Note that this callback is currently used only during the import of a PKCS 11 cer-
tificate with gnutls_x509_crt_import_pkcs11_url() .

Since: 3.1.0

gnutls x509 crt set policy

[Function]int gnutls_x509_crt_set_policy (gnutls x509 crt t crt, const struct
gnutls x509 policy st * policy, unsigned int critical)

crt: should contain a gnutls_x509_crt_t structure

policy : A pointer to a policy structure.

critical: use non-zero if the extension is marked as critical

This function will set the certificate policy extension (2.5.29.32). Multiple calls to
this function append a new policy.

Note the maximum text size for the qualifier GNUTLS_X509_QUALIFIER_NOTICE is
200 characters. This function will fail with GNUTLS_E_INVALID_REQUEST if this is
exceeded.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.5

Appendix E: API reference 445

gnutls x509 crt set private key usage period

[Function]int gnutls_x509_crt_set_private_key_usage_period
(gnutls x509 crt t crt, time t activation, time t expiration)

crt: a certificate of type gnutls_x509_crt_t

activation: The activation time

expiration: The expiration time

This function will set the private key usage period extension (2.5.29.16).

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set proxy

[Function]int gnutls_x509_crt_set_proxy (gnutls x509 crt t crt, int
pathLenConstraint, const char * policyLanguage, const char * policy,
size t sizeof_policy)

crt: a certificate of type gnutls_x509_crt_t

pathLenConstraint: non-negative error codes indicate maximum length of path, and
negative error codes indicate that the pathLenConstraints field should not be present.

policyLanguage: OID describing the language of policy .

policy : uint8 t byte array with policy language, can be NULL

sizeof policy : size of policy .

This function will set the proxyCertInfo extension.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set proxy dn

[Function]int gnutls_x509_crt_set_proxy_dn (gnutls x509 crt t crt,
gnutls x509 crt t eecrt, unsigned int raw_flag, const void * name, unsigned
int sizeof_name)

crt: a gnutls x509 crt t structure with the new proxy cert

eecrt: the end entity certificate that will be issuing the proxy

raw flag : must be 0, or 1 if the CN is DER encoded

name: a pointer to the CN name, may be NULL (but MUST then be added later)

sizeof name: holds the size of name

This function will set the subject in crt to the end entity’s eecrt subject name, and
add a single Common Name component name of size sizeof_name . This corresponds
to the required proxy certificate naming style. Note that if name is NULL , you MUST
set it later by using gnutls_x509_crt_set_dn_by_oid() or similar.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 446

gnutls x509 crt set serial

[Function]int gnutls_x509_crt_set_serial (gnutls x509 crt t cert, const void
* serial, size t serial_size)

cert: a certificate of type gnutls_x509_crt_t

serial: The serial number

serial size: Holds the size of the serial field.

This function will set the X.509 certificate’s serial number. While the serial number
is an integer, it is often handled as an opaque field by several CAs. For this reason
this function accepts any kind of data as a serial number. To be consistent with
the X.509/PKIX specifications the provided serial should be a big-endian positive
number (i.e. it’s leftmost bit should be zero).

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set subject alt name

[Function]int gnutls_x509_crt_set_subject_alt_name (gnutls x509 crt t
crt, gnutls x509 subject alt name t type, const void * data, unsigned int
data_size, unsigned int flags)

crt: a certificate of type gnutls_x509_crt_t

type: is one of the gnutls x509 subject alt name t enumerations

data: The data to be set

data size: The size of data to be set

flags: GNUTLS FSAN SET to clear previous data or GNUTLS FSAN APPEND to
append.

This function will set the subject alternative name certificate extension. It can set
the following types:

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.6.0

gnutls x509 crt set subject alternative name

[Function]int gnutls_x509_crt_set_subject_alternative_name
(gnutls x509 crt t crt, gnutls x509 subject alt name t type, const char *
data_string)

crt: a certificate of type gnutls_x509_crt_t

type: is one of the gnutls x509 subject alt name t enumerations

data string : The data to be set, a (0) terminated string

This function will set the subject alternative name certificate extension. This function
assumes that data can be expressed as a null terminated string.

The name of the function is unfortunate since it is incosistent with gnutls_x509_

crt_get_subject_alt_name() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 447

gnutls x509 crt set subject key id

[Function]int gnutls_x509_crt_set_subject_key_id (gnutls x509 crt t cert,
const void * id, size t id_size)

cert: a certificate of type gnutls_x509_crt_t

id: The key ID

id size: Holds the size of the subject key ID field.

This function will set the X.509 certificate’s subject key ID extension.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set subject unique id

[Function]int gnutls_x509_crt_set_subject_unique_id (gnutls x509 crt t
cert, const void * id, size t id_size)

cert: a certificate of type gnutls_x509_crt_t

id: The unique ID

id size: Holds the size of the unique ID.

This function will set the X.509 certificate’s subject unique ID field.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set version

[Function]int gnutls_x509_crt_set_version (gnutls x509 crt t crt, unsigned
int version)

crt: a certificate of type gnutls_x509_crt_t

version: holds the version number. For X.509v1 certificates must be 1.

This function will set the version of the certificate. This must be one for X.509 version
1, and so on. Plain certificates without extensions must have version set to one.

To create well-formed certificates, you must specify version 3 if you use any certifi-
cate extensions. Extensions are created by functions such as gnutls_x509_crt_set_
subject_alt_name() or gnutls_x509_crt_set_key_usage() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt sign

[Function]int gnutls_x509_crt_sign (gnutls x509 crt t crt, gnutls x509 crt t
issuer, gnutls x509 privkey t issuer_key)

crt: a certificate of type gnutls_x509_crt_t

issuer: is the certificate of the certificate issuer

issuer key : holds the issuer’s private key

This function is the same a gnutls_x509_crt_sign2() with no flags, and SHA1 as
the hash algorithm.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 448

gnutls x509 crt sign2

[Function]int gnutls_x509_crt_sign2 (gnutls x509 crt t crt, gnutls x509 crt t
issuer, gnutls x509 privkey t issuer_key, gnutls digest algorithm t dig,
unsigned int flags)

crt: a certificate of type gnutls_x509_crt_t

issuer: is the certificate of the certificate issuer

issuer key : holds the issuer’s private key

dig : The message digest to use, GNUTLS_DIG_SHA1 is a safe choice

flags: must be 0

This function will sign the certificate with the issuer’s private key, and will copy the
issuer’s information into the certificate.

This must be the last step in a certificate generation since all the previously set
parameters are now signed.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt verify

[Function]int gnutls_x509_crt_verify (gnutls x509 crt t cert, const
gnutls x509 crt t * CA_list, int CA_list_length, unsigned int flags,
unsigned int * verify)

cert: is the certificate to be verified

CA list: is one certificate that is considered to be trusted one

CA list length: holds the number of CA certificate in CA list

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls certificate verify flags enumerations.

verify : will hold the certificate verification output.

This function will try to verify the given certificate and return its status. Note that
a verification error does not imply a negative return status. In that case the verify

status is set.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 dn deinit

[Function]void gnutls_x509_dn_deinit (gnutls x509 dn t dn)
dn: a DN uint8 t object pointer.

This function deallocates the DN object as returned by gnutls_x509_dn_import() .

Since: 2.4.0

Appendix E: API reference 449

gnutls x509 dn export

[Function]int gnutls_x509_dn_export (gnutls x509 dn t dn,
gnutls x509 crt fmt t format, void * output_data, size t *
output_data_size)

dn: Holds the uint8 t DN object

format: the format of output params. One of PEM or DER.

output data: will contain a DN PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the DN to DER or PEM format.

If the buffer provided is not long enough to hold the output, then * output_data_size
is updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN NAME".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 dn export2

[Function]int gnutls_x509_dn_export2 (gnutls x509 dn t dn,
gnutls x509 crt fmt t format, gnutls datum t * out)

dn: Holds the uint8 t DN object

format: the format of output params. One of PEM or DER.

out: will contain a DN PEM or DER encoded

This function will export the DN to DER or PEM format.

The output buffer is allocated using gnutls_malloc() .

If the structure is PEM encoded, it will have a header of "BEGIN NAME".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.3

gnutls x509 dn get rdn ava

[Function]int gnutls_x509_dn_get_rdn_ava (gnutls x509 dn t dn, int irdn, int
iava, gnutls x509 ava st * ava)

dn: a pointer to DN

irdn: index of RDN

iava: index of AVA.

ava: Pointer to structure which will hold output information.

Get pointers to data within the DN. The format of the ava structure is shown below.

struct gnutls x509 ava st { gnutls datum t oid; gnutls datum t value; unsigned long
value tag; };

The X.509 distinguished name is a sequence of sequences of strings and this is what
the irdn and iava indexes model.

Appendix E: API reference 450

Note that ava will contain pointers into the dn structure which in turns points to the
original certificate. Thus you should not modify any data or deallocate any of those.

This is a low-level function that requires the caller to do the value conversions when
necessary (e.g. from UCS-2).

Returns: Returns 0 on success, or an error code.

gnutls x509 dn import

[Function]int gnutls_x509_dn_import (gnutls x509 dn t dn, const
gnutls datum t * data)

dn: the structure that will hold the imported DN

data: should contain a DER encoded RDN sequence

This function parses an RDN sequence and stores the result to a gnutls_x509_dn_t

structure. The structure must have been initialized with gnutls_x509_dn_init() .
You may use gnutls_x509_dn_get_rdn_ava() to decode the DN.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.4.0

gnutls x509 dn init

[Function]int gnutls_x509_dn_init (gnutls x509 dn t * dn)
dn: the object to be initialized

This function initializes a gnutls_x509_dn_t structure.

The object returned must be deallocated using gnutls_x509_dn_deinit() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.4.0

gnutls x509 dn oid known

[Function]int gnutls_x509_dn_oid_known (const char * oid)
oid: holds an Object Identifier in a null terminated string

This function will inform about known DN OIDs. This is useful since functions like
gnutls_x509_crt_set_dn_by_oid() use the information on known OIDs to properly
encode their input. Object Identifiers that are not known are not encoded by these
functions, and their input is stored directly into the ASN.1 structure. In that case of
unknown OIDs, you have the responsibility of DER encoding your data.

Returns: 1 on known OIDs and 0 otherwise.

gnutls x509 dn oid name

[Function]const char * gnutls_x509_dn_oid_name (const char * oid, unsigned
int flags)

oid: holds an Object Identifier in a null terminated string

flags: 0 or GNUTLS X509 DN OID *

Appendix E: API reference 451

This function will return the name of a known DN OID. If GNUTLS_X509_DN_OID_
RETURN_OID is specified this function will return the given OID if no descriptive name
has been found.

Returns: A null terminated string or NULL otherwise.

Since: 3.0

gnutls x509 ext deinit

[Function]void gnutls_x509_ext_deinit (gnutls x509 ext st * ext)
ext: The extensions structure

This function will deinitialize an extensions structure.

Since: 3.3.8

gnutls x509 ext export aia

[Function]int gnutls_x509_ext_export_aia (gnutls x509 aia t aia,
gnutls datum t * ext)

aia: The authority info access structure

ext: The DER-encoded extension data; must be freed using gnutls_free() .

This function will DER encode the Authority Information Access (AIA) extension;
see RFC 5280 section 4.2.2.1 for more information on the extension.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 ext export authority key id

[Function]int gnutls_x509_ext_export_authority_key_id (gnutls x509 aki t
aki, gnutls datum t * ext)

aki: An initialized authority key identifier structure

ext: The DER-encoded extension data; must be freed using gnutls_free() .

This function will convert the provided key identifier to a DER-encoded PKIX Author-
ityKeyIdentifier extension. The output data in ext will be allocated using gnutls_

malloc() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 ext export basic constraints

[Function]int gnutls_x509_ext_export_basic_constraints (unsigned int ca,
int pathlen, gnutls datum t * ext)

ca: non-zero for a CA

pathlen: The path length constraint (set to -1 for no constraint)

ext: The DER-encoded extension data; must be freed using gnutls_free() .

Appendix E: API reference 452

This function will convert the parameters provided to a basic constraints DER en-
coded extension (2.5.29.19). The ext data will be allocated using gnutls_malloc()

.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 ext export crl dist points

[Function]int gnutls_x509_ext_export_crl_dist_points
(gnutls x509 crl dist points t cdp, gnutls datum t * ext)

cdp: A pointer to an initialized CRL distribution points structure.

ext: The DER-encoded extension data; must be freed using gnutls_free() .

This function will convert the provided policies, to a certificate policy DER encoded
extension (2.5.29.31).

The ext data will be allocated using gnutls_malloc() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 ext export key purposes

[Function]int gnutls_x509_ext_export_key_purposes
(gnutls x509 key purposes t p, gnutls datum t * ext)

p: The key purposes structure

ext: The DER-encoded extension data; must be freed using gnutls_free() .

This function will convert the key purposes structure to a DER-encoded PKIX Ex-
tKeyUsageSyntax (2.5.29.37) extension. The output data in ext will be allocated
usin gnutls_malloc() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 ext export key usage

[Function]int gnutls_x509_ext_export_key_usage (unsigned int usage,
gnutls datum t * ext)

usage: an ORed sequence of the GNUTLS KEY * elements.

ext: The DER-encoded extension data; must be freed using gnutls_free() .

This function will convert the keyUsage bit string to a DER encoded PKIX extension.
The ext data will be allocated using gnutls_malloc() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

Appendix E: API reference 453

gnutls x509 ext export name constraints

[Function]int gnutls_x509_ext_export_name_constraints
(gnutls x509 name constraints t nc, gnutls datum t * ext)

nc: The nameconstraints structure

ext: The DER-encoded extension data; must be freed using gnutls_free() .

This function will convert the provided name constraints structure to a DER-encoded
PKIX NameConstraints (2.5.29.30) extension. The output data in ext will be allo-
cated usin gnutls_malloc() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 ext export policies

[Function]int gnutls_x509_ext_export_policies (gnutls x509 policies t
policies, gnutls datum t * ext)

policies: A pointer to an initialized policies structure.

ext: The DER-encoded extension data; must be freed using gnutls_free() .

This function will convert the provided policies, to a certificate policy DER encoded
extension (2.5.29.32).

The ext data will be allocated using gnutls_malloc() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 ext export private key usage period

[Function]int gnutls_x509_ext_export_private_key_usage_period (time t
activation, time t expiration, gnutls datum t * ext)

activation: The activation time

expiration: The expiration time

ext: The DER-encoded extension data; must be freed using gnutls_free() .

This function will convert the periods provided to a private key usage DER encoded
extension (2.5.29.16). The ext data will be allocated using gnutls_malloc() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 ext export proxy

[Function]int gnutls_x509_ext_export_proxy (int pathLenConstraint, const
char * policyLanguage, const char * policy, size t sizeof_policy,
gnutls datum t * ext)

pathLenConstraint: non-negative error codes indicate maximum length of path, and
negative error codes indicate that the pathLenConstraints field should not be present.

Appendix E: API reference 454

policyLanguage: OID describing the language of policy .

policy : uint8 t byte array with policy language, can be NULL

sizeof policy : size of policy .

ext: The DER-encoded extension data; must be freed using gnutls_free() .

This function will convert the parameters provided to a proxyCertInfo extension.

The ext data will be allocated using gnutls_malloc() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 ext export subject alt names

[Function]int gnutls_x509_ext_export_subject_alt_names
(gnutls subject alt names t sans, gnutls datum t * ext)

sans: The alternative names structure

ext: The DER-encoded extension data; must be freed using gnutls_free() .

This function will convert the provided alternative names structure to a DER-encoded
SubjectAltName PKIX extension. The output data in ext will be allocated using
gnutls_malloc() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 ext export subject key id

[Function]int gnutls_x509_ext_export_subject_key_id (const
gnutls datum t * id, gnutls datum t * ext)

id: The key identifier

ext: The DER-encoded extension data; must be freed using gnutls_free() .

This function will convert the provided key identifier to a DER-encoded PKIX Sub-
jectKeyIdentifier extension. The output data in ext will be allocated using gnutls_

malloc() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 ext import aia

[Function]int gnutls_x509_ext_import_aia (const gnutls datum t * ext,
gnutls x509 aia t aia, unsigned int flags)

ext: The DER-encoded extension data

aia: The authority info access structure

flags: should be zero

Appendix E: API reference 455

This function extracts the Authority Information Access (AIA) extension from the
provided DER-encoded data; see RFC 5280 section 4.2.2.1 for more information on
the extension. The AIA extension holds a sequence of AccessDescription (AD) data.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 ext import authority key id

[Function]int gnutls_x509_ext_import_authority_key_id (const
gnutls datum t * ext, gnutls x509 aki t aki, unsigned int flags)

ext: a DER encoded extension

aki: An initialized authority key identifier structure

flags: should be zero

This function will return the subject key ID stored in the provided AuthorityKeyI-
dentifier extension.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_REQUESTED_

DATA_NOT_AVAILABLE if the extension is not present, otherwise a negative error value.

Since: 3.3.0

gnutls x509 ext import basic constraints

[Function]int gnutls_x509_ext_import_basic_constraints (const
gnutls datum t * ext, unsigned int * ca, int * pathlen)

ext: the DER encoded extension data

ca: will be non zero if the CA status is true

pathlen: the path length constraint; will be set to -1 for no limit

This function will return the CA status and path length constraint as written in the
PKIX extension 2.5.29.19.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 ext import crl dist points

[Function]int gnutls_x509_ext_import_crl_dist_points (const
gnutls datum t * ext, gnutls x509 crl dist points t cdp, unsigned int flags)

ext: the DER encoded extension data

cdp: A pointer to an initialized CRL distribution points structure.

flags: should be zero

This function will extract the CRL distribution points extension (2.5.29.31) and store
it into the provided structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

Appendix E: API reference 456

gnutls x509 ext import key purposes

[Function]int gnutls_x509_ext_import_key_purposes (const gnutls datum t *
ext, gnutls x509 key purposes t p, unsigned int flags)

ext: The DER-encoded extension data

p: The key purposes structure

flags: should be zero

This function will extract the key purposes in the provided DER-encoded
ExtKeyUsageSyntax PKIX extension, to a gnutls_x509_key_purposes_t structure.
The structure must be initialized.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 ext import key usage

[Function]int gnutls_x509_ext_import_key_usage (const gnutls datum t *
ext, unsigned int * key_usage)

ext: the DER encoded extension data

key usage: where the key usage bits will be stored

This function will return certificate’s key usage, by reading the DER data of the
keyUsage X.509 extension (2.5.29.15). The key usage value will ORed values
of the: GNUTLS_KEY_DIGITAL_SIGNATURE , GNUTLS_KEY_NON_REPUDIATION ,
GNUTLS_KEY_KEY_ENCIPHERMENT , GNUTLS_KEY_DATA_ENCIPHERMENT , GNUTLS_

KEY_KEY_AGREEMENT , GNUTLS_KEY_KEY_CERT_SIGN , GNUTLS_KEY_CRL_SIGN ,
GNUTLS_KEY_ENCIPHER_ONLY , GNUTLS_KEY_DECIPHER_ONLY .

Returns: the certificate key usage, or a negative error code in case of parsing error. If
the certificate does not contain the keyUsage extension GNUTLS_E_REQUESTED_DATA_

NOT_AVAILABLE will be returned.

Since: 3.3.0

gnutls x509 ext import name constraints

[Function]int gnutls_x509_ext_import_name_constraints (const
gnutls datum t * ext, gnutls x509 name constraints t nc, unsigned int flags)

ext: a DER encoded extension

nc: The nameconstraints intermediate structure

flags: zero or GNUTLS_NAME_CONSTRAINTS_FLAG_APPEND

This function will return an intermediate structure containing the name constraints of
the provided NameConstraints extension. That structure can be used in combination
with gnutls_x509_name_constraints_check() to verify whether a server’s name is
in accordance with the constraints.

When the flags is set to GNUTLS_NAME_CONSTRAINTS_FLAG_APPEND , then if the nc

structure is empty this function will behave identically as if the flag was not set.

Appendix E: API reference 457

Otherwise if there are elements in the nc structure then only the excluded constraints
will be appended to the constraints.

Note that nc must be initialized prior to calling this function.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_REQUESTED_

DATA_NOT_AVAILABLE if the extension is not present, otherwise a negative error value.

Since: 3.3.0

gnutls x509 ext import policies

[Function]int gnutls_x509_ext_import_policies (const gnutls datum t * ext,
gnutls x509 policies t policies, unsigned int flags)

ext: the DER encoded extension data

policies: A pointer to an initialized policies structures.

flags: should be zero

This function will extract the certificate policy extension (2.5.29.32) and store it the
provided structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 ext import private key usage period

[Function]int gnutls_x509_ext_import_private_key_usage_period (const
gnutls datum t * ext, time t * activation, time t * expiration)

ext: the DER encoded extension data

activation: Will hold the activation time

expiration: Will hold the expiration time

This function will return the expiration and activation times of the private key as
written in the PKIX extension 2.5.29.16.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 ext import proxy

[Function]int gnutls_x509_ext_import_proxy (const gnutls datum t * ext, int
* pathlen, char ** policyLanguage, char ** policy, size t *
sizeof_policy)

ext: the DER encoded extension data

pathlen: pointer to output integer indicating path length (may be NULL), non-
negative error codes indicate a present pCPathLenConstraint field and the actual
value, -1 indicate that the field is absent.

policyLanguage: output variable with OID of policy language

policy : output variable with policy data

Appendix E: API reference 458

sizeof policy : output variable size of policy data

This function will return the information from a proxy certificate extension. It reads
the ProxyCertInfo X.509 extension (1.3.6.1.5.5.7.1.14). The policyLanguage and
policy values must be deinitialized using gnutls_free() after use.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 ext import subject alt names

[Function]int gnutls_x509_ext_import_subject_alt_names (const
gnutls datum t * ext, gnutls subject alt names t sans, unsigned int flags)

ext: The DER-encoded extension data

sans: The alternative names structure

flags: should be zero

This function will export the alternative names in the provided DER-encoded Sub-
jectAltName PKIX extension, to a gnutls_subject_alt_names_t structure. The
structure must have been initialized.

This function will succeed even if there no subject alternative names in the structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 ext import subject key id

[Function]int gnutls_x509_ext_import_subject_key_id (const
gnutls datum t * ext, gnutls datum t * id)

ext: a DER encoded extension

id: will contain the subject key ID

This function will return the subject key ID stored in the provided SubjectKeyIden-
tifier extension. The ID will be allocated using gnutls_malloc() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_REQUESTED_

DATA_NOT_AVAILABLE if the extension is not present, otherwise a negative error value.

Since: 3.3.0

gnutls x509 ext print

[Function]int gnutls_x509_ext_print (gnutls x509 ext st * exts, unsigned int
exts_size, gnutls certificate print formats t format, gnutls datum t * out)

exts: The structures to be printed

exts size: the number of available structures

format: Indicate the format to use

out: Newly allocated datum with null terminated string.

This function will pretty print X.509 certificate extensions, suitable for display to a
human.

Appendix E: API reference 459

The output out needs to be deallocated using gnutls_free() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 key purpose deinit

[Function]void gnutls_x509_key_purpose_deinit (gnutls x509 key purposes t
p)

p: The key purposes structure

This function will deinitialize an alternative names structure.

Since: 3.3.0

gnutls x509 key purpose get

[Function]int gnutls_x509_key_purpose_get (gnutls x509 key purposes t p,
unsigned idx, gnutls datum t * oid)

p: The key purposes structure

idx: The index of the key purpose to retrieve

oid: Will hold the object identifier of the key purpose (to be treated as constant)

This function will retrieve the specified by the index key purpose in the purposes
structure. The object identifier will be a null terminated string.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_REQUESTED_

DATA_NOT_AVAILABLE if the index is out of bounds, otherwise a negative error value.

Since: 3.3.0

gnutls x509 key purpose init

[Function]int gnutls_x509_key_purpose_init (gnutls x509 key purposes t * p)
p: The key purposes structure

This function will initialize an alternative names structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 key purpose set

[Function]int gnutls_x509_key_purpose_set (gnutls x509 key purposes t p,
const char * oid)

p: The key purposes structure

oid: The object identifier of the key purpose

This function will store the specified key purpose in the purposes structure.

Returns: On success, GNUTLS_E_SUCCESS (0), otherwise a negative error value.

Since: 3.3.0

Appendix E: API reference 460

gnutls x509 name constraints add excluded

[Function]int gnutls_x509_name_constraints_add_excluded
(gnutls x509 name constraints t nc, gnutls x509 subject alt name t type,
const gnutls datum t * name)

nc: The nameconstraints structure

type: The type of the constraints

name: The data of the constraints

This function will add a name constraint to the list of excluded constraints. The
constraints type can be any of the following types: GNUTLS_SAN_DNSNAME , GNUTLS_
SAN_RFC822NAME , GNUTLS_SAN_DN , GNUTLS_SAN_URI , GNUTLS_SAN_IPADDRESS . For
the latter, an IP address in network byte order is expected, followed by its network
mask (which is 4 bytes in IPv4 or 16-bytes in IPv6).

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 name constraints add permitted

[Function]int gnutls_x509_name_constraints_add_permitted
(gnutls x509 name constraints t nc, gnutls x509 subject alt name t type,
const gnutls datum t * name)

nc: The nameconstraints structure

type: The type of the constraints

name: The data of the constraints

This function will add a name constraint to the list of permitted constraints. The
constraints type can be any of the following types: GNUTLS_SAN_DNSNAME , GNUTLS_
SAN_RFC822NAME , GNUTLS_SAN_DN , GNUTLS_SAN_URI , GNUTLS_SAN_IPADDRESS . For
the latter, an IP address in network byte order is expected, followed by its network
mask.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 name constraints check

[Function]unsigned gnutls_x509_name_constraints_check
(gnutls x509 name constraints t nc, gnutls x509 subject alt name t type,
const gnutls datum t * name)

nc: the extracted name constraints structure

type: the type of the constraint to check (of type gnutls x509 subject alt name t)

name: the name to be checked

This function will check the provided name against the constraints in nc using the
RFC5280 rules. Currently this function is limited to DNS names and emails (of type
GNUTLS_SAN_DNSNAME and GNUTLS_SAN_RFC822NAME).

Appendix E: API reference 461

Returns: zero if the provided name is not acceptable, and non-zero otherwise.

Since: 3.3.0

gnutls x509 name constraints check crt

[Function]unsigned gnutls_x509_name_constraints_check_crt
(gnutls x509 name constraints t nc, gnutls x509 subject alt name t type,
gnutls x509 crt t cert)

nc: the extracted name constraints structure

type: the type of the constraint to check (of type gnutls x509 subject alt name t)

cert: the certificate to be checked

This function will check the provided certificate names against the constraints in nc

using the RFC5280 rules. It will traverse all the certificate’s names and alternative
names.

Currently this function is limited to DNS names and emails (of type GNUTLS_SAN_

DNSNAME and GNUTLS_SAN_RFC822NAME).

Returns: zero if the provided name is not acceptable, and non-zero otherwise.

Since: 3.3.0

gnutls x509 name constraints deinit

[Function]void gnutls_x509_name_constraints_deinit
(gnutls x509 name constraints t nc)

nc: The nameconstraints structure

This function will deinitialize a name constraints structure.

Since: 3.3.0

gnutls x509 name constraints get excluded

[Function]int gnutls_x509_name_constraints_get_excluded
(gnutls x509 name constraints t nc, unsigned idx, unsigned * type,
gnutls datum t * name)

nc: the extracted name constraints structure

idx: the index of the constraint

type: the type of the constraint (of type gnutls x509 subject alt name t)

name: the name in the constraint (of the specific type)

This function will return an intermediate structure containing the name constraints of
the provided CA certificate. That structure can be used in combination with gnutls_

x509_name_constraints_check() to verify whether a server’s name is in accordance
with the constraints.

The name should be treated as constant and valid for the lifetime of nc .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_REQUESTED_

DATA_NOT_AVAILABLE if the extension is not present, otherwise a negative error value.

Since: 3.3.0

Appendix E: API reference 462

gnutls x509 name constraints get permitted

[Function]int gnutls_x509_name_constraints_get_permitted
(gnutls x509 name constraints t nc, unsigned idx, unsigned * type,
gnutls datum t * name)

nc: the extracted name constraints structure

idx: the index of the constraint

type: the type of the constraint (of type gnutls x509 subject alt name t)

name: the name in the constraint (of the specific type)

This function will return an intermediate structure containing the name constraints of
the provided CA certificate. That structure can be used in combination with gnutls_

x509_name_constraints_check() to verify whether a server’s name is in accordance
with the constraints.

The name should be treated as constant and valid for the lifetime of nc .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_REQUESTED_

DATA_NOT_AVAILABLE if the extension is not present, otherwise a negative error value.

Since: 3.3.0

gnutls x509 name constraints init

[Function]int gnutls_x509_name_constraints_init
(gnutls x509 name constraints t * nc)

nc: The nameconstraints structure

This function will initialize a name constraints structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 othername to virtual

[Function]int gnutls_x509_othername_to_virtual (const char * oid, const
gnutls datum t * othername, unsigned int * virt_type, gnutls datum t *
virt)

oid: The othername object identifier

othername: – undescribed –

virt type: GNUTLS SAN OTHERNAME XXX

virt: allocated printable data

This function will parse and convert the othername data to a virtual type supported
by gnutls.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.8

Appendix E: API reference 463

gnutls x509 policies deinit

[Function]void gnutls_x509_policies_deinit (gnutls x509 policies t
policies)

policies: The authority key identifier structure

This function will deinitialize an authority key identifier structure.

Since: 3.3.0

gnutls x509 policies get

[Function]int gnutls_x509_policies_get (gnutls x509 policies t policies,
unsigned int seq, struct gnutls x509 policy st * policy)

policies: The policies structure

seq: The index of the name to get

policy : Will hold the policy

This function will return a specific policy as stored in the policies structure. The
returned values should be treated as constant and valid for the lifetime of policies .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_REQUESTED_

DATA_NOT_AVAILABLE if the index is out of bounds, otherwise a negative error value.

Since: 3.3.0

gnutls x509 policies init

[Function]int gnutls_x509_policies_init (gnutls x509 policies t * policies)
policies: The authority key ID structure

This function will initialize an authority key ID structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 policies set

[Function]int gnutls_x509_policies_set (gnutls x509 policies t policies,
const struct gnutls x509 policy st * policy)

policies: An initialized policies structure

policy : Contains the policy to set

This function will store the specified policy in the provided policies structure.

Returns: On success, GNUTLS_E_SUCCESS (0), otherwise a negative error value.

Since: 3.3.0

gnutls x509 policy release

[Function]void gnutls_x509_policy_release (struct gnutls x509 policy st *
policy)

policy : a certificate policy

Appendix E: API reference 464

This function will deinitialize all memory associated with the provided policy . The
policy is allocated using gnutls_x509_crt_get_policy() .

Since: 3.1.5

gnutls x509 privkey cpy

[Function]int gnutls_x509_privkey_cpy (gnutls x509 privkey t dst,
gnutls x509 privkey t src)

dst: The destination key, which should be initialized.

src: The source key

This function will copy a private key from source to destination key. Destination has
to be initialized.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 privkey deinit

[Function]void gnutls_x509_privkey_deinit (gnutls x509 privkey t key)
key : The structure to be deinitialized

This function will deinitialize a private key structure.

gnutls x509 privkey export

[Function]int gnutls_x509_privkey_export (gnutls x509 privkey t key,
gnutls x509 crt fmt t format, void * output_data, size t *
output_data_size)

key : Holds the key

format: the format of output params. One of PEM or DER.

output data: will contain a private key PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the private key to a PKCS1 structure for RSA keys, or
an integer sequence for DSA keys. The DSA keys are in the same format with the
parameters used by openssl.

If the buffer provided is not long enough to hold the output, then * output_data_size
is updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN RSA PRIVATE
KEY".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 privkey export2

[Function]int gnutls_x509_privkey_export2 (gnutls x509 privkey t key,
gnutls x509 crt fmt t format, gnutls datum t * out)

key : Holds the key

Appendix E: API reference 465

format: the format of output params. One of PEM or DER.

out: will contain a private key PEM or DER encoded

This function will export the private key to a PKCS1 structure for RSA keys, or
an integer sequence for DSA keys. The DSA keys are in the same format with the
parameters used by openssl.

The output buffer is allocated using gnutls_malloc() .

If the structure is PEM encoded, it will have a header of "BEGIN RSA PRIVATE
KEY".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since 3.1.3

gnutls x509 privkey export2 pkcs8

[Function]int gnutls_x509_privkey_export2_pkcs8 (gnutls x509 privkey t
key, gnutls x509 crt fmt t format, const char * password, unsigned int
flags, gnutls datum t * out)

key : Holds the key

format: the format of output params. One of PEM or DER.

password: the password that will be used to encrypt the key.

flags: an ORed sequence of gnutls pkcs encrypt flags t

out: will contain a private key PEM or DER encoded

This function will export the private key to a PKCS8 structure. Both RSA and DSA
keys can be exported. For DSA keys we use PKCS 11 definitions. If the flags do not
specify the encryption cipher, then the default 3DES (PBES2) will be used.

The password can be either ASCII or UTF-8 in the default PBES2 encryption
schemas, or ASCII for the PKCS12 schemas.

The output buffer is allocated using gnutls_malloc() .

If the structure is PEM encoded, it will have a header of "BEGIN ENCRYPTED
PRIVATE KEY" or "BEGIN PRIVATE KEY" if encryption is not used.

Returns: In case of failure a negative error code will be returned, and 0 on success.

Since 3.1.3

gnutls x509 privkey export dsa raw

[Function]int gnutls_x509_privkey_export_dsa_raw (gnutls x509 privkey t
key, gnutls datum t * p, gnutls datum t * q, gnutls datum t * g,
gnutls datum t * y, gnutls datum t * x)

key : a structure that holds the DSA parameters

p: will hold the p

q: will hold the q

g : will hold the g

y : will hold the y

Appendix E: API reference 466

x: will hold the x

This function will export the DSA private key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 privkey export ecc raw

[Function]int gnutls_x509_privkey_export_ecc_raw (gnutls x509 privkey t
key, gnutls ecc curve t * curve, gnutls datum t * x, gnutls datum t * y,
gnutls datum t * k)

key : a structure that holds the rsa parameters

curve: will hold the curve

x: will hold the x coordinate

y : will hold the y coordinate

k: will hold the private key

This function will export the ECC private key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

gnutls x509 privkey export pkcs8

[Function]int gnutls_x509_privkey_export_pkcs8 (gnutls x509 privkey t key,
gnutls x509 crt fmt t format, const char * password, unsigned int flags,
void * output_data, size t * output_data_size)

key : Holds the key

format: the format of output params. One of PEM or DER.

password: the password that will be used to encrypt the key.

flags: an ORed sequence of gnutls pkcs encrypt flags t

output data: will contain a private key PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the private key to a PKCS8 structure. Both RSA and DSA
keys can be exported. For DSA keys we use PKCS 11 definitions. If the flags do not
specify the encryption cipher, then the default 3DES (PBES2) will be used.

The password can be either ASCII or UTF-8 in the default PBES2 encryption
schemas, or ASCII for the PKCS12 schemas.

If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS E SHORT MEMORY BUFFER will be returned.

Appendix E: API reference 467

If the structure is PEM encoded, it will have a header of "BEGIN ENCRYPTED
PRIVATE KEY" or "BEGIN PRIVATE KEY" if encryption is not used.

Returns: In case of failure a negative error code will be returned, and 0 on success.

gnutls x509 privkey export rsa raw

[Function]int gnutls_x509_privkey_export_rsa_raw (gnutls x509 privkey t
key, gnutls datum t * m, gnutls datum t * e, gnutls datum t * d,
gnutls datum t * p, gnutls datum t * q, gnutls datum t * u)

key : a structure that holds the rsa parameters

m: will hold the modulus

e: will hold the public exponent

d: will hold the private exponent

p: will hold the first prime (p)

q: will hold the second prime (q)

u: will hold the coefficient

This function will export the RSA private key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 privkey export rsa raw2

[Function]int gnutls_x509_privkey_export_rsa_raw2 (gnutls x509 privkey t
key, gnutls datum t * m, gnutls datum t * e, gnutls datum t * d,
gnutls datum t * p, gnutls datum t * q, gnutls datum t * u, gnutls datum t *
e1, gnutls datum t * e2)

key : a structure that holds the rsa parameters

m: will hold the modulus

e: will hold the public exponent

d: will hold the private exponent

p: will hold the first prime (p)

q: will hold the second prime (q)

u: will hold the coefficient

e1: will hold e1 = d mod (p-1)

e2: will hold e2 = d mod (q-1)

This function will export the RSA private key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

Appendix E: API reference 468

gnutls x509 privkey fix

[Function]int gnutls_x509_privkey_fix (gnutls x509 privkey t key)
key : Holds the key

This function will recalculate the secondary parameters in a key. In RSA keys, this
can be the coefficient and exponent1,2.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 privkey generate

[Function]int gnutls_x509_privkey_generate (gnutls x509 privkey t key,
gnutls pk algorithm t algo, unsigned int bits, unsigned int flags)

key : should contain a gnutls_x509_privkey_t structure

algo: is one of the algorithms in gnutls_pk_algorithm_t .

bits: the size of the modulus

flags: unused for now. Must be 0.

This function will generate a random private key. Note that this function must be
called on an empty private key.

Note that when generating an elliptic curve key, the curve can be substituted in the
place of the bits parameter using the GNUTLS_CURVE_TO_BITS() macro.

For DSA keys, if the subgroup size needs to be specified check the GNUTLS_SUBGROUP_
TO_BITS() macro.

Do not set the number of bits directly, use gnutls_sec_param_to_pk_bits() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 privkey get key id

[Function]int gnutls_x509_privkey_get_key_id (gnutls x509 privkey t key,
unsigned int flags, unsigned char * output_data, size t *
output_data_size)

key : Holds the key

flags: should be 0 for now

output data: will contain the key ID

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will return a unique ID that depends on the public key parameters.
This ID can be used in checking whether a certificate corresponds to the given key.

If the buffer provided is not long enough to hold the output, then * output_data_

size is updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned. The output
will normally be a SHA-1 hash output, which is 20 bytes.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 469

gnutls x509 privkey get pk algorithm

[Function]int gnutls_x509_privkey_get_pk_algorithm (gnutls x509 privkey t
key)

key : should contain a gnutls_x509_privkey_t structure

This function will return the public key algorithm of a private key.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or a
negative error code on error.

gnutls x509 privkey get pk algorithm2

[Function]int gnutls_x509_privkey_get_pk_algorithm2
(gnutls x509 privkey t key, unsigned int * bits)

key : should contain a gnutls_x509_privkey_t structure

bits: The number of bits in the public key algorithm

This function will return the public key algorithm of a private key.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or a
negative error code on error.

gnutls x509 privkey import

[Function]int gnutls_x509_privkey_import (gnutls x509 privkey t key, const
gnutls datum t * data, gnutls x509 crt fmt t format)

key : The structure to store the parsed key

data: The DER or PEM encoded certificate.

format: One of DER or PEM

This function will convert the given DER or PEM encoded key to the native gnutls_
x509_privkey_t format. The output will be stored in key .

If the key is PEM encoded it should have a header that contains "PRIVATE KEY".
Note that this function falls back to PKCS 8 decoding without password, if the default
format fails to import.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 privkey import2

[Function]int gnutls_x509_privkey_import2 (gnutls x509 privkey t key, const
gnutls datum t * data, gnutls x509 crt fmt t format, const char *
password, unsigned int flags)

key : The structure to store the parsed key

data: The DER or PEM encoded key.

format: One of DER or PEM

password: A password (optional)

flags: an ORed sequence of gnutls pkcs encrypt flags t

Appendix E: API reference 470

This function will import the given DER or PEM encoded key, to the native gnutls_
x509_privkey_t format, irrespective of the input format. The input format is auto-
detected.

The supported formats are basic unencrypted key, PKCS8, PKCS12, and the openssl
format.

If the provided key is encrypted but no password was given, then GNUTLS_E_

DECRYPTION_FAILED is returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 privkey import dsa raw

[Function]int gnutls_x509_privkey_import_dsa_raw (gnutls x509 privkey t
key, const gnutls datum t * p, const gnutls datum t * q, const gnutls datum t
* g, const gnutls datum t * y, const gnutls datum t * x)

key : The structure to store the parsed key

p: holds the p

q: holds the q

g : holds the g

y : holds the y

x: holds the x

This function will convert the given DSA raw parameters to the native gnutls_x509_
privkey_t format. The output will be stored in key .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 privkey import ecc raw

[Function]int gnutls_x509_privkey_import_ecc_raw (gnutls x509 privkey t
key, gnutls ecc curve t curve, const gnutls datum t * x, const
gnutls datum t * y, const gnutls datum t * k)

key : The structure to store the parsed key

curve: holds the curve

x: holds the x

y : holds the y

k: holds the k

This function will convert the given elliptic curve parameters to the native gnutls_

x509_privkey_t format. The output will be stored in key .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

Appendix E: API reference 471

gnutls x509 privkey import openssl

[Function]int gnutls_x509_privkey_import_openssl (gnutls x509 privkey t
key, const gnutls datum t * data, const char * password)

key : The structure to store the parsed key

data: The DER or PEM encoded key.

password: the password to decrypt the key (if it is encrypted).

This function will convert the given PEM encrypted to the native
gnutls x509 privkey t format. The output will be stored in key .

The password should be in ASCII. If the password is not provided or wrong then
GNUTLS_E_DECRYPTION_FAILED will be returned.

If the Certificate is PEM encoded it should have a header of "PRIVATE KEY" and
the "DEK-Info" header.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 privkey import pkcs8

[Function]int gnutls_x509_privkey_import_pkcs8 (gnutls x509 privkey t key,
const gnutls datum t * data, gnutls x509 crt fmt t format, const char *
password, unsigned int flags)

key : The structure to store the parsed key

data: The DER or PEM encoded key.

format: One of DER or PEM

password: the password to decrypt the key (if it is encrypted).

flags: 0 if encrypted or GNUTLS PKCS PLAIN if not encrypted.

This function will convert the given DER or PEM encoded PKCS8 2.0 encrypted
key to the native gnutls x509 privkey t format. The output will be stored in key .
Both RSA and DSA keys can be imported, and flags can only be used to indicate an
unencrypted key.

The password can be either ASCII or UTF-8 in the default PBES2 encryption
schemas, or ASCII for the PKCS12 schemas.

If the Certificate is PEM encoded it should have a header of "ENCRYPTED PRI-
VATE KEY", or "PRIVATE KEY". You only need to specify the flags if the key is
DER encoded, since in that case the encryption status cannot be auto-detected.

If the GNUTLS_PKCS_PLAIN flag is specified and the supplied data are encrypted then
GNUTLS_E_DECRYPTION_FAILED is returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 472

gnutls x509 privkey import rsa raw

[Function]int gnutls_x509_privkey_import_rsa_raw (gnutls x509 privkey t
key, const gnutls datum t * m, const gnutls datum t * e, const gnutls datum t
* d, const gnutls datum t * p, const gnutls datum t * q, const gnutls datum t
* u)

key : The structure to store the parsed key

m: holds the modulus

e: holds the public exponent

d: holds the private exponent

p: holds the first prime (p)

q: holds the second prime (q)

u: holds the coefficient

This function will convert the given RSA raw parameters to the native gnutls_x509_
privkey_t format. The output will be stored in key .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 privkey import rsa raw2

[Function]int gnutls_x509_privkey_import_rsa_raw2 (gnutls x509 privkey t
key, const gnutls datum t * m, const gnutls datum t * e, const gnutls datum t
* d, const gnutls datum t * p, const gnutls datum t * q, const gnutls datum t
* u, const gnutls datum t * e1, const gnutls datum t * e2)

key : The structure to store the parsed key

m: holds the modulus

e: holds the public exponent

d: holds the private exponent

p: holds the first prime (p)

q: holds the second prime (q)

u: holds the coefficient (optional)

e1: holds e1 = d mod (p-1) (optional)

e2: holds e2 = d mod (q-1) (optional)

This function will convert the given RSA raw parameters to the native gnutls_x509_
privkey_t format. The output will be stored in key .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 privkey init

[Function]int gnutls_x509_privkey_init (gnutls x509 privkey t * key)
key : The structure to be initialized

This function will initialize an private key structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 473

gnutls x509 privkey sec param

[Function]gnutls_sec_param_t gnutls_x509_privkey_sec_param
(gnutls x509 privkey t key)

key : a key structure

This function will return the security parameter appropriate with this private key.

Returns: On success, a valid security parameter is returned otherwise GNUTLS_SEC_

PARAM_UNKNOWN is returned.

Since: 2.12.0

gnutls x509 privkey verify params

[Function]int gnutls_x509_privkey_verify_params (gnutls x509 privkey t
key)

key : should contain a gnutls_x509_privkey_t structure

This function will verify the private key parameters.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 rdn get

[Function]int gnutls_x509_rdn_get (const gnutls datum t * idn, char * buf,
size t * buf_size)

idn: should contain a DER encoded RDN sequence

buf : a pointer to a structure to hold the peer’s name

buf size: holds the size of buf

This function will return the name of the given RDN sequence. The name will be in
the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC4514.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or GNUTLS_E_SHORT_

MEMORY_BUFFER is returned and * buf_size is updated if the provided buffer is not
long enough, otherwise a negative error value.

gnutls x509 rdn get by oid

[Function]int gnutls_x509_rdn_get_by_oid (const gnutls datum t * idn, const
char * oid, int indx, unsigned int raw_flag, void * buf, size t * buf_size)

idn: should contain a DER encoded RDN sequence

oid: an Object Identifier

indx: In case multiple same OIDs exist in the RDN indicates which to send. Use 0
for the first one.

raw flag : If non-zero then the raw DER data are returned.

buf : a pointer to a structure to hold the peer’s name

buf size: holds the size of buf

This function will return the name of the given Object identifier, of the RDN sequence.
The name will be encoded using the rules from RFC4514.

Appendix E: API reference 474

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or GNUTLS_E_SHORT_

MEMORY_BUFFER is returned and * buf_size is updated if the provided buffer is not
long enough, otherwise a negative error value.

gnutls x509 rdn get oid

[Function]int gnutls_x509_rdn_get_oid (const gnutls datum t * idn, int indx,
void * buf, size t * buf_size)

idn: should contain a DER encoded RDN sequence

indx: Indicates which OID to return. Use 0 for the first one.

buf : a pointer to a structure to hold the peer’s name OID

buf size: holds the size of buf

This function will return the specified Object identifier, of the RDN sequence.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or GNUTLS_E_SHORT_

MEMORY_BUFFER is returned and * buf_size is updated if the provided buffer is not
long enough, otherwise a negative error value.

Since: 2.4.0

gnutls x509 trust list add cas

[Function]int gnutls_x509_trust_list_add_cas (gnutls x509 trust list t
list, const gnutls x509 crt t * clist, unsigned clist_size, unsigned int
flags)

list: The structure of the list

clist: A list of CAs

clist size: The length of the CA list

flags: should be 0 or an or’ed sequence of GNUTLS_TL options.

This function will add the given certificate authorities to the trusted list. The list of
CAs must not be deinitialized during this structure’s lifetime.

If the flag GNUTLS_TL_NO_DUPLICATES is specified, then the provided clist entries
that are duplicates will not be added to the list and will be deinitialized.

Returns: The number of added elements is returned.

Since: 3.0.0

gnutls x509 trust list add crls

[Function]int gnutls_x509_trust_list_add_crls (gnutls x509 trust list t
list, const gnutls x509 crl t * crl_list, int crl_size, unsigned int flags,
unsigned int verification_flags)

list: The structure of the list

crl list: A list of CRLs

crl size: The length of the CRL list

flags: if GNUTLS TL VERIFY CRL is given the CRLs will be verified before being
added.

Appendix E: API reference 475

verification flags: gnutls certificate verify flags if flags specifies GNUTLS TL VERIFY CRL

This function will add the given certificate revocation lists to the trusted list. The
list of CRLs must not be deinitialized during this structure’s lifetime.

This function must be called after gnutls_x509_trust_list_add_cas() to allow
verifying the CRLs for validity. If the flag GNUTLS_TL_NO_DUPLICATES is given, then
any provided CRLs that are a duplicate, will be deinitialized and not added to the list
(that assumes that gnutls_x509_trust_list_deinit() will be called with all=1).

Returns: The number of added elements is returned.

Since: 3.0

gnutls x509 trust list add named crt

[Function]int gnutls_x509_trust_list_add_named_crt
(gnutls x509 trust list t list, gnutls x509 crt t cert, const void * name,
size t name_size, unsigned int flags)

list: The structure of the list

cert: A certificate

name: An identifier for the certificate

name size: The size of the identifier

flags: should be 0.

This function will add the given certificate to the trusted list and associate it with a
name. The certificate will not be be used for verification with gnutls_x509_trust_

list_verify_crt() but only with gnutls_x509_trust_list_verify_named_crt()

.

In principle this function can be used to set individual "server" certificates that are
trusted by the user for that specific server but for no other purposes.

The certificate must not be deinitialized during the lifetime of the trusted list.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0.0

gnutls x509 trust list add system trust

[Function]int gnutls_x509_trust_list_add_system_trust
(gnutls x509 trust list t list, unsigned int tl_flags, unsigned int
tl_vflags)

list: The structure of the list

tl flags: GNUTLS TL *

tl vflags: gnutls certificate verify flags if flags specifies GNUTLS TL VERIFY CRL

This function adds the system’s default trusted certificate authorities to
the trusted list. Note that on unsupported systems this function returns
GNUTLS_E_UNIMPLEMENTED_FEATURE .

This function implies the flag GNUTLS_TL_NO_DUPLICATES .

Returns: The number of added elements or a negative error code on error.

Since: 3.1

Appendix E: API reference 476

gnutls x509 trust list add trust dir

[Function]int gnutls_x509_trust_list_add_trust_dir
(gnutls x509 trust list t list, const char * ca_dir, const char * crl_dir,
gnutls x509 crt fmt t type, unsigned int tl_flags, unsigned int tl_vflags)

list: The structure of the list

ca dir: A directory containing the CAs (optional)

crl dir: A directory containing a list of CRLs (optional)

type: The format of the certificates

tl flags: GNUTLS TL *

tl vflags: gnutls certificate verify flags if flags specifies GNUTLS TL VERIFY CRL

This function will add the given certificate authorities to the trusted list. Only direc-
tories are accepted by this function.

Returns: The number of added elements is returned.

Since: 3.3.6

gnutls x509 trust list add trust file

[Function]int gnutls_x509_trust_list_add_trust_file
(gnutls x509 trust list t list, const char * ca_file, const char * crl_file,
gnutls x509 crt fmt t type, unsigned int tl_flags, unsigned int tl_vflags)

list: The structure of the list

ca file: A file containing a list of CAs (optional)

crl file: A file containing a list of CRLs (optional)

type: The format of the certificates

tl flags: GNUTLS TL *

tl vflags: gnutls certificate verify flags if flags specifies GNUTLS TL VERIFY CRL

This function will add the given certificate authorities to the trusted list. PKCS 11

URLs are also accepted, instead of files, by this function. A PKCS 11 URL implies
a trust database (a specially marked module in p11-kit); the URL "pkcs11:" implies
all trust databases in the system. Only a single URL specifying trust databases can
be set; they cannot be stacked with multiple calls.

Returns: The number of added elements is returned.

Since: 3.1

gnutls x509 trust list add trust mem

[Function]int gnutls_x509_trust_list_add_trust_mem
(gnutls x509 trust list t list, const gnutls datum t * cas, const
gnutls datum t * crls, gnutls x509 crt fmt t type, unsigned int tl_flags,
unsigned int tl_vflags)

list: The structure of the list

cas: A buffer containing a list of CAs (optional)

crls: A buffer containing a list of CRLs (optional)

Appendix E: API reference 477

type: The format of the certificates

tl flags: GNUTLS TL *

tl vflags: gnutls certificate verify flags if flags specifies GNUTLS TL VERIFY CRL

This function will add the given certificate authorities to the trusted list.

Returns: The number of added elements is returned.

Since: 3.1

gnutls x509 trust list deinit

[Function]void gnutls_x509_trust_list_deinit (gnutls x509 trust list t
list, unsigned int all)

list: The structure to be deinitialized

all: if non-zero it will deinitialize all the certificates and CRLs contained in the
structure.

This function will deinitialize a trust list. Note that the all flag should be typically
non-zero unless you have specified your certificates using gnutls_x509_trust_list_

add_cas() and you want to prevent them from being deinitialized by this function.

Since: 3.0.0

gnutls x509 trust list get issuer

[Function]int gnutls_x509_trust_list_get_issuer (gnutls x509 trust list t
list, gnutls x509 crt t cert, gnutls x509 crt t * issuer, unsigned int
flags)

list: The structure of the list

cert: is the certificate to find issuer for

issuer: Will hold the issuer if any. Should be treated as constant.

flags: Use zero or GNUTLS_TL_GET_COPY

This function will find the issuer of the given certificate. If the flag GNUTLS_TL_GET_

COPY is specified a copy of the issuer will be returned which must be freed using
gnutls_x509_crt_deinit() . Note that the flag GNUTLS_TL_GET_COPY is required
for this function to work with PKCS 11 trust lists in a thread-safe way.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

gnutls x509 trust list init

[Function]int gnutls_x509_trust_list_init (gnutls x509 trust list t * list,
unsigned int size)

list: The structure to be initialized

size: The size of the internal hash table. Use (0) for default size.

This function will initialize an X.509 trust list structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0.0

Appendix E: API reference 478

gnutls x509 trust list remove cas

[Function]int gnutls_x509_trust_list_remove_cas (gnutls x509 trust list t
list, const gnutls x509 crt t * clist, int clist_size)

list: The structure of the list

clist: A list of CAs

clist size: The length of the CA list

This function will remove the given certificate authorities from the trusted list.

Note that this function can accept certificates and authorities not yet known. In
that case they will be kept in a separate black list that will be used during certificate
verification. Unlike gnutls_x509_trust_list_add_cas() there is no deinitialization
restriction for certificate list provided in this function.

Returns: The number of removed elements is returned.

Since: 3.1.10

gnutls x509 trust list remove trust file

[Function]int gnutls_x509_trust_list_remove_trust_file
(gnutls x509 trust list t list, const char * ca_file, gnutls x509 crt fmt t
type)

list: The structure of the list

ca file: A file containing a list of CAs

type: The format of the certificates

This function will remove the given certificate authorities from the trusted list, and
add them into a black list when needed. PKCS 11 URLs are also accepted, instead
of files, by this function.

See also gnutls_x509_trust_list_remove_cas() .

Returns: The number of added elements is returned.

Since: 3.1.10

gnutls x509 trust list remove trust mem

[Function]int gnutls_x509_trust_list_remove_trust_mem
(gnutls x509 trust list t list, const gnutls datum t * cas,
gnutls x509 crt fmt t type)

list: The structure of the list

cas: A buffer containing a list of CAs (optional)

type: The format of the certificates

This function will remove the provided certificate authorities from the trusted list,
and add them into a black list when needed.

See also gnutls_x509_trust_list_remove_cas() .

Returns: The number of removed elements is returned.

Since: 3.1.10

Appendix E: API reference 479

gnutls x509 trust list verify crt

[Function]int gnutls_x509_trust_list_verify_crt (gnutls x509 trust list t
list, gnutls x509 crt t * cert_list, unsigned int cert_list_size,
unsigned int flags, unsigned int * voutput, gnutls verify output function
func)

list: The structure of the list

cert list: is the certificate list to be verified

cert list size: is the certificate list size

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls certificate verify flags enumerations.

voutput: will hold the certificate verification output.

func: If non-null will be called on each chain element verification with the output.

This function will try to verify the given certificate and return its status. The verify
parameter will hold an OR’ed sequence of gnutls_certificate_status_t flags.

Additionally a certificate verification profile can be specified from the ones in gnutls_

certificate_verification_profiles_t by ORing the result of GNUTLS_PROFILE_
TO_VFLAGS() to the verification flags.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

gnutls x509 trust list verify crt2

[Function]int gnutls_x509_trust_list_verify_crt2 (gnutls x509 trust list t
list, gnutls x509 crt t * cert_list, unsigned int cert_list_size,
gnutls typed vdata st * data, unsigned int elements, unsigned int flags,
unsigned int * voutput, gnutls verify output function func)

list: The structure of the list

cert list: is the certificate list to be verified

cert list size: is the certificate list size

data: an array of typed data

elements: the number of data elements

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls certificate verify flags enumerations.

voutput: will hold the certificate verification output.

func: If non-null will be called on each chain element verification with the output.

This function will try to verify the given certificate and return its status. The verify
parameter will hold an OR’ed sequence of gnutls_certificate_status_t flags.

Additionally a certificate verification profile can be specified from the ones in gnutls_

certificate_verification_profiles_t by ORing the result of GNUTLS_PROFILE_
TO_VFLAGS() to the verification flags.

The acceptable data types are GNUTLS_DT_DNS_HOSTNAME and GNUTLS_DT_KEY_

PURPOSE_OID . The former accepts as data a null-terminated hostname, and the latter

Appendix E: API reference 480

a null-terminated object identifier (e.g., GNUTLS_KP_TLS_WWW_SERVER). If a DNS
hostname is provided then this function will compare the hostname in the certificate
against the given. If names do not match the GNUTLS_CERT_UNEXPECTED_OWNER

status flag will be set. If a key purpose OID is provided and the end-certificate
contains the extended key usage PKIX extension, it will be required to be have the
provided key purpose or be marked for any purpose, otherwise verification will fail
with GNUTLS_CERT_SIGNER_CONSTRAINTS_FAILURE status.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. Note that verification failure will not result to an error code, only voutput

will be updated.

Since: 3.3.8

gnutls x509 trust list verify named crt

[Function]int gnutls_x509_trust_list_verify_named_crt
(gnutls x509 trust list t list, gnutls x509 crt t cert, const void * name,
size t name_size, unsigned int flags, unsigned int * voutput,
gnutls verify output function func)

list: The structure of the list

cert: is the certificate to be verified

name: is the certificate’s name

name size: is the certificate’s name size

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls certificate verify flags enumerations.

voutput: will hold the certificate verification output.

func: If non-null will be called on each chain element verification with the output.

This function will try to find a certificate that is associated with the provided name –
see gnutls_x509_trust_list_add_named_crt() . If a match is found the certificate
is considered valid. In addition to that this function will also check CRLs. The
voutput parameter will hold an OR’ed sequence of gnutls_certificate_status_t
flags.

Additionally a certificate verification profile can be specified from the ones in gnutls_

certificate_verification_profiles_t by ORing the result of GNUTLS_PROFILE_
TO_VFLAGS() to the verification flags.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0.0

E.4 OCSP API

The following functions are for OCSP certificate status checking. Their prototypes lie in
gnutls/ocsp.h.

Appendix E: API reference 481

gnutls ocsp req add cert

[Function]int gnutls_ocsp_req_add_cert (gnutls ocsp req t req,
gnutls digest algorithm t digest, gnutls x509 crt t issuer,
gnutls x509 crt t cert)

req: should contain a gnutls_ocsp_req_t structure

digest: hash algorithm, a gnutls_digest_algorithm_t value

issuer: issuer of subject certificate

cert: certificate to request status for

This function will add another request to the OCSP request for a particular certificate.
The issuer name hash, issuer key hash, and serial number fields is populated as follows.
The issuer name and the serial number is taken from cert . The issuer key is taken
from issuer . The hashed values will be hashed using the digest algorithm, normally
GNUTLS_DIG_SHA1 .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls ocsp req add cert id

[Function]int gnutls_ocsp_req_add_cert_id (gnutls ocsp req t req,
gnutls digest algorithm t digest, const gnutls datum t *
issuer_name_hash, const gnutls datum t * issuer_key_hash, const
gnutls datum t * serial_number)

req: should contain a gnutls_ocsp_req_t structure

digest: hash algorithm, a gnutls_digest_algorithm_t value

issuer name hash: hash of issuer’s DN

issuer key hash: hash of issuer’s public key

serial number: serial number of certificate to check

This function will add another request to the OCSP request for a particular certificate
having the issuer name hash of issuer_name_hash and issuer key hash of issuer_
key_hash (both hashed using digest) and serial number serial_number .

The information needed corresponds to the CertID structure:

<informalexample><programlisting> CertID ::= SEQUENCE { hashAlgorithm Algo-
rithmIdentifier, issuerNameHash OCTET STRING, – Hash of Issuer’s DN issuerKey-
Hash OCTET STRING, – Hash of Issuers public key serialNumber CertificateSerial-
Number } </programlisting></informalexample>

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls ocsp req deinit

[Function]void gnutls_ocsp_req_deinit (gnutls ocsp req t req)
req: The structure to be deinitialized

This function will deinitialize a OCSP request structure.

Appendix E: API reference 482

gnutls ocsp req export

[Function]int gnutls_ocsp_req_export (gnutls ocsp req t req, gnutls datum t
* data)

req: Holds the OCSP request

data: newly allocate buffer holding DER encoded OCSP request

This function will export the OCSP request to DER format.

Returns: In case of failure a negative error code will be returned, and 0 on success.

gnutls ocsp req get cert id

[Function]int gnutls_ocsp_req_get_cert_id (gnutls ocsp req t req, unsigned
indx, gnutls digest algorithm t * digest, gnutls datum t *
issuer_name_hash, gnutls datum t * issuer_key_hash, gnutls datum t *
serial_number)

req: should contain a gnutls_ocsp_req_t structure

indx: Specifies which extension OID to get. Use (0) to get the first one.

digest: output variable with gnutls_digest_algorithm_t hash algorithm

issuer name hash: output buffer with hash of issuer’s DN

issuer key hash: output buffer with hash of issuer’s public key

serial number: output buffer with serial number of certificate to check

This function will return the certificate information of the indx ’ed request in the
OCSP request. The information returned corresponds to the CertID structure:

<informalexample><programlisting> CertID ::= SEQUENCE { hashAlgorithm Algo-
rithmIdentifier, issuerNameHash OCTET STRING, – Hash of Issuer’s DN issuerKey-
Hash OCTET STRING, – Hash of Issuers public key serialNumber CertificateSerial-
Number } </programlisting></informalexample>

Each of the pointers to output variables may be NULL to indicate that the caller is
not interested in that value.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned. If you have reached the last CertID available GNUTLS_E_REQUESTED_
DATA_NOT_AVAILABLE will be returned.

gnutls ocsp req get extension

[Function]int gnutls_ocsp_req_get_extension (gnutls ocsp req t req,
unsigned indx, gnutls datum t * oid, unsigned int * critical,
gnutls datum t * data)

req: should contain a gnutls_ocsp_req_t structure

indx: Specifies which extension OID to get. Use (0) to get the first one.

oid: will hold newly allocated buffer with OID of extension, may be NULL

critical: output variable with critical flag, may be NULL.

data: will hold newly allocated buffer with extension data, may be NULL

Appendix E: API reference 483

This function will return all information about the requested extension in the OCSP
request. The information returned is the OID, the critical flag, and the data itself.
The extension OID will be stored as a string. Any of oid , critical , and data may
be NULL which means that the caller is not interested in getting that information
back.

The caller needs to deallocate memory by calling gnutls_free() on oid ->data and
data ->data.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative er-
ror code is returned. If you have reached the last extension available GNUTLS_E_

REQUESTED_DATA_NOT_AVAILABLE will be returned.

gnutls ocsp req get nonce

[Function]int gnutls_ocsp_req_get_nonce (gnutls ocsp req t req, unsigned int
* critical, gnutls datum t * nonce)

req: should contain a gnutls_ocsp_req_t structure

critical: whether nonce extension is marked critical, or NULL

nonce: will hold newly allocated buffer with nonce data

This function will return the OCSP request nonce extension data.

The caller needs to deallocate memory by calling gnutls_free() on nonce ->data.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls ocsp req get version

[Function]int gnutls_ocsp_req_get_version (gnutls ocsp req t req)
req: should contain a gnutls_ocsp_req_t structure

This function will return the version of the OCSP request. Typically this is always 1
indicating version 1.

Returns: version of OCSP request, or a negative error code on error.

gnutls ocsp req import

[Function]int gnutls_ocsp_req_import (gnutls ocsp req t req, const
gnutls datum t * data)

req: The structure to store the parsed request.

data: DER encoded OCSP request.

This function will convert the given DER encoded OCSP request to the native
gnutls_ocsp_req_t format. The output will be stored in req .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 484

gnutls ocsp req init

[Function]int gnutls_ocsp_req_init (gnutls ocsp req t * req)
req: The structure to be initialized

This function will initialize an OCSP request structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls ocsp req print

[Function]int gnutls_ocsp_req_print (gnutls ocsp req t req,
gnutls ocsp print formats t format, gnutls datum t * out)

req: The structure to be printed

format: Indicate the format to use

out: Newly allocated datum with (0) terminated string.

This function will pretty print a OCSP request, suitable for display to a human.

If the format is GNUTLS_OCSP_PRINT_FULL then all fields of the request will be output,
on multiple lines.

The output out ->data needs to be deallocate using gnutls_free() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls ocsp req randomize nonce

[Function]int gnutls_ocsp_req_randomize_nonce (gnutls ocsp req t req)
req: should contain a gnutls_ocsp_req_t structure

This function will add or update an nonce extension to the OCSP request with a
newly generated random value.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls ocsp req set extension

[Function]int gnutls_ocsp_req_set_extension (gnutls ocsp req t req, const
char * oid, unsigned int critical, const gnutls datum t * data)

req: should contain a gnutls_ocsp_req_t structure

oid: buffer with OID of extension as a string.

critical: critical flag, normally false.

data: the extension data

This function will add an extension to the OCSP request. Calling this function
multiple times for the same OID will overwrite values from earlier calls.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

Appendix E: API reference 485

gnutls ocsp req set nonce

[Function]int gnutls_ocsp_req_set_nonce (gnutls ocsp req t req, unsigned int
critical, const gnutls datum t * nonce)

req: should contain a gnutls_ocsp_req_t structure

critical: critical flag, normally false.

nonce: the nonce data

This function will add an nonce extension to the OCSP request. Calling this function
multiple times will overwrite values from earlier calls.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls ocsp resp check crt

[Function]int gnutls_ocsp_resp_check_crt (gnutls ocsp resp t resp, unsigned
int indx, gnutls x509 crt t crt)

resp: should contain a gnutls_ocsp_resp_t structure

indx: Specifies response number to get. Use (0) to get the first one.

crt: The certificate to check

This function will check whether the OCSP response is about the provided certificate.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

Since: 3.1.3

gnutls ocsp resp deinit

[Function]void gnutls_ocsp_resp_deinit (gnutls ocsp resp t resp)
resp: The structure to be deinitialized

This function will deinitialize a OCSP response structure.

gnutls ocsp resp export

[Function]int gnutls_ocsp_resp_export (gnutls ocsp resp t resp,
gnutls datum t * data)

resp: Holds the OCSP response

data: newly allocate buffer holding DER encoded OCSP response

This function will export the OCSP response to DER format.

Returns: In case of failure a negative error code will be returned, and 0 on success.

gnutls ocsp resp get certs

[Function]int gnutls_ocsp_resp_get_certs (gnutls ocsp resp t resp,
gnutls x509 crt t ** certs, size t * ncerts)

resp: should contain a gnutls_ocsp_resp_t structure

certs: newly allocated array with gnutls_x509_crt_t certificates

Appendix E: API reference 486

ncerts: output variable with number of allocated certs.

This function will extract the X.509 certificates found in the Basic OCSP Response.
The certs output variable will hold a newly allocated zero-terminated array with
X.509 certificates.

Every certificate in the array needs to be de-allocated with gnutls_x509_

crt_deinit() and the array itself must be freed using gnutls_free()

.

Both the certs and ncerts variables may be NULL. Then the function will work
as normal but will not return the NULL:d information. This can be used to get the
number of certificates only, or to just get the certificate array without its size.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls ocsp resp get extension

[Function]int gnutls_ocsp_resp_get_extension (gnutls ocsp resp t resp,
unsigned indx, gnutls datum t * oid, unsigned int * critical,
gnutls datum t * data)

resp: should contain a gnutls_ocsp_resp_t structure

indx: Specifies which extension OID to get. Use (0) to get the first one.

oid: will hold newly allocated buffer with OID of extension, may be NULL

critical: output variable with critical flag, may be NULL.

data: will hold newly allocated buffer with extension data, may be NULL

This function will return all information about the requested extension in the OCSP
response. The information returned is the OID, the critical flag, and the data itself.
The extension OID will be stored as a string. Any of oid , critical , and data may
be NULL which means that the caller is not interested in getting that information
back.

The caller needs to deallocate memory by calling gnutls_free() on oid ->data and
data ->data.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative er-
ror code is returned. If you have reached the last extension available GNUTLS_E_

REQUESTED_DATA_NOT_AVAILABLE will be returned.

gnutls ocsp resp get nonce

[Function]int gnutls_ocsp_resp_get_nonce (gnutls ocsp resp t resp, unsigned
int * critical, gnutls datum t * nonce)

resp: should contain a gnutls_ocsp_resp_t structure

critical: whether nonce extension is marked critical

nonce: will hold newly allocated buffer with nonce data

This function will return the Basic OCSP Response nonce extension data.

The caller needs to deallocate memory by calling gnutls_free() on nonce ->data.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

Appendix E: API reference 487

gnutls ocsp resp get produced

[Function]time_t gnutls_ocsp_resp_get_produced (gnutls ocsp resp t resp)
resp: should contain a gnutls_ocsp_resp_t structure

This function will return the time when the OCSP response was signed.

Returns: signing time, or (time t)-1 on error.

gnutls ocsp resp get responder

[Function]int gnutls_ocsp_resp_get_responder (gnutls ocsp resp t resp,
gnutls datum t * dn)

resp: should contain a gnutls_ocsp_resp_t structure

dn: newly allocated buffer with name

This function will extract the name of the Basic OCSP Response in the provided
buffer. The name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in
RFC2253. The output string will be ASCII or UTF-8 encoded, depending on the
certificate data.

The caller needs to deallocate memory by calling gnutls_free() on dn ->data.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls ocsp resp get response

[Function]int gnutls_ocsp_resp_get_response (gnutls ocsp resp t resp,
gnutls datum t * response_type_oid, gnutls datum t * response)

resp: should contain a gnutls_ocsp_resp_t structure

response type oid: newly allocated output buffer with response type OID

response: newly allocated output buffer with DER encoded response

This function will extract the response type OID in and the response data from an
OCSP response. Normally the response_type_oid is always "1.3.6.1.5.5.7.48.1.1"
which means the response should be decoded as a Basic OCSP Response, but tech-
nically other response types could be used.

This function is typically only useful when you want to extract the response type OID
of an response for diagnostic purposes. Otherwise gnutls_ocsp_resp_import() will
decode the basic OCSP response part and the caller need not worry about that aspect.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls ocsp resp get signature

[Function]int gnutls_ocsp_resp_get_signature (gnutls ocsp resp t resp,
gnutls datum t * sig)

resp: should contain a gnutls_ocsp_resp_t structure

sig : newly allocated output buffer with signature data

This function will extract the signature field of a OCSP response.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 488

gnutls ocsp resp get signature algorithm

[Function]int gnutls_ocsp_resp_get_signature_algorithm
(gnutls ocsp resp t resp)

resp: should contain a gnutls_ocsp_resp_t structure

This function will return a value of the gnutls_sign_algorithm_t enumeration that
is the signature algorithm that has been used to sign the OCSP response.

Returns: a gnutls_sign_algorithm_t value, or a negative error code on error.

gnutls ocsp resp get single

[Function]int gnutls_ocsp_resp_get_single (gnutls ocsp resp t resp,
unsigned indx, gnutls digest algorithm t * digest, gnutls datum t *
issuer_name_hash, gnutls datum t * issuer_key_hash, gnutls datum t *
serial_number, unsigned int * cert_status, time t * this_update,
time t * next_update, time t * revocation_time, unsigned int *
revocation_reason)

resp: should contain a gnutls_ocsp_resp_t structure

indx: Specifies response number to get. Use (0) to get the first one.

digest: output variable with gnutls_digest_algorithm_t hash algorithm

issuer name hash: output buffer with hash of issuer’s DN

issuer key hash: output buffer with hash of issuer’s public key

serial number: output buffer with serial number of certificate to check

cert status: a certificate status, a gnutls_ocsp_cert_status_t enum.

this update: time at which the status is known to be correct.

next update: when newer information will be available, or (time t)-1 if unspecified

revocation time: when cert_status is GNUTLS_OCSP_CERT_REVOKED , holds time of
revocation.

revocation reason: revocation reason, a gnutls_x509_crl_reason_t enum.

This function will return the certificate information of the indx ’ed response in the
Basic OCSP Response resp . The information returned corresponds to the OCSP
SingleResponse structure except the final singleExtensions.

Each of the pointers to output variables may be NULL to indicate that the caller is
not interested in that value.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned. If you have reached the last CertID available GNUTLS_E_REQUESTED_
DATA_NOT_AVAILABLE will be returned.

gnutls ocsp resp get status

[Function]int gnutls_ocsp_resp_get_status (gnutls ocsp resp t resp)
resp: should contain a gnutls_ocsp_resp_t structure

This function will return the status of a OCSP response, an gnutls_ocsp_resp_

status_t enumeration.

Returns: status of OCSP request as a gnutls_ocsp_resp_status_t , or a negative
error code on error.

Appendix E: API reference 489

gnutls ocsp resp get version

[Function]int gnutls_ocsp_resp_get_version (gnutls ocsp resp t resp)
resp: should contain a gnutls_ocsp_resp_t structure

This function will return the version of the Basic OCSP Response. Typically this is
always 1 indicating version 1.

Returns: version of Basic OCSP response, or a negative error code on error.

gnutls ocsp resp import

[Function]int gnutls_ocsp_resp_import (gnutls ocsp resp t resp, const
gnutls datum t * data)

resp: The structure to store the parsed response.

data: DER encoded OCSP response.

This function will convert the given DER encoded OCSP response to the native
gnutls_ocsp_resp_t format. It also decodes the Basic OCSP Response part, if any.
The output will be stored in resp .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls ocsp resp init

[Function]int gnutls_ocsp_resp_init (gnutls ocsp resp t * resp)
resp: The structure to be initialized

This function will initialize an OCSP response structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls ocsp resp print

[Function]int gnutls_ocsp_resp_print (gnutls ocsp resp t resp,
gnutls ocsp print formats t format, gnutls datum t * out)

resp: The structure to be printed

format: Indicate the format to use

out: Newly allocated datum with (0) terminated string.

This function will pretty print a OCSP response, suitable for display to a human.

If the format is GNUTLS_OCSP_PRINT_FULL then all fields of the response will be out-
put, on multiple lines.

The output out ->data needs to be deallocate using gnutls_free() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 490

gnutls ocsp resp verify

[Function]int gnutls_ocsp_resp_verify (gnutls ocsp resp t resp,
gnutls x509 trust list t trustlist, unsigned int * verify, unsigned int
flags)

resp: should contain a gnutls_ocsp_resp_t structure

trustlist: trust anchors as a gnutls_x509_trust_list_t structure

verify : output variable with verification status, an gnutls_ocsp_cert_status_t

flags: verification flags, 0 for now.

Verify signature of the Basic OCSP Response against the public key in the certificate
of a trusted signer. The trustlist should be populated with trust anchors. The
function will extract the signer certificate from the Basic OCSP Response and will
verify it against the trustlist . A trusted signer is a certificate that is either in
trustlist , or it is signed directly by a certificate in trustlist and has the id-ad-
ocspSigning Extended Key Usage bit set.

The output verify variable will hold verification status codes (e.g., GNUTLS_OCSP_
VERIFY_SIGNER_NOT_FOUND , GNUTLS_OCSP_VERIFY_INSECURE_ALGORITHM) which
are only valid if the function returned GNUTLS_E_SUCCESS .

Note that the function returns GNUTLS_E_SUCCESS even when verification failed. The
caller must always inspect the verify variable to find out the verification status.

The flags variable should be 0 for now.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls ocsp resp verify direct

[Function]int gnutls_ocsp_resp_verify_direct (gnutls ocsp resp t resp,
gnutls x509 crt t issuer, unsigned int * verify, unsigned int flags)

resp: should contain a gnutls_ocsp_resp_t structure

issuer: certificate believed to have signed the response

verify : output variable with verification status, an gnutls_ocsp_cert_status_t

flags: verification flags, 0 for now.

Verify signature of the Basic OCSP Response against the public key in the issuer

certificate.

The output verify variable will hold verification status codes (e.g., GNUTLS_OCSP_
VERIFY_SIGNER_NOT_FOUND , GNUTLS_OCSP_VERIFY_INSECURE_ALGORITHM) which
are only valid if the function returned GNUTLS_E_SUCCESS .

Note that the function returns GNUTLS_E_SUCCESS even when verification failed. The
caller must always inspect the verify variable to find out the verification status.

The flags variable should be 0 for now.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 491

E.5 OpenPGP API

The following functions are to be used for OpenPGP certificate handling. Their prototypes
lie in gnutls/openpgp.h.

gnutls certificate set openpgp key

[Function]int gnutls_certificate_set_openpgp_key
(gnutls certificate credentials t res, gnutls openpgp crt t crt,
gnutls openpgp privkey t pkey)

res: is a gnutls_certificate_credentials_t structure.

crt: contains an openpgp public key

pkey : is an openpgp private key

This function sets a certificate/private key pair in the gnutls certificate credentials t
structure. This function may be called more than once (in case multiple
keys/certificates exist for the server).

Note that this function requires that the preferred key ids have been set and be used.
See gnutls_openpgp_crt_set_preferred_key_id() . Otherwise the master key will
be used.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls certificate set openpgp key file

[Function]int gnutls_certificate_set_openpgp_key_file
(gnutls certificate credentials t res, const char * certfile, const char *
keyfile, gnutls openpgp crt fmt t format)

res: the destination context to save the data.

certfile: the file that contains the public key.

keyfile: the file that contains the secret key.

format: the format of the keys

This funtion is used to load OpenPGP keys into the GnuTLS credentials structure.
The file should contain at least one valid non encrypted subkey.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls certificate set openpgp key file2

[Function]int gnutls_certificate_set_openpgp_key_file2
(gnutls certificate credentials t res, const char * certfile, const char *
keyfile, const char * subkey_id, gnutls openpgp crt fmt t format)

res: the destination context to save the data.

certfile: the file that contains the public key.

keyfile: the file that contains the secret key.

subkey id: a hex encoded subkey id

format: the format of the keys

Appendix E: API reference 492

This funtion is used to load OpenPGP keys into the GnuTLS credential structure.
The file should contain at least one valid non encrypted subkey.

The special keyword "auto" is also accepted as subkey_id . In that case the gnutls_
openpgp_crt_get_auth_subkey() will be used to retrieve the subkey.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.4.0

gnutls certificate set openpgp key mem

[Function]int gnutls_certificate_set_openpgp_key_mem
(gnutls certificate credentials t res, const gnutls datum t * cert, const
gnutls datum t * key, gnutls openpgp crt fmt t format)

res: the destination context to save the data.

cert: the datum that contains the public key.

key : the datum that contains the secret key.

format: the format of the keys

This funtion is used to load OpenPGP keys into the GnuTLS credential structure.
The datum should contain at least one valid non encrypted subkey.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls certificate set openpgp key mem2

[Function]int gnutls_certificate_set_openpgp_key_mem2
(gnutls certificate credentials t res, const gnutls datum t * cert, const
gnutls datum t * key, const char * subkey_id, gnutls openpgp crt fmt t
format)

res: the destination context to save the data.

cert: the datum that contains the public key.

key : the datum that contains the secret key.

subkey id: a hex encoded subkey id

format: the format of the keys

This funtion is used to load OpenPGP keys into the GnuTLS credentials structure.
The datum should contain at least one valid non encrypted subkey.

The special keyword "auto" is also accepted as subkey_id . In that case the gnutls_
openpgp_crt_get_auth_subkey() will be used to retrieve the subkey.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.4.0

Appendix E: API reference 493

gnutls certificate set openpgp keyring file

[Function]int gnutls_certificate_set_openpgp_keyring_file
(gnutls certificate credentials t c, const char * file, gnutls openpgp crt fmt t
format)

c: A certificate credentials structure

file: filename of the keyring.

format: format of keyring.

The function is used to set keyrings that will be used internally by various OpenPGP
functions. For example to find a key when it is needed for an operations. The keyring
will also be used at the verification functions.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls certificate set openpgp keyring mem

[Function]int gnutls_certificate_set_openpgp_keyring_mem
(gnutls certificate credentials t c, const uint8 t * data, size t dlen,
gnutls openpgp crt fmt t format)

c: A certificate credentials structure

data: buffer with keyring data.

dlen: length of data buffer.

format: the format of the keyring

The function is used to set keyrings that will be used internally by various OpenPGP
functions. For example to find a key when it is needed for an operations. The keyring
will also be used at the verification functions.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls openpgp crt check hostname

[Function]int gnutls_openpgp_crt_check_hostname (gnutls openpgp crt t
key, const char * hostname)

key : should contain a gnutls_openpgp_crt_t structure

hostname: A null terminated string that contains a DNS name

This function will check if the given key’s owner matches the given hostname. This
is a basic implementation of the matching described in RFC2818 (HTTPS), which
takes into account wildcards.

Returns: non-zero for a successful match, and zero on failure.

gnutls openpgp crt check hostname2

[Function]int gnutls_openpgp_crt_check_hostname2 (gnutls openpgp crt t
key, const char * hostname, unsigned flags)

key : should contain a gnutls_openpgp_crt_t structure

Appendix E: API reference 494

hostname: A null terminated string that contains a DNS name

flags: gnutls certificate verify flags

This function will check if the given key’s owner matches the given hostname.

Unless, the flag GNUTLS_VERIFY_DO_NOT_ALLOW_WILDCARDS is specified, wildcards are
only considered if the domain name consists of three components or more, and the
wildcard starts at the leftmost position.

Returns: non-zero for a successful match, and zero on failure.

gnutls openpgp crt deinit

[Function]void gnutls_openpgp_crt_deinit (gnutls openpgp crt t key)
key : The structure to be initialized

This function will deinitialize a key structure.

gnutls openpgp crt export

[Function]int gnutls_openpgp_crt_export (gnutls openpgp crt t key,
gnutls openpgp crt fmt t format, void * output_data, size t *
output_data_size)

key : Holds the key.

format: One of gnutls openpgp crt fmt t elements.

output data: will contain the raw or base64 encoded key

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will convert the given key to RAW or Base64 format. If the buffer pro-
vided is not long enough to hold the output, then GNUTLS_E_SHORT_MEMORY_BUFFER

will be returned.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp crt export2

[Function]int gnutls_openpgp_crt_export2 (gnutls openpgp crt t key,
gnutls openpgp crt fmt t format, gnutls datum t * out)

key : Holds the key.

format: One of gnutls openpgp crt fmt t elements.

out: will contain the raw or base64 encoded key

This function will convert the given key to RAW or Base64 format. The output buffer
is allocated using gnutls_malloc() .

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Since: 3.1.3

Appendix E: API reference 495

gnutls openpgp crt get auth subkey

[Function]int gnutls_openpgp_crt_get_auth_subkey (gnutls openpgp crt t
crt, gnutls openpgp keyid t keyid, unsigned int flag)

crt: the structure that contains the OpenPGP public key.

keyid: the struct to save the keyid.

flag : Non-zero indicates that a valid subkey is always returned.

Returns the 64-bit keyID of the first valid OpenPGP subkey marked for authentica-
tion. If flag is non-zero and no authentication subkey exists, then a valid subkey will
be returned even if it is not marked for authentication.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp crt get creation time

[Function]time_t gnutls_openpgp_crt_get_creation_time
(gnutls openpgp crt t key)

key : the structure that contains the OpenPGP public key.

Get key creation time.

Returns: the timestamp when the OpenPGP key was created.

gnutls openpgp crt get expiration time

[Function]time_t gnutls_openpgp_crt_get_expiration_time
(gnutls openpgp crt t key)

key : the structure that contains the OpenPGP public key.

Get key expiration time. A value of ’0’ means that the key doesn’t expire at all.

Returns: the time when the OpenPGP key expires.

gnutls openpgp crt get fingerprint

[Function]int gnutls_openpgp_crt_get_fingerprint (gnutls openpgp crt t
key, void * fpr, size t * fprlen)

key : the raw data that contains the OpenPGP public key.

fpr: the buffer to save the fingerprint, must hold at least 20 bytes.

fprlen: the integer to save the length of the fingerprint.

Get key fingerprint. Depending on the algorithm, the fingerprint can be 16 or 20
bytes.

Returns: On success, 0 is returned. Otherwise, an error code.

gnutls openpgp crt get key id

[Function]int gnutls_openpgp_crt_get_key_id (gnutls openpgp crt t key,
gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP public key.

keyid: the buffer to save the keyid.

Get key id string.

Appendix E: API reference 496

Returns: the 64-bit keyID of the OpenPGP key.

Since: 2.4.0

gnutls openpgp crt get key usage

[Function]int gnutls_openpgp_crt_get_key_usage (gnutls openpgp crt t key,
unsigned int * key_usage)

key : should contain a gnutls openpgp crt t structure

key usage: where the key usage bits will be stored

This function will return certificate’s key usage, by checking the key algorithm. The
key usage value will ORed values of the: GNUTLS_KEY_DIGITAL_SIGNATURE , GNUTLS_
KEY_KEY_ENCIPHERMENT .

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp crt get name

[Function]int gnutls_openpgp_crt_get_name (gnutls openpgp crt t key, int
idx, char * buf, size t * sizeof_buf)

key : the structure that contains the OpenPGP public key.

idx: the index of the ID to extract

buf : a pointer to a structure to hold the name, may be NULL to only get the sizeof_
buf .

sizeof buf : holds the maximum size of buf , on return hold the actual/required size
of buf .

Extracts the userID from the parsed OpenPGP key.

Returns: GNUTLS_E_SUCCESS on success, and if the index of the ID does not exist
GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE , or an error code.

gnutls openpgp crt get pk algorithm

[Function]gnutls_pk_algorithm_t gnutls_openpgp_crt_get_pk_algorithm
(gnutls openpgp crt t key, unsigned int * bits)

key : is an OpenPGP key

bits: if bits is non null it will hold the size of the parameters’ in bits

This function will return the public key algorithm of an OpenPGP certificate.

If bits is non null, it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or
GNUTLS PK UNKNOWN on error.

gnutls openpgp crt get pk dsa raw

[Function]int gnutls_openpgp_crt_get_pk_dsa_raw (gnutls openpgp crt t
crt, gnutls datum t * p, gnutls datum t * q, gnutls datum t * g,
gnutls datum t * y)

crt: Holds the certificate

Appendix E: API reference 497

p: will hold the p

q: will hold the q

g : will hold the g

y : will hold the y

This function will export the DSA public key’s parameters found in the given cer-
tificate. The new parameters will be allocated using gnutls_malloc() and will be
stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 2.4.0

gnutls openpgp crt get pk rsa raw

[Function]int gnutls_openpgp_crt_get_pk_rsa_raw (gnutls openpgp crt t
crt, gnutls datum t * m, gnutls datum t * e)

crt: Holds the certificate

m: will hold the modulus

e: will hold the public exponent

This function will export the RSA public key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 2.4.0

gnutls openpgp crt get preferred key id

[Function]int gnutls_openpgp_crt_get_preferred_key_id
(gnutls openpgp crt t key, gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP public key.

keyid: the struct to save the keyid.

Get preferred key id. If it hasn’t been set it returns GNUTLS_E_INVALID_REQUEST .

Returns: the 64-bit preferred keyID of the OpenPGP key.

gnutls openpgp crt get revoked status

[Function]int gnutls_openpgp_crt_get_revoked_status
(gnutls openpgp crt t key)

key : the structure that contains the OpenPGP public key.

Get revocation status of key.

Returns: true (1) if the key has been revoked, or false (0) if it has not.

Since: 2.4.0

Appendix E: API reference 498

gnutls openpgp crt get subkey count

[Function]int gnutls_openpgp_crt_get_subkey_count (gnutls openpgp crt t
key)

key : is an OpenPGP key

This function will return the number of subkeys present in the given OpenPGP cer-
tificate.

Returns: the number of subkeys, or a negative error code on error.

Since: 2.4.0

gnutls openpgp crt get subkey creation time

[Function]time_t gnutls_openpgp_crt_get_subkey_creation_time
(gnutls openpgp crt t key, unsigned int idx)

key : the structure that contains the OpenPGP public key.

idx: the subkey index

Get subkey creation time.

Returns: the timestamp when the OpenPGP sub-key was created.

Since: 2.4.0

gnutls openpgp crt get subkey expiration time

[Function]time_t gnutls_openpgp_crt_get_subkey_expiration_time
(gnutls openpgp crt t key, unsigned int idx)

key : the structure that contains the OpenPGP public key.

idx: the subkey index

Get subkey expiration time. A value of ’0’ means that the key doesn’t expire at all.

Returns: the time when the OpenPGP key expires.

Since: 2.4.0

gnutls openpgp crt get subkey fingerprint

[Function]int gnutls_openpgp_crt_get_subkey_fingerprint
(gnutls openpgp crt t key, unsigned int idx, void * fpr, size t * fprlen)

key : the raw data that contains the OpenPGP public key.

idx: the subkey index

fpr: the buffer to save the fingerprint, must hold at least 20 bytes.

fprlen: the integer to save the length of the fingerprint.

Get key fingerprint of a subkey. Depending on the algorithm, the fingerprint can be
16 or 20 bytes.

Returns: On success, 0 is returned. Otherwise, an error code.

Since: 2.4.0

Appendix E: API reference 499

gnutls openpgp crt get subkey id

[Function]int gnutls_openpgp_crt_get_subkey_id (gnutls openpgp crt t key,
unsigned int idx, gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP public key.

idx: the subkey index

keyid: the buffer to save the keyid.

Get the subkey’s key-id.

Returns: the 64-bit keyID of the OpenPGP key.

gnutls openpgp crt get subkey idx

[Function]int gnutls_openpgp_crt_get_subkey_idx (gnutls openpgp crt t
key, const gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP public key.

keyid: the keyid.

Get subkey’s index.

Returns: the index of the subkey or a negative error value.

Since: 2.4.0

gnutls openpgp crt get subkey pk algorithm

[Function]gnutls_pk_algorithm_t
gnutls_openpgp_crt_get_subkey_pk_algorithm (gnutls openpgp crt t
key, unsigned int idx, unsigned int * bits)

key : is an OpenPGP key

idx: is the subkey index

bits: if bits is non null it will hold the size of the parameters’ in bits

This function will return the public key algorithm of a subkey of an OpenPGP cer-
tificate.

If bits is non null, it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or
GNUTLS PK UNKNOWN on error.

Since: 2.4.0

gnutls openpgp crt get subkey pk dsa raw

[Function]int gnutls_openpgp_crt_get_subkey_pk_dsa_raw
(gnutls openpgp crt t crt, unsigned int idx, gnutls datum t * p,
gnutls datum t * q, gnutls datum t * g, gnutls datum t * y)

crt: Holds the certificate

idx: Is the subkey index

p: will hold the p

Appendix E: API reference 500

q: will hold the q

g : will hold the g

y : will hold the y

This function will export the DSA public key’s parameters found in the given cer-
tificate. The new parameters will be allocated using gnutls_malloc() and will be
stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 2.4.0

gnutls openpgp crt get subkey pk rsa raw

[Function]int gnutls_openpgp_crt_get_subkey_pk_rsa_raw
(gnutls openpgp crt t crt, unsigned int idx, gnutls datum t * m,
gnutls datum t * e)

crt: Holds the certificate

idx: Is the subkey index

m: will hold the modulus

e: will hold the public exponent

This function will export the RSA public key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 2.4.0

gnutls openpgp crt get subkey revoked status

[Function]int gnutls_openpgp_crt_get_subkey_revoked_status
(gnutls openpgp crt t key, unsigned int idx)

key : the structure that contains the OpenPGP public key.

idx: is the subkey index

Get subkey revocation status. A negative error code indicates an error.

Returns: true (1) if the key has been revoked, or false (0) if it has not.

Since: 2.4.0

gnutls openpgp crt get subkey usage

[Function]int gnutls_openpgp_crt_get_subkey_usage (gnutls openpgp crt t
key, unsigned int idx, unsigned int * key_usage)

key : should contain a gnutls openpgp crt t structure

idx: the subkey index

key usage: where the key usage bits will be stored

This function will return certificate’s key usage, by checking the key algorithm. The
key usage value will ORed values of GNUTLS_KEY_DIGITAL_SIGNATURE or GNUTLS_

KEY_KEY_ENCIPHERMENT .

Appendix E: API reference 501

A negative error code may be returned in case of parsing error.

Returns: key usage value.

Since: 2.4.0

gnutls openpgp crt get version

[Function]int gnutls_openpgp_crt_get_version (gnutls openpgp crt t key)
key : the structure that contains the OpenPGP public key.

Extract the version of the OpenPGP key.

Returns: the version number is returned, or a negative error code on errors.

gnutls openpgp crt import

[Function]int gnutls_openpgp_crt_import (gnutls openpgp crt t key, const
gnutls datum t * data, gnutls openpgp crt fmt t format)

key : The structure to store the parsed key.

data: The RAW or BASE64 encoded key.

format: One of gnutls openpgp crt fmt t elements.

This function will convert the given RAW or Base64 encoded key to the native
gnutls_openpgp_crt_t format. The output will be stored in ’key’.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp crt init

[Function]int gnutls_openpgp_crt_init (gnutls openpgp crt t * key)
key : The structure to be initialized

This function will initialize an OpenPGP key structure.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp crt print

[Function]int gnutls_openpgp_crt_print (gnutls openpgp crt t cert,
gnutls certificate print formats t format, gnutls datum t * out)

cert: The structure to be printed

format: Indicate the format to use

out: Newly allocated datum with (0) terminated string.

This function will pretty print an OpenPGP certificate, suitable for display to a
human.

The format should be (0) for future compatibility.

The output out needs to be deallocate using gnutls_free() .

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Appendix E: API reference 502

gnutls openpgp crt set preferred key id

[Function]int gnutls_openpgp_crt_set_preferred_key_id
(gnutls openpgp crt t key, const gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP public key.

keyid: the selected keyid

This allows setting a preferred key id for the given certificate. This key will be used
by functions that involve key handling.

If the provided keyid is NULL then the master key is set as preferred.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls openpgp crt verify ring

[Function]int gnutls_openpgp_crt_verify_ring (gnutls openpgp crt t key,
gnutls openpgp keyring t keyring, unsigned int flags, unsigned int *
verify)

key : the structure that holds the key.

keyring : holds the keyring to check against

flags: unused (should be 0)

verify : will hold the certificate verification output.

Verify all signatures in the key, using the given set of keys (keyring).

The key verification output will be put in verify and will be one or more of the
gnutls_certificate_status_t enumerated elements bitwise or’d.

Note that this function does not verify using any "web of trust". You may use GnuPG
for that purpose, or any other external PGP application.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp crt verify self

[Function]int gnutls_openpgp_crt_verify_self (gnutls openpgp crt t key,
unsigned int flags, unsigned int * verify)

key : the structure that holds the key.

flags: unused (should be 0)

verify : will hold the key verification output.

Verifies the self signature in the key. The key verification output will be put in verify

and will be one or more of the gnutls certificate status t enumerated elements bitwise
or’d.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp keyring check id

[Function]int gnutls_openpgp_keyring_check_id (gnutls openpgp keyring t
ring, const gnutls openpgp keyid t keyid, unsigned int flags)

ring : holds the keyring to check against

Appendix E: API reference 503

keyid: will hold the keyid to check for.

flags: unused (should be 0)

Check if a given key ID exists in the keyring.

Returns: GNUTLS_E_SUCCESS on success (if keyid exists) and a negative error code on
failure.

gnutls openpgp keyring deinit

[Function]void gnutls_openpgp_keyring_deinit (gnutls openpgp keyring t
keyring)

keyring : A pointer to the type to be initialized

This function will deinitialize a keyring structure.

gnutls openpgp keyring get crt

[Function]int gnutls_openpgp_keyring_get_crt (gnutls openpgp keyring t
ring, unsigned int idx, gnutls openpgp crt t * cert)

ring : Holds the keyring.

idx: the index of the certificate to export

cert: An uninitialized gnutls_openpgp_crt_t type

This function will extract an OpenPGP certificate from the given keyring. If the index
given is out of range GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE will be returned.
The returned structure needs to be deinited.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp keyring get crt count

[Function]int gnutls_openpgp_keyring_get_crt_count
(gnutls openpgp keyring t ring)

ring : is an OpenPGP key ring

This function will return the number of OpenPGP certificates present in the given
keyring.

Returns: the number of subkeys, or a negative error code on error.

gnutls openpgp keyring import

[Function]int gnutls_openpgp_keyring_import (gnutls openpgp keyring t
keyring, const gnutls datum t * data, gnutls openpgp crt fmt t format)

keyring : The structure to store the parsed key.

data: The RAW or BASE64 encoded keyring.

format: One of gnutls_openpgp_keyring_fmt elements.

This function will convert the given RAW or Base64 encoded keyring to the native
gnutls_openpgp_keyring_t format. The output will be stored in ’keyring’.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Appendix E: API reference 504

gnutls openpgp keyring init

[Function]int gnutls_openpgp_keyring_init (gnutls openpgp keyring t *
keyring)

keyring : A pointer to the type to be initialized

This function will initialize an keyring structure.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp privkey deinit

[Function]void gnutls_openpgp_privkey_deinit (gnutls openpgp privkey t
key)

key : The structure to be initialized

This function will deinitialize a key structure.

gnutls openpgp privkey export

[Function]int gnutls_openpgp_privkey_export (gnutls openpgp privkey t key,
gnutls openpgp crt fmt t format, const char * password, unsigned int
flags, void * output_data, size t * output_data_size)

key : Holds the key.

format: One of gnutls openpgp crt fmt t elements.

password: the password that will be used to encrypt the key. (unused for now)

flags: (0) for future compatibility

output data: will contain the key base64 encoded or raw

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will convert the given key to RAW or Base64 format.
If the buffer provided is not long enough to hold the output, then
GNUTLS E SHORT MEMORY BUFFER will be returned.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Since: 2.4.0

gnutls openpgp privkey export2

[Function]int gnutls_openpgp_privkey_export2 (gnutls openpgp privkey t
key, gnutls openpgp crt fmt t format, const char * password, unsigned int
flags, gnutls datum t * out)

key : Holds the key.

format: One of gnutls openpgp crt fmt t elements.

password: the password that will be used to encrypt the key. (unused for now)

flags: (0) for future compatibility

out: will contain the raw or based64 encoded key

This function will convert the given key to RAW or Base64 format. The output buffer
is allocated using gnutls_malloc() .

Appendix E: API reference 505

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Since: 3.1.3

gnutls openpgp privkey export dsa raw

[Function]int gnutls_openpgp_privkey_export_dsa_raw
(gnutls openpgp privkey t pkey, gnutls datum t * p, gnutls datum t * q,
gnutls datum t * g, gnutls datum t * y, gnutls datum t * x)

pkey : Holds the certificate

p: will hold the p

q: will hold the q

g : will hold the g

y : will hold the y

x: will hold the x

This function will export the DSA private key’s parameters found in the given cer-
tificate. The new parameters will be allocated using gnutls_malloc() and will be
stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 2.4.0

gnutls openpgp privkey export rsa raw

[Function]int gnutls_openpgp_privkey_export_rsa_raw
(gnutls openpgp privkey t pkey, gnutls datum t * m, gnutls datum t * e,
gnutls datum t * d, gnutls datum t * p, gnutls datum t * q, gnutls datum t *
u)

pkey : Holds the certificate

m: will hold the modulus

e: will hold the public exponent

d: will hold the private exponent

p: will hold the first prime (p)

q: will hold the second prime (q)

u: will hold the coefficient

This function will export the RSA private key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 2.4.0

Appendix E: API reference 506

gnutls openpgp privkey export subkey dsa raw

[Function]int gnutls_openpgp_privkey_export_subkey_dsa_raw
(gnutls openpgp privkey t pkey, unsigned int idx, gnutls datum t * p,
gnutls datum t * q, gnutls datum t * g, gnutls datum t * y, gnutls datum t *
x)

pkey : Holds the certificate

idx: Is the subkey index

p: will hold the p

q: will hold the q

g : will hold the g

y : will hold the y

x: will hold the x

This function will export the DSA private key’s parameters found in the given cer-
tificate. The new parameters will be allocated using gnutls_malloc() and will be
stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 2.4.0

gnutls openpgp privkey export subkey rsa raw

[Function]int gnutls_openpgp_privkey_export_subkey_rsa_raw
(gnutls openpgp privkey t pkey, unsigned int idx, gnutls datum t * m,
gnutls datum t * e, gnutls datum t * d, gnutls datum t * p, gnutls datum t *
q, gnutls datum t * u)

pkey : Holds the certificate

idx: Is the subkey index

m: will hold the modulus

e: will hold the public exponent

d: will hold the private exponent

p: will hold the first prime (p)

q: will hold the second prime (q)

u: will hold the coefficient

This function will export the RSA private key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 2.4.0

Appendix E: API reference 507

gnutls openpgp privkey get fingerprint

[Function]int gnutls_openpgp_privkey_get_fingerprint
(gnutls openpgp privkey t key, void * fpr, size t * fprlen)

key : the raw data that contains the OpenPGP secret key.

fpr: the buffer to save the fingerprint, must hold at least 20 bytes.

fprlen: the integer to save the length of the fingerprint.

Get the fingerprint of the OpenPGP key. Depends on the algorithm, the fingerprint
can be 16 or 20 bytes.

Returns: On success, 0 is returned, or an error code.

Since: 2.4.0

gnutls openpgp privkey get key id

[Function]int gnutls_openpgp_privkey_get_key_id (gnutls openpgp privkey t
key, gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP secret key.

keyid: the buffer to save the keyid.

Get key-id.

Returns: the 64-bit keyID of the OpenPGP key.

Since: 2.4.0

gnutls openpgp privkey get pk algorithm

[Function]gnutls_pk_algorithm_t
gnutls_openpgp_privkey_get_pk_algorithm (gnutls openpgp privkey t
key, unsigned int * bits)

key : is an OpenPGP key

bits: if bits is non null it will hold the size of the parameters’ in bits

This function will return the public key algorithm of an OpenPGP certificate.

If bits is non null, it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or a
negative error code on error.

Since: 2.4.0

gnutls openpgp privkey get preferred key id

[Function]int gnutls_openpgp_privkey_get_preferred_key_id
(gnutls openpgp privkey t key, gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP public key.

keyid: the struct to save the keyid.

Get the preferred key-id for the key.

Returns: the 64-bit preferred keyID of the OpenPGP key, or if it hasn’t been set it
returns GNUTLS_E_INVALID_REQUEST .

Appendix E: API reference 508

gnutls openpgp privkey get revoked status

[Function]int gnutls_openpgp_privkey_get_revoked_status
(gnutls openpgp privkey t key)

key : the structure that contains the OpenPGP private key.

Get revocation status of key.

Returns: true (1) if the key has been revoked, or false (0) if it has not, or a negative
error code indicates an error.

Since: 2.4.0

gnutls openpgp privkey get subkey count

[Function]int gnutls_openpgp_privkey_get_subkey_count
(gnutls openpgp privkey t key)

key : is an OpenPGP key

This function will return the number of subkeys present in the given OpenPGP cer-
tificate.

Returns: the number of subkeys, or a negative error code on error.

Since: 2.4.0

gnutls openpgp privkey get subkey creation time

[Function]time_t gnutls_openpgp_privkey_get_subkey_creation_time
(gnutls openpgp privkey t key, unsigned int idx)

key : the structure that contains the OpenPGP private key.

idx: the subkey index

Get subkey creation time.

Returns: the timestamp when the OpenPGP key was created.

Since: 2.4.0

gnutls openpgp privkey get subkey expiration time

[Function]time_t gnutls_openpgp_privkey_get_subkey_expiration_time
(gnutls openpgp privkey t key, unsigned int idx)

key : the structure that contains the OpenPGP private key.

idx: the subkey index

Get subkey expiration time. A value of ’0’ means that the key doesn’t expire at all.

Returns: the time when the OpenPGP key expires.

Since: 2.4.0

gnutls openpgp privkey get subkey fingerprint

[Function]int gnutls_openpgp_privkey_get_subkey_fingerprint
(gnutls openpgp privkey t key, unsigned int idx, void * fpr, size t * fprlen)

key : the raw data that contains the OpenPGP secret key.

Appendix E: API reference 509

idx: the subkey index

fpr: the buffer to save the fingerprint, must hold at least 20 bytes.

fprlen: the integer to save the length of the fingerprint.

Get the fingerprint of an OpenPGP subkey. Depends on the algorithm, the fingerprint
can be 16 or 20 bytes.

Returns: On success, 0 is returned, or an error code.

Since: 2.4.0

gnutls openpgp privkey get subkey id

[Function]int gnutls_openpgp_privkey_get_subkey_id
(gnutls openpgp privkey t key, unsigned int idx, gnutls openpgp keyid t
keyid)

key : the structure that contains the OpenPGP secret key.

idx: the subkey index

keyid: the buffer to save the keyid.

Get the key-id for the subkey.

Returns: the 64-bit keyID of the OpenPGP key.

Since: 2.4.0

gnutls openpgp privkey get subkey idx

[Function]int gnutls_openpgp_privkey_get_subkey_idx
(gnutls openpgp privkey t key, const gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP private key.

keyid: the keyid.

Get index of subkey.

Returns: the index of the subkey or a negative error value.

Since: 2.4.0

gnutls openpgp privkey get subkey pk algorithm

[Function]gnutls_pk_algorithm_t
gnutls_openpgp_privkey_get_subkey_pk_algorithm
(gnutls openpgp privkey t key, unsigned int idx, unsigned int * bits)

key : is an OpenPGP key

idx: is the subkey index

bits: if bits is non null it will hold the size of the parameters’ in bits

This function will return the public key algorithm of a subkey of an OpenPGP cer-
tificate.

If bits is non null, it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or a
negative error code on error.

Since: 2.4.0

Appendix E: API reference 510

gnutls openpgp privkey get subkey revoked status

[Function]int gnutls_openpgp_privkey_get_subkey_revoked_status
(gnutls openpgp privkey t key, unsigned int idx)

key : the structure that contains the OpenPGP private key.

idx: is the subkey index

Get revocation status of key.

Returns: true (1) if the key has been revoked, or false (0) if it has not, or a negative
error code indicates an error.

Since: 2.4.0

gnutls openpgp privkey import

[Function]int gnutls_openpgp_privkey_import (gnutls openpgp privkey t key,
const gnutls datum t * data, gnutls openpgp crt fmt t format, const char *
password, unsigned int flags)

key : The structure to store the parsed key.

data: The RAW or BASE64 encoded key.

format: One of gnutls_openpgp_crt_fmt_t elements.

password: not used for now

flags: should be (0)

This function will convert the given RAW or Base64 encoded key to the native
gnutls openpgp privkey t format. The output will be stored in ’key’.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp privkey init

[Function]int gnutls_openpgp_privkey_init (gnutls openpgp privkey t * key)
key : The structure to be initialized

This function will initialize an OpenPGP key structure.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp privkey sec param

[Function]gnutls_sec_param_t gnutls_openpgp_privkey_sec_param
(gnutls openpgp privkey t key)

key : a key structure

This function will return the security parameter appropriate with this private key.

Returns: On success, a valid security parameter is returned otherwise GNUTLS_SEC_

PARAM_UNKNOWN is returned.

Since: 2.12.0

Appendix E: API reference 511

gnutls openpgp privkey set preferred key id

[Function]int gnutls_openpgp_privkey_set_preferred_key_id
(gnutls openpgp privkey t key, const gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP public key.

keyid: the selected keyid

This allows setting a preferred key id for the given certificate. This key will be used
by functions that involve key handling.

If the provided keyid is NULL then the master key is set as preferred.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls openpgp set recv key function

[Function]void gnutls_openpgp_set_recv_key_function (gnutls session t
session, gnutls openpgp recv key func func)

session: a TLS session

func: the callback

This funtion will set a key retrieval function for OpenPGP keys. This callback is only
useful in server side, and will be used if the peer sent a key fingerprint instead of a
full key.

The retrieved key must be allocated using gnutls_malloc() .

E.6 PKCS 12 API

The following functions are to be used for PKCS 12 handling. Their prototypes lie in
gnutls/pkcs12.h.

gnutls pkcs12 bag decrypt

[Function]int gnutls_pkcs12_bag_decrypt (gnutls pkcs12 bag t bag, const char
* pass)

bag : The bag

pass: The password used for encryption, must be ASCII.

This function will decrypt the given encrypted bag and return 0 on success.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls pkcs12 bag deinit

[Function]void gnutls_pkcs12_bag_deinit (gnutls pkcs12 bag t bag)
bag : The structure to be initialized

This function will deinitialize a PKCS12 Bag structure.

Appendix E: API reference 512

gnutls pkcs12 bag encrypt

[Function]int gnutls_pkcs12_bag_encrypt (gnutls pkcs12 bag t bag, const char
* pass, unsigned int flags)

bag : The bag

pass: The password used for encryption, must be ASCII

flags: should be one of gnutls_pkcs_encrypt_flags_t elements bitwise or’d

This function will encrypt the given bag.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls pkcs12 bag get count

[Function]int gnutls_pkcs12_bag_get_count (gnutls pkcs12 bag t bag)
bag : The bag

This function will return the number of the elements withing the bag.

Returns: Number of elements in bag, or an negative error code on error.

gnutls pkcs12 bag get data

[Function]int gnutls_pkcs12_bag_get_data (gnutls pkcs12 bag t bag, int
indx, gnutls datum t * data)

bag : The bag

indx: The element of the bag to get the data from

data: where the bag’s data will be. Should be treated as constant.

This function will return the bag’s data. The data is a constant that is stored into
the bag. Should not be accessed after the bag is deleted.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs12 bag get friendly name

[Function]int gnutls_pkcs12_bag_get_friendly_name (gnutls pkcs12 bag t
bag, int indx, char ** name)

bag : The bag

indx: The bag’s element to add the id

name: will hold a pointer to the name (to be treated as const)

This function will return the friendly name, of the specified bag element. The key ID
is usually used to distinguish the local private key and the certificate pair.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. or a negative error code on error.

Appendix E: API reference 513

gnutls pkcs12 bag get key id

[Function]int gnutls_pkcs12_bag_get_key_id (gnutls pkcs12 bag t bag, int
indx, gnutls datum t * id)

bag : The bag

indx: The bag’s element to add the id

id: where the ID will be copied (to be treated as const)

This function will return the key ID, of the specified bag element. The key ID is
usually used to distinguish the local private key and the certificate pair.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. or a negative error code on error.

gnutls pkcs12 bag get type

[Function]gnutls_pkcs12_bag_type_t gnutls_pkcs12_bag_get_type
(gnutls pkcs12 bag t bag, int indx)

bag : The bag

indx: The element of the bag to get the type

This function will return the bag’s type.

Returns: One of the gnutls_pkcs12_bag_type_t enumerations.

gnutls pkcs12 bag init

[Function]int gnutls_pkcs12_bag_init (gnutls pkcs12 bag t * bag)
bag : The structure to be initialized

This function will initialize a PKCS12 bag structure. PKCS12 Bags usually contain
private keys, lists of X.509 Certificates and X.509 Certificate revocation lists.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs12 bag set crl

[Function]int gnutls_pkcs12_bag_set_crl (gnutls pkcs12 bag t bag,
gnutls x509 crl t crl)

bag : The bag

crl: the CRL to be copied.

This function will insert the given CRL into the bag. This is just a wrapper over
gnutls_pkcs12_bag_set_data() .

Returns: the index of the added bag on success, or a negative error code on failure.

gnutls pkcs12 bag set crt

[Function]int gnutls_pkcs12_bag_set_crt (gnutls pkcs12 bag t bag,
gnutls x509 crt t crt)

bag : The bag

crt: the certificate to be copied.

Appendix E: API reference 514

This function will insert the given certificate into the bag. This is just a wrapper over
gnutls_pkcs12_bag_set_data() .

Returns: the index of the added bag on success, or a negative value on failure.

gnutls pkcs12 bag set data

[Function]int gnutls_pkcs12_bag_set_data (gnutls pkcs12 bag t bag,
gnutls pkcs12 bag type t type, const gnutls datum t * data)

bag : The bag

type: The data’s type

data: the data to be copied.

This function will insert the given data of the given type into the bag.

Returns: the index of the added bag on success, or a negative value on error.

gnutls pkcs12 bag set friendly name

[Function]int gnutls_pkcs12_bag_set_friendly_name (gnutls pkcs12 bag t
bag, int indx, const char * name)

bag : The bag

indx: The bag’s element to add the id

name: the name

This function will add the given key friendly name, to the specified, by the index,
bag element. The name will be encoded as a ’Friendly name’ bag attribute, which is
usually used to set a user name to the local private key and the certificate pair.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. or a negative error code on error.

gnutls pkcs12 bag set key id

[Function]int gnutls_pkcs12_bag_set_key_id (gnutls pkcs12 bag t bag, int
indx, const gnutls datum t * id)

bag : The bag

indx: The bag’s element to add the id

id: the ID

This function will add the given key ID, to the specified, by the index, bag element.
The key ID will be encoded as a ’Local key identifier’ bag attribute, which is usually
used to distinguish the local private key and the certificate pair.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. or a negative error code on error.

gnutls pkcs12 deinit

[Function]void gnutls_pkcs12_deinit (gnutls pkcs12 t pkcs12)
pkcs12: The structure to be initialized

This function will deinitialize a PKCS12 structure.

Appendix E: API reference 515

gnutls pkcs12 export

[Function]int gnutls_pkcs12_export (gnutls pkcs12 t pkcs12,
gnutls x509 crt fmt t format, void * output_data, size t *
output_data_size)

pkcs12: Holds the pkcs12 structure

format: the format of output params. One of PEM or DER.

output data: will contain a structure PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the pkcs12 structure to DER or PEM format.

If the buffer provided is not long enough to hold the output, then *output data size
will be updated and GNUTLS E SHORT MEMORY BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN PKCS12".

Returns: In case of failure a negative error code will be returned, and 0 on success.

gnutls pkcs12 export2

[Function]int gnutls_pkcs12_export2 (gnutls pkcs12 t pkcs12,
gnutls x509 crt fmt t format, gnutls datum t * out)

pkcs12: Holds the pkcs12 structure

format: the format of output params. One of PEM or DER.

out: will contain a structure PEM or DER encoded

This function will export the pkcs12 structure to DER or PEM format.

The output buffer is allocated using gnutls_malloc() .

If the structure is PEM encoded, it will have a header of "BEGIN PKCS12".

Returns: In case of failure a negative error code will be returned, and 0 on success.

Since: 3.1.3

gnutls pkcs12 generate mac

[Function]int gnutls_pkcs12_generate_mac (gnutls pkcs12 t pkcs12, const
char * pass)

pkcs12: should contain a gnutls pkcs12 t structure

pass: The password for the MAC

This function will generate a MAC for the PKCS12 structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs12 get bag

[Function]int gnutls_pkcs12_get_bag (gnutls pkcs12 t pkcs12, int indx,
gnutls pkcs12 bag t bag)

pkcs12: should contain a gnutls pkcs12 t structure

Appendix E: API reference 516

indx: contains the index of the bag to extract

bag : An initialized bag, where the contents of the bag will be copied

This function will return a Bag from the PKCS12 structure.

After the last Bag has been read GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE will be
returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs12 import

[Function]int gnutls_pkcs12_import (gnutls pkcs12 t pkcs12, const
gnutls datum t * data, gnutls x509 crt fmt t format, unsigned int flags)

pkcs12: The structure to store the parsed PKCS12.

data: The DER or PEM encoded PKCS12.

format: One of DER or PEM

flags: an ORed sequence of gnutls privkey pkcs8 flags

This function will convert the given DER or PEM encoded PKCS12 to the native
gnutls pkcs12 t format. The output will be stored in ’pkcs12’.

If the PKCS12 is PEM encoded it should have a header of "PKCS12".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs12 init

[Function]int gnutls_pkcs12_init (gnutls pkcs12 t * pkcs12)
pkcs12: The structure to be initialized

This function will initialize a PKCS12 structure. PKCS12 structures usually contain
lists of X.509 Certificates and X.509 Certificate revocation lists.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs12 set bag

[Function]int gnutls_pkcs12_set_bag (gnutls pkcs12 t pkcs12,
gnutls pkcs12 bag t bag)

pkcs12: should contain a gnutls pkcs12 t structure

bag : An initialized bag

This function will insert a Bag into the PKCS12 structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 517

gnutls pkcs12 simple parse

[Function]int gnutls_pkcs12_simple_parse (gnutls pkcs12 t p12, const char *
password, gnutls x509 privkey t * key, gnutls x509 crt t ** chain, unsigned
int * chain_len, gnutls x509 crt t ** extra_certs, unsigned int *
extra_certs_len, gnutls x509 crl t * crl, unsigned int flags)

p12: should contain a gnutls pkcs12 t structure

password: optional password used to decrypt the structure, bags and keys.

key : a structure to store the parsed private key.

chain: the corresponding to key certificate chain (may be NULL)

chain len: will be updated with the number of additional (may be NULL)

extra certs: optional pointer to receive an array of additional certificates found in the
PKCS12 structure (may be NULL).

extra certs len: will be updated with the number of additional certs (may be NULL).

crl: an optional structure to store the parsed CRL (may be NULL).

flags: should be zero or one of GNUTLS PKCS12 SP *

This function parses a PKCS12 structure in pkcs12 and extracts the private key, the
corresponding certificate chain, any additional certificates and a CRL.

The extra_certs and extra_certs_len parameters are optional and both may be
set to NULL . If either is non-NULL , then both must be set. The value for extra_certs
is allocated using gnutls_malloc() .

Encrypted PKCS12 bags and PKCS8 private keys are supported, but only with pass-
word based security and the same password for all operations.

Note that a PKCS12 structure may contain many keys and/or certificates, and there
is no way to identify which key/certificate pair you want. For this reason this function
is useful for PKCS12 files that contain only one key/certificate pair and/or one CRL.

If the provided structure has encrypted fields but no password is provided then this
function returns GNUTLS_E_DECRYPTION_FAILED .

Note that normally the chain constructed does not include self signed certificates, to
comply with TLS’ requirements. If, however, the flag GNUTLS_PKCS12_SP_INCLUDE_

SELF_SIGNED is specified then self signed certificates will be included in the chain.

Prior to using this function the PKCS 12 structure integrity must be verified using
gnutls_pkcs12_verify_mac() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

gnutls pkcs12 verify mac

[Function]int gnutls_pkcs12_verify_mac (gnutls pkcs12 t pkcs12, const char *
pass)

pkcs12: should contain a gnutls pkcs12 t structure

pass: The password for the MAC

Appendix E: API reference 518

This function will verify the MAC for the PKCS12 structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

E.7 Hardware token via PKCS 11 API

The following functions are to be used for PKCS 11 handling. Their prototypes lie in
gnutls/pkcs11.h.

gnutls pkcs11 add provider

[Function]int gnutls_pkcs11_add_provider (const char * name, const char *
params)

name: The filename of the module

params: should be NULL

This function will load and add a PKCS 11 module to the module list used in gnutls.
After this function is called the module will be used for PKCS 11 operations.

When loading a module to be used for certificate verification, use the string ’trusted’
as params .

Note that this function is not thread safe.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pkcs11 copy secret key

[Function]int gnutls_pkcs11_copy_secret_key (const char * token_url,
gnutls datum t * key, const char * label, unsigned int key_usage, unsigned
int flags)

token url: A PKCS 11 URL specifying a token

key : The raw key

label: A name to be used for the stored data

key usage: One of GNUTLS KEY *

flags: One of GNUTLS PKCS11 OBJ FLAG *

This function will copy a raw secret (symmetric) key into a PKCS 11 token specified
by a URL. The key can be marked as sensitive or not.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pkcs11 copy x509 crt

[Function]int gnutls_pkcs11_copy_x509_crt (const char * token_url,
gnutls x509 crt t crt, const char * label, unsigned int flags)

token url: A PKCS 11 URL specifying a token

Appendix E: API reference 519

crt: The certificate to copy

label: The name to be used for the stored data

flags: One of GNUTLS PKCS11 OBJ FLAG *

This function will copy a certificate into a PKCS 11 token specified by a URL. The
certificate can be marked as trusted or not.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pkcs11 copy x509 crt2

[Function]int gnutls_pkcs11_copy_x509_crt2 (const char * token_url,
gnutls x509 crt t crt, const char * label, const gnutls datum t * cid,
unsigned int flags)

token url: A PKCS 11 URL specifying a token

crt: The certificate to copy

label: The name to be used for the stored data

cid: The CKA ID to set for the object -if NULL, the ID will be derived from the
public key

flags: One of GNUTLS PKCS11 OBJ FLAG *

This function will copy a certificate into a PKCS 11 token specified by a URL. The
certificate can be marked as trusted or not.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.26

gnutls pkcs11 copy x509 privkey

[Function]int gnutls_pkcs11_copy_x509_privkey (const char * token_url,
gnutls x509 privkey t key, const char * label, unsigned int key_usage,
unsigned int flags)

token url: A PKCS 11 URL specifying a token

key : A private key

label: A name to be used for the stored data

key usage: One of GNUTLS KEY *

flags: One of GNUTLS PKCS11 OBJ * flags

This function will copy a private key into a PKCS 11 token specified by a URL. It
is highly recommended flags to contain GNUTLS_PKCS11_OBJ_FLAG_MARK_SENSITIVE

unless there is a strong reason not to.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

Appendix E: API reference 520

gnutls pkcs11 copy x509 privkey2

[Function]int gnutls_pkcs11_copy_x509_privkey2 (const char * token_url,
gnutls x509 privkey t key, const char * label, const gnutls datum t * cid,
unsigned int key_usage, unsigned int flags)

token url: A PKCS 11 URL specifying a token

key : A private key

label: A name to be used for the stored data

cid: The CKA ID to set for the object -if NULL, the ID will be derived from the
public key

key usage: One of GNUTLS KEY *

flags: One of GNUTLS PKCS11 OBJ * flags

This function will copy a private key into a PKCS 11 token specified by a URL. It
is highly recommended flags to contain GNUTLS_PKCS11_OBJ_FLAG_MARK_SENSITIVE

unless there is a strong reason not to.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.26

gnutls pkcs11 crt is known

[Function]int gnutls_pkcs11_crt_is_known (const char * url,
gnutls x509 crt t cert, unsigned int flags)

url: A PKCS 11 url identifying a token

cert: is the certificate to find issuer for

flags: Use zero or flags from GNUTLS_PKCS11_OBJ_FLAG .

This function will check whether the provided certificate is stored in the specified
token. This is useful in combination with GNUTLS_PKCS11_OBJ_FLAG_RETRIEVE_

TRUSTED or GNUTLS_PKCS11_OBJ_FLAG_RETRIEVE_DISTRUSTED , to check whether a
CA is present or a certificate is blacklisted in a trust PKCS 11 module.

This function can be used with a url of "pkcs11:", and in that case all modules will
be searched. To restrict the modules to the marked as trusted in p11-kit use the
GNUTLS_PKCS11_OBJ_FLAG_PRESENT_IN_TRUSTED_MODULE flag.

Note that the flag GNUTLS_PKCS11_OBJ_FLAG_RETRIEVE_DISTRUSTED is specific to
p11-kit trust modules.

Returns: If the certificate exists non-zero is returned, otherwise zero.

Since: 3.3.0

gnutls pkcs11 deinit

[Function]void gnutls_pkcs11_deinit (void)
This function will deinitialize the PKCS 11 subsystem in gnutls. This function is
only needed if you need to deinitialize the subsystem without calling gnutls_global_
deinit() .

Since: 2.12.0

Appendix E: API reference 521

gnutls pkcs11 delete url

[Function]int gnutls_pkcs11_delete_url (const char * object_url, unsigned
int flags)

object url: The URL of the object to delete.

flags: One of GNUTLS PKCS11 OBJ * flags

This function will delete objects matching the given URL. Note that not all tokens
support the delete operation.

Returns: On success, the number of objects deleted is returned, otherwise a negative
error value.

Since: 2.12.0

gnutls pkcs11 get pin function

[Function]gnutls_pin_callback_t gnutls_pkcs11_get_pin_function (void
** userdata)

userdata: data to be supplied to callback

This function will return the callback function set using gnutls_pkcs11_set_pin_

function() .

Returns: The function set or NULL otherwise.

Since: 3.1.0

gnutls pkcs11 get raw issuer

[Function]int gnutls_pkcs11_get_raw_issuer (const char * url,
gnutls x509 crt t cert, gnutls datum t * issuer, gnutls x509 crt fmt t fmt,
unsigned int flags)

url: A PKCS 11 url identifying a token

cert: is the certificate to find issuer for

issuer: Will hold the issuer if any in an allocated buffer.

fmt: The format of the exported issuer.

flags: Use zero or flags from GNUTLS_PKCS11_OBJ_FLAG .

This function will return the issuer of a given certificate, if it is stored in the token. By
default only marked as trusted issuers are retuned. If any issuer should be returned
specify GNUTLS_PKCS11_OBJ_FLAG_RETRIEVE_ANY in flags .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.2.7

gnutls pkcs11 init

[Function]int gnutls_pkcs11_init (unsigned int flags, const char *
deprecated_config_file)

flags: An ORed sequence of GNUTLS_PKCS11_FLAG_ *

deprecated config file: either NULL or the location of a deprecated configuration file

Appendix E: API reference 522

This function will initialize the PKCS 11 subsystem in gnutls. It will read configu-
ration files if GNUTLS_PKCS11_FLAG_AUTO is used or allow you to independently load
PKCS 11 modules using gnutls_pkcs11_add_provider() if GNUTLS_PKCS11_FLAG_
MANUAL is specified.

Normally you don’t need to call this function since it is being called when the first
PKCS 11 operation is requested using the GNUTLS_PKCS11_FLAG_AUTO flag. If an-
other flags are required then it must be called independently prior to any PKCS 11
operation.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pkcs11 obj deinit

[Function]void gnutls_pkcs11_obj_deinit (gnutls pkcs11 obj t obj)
obj: The structure to be initialized

This function will deinitialize a certificate structure.

Since: 2.12.0

gnutls pkcs11 obj export

[Function]int gnutls_pkcs11_obj_export (gnutls pkcs11 obj t obj, void *
output_data, size t * output_data_size)

obj: Holds the object

output data: will contain the object data

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the PKCS11 object data. It is normal for data to be inac-
cesible and in that case GNUTLS_E_INVALID_REQUEST will be returned.

If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS E SHORT MEMORY BUFFER will be returned.

Returns: In case of failure a negative error code will be returned, and GNUTLS_E_

SUCCESS (0) on success.

Since: 2.12.0

gnutls pkcs11 obj export2

[Function]int gnutls_pkcs11_obj_export2 (gnutls pkcs11 obj t obj,
gnutls datum t * out)

obj: Holds the object

out: will contain the object data

This function will export the PKCS11 object data. It is normal for data to be inac-
cesible and in that case GNUTLS_E_INVALID_REQUEST will be returned.

The output buffer is allocated using gnutls_malloc() .

Appendix E: API reference 523

Returns: In case of failure a negative error code will be returned, and GNUTLS_E_

SUCCESS (0) on success.

Since: 3.1.3

gnutls pkcs11 obj export3

[Function]int gnutls_pkcs11_obj_export3 (gnutls pkcs11 obj t obj,
gnutls x509 crt fmt t fmt, gnutls datum t * out)

obj: Holds the object

fmt: The format of the exported data

out: will contain the object data

This function will export the PKCS11 object data. It is normal for data to be inac-
cesible and in that case GNUTLS_E_INVALID_REQUEST will be returned.

The output buffer is allocated using gnutls_malloc() .

Returns: In case of failure a negative error code will be returned, and GNUTLS_E_

SUCCESS (0) on success.

Since: 3.2.7

gnutls pkcs11 obj export url

[Function]int gnutls_pkcs11_obj_export_url (gnutls pkcs11 obj t obj,
gnutls pkcs11 url type t detailed, char ** url)

obj: Holds the PKCS 11 certificate

detailed: non zero if a detailed URL is required

url: will contain an allocated url

This function will export a URL identifying the given certificate.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pkcs11 obj flags get str

[Function]char * gnutls_pkcs11_obj_flags_get_str (unsigned int flags)
flags: holds the flags

This function given an or-sequence of GNUTLS_PKCS11_OBJ_FLAG_MARK , will return
an allocated string with its description. The string needs to be deallocated using
gnutls_free() .

Returns: If flags is zero NULL is returned, otherwise an allocated string.

Since: 3.3.7

gnutls pkcs11 obj get exts

[Function]int gnutls_pkcs11_obj_get_exts (gnutls pkcs11 obj t obj,
gnutls x509 ext st ** exts, unsigned int * exts_size, unsigned int flags)

obj: should contain a gnutls_pkcs11_obj_t type

Appendix E: API reference 524

exts: a pointer to a gnutls_x509_ext_st pointer

exts size: will be updated with the number of exts

flags: Or sequence of GNUTLS_PKCS11_OBJ_ * flags

This function will return information about attached extensions that associate to
the provided object (which should be a certificate). The extensions are the attached
p11-kit trust module extensions.

Each element of exts must be deinitialized using gnutls_x509_ext_deinit() while
exts should be deallocated using gnutls_free() .

Returns: GNUTLS_E_SUCCESS (0) on success or a negative error code on error.

Since: 3.3.8

gnutls pkcs11 obj get flags

[Function]int gnutls_pkcs11_obj_get_flags (gnutls pkcs11 obj t obj,
unsigned int * oflags)

obj: The structure that holds the object

oflags: Will hold the output flags

This function will return the flags of the object being stored in the structure. The
oflags are the GNUTLS_PKCS11_OBJ_FLAG_MARK flags.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.7

gnutls pkcs11 obj get info

[Function]int gnutls_pkcs11_obj_get_info (gnutls pkcs11 obj t obj,
gnutls pkcs11 obj info t itype, void * output, size t * output_size)

obj: should contain a gnutls_pkcs11_obj_t structure

itype: Denotes the type of information requested

output: where output will be stored

output size: contains the maximum size of the output and will be overwritten with
actual

This function will return information about the PKCS11 certificate such as the label,
id as well as token information where the key is stored. When output is text it returns
null terminated string although output_size contains the size of the actual data only.

Returns: GNUTLS_E_SUCCESS (0) on success or a negative error code on error.

Since: 2.12.0

gnutls pkcs11 obj get type

[Function]gnutls_pkcs11_obj_type_t gnutls_pkcs11_obj_get_type
(gnutls pkcs11 obj t obj)

obj: Holds the PKCS 11 object

This function will return the type of the object being stored in the structure.

Returns: The type of the object

Since: 2.12.0

Appendix E: API reference 525

gnutls pkcs11 obj import url

[Function]int gnutls_pkcs11_obj_import_url (gnutls pkcs11 obj t obj, const
char * url, unsigned int flags)

obj: The structure to store the object

url: a PKCS 11 url identifying the key

flags: Or sequence of GNUTLS PKCS11 OBJ * flags

This function will "import" a PKCS 11 URL identifying an object (e.g. certificate)
to the gnutls_pkcs11_obj_t structure. This does not involve any parsing (such as
X.509 or OpenPGP) since the gnutls_pkcs11_obj_t is format agnostic. Only data
are transferred.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pkcs11 obj init

[Function]int gnutls_pkcs11_obj_init (gnutls pkcs11 obj t * obj)
obj: The structure to be initialized

This function will initialize a pkcs11 certificate structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pkcs11 obj list import url

[Function]int gnutls_pkcs11_obj_list_import_url (gnutls pkcs11 obj t *
p_list, unsigned int * n_list, const char * url, gnutls pkcs11 obj attr t
attrs, unsigned int flags)

p list: An uninitialized object list (may be NULL)

n list: initially should hold the maximum size of the list. Will contain the actual size.

url: A PKCS 11 url identifying a set of objects

attrs: Attributes of type gnutls_pkcs11_obj_attr_t that can be used to limit out-
put

flags: Or sequence of GNUTLS PKCS11 OBJ * flags

This function will initialize and set values to an object list by using all objects iden-
tified by a PKCS 11 URL.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

Appendix E: API reference 526

gnutls pkcs11 obj list import url2

[Function]int gnutls_pkcs11_obj_list_import_url2 (gnutls pkcs11 obj t **
p_list, unsigned int * n_list, const char * url, gnutls pkcs11 obj attr t
attrs, unsigned int flags)

p list: An uninitialized object list (may be NULL)

n list: It will contain the size of the list.

url: A PKCS 11 url identifying a set of objects

attrs: Attributes of type gnutls_pkcs11_obj_attr_t that can be used to limit out-
put

flags: Or sequence of GNUTLS PKCS11 OBJ * flags

This function will initialize and set values to an object list by using all objects identi-
fied by the PKCS 11 URL. The output is stored in p_list , which will be initialized.

All returned objects must be deinitialized using gnutls_pkcs11_obj_deinit() , and
p_list must be free’d using gnutls_free() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

gnutls pkcs11 obj set info

[Function]int gnutls_pkcs11_obj_set_info (gnutls pkcs11 obj t obj,
gnutls pkcs11 obj info t itype, const void * data, size t data_size,
unsigned flags)

obj: should contain a gnutls_pkcs11_obj_t structure

itype: Denotes the type of information to be set

data: the data to set

data size: the size of data

flags: Or sequence of GNUTLS PKCS11 OBJ * flags

This function will set attributes on the provided object. Available options for itype
are GNUTLS_PKCS11_OBJ_LABEL , GNUTLS_PKCS11_OBJ_ID_HEX , and GNUTLS_PKCS11_

OBJ_ID .

Returns: GNUTLS_E_SUCCESS (0) on success or a negative error code on error.

Since: 3.3.26

gnutls pkcs11 obj set pin function

[Function]void gnutls_pkcs11_obj_set_pin_function (gnutls pkcs11 obj t
obj, gnutls pin callback t fn, void * userdata)

obj: The object structure

fn: the callback

userdata: data associated with the callback

This function will set a callback function to be used when required to access the object.
This function overrides the global set using gnutls_pkcs11_set_pin_function() .

Since: 3.1.0

Appendix E: API reference 527

gnutls pkcs11 privkey deinit

[Function]void gnutls_pkcs11_privkey_deinit (gnutls pkcs11 privkey t key)
key : The structure to be initialized

This function will deinitialize a private key structure.

gnutls pkcs11 privkey export pubkey

[Function]int gnutls_pkcs11_privkey_export_pubkey
(gnutls pkcs11 privkey t pkey, gnutls x509 crt fmt t fmt, gnutls datum t *
data, unsigned int flags)

pkey : The private key

fmt: the format of output params. PEM or DER.

data: will hold the public key

flags: should be zero

This function will extract the public key (modulus and public exponent) from the
private key specified by the url private key. This public key will be stored in pubkey

in the format specified by fmt . pubkey should be deinitialized using gnutls_free()

.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.7

gnutls pkcs11 privkey export url

[Function]int gnutls_pkcs11_privkey_export_url (gnutls pkcs11 privkey t
key, gnutls pkcs11 url type t detailed, char ** url)

key : Holds the PKCS 11 key

detailed: non zero if a detailed URL is required

url: will contain an allocated url

This function will export a URL identifying the given key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs11 privkey generate

[Function]int gnutls_pkcs11_privkey_generate (const char * url,
gnutls pk algorithm t pk, unsigned int bits, const char * label, unsigned int
flags)

url: a token URL

pk: the public key algorithm

bits: the security bits

label: a label

flags: should be zero

Appendix E: API reference 528

This function will generate a private key in the specified by the url token. The
private key will be generate within the token and will not be exportable.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

gnutls pkcs11 privkey generate2

[Function]int gnutls_pkcs11_privkey_generate2 (const char * url,
gnutls pk algorithm t pk, unsigned int bits, const char * label,
gnutls x509 crt fmt t fmt, gnutls datum t * pubkey, unsigned int flags)

url: a token URL

pk: the public key algorithm

bits: the security bits

label: a label

fmt: the format of output params. PEM or DER

pubkey : will hold the public key (may be NULL)

flags: zero or an OR’ed sequence of GNUTLS_PKCS11_OBJ_FLAGs

This function will generate a private key in the specified by the url token. The private
key will be generate within the token and will not be exportable. This function will
store the DER-encoded public key in the SubjectPublicKeyInfo format in pubkey .
The pubkey should be deinitialized using gnutls_free() .

Note that when generating an elliptic curve key, the curve can be substituted in the
place of the bits parameter using the GNUTLS_CURVE_TO_BITS() macro.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.5

gnutls pkcs11 privkey generate3

[Function]int gnutls_pkcs11_privkey_generate3 (const char * url,
gnutls pk algorithm t pk, unsigned int bits, const char * label, const
gnutls datum t * cid, gnutls x509 crt fmt t fmt, gnutls datum t * pubkey,
unsigned int flags)

url: a token URL

pk: the public key algorithm

bits: the security bits

label: a label

cid: The CKA ID to use for the new object

fmt: the format of output params. PEM or DER

pubkey : will hold the public key (may be NULL)

flags: zero or an OR’ed sequence of GNUTLS_PKCS11_OBJ_FLAGs

This function will generate a private key in the specified by the url token. The private
key will be generate within the token and will not be exportable. This function will

Appendix E: API reference 529

store the DER-encoded public key in the SubjectPublicKeyInfo format in pubkey .
The pubkey should be deinitialized using gnutls_free() .

Note that when generating an elliptic curve key, the curve can be substituted in the
place of the bits parameter using the GNUTLS_CURVE_TO_BITS() macro.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.26

gnutls pkcs11 privkey get info

[Function]int gnutls_pkcs11_privkey_get_info (gnutls pkcs11 privkey t
pkey, gnutls pkcs11 obj info t itype, void * output, size t * output_size)

pkey : should contain a gnutls_pkcs11_privkey_t structure

itype: Denotes the type of information requested

output: where output will be stored

output size: contains the maximum size of the output and will be overwritten with
actual

This function will return information about the PKCS 11 private key such as the
label, id as well as token information where the key is stored. When output is text it
returns null terminated string although output_size contains the size of the actual
data only.

Returns: GNUTLS_E_SUCCESS (0) on success or a negative error code on error.

gnutls pkcs11 privkey get pk algorithm

[Function]int gnutls_pkcs11_privkey_get_pk_algorithm
(gnutls pkcs11 privkey t key, unsigned int * bits)

key : should contain a gnutls_pkcs11_privkey_t structure

bits: if bits is non null it will hold the size of the parameters’ in bits

This function will return the public key algorithm of a private key.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or a
negative error code on error.

gnutls pkcs11 privkey import url

[Function]int gnutls_pkcs11_privkey_import_url (gnutls pkcs11 privkey t
pkey, const char * url, unsigned int flags)

pkey : The structure to store the parsed key

url: a PKCS 11 url identifying the key

flags: Or sequence of GNUTLS PKCS11 OBJ * flags

This function will "import" a PKCS 11 URL identifying a private key to the gnutls_
pkcs11_privkey_t structure. In reality since in most cases keys cannot be exported,
the private key structure is being associated with the available operations on the
token.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 530

gnutls pkcs11 privkey init

[Function]int gnutls_pkcs11_privkey_init (gnutls pkcs11 privkey t * key)
key : The structure to be initialized

This function will initialize an private key structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs11 privkey set pin function

[Function]void gnutls_pkcs11_privkey_set_pin_function
(gnutls pkcs11 privkey t key, gnutls pin callback t fn, void * userdata)

key : The private key

fn: the callback

userdata: data associated with the callback

This function will set a callback function to be used when required to access the object.
This function overrides the global set using gnutls_pkcs11_set_pin_function() .

Since: 3.1.0

gnutls pkcs11 privkey status

[Function]int gnutls_pkcs11_privkey_status (gnutls pkcs11 privkey t key)
key : Holds the key

Checks the status of the private key token.

Returns: this function will return non-zero if the token holding the private key is still
available (inserted), and zero otherwise.

Since: 3.1.9

gnutls pkcs11 reinit

[Function]int gnutls_pkcs11_reinit (void)
This function will reinitialize the PKCS 11 subsystem in gnutls. This is required by
PKCS 11 when an application uses fork() . The reinitialization function must be
called on the child.

Note that since GnuTLS 3.3.0, the reinitialization of the PKCS 11 subsystem occurs
automatically after fork.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

gnutls pkcs11 set pin function

[Function]void gnutls_pkcs11_set_pin_function (gnutls pin callback t fn,
void * userdata)

fn: The PIN callback, a gnutls_pin_callback_t() function.

userdata: data to be supplied to callback

Appendix E: API reference 531

This function will set a callback function to be used when a PIN is required for PKCS
11 operations. See gnutls_pin_callback_t() on how the callback should behave.

Since: 2.12.0

gnutls pkcs11 set token function

[Function]void gnutls_pkcs11_set_token_function
(gnutls pkcs11 token callback t fn, void * userdata)

fn: The token callback

userdata: data to be supplied to callback

This function will set a callback function to be used when a token needs to be inserted
to continue PKCS 11 operations.

Since: 2.12.0

gnutls pkcs11 token get flags

[Function]int gnutls_pkcs11_token_get_flags (const char * url, unsigned int
* flags)

url: should contain a PKCS 11 URL

flags: The output flags (GNUTLS PKCS11 TOKEN *)

This function will return information about the PKCS 11 token flags.

The supported flags are: GNUTLS_PKCS11_TOKEN_HW and GNUTLS_PKCS11_TOKEN_

TRUSTED .

Returns: GNUTLS_E_SUCCESS (0) on success or a negative error code on error.

Since: 2.12.0

gnutls pkcs11 token get info

[Function]int gnutls_pkcs11_token_get_info (const char * url,
gnutls pkcs11 token info t ttype, void * output, size t * output_size)

url: should contain a PKCS 11 URL

ttype: Denotes the type of information requested

output: where output will be stored

output size: contains the maximum size of the output and will be overwritten with
actual

This function will return information about the PKCS 11 token such as the label, id,
etc.

Returns: GNUTLS_E_SUCCESS (0) on success or a negative error code on error.

Since: 2.12.0

gnutls pkcs11 token get mechanism

[Function]int gnutls_pkcs11_token_get_mechanism (const char * url,
unsigned int idx, unsigned long * mechanism)

url: should contain a PKCS 11 URL

Appendix E: API reference 532

idx: The index of the mechanism

mechanism: The PKCS 11 mechanism ID

This function will return the names of the supported mechanisms by
the token. It should be called with an increasing index until it return
GNUTLS E REQUESTED DATA NOT AVAILABLE.

Returns: GNUTLS_E_SUCCESS (0) on success or a negative error code on error.

Since: 2.12.0

gnutls pkcs11 token get random

[Function]int gnutls_pkcs11_token_get_random (const char * token_url,
void * rnddata, size t len)

token url: A PKCS 11 URL specifying a token

rnddata: A pointer to the memory area to be filled with random data

len: The number of bytes of randomness to request

This function will get random data from the given token. It will store rnddata and
fill the memory pointed to by rnddata with len random bytes from the token.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs11 token get url

[Function]int gnutls_pkcs11_token_get_url (unsigned int seq,
gnutls pkcs11 url type t detailed, char ** url)

seq: sequence number starting from 0

detailed: non zero if a detailed URL is required

url: will contain an allocated url

This function will return the URL for each token available in system. The url has to
be released using gnutls_free()

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_REQUESTED_

DATA_NOT_AVAILABLE if the sequence number exceeds the available tokens, otherwise
a negative error value.

Since: 2.12.0

gnutls pkcs11 token init

[Function]int gnutls_pkcs11_token_init (const char * token_url, const char
* so_pin, const char * label)

token url: A PKCS 11 URL specifying a token

so pin: Security Officer’s PIN

label: A name to be used for the token

This function will initialize (format) a token. If the token is at a factory defaults
state the security officer’s PIN given will be set to be the default. Otherwise it should
match the officer’s PIN.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 533

gnutls pkcs11 token set pin

[Function]int gnutls_pkcs11_token_set_pin (const char * token_url, const
char * oldpin, const char * newpin, unsigned int flags)

token url: A PKCS 11 URL specifying a token

oldpin: old user’s PIN

newpin: new user’s PIN

flags: one of gnutls_pin_flag_t .

This function will modify or set a user’s PIN for the given token. If it is called to set
a user pin for first time the oldpin must be NULL.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs11 type get name

[Function]const char * gnutls_pkcs11_type_get_name
(gnutls pkcs11 obj type t type)

type: Holds the PKCS 11 object type, a gnutls_pkcs11_obj_type_t .

This function will return a human readable description of the PKCS11 object type
obj . It will return "Unknown" for unknown types.

Returns: human readable string labeling the PKCS11 object type type .

Since: 2.12.0

gnutls x509 crt import pkcs11

[Function]int gnutls_x509_crt_import_pkcs11 (gnutls x509 crt t crt,
gnutls pkcs11 obj t pkcs11_crt)

crt: A certificate of type gnutls_x509_crt_t

pkcs11 crt: A PKCS 11 object that contains a certificate

This function will import a PKCS 11 certificate to a gnutls_x509_crt_t structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls x509 crt import pkcs11 url

[Function]int gnutls_x509_crt_import_pkcs11_url (gnutls x509 crt t crt,
const char * url, unsigned int flags)

crt: A certificate of type gnutls_x509_crt_t

url: A PKCS 11 url

flags: One of GNUTLS PKCS11 OBJ * flags

This function will import a PKCS 11 certificate directly from a token without in-
volving the gnutls_pkcs11_obj_t structure. This function will fail if the certificate
stored is not of X.509 type.

Appendix E: API reference 534

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls x509 crt list import pkcs11

[Function]int gnutls_x509_crt_list_import_pkcs11 (gnutls x509 crt t *
certs, unsigned int cert_max, gnutls pkcs11 obj t * const objs, unsigned int
flags)

certs: A list of certificates of type gnutls_x509_crt_t

cert max: The maximum size of the list

objs: A list of PKCS 11 objects

flags: 0 for now

This function will import a PKCS 11 certificate list to a list of gnutls_x509_crt_t
structure. These must not be initialized.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

E.8 TPM API

The following functions are to be used for TPM handling. Their prototypes lie in
gnutls/tpm.h.

gnutls tpm get registered

[Function]int gnutls_tpm_get_registered (gnutls tpm key list t * list)
list: a list to store the keys

This function will get a list of stored keys in the TPM. The uuid of those keys

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

gnutls tpm key list deinit

[Function]void gnutls_tpm_key_list_deinit (gnutls tpm key list t list)
list: a list of the keys

This function will deinitialize the list of stored keys in the TPM.

Since: 3.1.0

gnutls tpm key list get url

[Function]int gnutls_tpm_key_list_get_url (gnutls tpm key list t list,
unsigned int idx, char ** url, unsigned int flags)

list: a list of the keys

idx: The index of the key (starting from zero)

Appendix E: API reference 535

url: The URL to be returned

flags: should be zero

This function will return for each given index a URL of the corresponding key. If the
provided index is out of bounds then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is
returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

gnutls tpm privkey delete

[Function]int gnutls_tpm_privkey_delete (const char * url, const char *
srk_password)

url: the URL describing the key

srk password: a password for the SRK key

This function will unregister the private key from the TPM chip.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

gnutls tpm privkey generate

[Function]int gnutls_tpm_privkey_generate (gnutls pk algorithm t pk,
unsigned int bits, const char * srk_password, const char * key_password,
gnutls tpmkey fmt t format, gnutls x509 crt fmt t pub_format,
gnutls datum t * privkey, gnutls datum t * pubkey, unsigned int flags)

pk: the public key algorithm

bits: the security bits

srk password: a password to protect the exported key (optional)

key password: the password for the TPM (optional)

format: the format of the private key

pub format: the format of the public key

privkey : the generated key

pubkey : the corresponding public key (may be null)

flags: should be a list of GNUTLS TPM * flags

This function will generate a private key in the TPM chip. The private key will be
generated within the chip and will be exported in a wrapped with TPM’s master key
form. Furthermore the wrapped key can be protected with the provided password .

Note that bits in TPM is quantized value. If the input value is not one of the allowed
values, then it will be quantized to one of 512, 1024, 2048, 4096, 8192 and 16384.

Allowed flags are:

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

Appendix E: API reference 536

E.9 Abstract key API

The following functions are to be used for abstract key handling. Their prototypes lie in
gnutls/abstract.h.

gnutls certificate set key

[Function]int gnutls_certificate_set_key (gnutls certificate credentials t
res, const char ** names, int names_size, gnutls pcert st * pcert_list, int
pcert_list_size, gnutls privkey t key)

res: is a gnutls_certificate_credentials_t structure.

names: is an array of DNS name of the certificate (NULL if none)

names size: holds the size of the names list

pcert list: contains a certificate list (path) for the specified private key

pcert list size: holds the size of the certificate list

key : is a gnutls_privkey_t key

This function sets a certificate/private key pair in the gnutls certificate credentials t
structure. This function may be called more than once, in case multiple
keys/certificates exist for the server. For clients that wants to send more than its
own end entity certificate (e.g., also an intermediate CA cert) then put the certificate
chain in pcert_list .

Note that the key and the elements of pcert_list will become part of the credentials
structure and must not be deallocated. They will be automatically deallocated when
the res structure is deinitialized.

If that function fails to load the res structure is at an undefined state, it must not
be reused to load other keys or certificates.

Returns: GNUTLS_E_SUCCESS (0) on success, or a negative error code.

Since: 3.0

gnutls certificate set retrieve function2

[Function]void gnutls_certificate_set_retrieve_function2
(gnutls certificate credentials t cred, gnutls certificate retrieve function2 *
func)

cred: is a gnutls_certificate_credentials_t structure.

func: is the callback function

This function sets a callback to be called in order to retrieve the certificate to be used
in the handshake.

The callback’s function prototype is: int (*callback)(gnutls session t, const
gnutls datum t* req ca dn, int nreqs, const gnutls pk algorithm t* pk algos,
int pk algos length, gnutls pcert st** pcert, unsigned int *pcert length,
gnutls privkey t * pkey);

req_ca_dn is only used in X.509 certificates. Contains a list with the CA names that
the server considers trusted. Normally we should send a certificate that is signed by

Appendix E: API reference 537

one of these CAs. These names are DER encoded. To get a more meaningful value
use the function gnutls_x509_rdn_get() .

pk_algos contains a list with server’s acceptable signature algorithms. The certificate
returned should support the server’s given algorithms.

pcert should contain a single certificate and public key or a list of them.

pcert_length is the size of the previous list.

pkey is the private key.

If the callback function is provided then gnutls will call it, in the handshake, after the
certificate request message has been received. All the provided by the callback values
will not be released or modified by gnutls.

In server side pk algos and req ca dn are NULL.

The callback function should set the certificate list to be sent, and return 0 on success.
If no certificate was selected then the number of certificates should be set to zero.
The value (-1) indicates error and the handshake will be terminated.

Since: 3.0

gnutls pcert deinit

[Function]void gnutls_pcert_deinit (gnutls pcert st * pcert)
pcert: The structure to be deinitialized

This function will deinitialize a pcert structure.

Since: 3.0

gnutls pcert import openpgp

[Function]int gnutls_pcert_import_openpgp (gnutls pcert st * pcert,
gnutls openpgp crt t crt, unsigned int flags)

pcert: The pcert structure

crt: The raw certificate to be imported

flags: zero for now

This convenience function will import the given certificate to a gnutls_

pcert_st structure. The structure must be deinitialized afterwards using
gnutls_pcert_deinit() ;

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

gnutls pcert import openpgp raw

[Function]int gnutls_pcert_import_openpgp_raw (gnutls pcert st * pcert,
const gnutls datum t * cert, gnutls openpgp crt fmt t format,
gnutls openpgp keyid t keyid, unsigned int flags)

pcert: The pcert structure

cert: The raw certificate to be imported

Appendix E: API reference 538

format: The format of the certificate

keyid: The key ID to use (NULL for the master key)

flags: zero for now

This convenience function will import the given certificate to a gnutls_

pcert_st structure. The structure must be deinitialized afterwards using
gnutls_pcert_deinit() ;

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

gnutls pcert import x509

[Function]int gnutls_pcert_import_x509 (gnutls pcert st * pcert,
gnutls x509 crt t crt, unsigned int flags)

pcert: The pcert structure

crt: The raw certificate to be imported

flags: zero for now

This convenience function will import the given certificate to a gnutls_

pcert_st structure. The structure must be deinitialized afterwards using
gnutls_pcert_deinit() ;

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

gnutls pcert import x509 raw

[Function]int gnutls_pcert_import_x509_raw (gnutls pcert st * pcert, const
gnutls datum t * cert, gnutls x509 crt fmt t format, unsigned int flags)

pcert: The pcert structure

cert: The raw certificate to be imported

format: The format of the certificate

flags: zero for now

This convenience function will import the given certificate to a gnutls_

pcert_st structure. The structure must be deinitialized afterwards using
gnutls_pcert_deinit() ;

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

gnutls pcert list import x509 raw

[Function]int gnutls_pcert_list_import_x509_raw (gnutls pcert st *
pcerts, unsigned int * pcert_max, const gnutls datum t * data,
gnutls x509 crt fmt t format, unsigned int flags)

pcerts: The structures to store the parsed certificate. Must not be initialized.

Appendix E: API reference 539

pcert max: Initially must hold the maximum number of certs. It will be updated
with the number of certs available.

data: The certificates.

format: One of DER or PEM.

flags: must be (0) or an OR’d sequence of gnutls certificate import flags.

This function will convert the given PEM encoded certificate list to the native
gnutls x509 crt t format. The output will be stored in certs . They will be
automatically initialized.

If the Certificate is PEM encoded it should have a header of "X509 CERTIFICATE",
or "CERTIFICATE".

Returns: the number of certificates read or a negative error value.

Since: 3.0

gnutls privkey decrypt data

[Function]int gnutls_privkey_decrypt_data (gnutls privkey t key, unsigned
int flags, const gnutls datum t * ciphertext, gnutls datum t *
plaintext)

key : Holds the key

flags: zero for now

ciphertext: holds the data to be decrypted

plaintext: will contain the decrypted data, allocated with gnutls_malloc()

This function will decrypt the given data using the algorithm supported by the private
key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls privkey deinit

[Function]void gnutls_privkey_deinit (gnutls privkey t key)
key : The structure to be deinitialized

This function will deinitialize a private key structure.

Since: 2.12.0

gnutls privkey export dsa raw

[Function]int gnutls_privkey_export_dsa_raw (gnutls privkey t key,
gnutls datum t * p, gnutls datum t * q, gnutls datum t * g, gnutls datum t *
y, gnutls datum t * x)

key : Holds the public key

p: will hold the p

q: will hold the q

g : will hold the g

Appendix E: API reference 540

y : will hold the y

x: will hold the x

This function will export the DSA private key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 3.3.0

gnutls privkey export ecc raw

[Function]int gnutls_privkey_export_ecc_raw (gnutls privkey t key,
gnutls ecc curve t * curve, gnutls datum t * x, gnutls datum t * y,
gnutls datum t * k)

key : Holds the public key

curve: will hold the curve

x: will hold the x coordinate

y : will hold the y coordinate

k: will hold the private key

This function will export the ECC private key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 3.3.0

gnutls privkey export rsa raw

[Function]int gnutls_privkey_export_rsa_raw (gnutls privkey t key,
gnutls datum t * m, gnutls datum t * e, gnutls datum t * d, gnutls datum t *
p, gnutls datum t * q, gnutls datum t * u, gnutls datum t * e1,
gnutls datum t * e2)

key : Holds the certificate

m: will hold the modulus

e: will hold the public exponent

d: will hold the private exponent

p: will hold the first prime (p)

q: will hold the second prime (q)

u: will hold the coefficient

e1: will hold e1 = d mod (p-1)

e2: will hold e2 = d mod (q-1)

This function will export the RSA private key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 3.3.0

Appendix E: API reference 541

gnutls privkey generate

[Function]int gnutls_privkey_generate (gnutls privkey t pkey,
gnutls pk algorithm t algo, unsigned int bits, unsigned int flags)

pkey : The private key

algo: is one of the algorithms in gnutls_pk_algorithm_t .

bits: the size of the modulus

flags: unused for now. Must be 0.

This function will generate a random private key. Note that this function must be
called on an empty private key.

Note that when generating an elliptic curve key, the curve can be substituted in the
place of the bits parameter using the GNUTLS_CURVE_TO_BITS() macro.

Do not set the number of bits directly, use gnutls_sec_param_to_pk_bits() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls privkey get pk algorithm

[Function]int gnutls_privkey_get_pk_algorithm (gnutls privkey t key,
unsigned int * bits)

key : should contain a gnutls_privkey_t structure

bits: If set will return the number of bits of the parameters (may be NULL)

This function will return the public key algorithm of a private key and if possible will
return a number of bits that indicates the security parameter of the key.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or a
negative error code on error.

Since: 2.12.0

gnutls privkey get type

[Function]gnutls_privkey_type_t gnutls_privkey_get_type
(gnutls privkey t key)

key : should contain a gnutls_privkey_t structure

This function will return the type of the private key. This is actually the type of the
subsystem used to set this private key.

Returns: a member of the gnutls_privkey_type_t enumeration on success, or a
negative error code on error.

Since: 2.12.0

gnutls privkey import dsa raw

[Function]int gnutls_privkey_import_dsa_raw (gnutls privkey t key, const
gnutls datum t * p, const gnutls datum t * q, const gnutls datum t * g, const
gnutls datum t * y, const gnutls datum t * x)

key : The structure to store the parsed key

Appendix E: API reference 542

p: holds the p

q: holds the q

g : holds the g

y : holds the y

x: holds the x

This function will convert the given DSA raw parameters to the native gnutls_

privkey_t format. The output will be stored in key .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls privkey import ecc raw

[Function]int gnutls_privkey_import_ecc_raw (gnutls privkey t key,
gnutls ecc curve t curve, const gnutls datum t * x, const gnutls datum t * y,
const gnutls datum t * k)

key : The structure to store the parsed key

curve: holds the curve

x: holds the x

y : holds the y

k: holds the k

This function will convert the given elliptic curve parameters to the native gnutls_

privkey_t format. The output will be stored in key .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

gnutls privkey import ext

[Function]int gnutls_privkey_import_ext (gnutls privkey t pkey,
gnutls pk algorithm t pk, void * userdata, gnutls privkey sign func
sign_func, gnutls privkey decrypt func decrypt_func, unsigned int flags)

pkey : The private key

pk: The public key algorithm

userdata: private data to be provided to the callbacks

sign func: callback for signature operations

decrypt func: callback for decryption operations

flags: Flags for the import

This function will associate the given callbacks with the gnutls_privkey_t structure.
At least one of the two callbacks must be non-null.

See also gnutls_privkey_import_ext2() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

Appendix E: API reference 543

gnutls privkey import ext2

[Function]int gnutls_privkey_import_ext2 (gnutls privkey t pkey,
gnutls pk algorithm t pk, void * userdata, gnutls privkey sign func
sign_func, gnutls privkey decrypt func decrypt_func,
gnutls privkey deinit func deinit_func, unsigned int flags)

pkey : The private key

pk: The public key algorithm

userdata: private data to be provided to the callbacks

sign func: callback for signature operations

decrypt func: callback for decryption operations

deinit func: a deinitialization function

flags: Flags for the import

This function will associate the given callbacks with the gnutls_privkey_t structure.
At least one of the two callbacks must be non-null. If a deinitialization function is
provided then flags is assumed to contain GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE .

Note that the signing function is supposed to "raw" sign data, i.e., without any
hashing or preprocessing. In case of RSA the DigestInfo will be provided, and the
signing function is expected to do the PKCS 1 1.5 padding and the exponentiation.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1

gnutls privkey import openpgp

[Function]int gnutls_privkey_import_openpgp (gnutls privkey t pkey,
gnutls openpgp privkey t key, unsigned int flags)

pkey : The private key

key : The private key to be imported

flags: Flags for the import

This function will import the given private key to the abstract gnutls_privkey_t

structure.

The gnutls_openpgp_privkey_t object must not be deallocated during the lifetime
of this structure. The subkey set as preferred will be used, or the master key otherwise.

flags might be zero or one of GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE and GNUTLS_

PRIVKEY_IMPORT_COPY .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

Appendix E: API reference 544

gnutls privkey import openpgp raw

[Function]int gnutls_privkey_import_openpgp_raw (gnutls privkey t pkey,
const gnutls datum t * data, gnutls openpgp crt fmt t format, const
gnutls openpgp keyid t keyid, const char * password)

pkey : The private key

data: The private key data to be imported

format: The format of the private key

keyid: The key id to use (optional)

password: A password (optional)

This function will import the given private key to the abstract gnutls_privkey_t

structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

gnutls privkey import pkcs11

[Function]int gnutls_privkey_import_pkcs11 (gnutls privkey t pkey,
gnutls pkcs11 privkey t key, unsigned int flags)

pkey : The private key

key : The private key to be imported

flags: Flags for the import

This function will import the given private key to the abstract gnutls_privkey_t

structure.

The gnutls_pkcs11_privkey_t object must not be deallocated during the lifetime
of this structure.

flags might be zero or one of GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE and GNUTLS_

PRIVKEY_IMPORT_COPY .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls privkey import pkcs11 url

[Function]int gnutls_privkey_import_pkcs11_url (gnutls privkey t key,
const char * url)

key : A key of type gnutls_pubkey_t

url: A PKCS 11 url

This function will import a PKCS 11 private key to a gnutls_private_key_t struc-
ture.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

Appendix E: API reference 545

gnutls privkey import rsa raw

[Function]int gnutls_privkey_import_rsa_raw (gnutls privkey t key, const
gnutls datum t * m, const gnutls datum t * e, const gnutls datum t * d, const
gnutls datum t * p, const gnutls datum t * q, const gnutls datum t * u, const
gnutls datum t * e1, const gnutls datum t * e2)

key : The structure to store the parsed key

m: holds the modulus

e: holds the public exponent

d: holds the private exponent

p: holds the first prime (p)

q: holds the second prime (q)

u: holds the coefficient (optional)

e1: holds e1 = d mod (p-1) (optional)

e2: holds e2 = d mod (q-1) (optional)

This function will convert the given RSA raw parameters to the native gnutls_

privkey_t format. The output will be stored in key .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls privkey import tpm raw

[Function]int gnutls_privkey_import_tpm_raw (gnutls privkey t pkey, const
gnutls datum t * fdata, gnutls tpmkey fmt t format, const char *
srk_password, const char * key_password, unsigned int flags)

pkey : The private key

fdata: The TPM key to be imported

format: The format of the private key

srk password: The password for the SRK key (optional)

key password: A password for the key (optional)

flags: should be zero

This function will import the given private key to the abstract gnutls_privkey_t

structure.

With respect to passwords the same as in gnutls_privkey_import_tpm_url() apply.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

gnutls privkey import tpm url

[Function]int gnutls_privkey_import_tpm_url (gnutls privkey t pkey, const
char * url, const char * srk_password, const char * key_password,
unsigned int flags)

pkey : The private key

Appendix E: API reference 546

url: The URL of the TPM key to be imported

srk password: The password for the SRK key (optional)

key password: A password for the key (optional)

flags: One of the GNUTLS PRIVKEY * flags

This function will import the given private key to the abstract gnutls_privkey_t

structure.

Note that unless GNUTLS_PRIVKEY_DISABLE_CALLBACKS is specified, if incorrect (or
NULL) passwords are given the PKCS11 callback functions will be used to obtain
the correct passwords. Otherwise if the SRK password is wrong GNUTLS_E_TPM_SRK_

PASSWORD_ERROR is returned and if the key password is wrong or not provided then
GNUTLS_E_TPM_KEY_PASSWORD_ERROR is returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

gnutls privkey import url

[Function]int gnutls_privkey_import_url (gnutls privkey t key, const char *
url, unsigned int flags)

key : A key of type gnutls_privkey_t

url: A PKCS 11 url

flags: should be zero

This function will import a PKCS11 or TPM URL as a private key. The supported
URL types can be checked using gnutls_url_is_supported() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

gnutls privkey import x509

[Function]int gnutls_privkey_import_x509 (gnutls privkey t pkey,
gnutls x509 privkey t key, unsigned int flags)

pkey : The private key

key : The private key to be imported

flags: Flags for the import

This function will import the given private key to the abstract gnutls_privkey_t

structure.

The gnutls_x509_privkey_t object must not be deallocated during the lifetime of
this structure.

flags might be zero or one of GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE and GNUTLS_

PRIVKEY_IMPORT_COPY .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

Appendix E: API reference 547

gnutls privkey import x509 raw

[Function]int gnutls_privkey_import_x509_raw (gnutls privkey t pkey, const
gnutls datum t * data, gnutls x509 crt fmt t format, const char *
password, unsigned int flags)

pkey : The private key

data: The private key data to be imported

format: The format of the private key

password: A password (optional)

flags: an ORed sequence of gnutls pkcs encrypt flags t

This function will import the given private key to the abstract gnutls_privkey_t

structure.

The supported formats are basic unencrypted key, PKCS8, PKCS12, and the openssl
format.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

gnutls privkey init

[Function]int gnutls_privkey_init (gnutls privkey t * key)
key : The structure to be initialized

This function will initialize an private key structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls privkey set pin function

[Function]void gnutls_privkey_set_pin_function (gnutls privkey t key,
gnutls pin callback t fn, void * userdata)

key : A key of type gnutls_privkey_t

fn: the callback

userdata: data associated with the callback

This function will set a callback function to be used when required to access the
object. This function overrides any other global PIN functions.

Note that this function must be called right after initialization to have effect.

Since: 3.1.0

gnutls privkey sign data

[Function]int gnutls_privkey_sign_data (gnutls privkey t signer,
gnutls digest algorithm t hash, unsigned int flags, const gnutls datum t *
data, gnutls datum t * signature)

signer: Holds the key

Appendix E: API reference 548

hash: should be a digest algorithm

flags: Zero or one of gnutls_privkey_flags_t

data: holds the data to be signed

signature: will contain the signature allocate with gnutls_malloc()

This function will sign the given data using a signature algorithm supported by the
private key. Signature algorithms are always used together with a hash functions.
Different hash functions may be used for the RSA algorithm, but only the SHA
family for the DSA keys.

You may use gnutls_pubkey_get_preferred_hash_algorithm() to determine the
hash algorithm.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls privkey sign hash

[Function]int gnutls_privkey_sign_hash (gnutls privkey t signer,
gnutls digest algorithm t hash_algo, unsigned int flags, const
gnutls datum t * hash_data, gnutls datum t * signature)

signer: Holds the signer’s key

hash algo: The hash algorithm used

flags: Zero or one of gnutls_privkey_flags_t

hash data: holds the data to be signed

signature: will contain newly allocated signature

This function will sign the given hashed data using a signature algorithm supported by
the private key. Signature algorithms are always used together with a hash functions.
Different hash functions may be used for the RSA algorithm, but only SHA-XXX for
the DSA keys.

You may use gnutls_pubkey_get_preferred_hash_algorithm() to determine the
hash algorithm.

Note that if GNUTLS_PRIVKEY_SIGN_FLAG_TLS1_RSA flag is specified this function will
ignore hash_algo and perform a raw PKCS1 signature.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls privkey status

[Function]int gnutls_privkey_status (gnutls privkey t key)
key : Holds the key

Checks the status of the private key token. This function is an actual wrapper over
gnutls_pkcs11_privkey_status() , and if the private key is a PKCS 11 token it
will check whether it is inserted or not.

Appendix E: API reference 549

Returns: this function will return non-zero if the token holding the private key is still
available (inserted), and zero otherwise.

Since: 3.1.10

gnutls privkey verify params

[Function]int gnutls_privkey_verify_params (gnutls privkey t key)
key : should contain a gnutls_privkey_t structure

This function will verify the private key parameters.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls pubkey deinit

[Function]void gnutls_pubkey_deinit (gnutls pubkey t key)
key : The structure to be deinitialized

This function will deinitialize a public key structure.

Since: 2.12.0

gnutls pubkey encrypt data

[Function]int gnutls_pubkey_encrypt_data (gnutls pubkey t key, unsigned int
flags, const gnutls datum t * plaintext, gnutls datum t * ciphertext)

key : Holds the public key

flags: should be 0 for now

plaintext: The data to be encrypted

ciphertext: contains the encrypted data

This function will encrypt the given data, using the public key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

gnutls pubkey export

[Function]int gnutls_pubkey_export (gnutls pubkey t key,
gnutls x509 crt fmt t format, void * output_data, size t *
output_data_size)

key : Holds the certificate

format: the format of output params. One of PEM or DER.

output data: will contain a certificate PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the public key to DER or PEM format. The contents of the
exported data is the SubjectPublicKeyInfo X.509 structure.

Appendix E: API reference 550

If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN CERTIFICATE".

Returns: In case of failure a negative error code will be returned, and 0 on success.

Since: 2.12.0

gnutls pubkey export2

[Function]int gnutls_pubkey_export2 (gnutls pubkey t key,
gnutls x509 crt fmt t format, gnutls datum t * out)

key : Holds the certificate

format: the format of output params. One of PEM or DER.

out: will contain a certificate PEM or DER encoded

This function will export the public key to DER or PEM format. The contents of the
exported data is the SubjectPublicKeyInfo X.509 structure.

The output buffer will be allocated using gnutls_malloc() .

If the structure is PEM encoded, it will have a header of "BEGIN CERTIFICATE".

Returns: In case of failure a negative error code will be returned, and 0 on success.

Since: 3.1.3

gnutls pubkey export dsa raw

[Function]int gnutls_pubkey_export_dsa_raw (gnutls pubkey t key,
gnutls datum t * p, gnutls datum t * q, gnutls datum t * g, gnutls datum t *
y)

key : Holds the public key

p: will hold the p

q: will hold the q

g : will hold the g

y : will hold the y

This function will export the DSA public key’s parameters found in the given cer-
tificate. The new parameters will be allocated using gnutls_malloc() and will be
stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 3.3.0

gnutls pubkey export ecc raw

[Function]int gnutls_pubkey_export_ecc_raw (gnutls pubkey t key,
gnutls ecc curve t * curve, gnutls datum t * x, gnutls datum t * y)

key : Holds the public key

curve: will hold the curve

x: will hold x

y : will hold y

Appendix E: API reference 551

This function will export the ECC public key’s parameters found in the given cer-
tificate. The new parameters will be allocated using gnutls_malloc() and will be
stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 3.0

gnutls pubkey export ecc x962

[Function]int gnutls_pubkey_export_ecc_x962 (gnutls pubkey t key,
gnutls datum t * parameters, gnutls datum t * ecpoint)

key : Holds the public key

parameters: DER encoding of an ANSI X9.62 parameters

ecpoint: DER encoding of ANSI X9.62 ECPoint

This function will export the ECC public key’s parameters found in the given cer-
tificate. The new parameters will be allocated using gnutls_malloc() and will be
stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 3.3.0

gnutls pubkey export rsa raw

[Function]int gnutls_pubkey_export_rsa_raw (gnutls pubkey t key,
gnutls datum t * m, gnutls datum t * e)

key : Holds the certificate

m: will hold the modulus

e: will hold the public exponent

This function will export the RSA public key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 3.3.0

gnutls pubkey get key id

[Function]int gnutls_pubkey_get_key_id (gnutls pubkey t key, unsigned int
flags, unsigned char * output_data, size t * output_data_size)

key : Holds the public key

flags: should be 0 for now

output data: will contain the key ID

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will return a unique ID that depends on the public key parameters.
This ID can be used in checking whether a certificate corresponds to the given public
key.

Appendix E: API reference 552

If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned. The output will
normally be a SHA-1 hash output, which is 20 bytes.

Returns: In case of failure a negative error code will be returned, and 0 on success.

Since: 2.12.0

gnutls pubkey get key usage

[Function]int gnutls_pubkey_get_key_usage (gnutls pubkey t key, unsigned
int * usage)

key : should contain a gnutls_pubkey_t structure

usage: If set will return the number of bits of the parameters (may be NULL)

This function will return the key usage of the public key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pubkey get openpgp key id

[Function]int gnutls_pubkey_get_openpgp_key_id (gnutls pubkey t key,
unsigned int flags, unsigned char * output_data, size t *
output_data_size, unsigned int * subkey)

key : Holds the public key

flags: should be 0 or GNUTLS_PUBKEY_GET_OPENPGP_FINGERPRINT

output data: will contain the key ID

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

subkey : Will be non zero if the key ID corresponds to a subkey

This function returns the OpenPGP key ID of the corresponding key. The key is a
unique ID that depends on the public key parameters.

If the flag GNUTLS_PUBKEY_GET_OPENPGP_FINGERPRINT is specified this function re-
turns the fingerprint of the master key.

If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned. The output is
GNUTLS_OPENPGP_KEYID_SIZE bytes long.

Returns: In case of failure a negative error code will be returned, and 0 on success.

Since: 3.0

gnutls pubkey get pk algorithm

[Function]int gnutls_pubkey_get_pk_algorithm (gnutls pubkey t key,
unsigned int * bits)

key : should contain a gnutls_pubkey_t structure

bits: If set will return the number of bits of the parameters (may be NULL)

Appendix E: API reference 553

This function will return the public key algorithm of a public key and if possible will
return a number of bits that indicates the security parameter of the key.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or a
negative error code on error.

Since: 2.12.0

gnutls pubkey get preferred hash algorithm

[Function]int gnutls_pubkey_get_preferred_hash_algorithm
(gnutls pubkey t key, gnutls digest algorithm t * hash, unsigned int * mand)

key : Holds the certificate

hash: The result of the call with the hash algorithm used for signature

mand: If non zero it means that the algorithm MUST use this hash. May be NULL.

This function will read the certifcate and return the appropriate digest algorithm to
use for signing with this certificate. Some certificates (i.e. DSA might not be able to
sign without the preferred algorithm).

To get the signature algorithm instead of just the hash use gnutls_pk_to_sign()

with the algorithm of the certificate/key and the provided hash .

Returns: the 0 if the hash algorithm is found. A negative error code is returned on
error.

Since: 2.12.0

gnutls pubkey get verify algorithm

[Function]int gnutls_pubkey_get_verify_algorithm (gnutls pubkey t key,
const gnutls datum t * signature, gnutls digest algorithm t * hash)

key : Holds the certificate

signature: contains the signature

hash: The result of the call with the hash algorithm used for signature

This function will read the certifcate and the signed data to determine the hash
algorithm used to generate the signature.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pubkey import

[Function]int gnutls_pubkey_import (gnutls pubkey t key, const
gnutls datum t * data, gnutls x509 crt fmt t format)

key : The structure to store the parsed public key.

data: The DER or PEM encoded certificate.

format: One of DER or PEM

This function will import the provided public key in a SubjectPublicKeyInfo X.509
structure to a native gnutls_pubkey_t structure. The output will be stored in key .
If the public key is PEM encoded it should have a header of "PUBLIC KEY".

Appendix E: API reference 554

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pubkey import dsa raw

[Function]int gnutls_pubkey_import_dsa_raw (gnutls pubkey t key, const
gnutls datum t * p, const gnutls datum t * q, const gnutls datum t * g, const
gnutls datum t * y)

key : The structure to store the parsed key

p: holds the p

q: holds the q

g : holds the g

y : holds the y

This function will convert the given DSA raw parameters to the native gnutls_

pubkey_t format. The output will be stored in key .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pubkey import ecc raw

[Function]int gnutls_pubkey_import_ecc_raw (gnutls pubkey t key,
gnutls ecc curve t curve, const gnutls datum t * x, const gnutls datum t * y)

key : The structure to store the parsed key

curve: holds the curve

x: holds the x

y : holds the y

This function will convert the given elliptic curve parameters to a gnutls_pubkey_t

. The output will be stored in key .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

gnutls pubkey import ecc x962

[Function]int gnutls_pubkey_import_ecc_x962 (gnutls pubkey t key, const
gnutls datum t * parameters, const gnutls datum t * ecpoint)

key : The structure to store the parsed key

parameters: DER encoding of an ANSI X9.62 parameters

ecpoint: DER encoding of ANSI X9.62 ECPoint

This function will convert the given elliptic curve parameters to a gnutls_pubkey_t

. The output will be stored in key .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

Appendix E: API reference 555

gnutls pubkey import openpgp

[Function]int gnutls_pubkey_import_openpgp (gnutls pubkey t key,
gnutls openpgp crt t crt, unsigned int flags)

key : The public key

crt: The certificate to be imported

flags: should be zero

Imports a public key from an openpgp key. This function will import the given public
key to the abstract gnutls_pubkey_t structure. The subkey set as preferred will be
imported or the master key otherwise.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pubkey import openpgp raw

[Function]int gnutls_pubkey_import_openpgp_raw (gnutls pubkey t pkey,
const gnutls datum t * data, gnutls openpgp crt fmt t format, const
gnutls openpgp keyid t keyid, unsigned int flags)

pkey : The public key

data: The public key data to be imported

format: The format of the public key

keyid: The key id to use (optional)

flags: Should be zero

This function will import the given public key to the abstract gnutls_pubkey_t

structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.3

gnutls pubkey import pkcs11

[Function]int gnutls_pubkey_import_pkcs11 (gnutls pubkey t key,
gnutls pkcs11 obj t obj, unsigned int flags)

key : The public key

obj: The parameters to be imported

flags: should be zero

Imports a public key from a pkcs11 key. This function will import the given public
key to the abstract gnutls_pubkey_t structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

Appendix E: API reference 556

gnutls pubkey import pkcs11 url

[Function]int gnutls_pubkey_import_pkcs11_url (gnutls pubkey t key, const
char * url, unsigned int flags)

key : A key of type gnutls_pubkey_t

url: A PKCS 11 url

flags: One of GNUTLS PKCS11 OBJ * flags

This function will import a PKCS 11 certificate to a gnutls_pubkey_t structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pubkey import privkey

[Function]int gnutls_pubkey_import_privkey (gnutls pubkey t key,
gnutls privkey t pkey, unsigned int usage, unsigned int flags)

key : The public key

pkey : The private key

usage: GNUTLS KEY * key usage flags.

flags: should be zero

Imports the public key from a private. This function will import the given public key
to the abstract gnutls_pubkey_t structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pubkey import rsa raw

[Function]int gnutls_pubkey_import_rsa_raw (gnutls pubkey t key, const
gnutls datum t * m, const gnutls datum t * e)

key : Is a structure will hold the parameters

m: holds the modulus

e: holds the public exponent

This function will replace the parameters in the given structure. The new parameters
should be stored in the appropriate gnutls datum.

Returns: GNUTLS_E_SUCCESS on success, or an negative error code.

Since: 2.12.0

gnutls pubkey import tpm raw

[Function]int gnutls_pubkey_import_tpm_raw (gnutls pubkey t pkey, const
gnutls datum t * fdata, gnutls tpmkey fmt t format, const char *
srk_password, unsigned int flags)

pkey : The public key

fdata: The TPM key to be imported

Appendix E: API reference 557

format: The format of the private key

srk password: The password for the SRK key (optional)

flags: One of the GNUTLS PUBKEY * flags

This function will import the public key from the provided TPM key structure.

With respect to passwords the same as in gnutls_pubkey_import_tpm_url() apply.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

gnutls pubkey import tpm url

[Function]int gnutls_pubkey_import_tpm_url (gnutls pubkey t pkey, const
char * url, const char * srk_password, unsigned int flags)

pkey : The public key

url: The URL of the TPM key to be imported

srk password: The password for the SRK key (optional)

flags: should be zero

This function will import the given private key to the abstract gnutls_privkey_t

structure.

Note that unless GNUTLS_PUBKEY_DISABLE_CALLBACKS is specified, if incorrect (or
NULL) passwords are given the PKCS11 callback functions will be used to obtain
the correct passwords. Otherwise if the SRK password is wrong GNUTLS_E_TPM_SRK_

PASSWORD_ERROR is returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

gnutls pubkey import url

[Function]int gnutls_pubkey_import_url (gnutls pubkey t key, const char *
url, unsigned int flags)

key : A key of type gnutls_pubkey_t

url: A PKCS 11 url

flags: One of GNUTLS PKCS11 OBJ * flags

This function will import a PKCS11 certificate or a TPM key as a public key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

Appendix E: API reference 558

gnutls pubkey import x509

[Function]int gnutls_pubkey_import_x509 (gnutls pubkey t key,
gnutls x509 crt t crt, unsigned int flags)

key : The public key

crt: The certificate to be imported

flags: should be zero

This function will import the given public key to the abstract gnutls_pubkey_t

structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pubkey import x509 crq

[Function]int gnutls_pubkey_import_x509_crq (gnutls pubkey t key,
gnutls x509 crq t crq, unsigned int flags)

key : The public key

crq: The certificate to be imported

flags: should be zero

This function will import the given public key to the abstract gnutls_pubkey_t

structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.5

gnutls pubkey import x509 raw

[Function]int gnutls_pubkey_import_x509_raw (gnutls pubkey t pkey, const
gnutls datum t * data, gnutls x509 crt fmt t format, unsigned int flags)

pkey : The public key

data: The public key data to be imported

format: The format of the public key

flags: should be zero

This function will import the given public key to the abstract gnutls_pubkey_t

structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.3

Appendix E: API reference 559

gnutls pubkey init

[Function]int gnutls_pubkey_init (gnutls pubkey t * key)
key : The structure to be initialized

This function will initialize an public key structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pubkey print

[Function]int gnutls_pubkey_print (gnutls pubkey t pubkey,
gnutls certificate print formats t format, gnutls datum t * out)

pubkey : The structure to be printed

format: Indicate the format to use

out: Newly allocated datum with null terminated string.

This function will pretty print public key information, suitable for display to a human.

Only GNUTLS_CRT_PRINT_FULL and GNUTLS_CRT_PRINT_FULL_NUMBERS are
implemented.

The output out needs to be deallocated using gnutls_free() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.5

gnutls pubkey set key usage

[Function]int gnutls_pubkey_set_key_usage (gnutls pubkey t key, unsigned
int usage)

key : a certificate of type gnutls_x509_crt_t

usage: an ORed sequence of the GNUTLS KEY * elements.

This function will set the key usage flags of the public key. This is only useful if the
key is to be exported to a certificate or certificate request.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pubkey set pin function

[Function]void gnutls_pubkey_set_pin_function (gnutls pubkey t key,
gnutls pin callback t fn, void * userdata)

key : A key of type gnutls_pubkey_t

fn: the callback

userdata: data associated with the callback

This function will set a callback function to be used when required to access the
object. This function overrides any other global PIN functions.

Appendix E: API reference 560

Note that this function must be called right after initialization to have effect.

Since: 3.1.0

gnutls pubkey verify data

[Function]int gnutls_pubkey_verify_data (gnutls pubkey t pubkey, unsigned
int flags, const gnutls datum t * data, const gnutls datum t * signature)

pubkey : Holds the public key

flags: Zero or one of gnutls_pubkey_flags_t

data: holds the signed data

signature: contains the signature

This function will verify the given signed data, using the parameters from the certifi-
cate.

Deprecated. This function cannot be easily used securely. Use gnutls_pubkey_

verify_data2() instead.

Returns: In case of a verification failure GNUTLS_E_PK_SIG_VERIFY_FAILED is re-
turned, and zero or positive code on success.

Since: 2.12.0

gnutls pubkey verify data2

[Function]int gnutls_pubkey_verify_data2 (gnutls pubkey t pubkey,
gnutls sign algorithm t algo, unsigned int flags, const gnutls datum t *
data, const gnutls datum t * signature)

pubkey : Holds the public key

algo: The signature algorithm used

flags: Zero or one of gnutls_pubkey_flags_t

data: holds the signed data

signature: contains the signature

This function will verify the given signed data, using the parameters from the certifi-
cate.

Returns: In case of a verification failure GNUTLS_E_PK_SIG_VERIFY_FAILED is re-
turned, and zero or positive code on success.

Since: 3.0

gnutls pubkey verify hash

[Function]int gnutls_pubkey_verify_hash (gnutls pubkey t key, unsigned int
flags, const gnutls datum t * hash, const gnutls datum t * signature)

key : Holds the public key

flags: Zero or one of gnutls_pubkey_flags_t

hash: holds the hash digest to be verified

signature: contains the signature

Appendix E: API reference 561

This function will verify the given signed digest, using the parameters from the public
key.

Deprecated. This function cannot be easily used securely. Use gnutls_pubkey_

verify_hash2() instead.

Returns: In case of a verification failure GNUTLS_E_PK_SIG_VERIFY_FAILED is re-
turned, and zero or positive code on success.

Since: 2.12.0

gnutls pubkey verify hash2

[Function]int gnutls_pubkey_verify_hash2 (gnutls pubkey t key,
gnutls sign algorithm t algo, unsigned int flags, const gnutls datum t *
hash, const gnutls datum t * signature)

key : Holds the public key

algo: The signature algorithm used

flags: Zero or one of gnutls_pubkey_flags_t

hash: holds the hash digest to be verified

signature: contains the signature

This function will verify the given signed digest, using the parameters from the public
key. Note that unlike gnutls_privkey_sign_hash() , this function accepts a signa-
ture algorithm instead of a digest algorithm. You can use gnutls_pk_to_sign() to
get the appropriate value.

Returns: In case of a verification failure GNUTLS_E_PK_SIG_VERIFY_FAILED is re-
turned, and zero or positive code on success.

Since: 3.0

gnutls pubkey verify params

[Function]int gnutls_pubkey_verify_params (gnutls pubkey t key)
key : should contain a gnutls_pubkey_t structure

This function will verify the private key parameters.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.3.0

gnutls x509 crl privkey sign

[Function]int gnutls_x509_crl_privkey_sign (gnutls x509 crl t crl,
gnutls x509 crt t issuer, gnutls privkey t issuer_key,
gnutls digest algorithm t dig, unsigned int flags)

crl: should contain a gnutls x509 crl t structure

issuer: is the certificate of the certificate issuer

issuer key : holds the issuer’s private key

dig : The message digest to use. GNUTLS DIG SHA1 is the safe choice unless you
know what you’re doing.

Appendix E: API reference 562

flags: must be 0

This function will sign the CRL with the issuer’s private key, and will copy the issuer’s
information into the CRL.

This must be the last step in a certificate CRL since all the previously set parameters
are now signed.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since 2.12.0

gnutls x509 crq privkey sign

[Function]int gnutls_x509_crq_privkey_sign (gnutls x509 crq t crq,
gnutls privkey t key, gnutls digest algorithm t dig, unsigned int flags)

crq: should contain a gnutls_x509_crq_t structure

key : holds a private key

dig : The message digest to use, i.e., GNUTLS_DIG_SHA1

flags: must be 0

This function will sign the certificate request with a private key. This must be the
same key as the one used in gnutls_x509_crt_set_key() since a certificate request
is self signed.

This must be the last step in a certificate request generation since all the previously
set parameters are now signed.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code. GNUTLS_E_
ASN1_VALUE_NOT_FOUND is returned if you didn’t set all information in the certificate
request (e.g., the version using gnutls_x509_crq_set_version()).

Since: 2.12.0

gnutls x509 crq set pubkey

[Function]int gnutls_x509_crq_set_pubkey (gnutls x509 crq t crq,
gnutls pubkey t key)

crq: should contain a gnutls_x509_crq_t structure

key : holds a public key

This function will set the public parameters from the given public key to the request.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls x509 crt privkey sign

[Function]int gnutls_x509_crt_privkey_sign (gnutls x509 crt t crt,
gnutls x509 crt t issuer, gnutls privkey t issuer_key,
gnutls digest algorithm t dig, unsigned int flags)

crt: a certificate of type gnutls_x509_crt_t

issuer: is the certificate of the certificate issuer

Appendix E: API reference 563

issuer key : holds the issuer’s private key

dig : The message digest to use, GNUTLS_DIG_SHA1 is a safe choice

flags: must be 0

This function will sign the certificate with the issuer’s private key, and will copy the
issuer’s information into the certificate.

This must be the last step in a certificate generation since all the previously set
parameters are now signed.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set pubkey

[Function]int gnutls_x509_crt_set_pubkey (gnutls x509 crt t crt,
gnutls pubkey t key)

crt: should contain a gnutls_x509_crt_t structure

key : holds a public key

This function will set the public parameters from the given public key to the request.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

E.10 DANE API

The following functions are to be used for DANE certificate verification. Their prototypes
lie in gnutls/dane.h. Note that you need to link with the libgnutls-dane library to use
them.

dane cert type name

[Function]const char * dane_cert_type_name (dane cert type t type)
type: is a DANE match type

Convert a dane_cert_type_t value to a string.

Returns: a string that contains the name of the specified type, or NULL .

dane cert usage name

[Function]const char * dane_cert_usage_name (dane cert usage t usage)
usage: – undescribed –

Convert a dane_cert_usage_t value to a string.

Returns: a string that contains the name of the specified type, or NULL .

dane match type name

[Function]const char * dane_match_type_name (dane match type t type)
type: is a DANE match type

Convert a dane_match_type_t value to a string.

Returns: a string that contains the name of the specified type, or NULL .

Appendix E: API reference 564

dane query data

[Function]int dane_query_data (dane query t q, unsigned int idx, unsigned int *
usage, unsigned int * type, unsigned int * match, gnutls datum t * data)

q: The query result structure

idx: The index of the query response.

usage: The certificate usage (see dane_cert_usage_t)

type: The certificate type (see dane_cert_type_t)

match: The DANE matching type (see dane_match_type_t)

data: The DANE data.

This function will provide the DANE data from the query response.

Returns: On success, DANE_E_SUCCESS (0) is returned, otherwise a negative error
value.

dane query deinit

[Function]void dane_query_deinit (dane query t q)
q: The structure to be deinitialized

This function will deinitialize a DANE query result structure.

dane query entries

[Function]unsigned int dane_query_entries (dane query t q)
q: The query result structure

This function will return the number of entries in a query.

Returns: The number of entries.

dane query status

[Function]dane_query_status_t dane_query_status (dane query t q)
q: The query result structure

This function will return the status of the query response. See dane_query_status_t
for the possible types.

Returns: The status type.

dane query tlsa

[Function]int dane_query_tlsa (dane state t s, dane query t * r, const char *
host, const char * proto, unsigned int port)

s: The DANE state structure

r: A structure to place the result

host: The host name to resolve.

proto: The protocol type (tcp, udp, etc.)

port: The service port number (eg. 443).

Appendix E: API reference 565

This function will query the DNS server for the TLSA (DANE) data for the given
host.

Returns: On success, DANE_E_SUCCESS (0) is returned, otherwise a negative error
value.

dane query to raw tlsa

[Function]int dane_query_to_raw_tlsa (dane query t q, unsigned int *
data_entries, char *** dane_data, int ** dane_data_len, int * secure,
int * bogus)

q: The query result structure

data entries: Pointer set to the number of entries in the query

dane data: Pointer to contain an array of DNS rdata items, terminated with a NULL
pointer; caller must guarantee that the referenced data remains valid until dane_
query_deinit() is called.

dane data len: Pointer to contain the length n bytes of the dane data items

secure: Pointer set true if the result is validated securely, false if validation failed or
the domain queried has no security info

bogus: Pointer set true if the result was not secure due to a security failure

This function will provide the DANE data from the query response.

The pointers dane data and dane data len are allocated with gnutls_malloc() to
contain the data from the query result structure (individual dane_data items simply
point to the original data and are not allocated separately). The returned dane_data

are only valid during the lifetime of q .

Returns: On success, DANE_E_SUCCESS (0) is returned, otherwise a negative error
value.

dane raw tlsa

[Function]int dane_raw_tlsa (dane state t s, dane query t * r, char *const *
dane_data, const int * dane_data_len, int secure, int bogus)

s: The DANE state structure

r: A structure to place the result

dane data: array of DNS rdata items, terminated with a NULL pointer; caller
must guarantee that the referenced data remains valid until dane_query_deinit()
is called.

dane data len: the length n bytes of the dane data items

secure: true if the result is validated securely, false if validation failed or the domain
queried has no security info

bogus: if the result was not secure (secure = 0) due to a security failure, and the
result is due to a security failure, bogus is true.

This function will fill in the TLSA (DANE) structure from the given raw DNS record
data. The dane_data must be valid during the lifetime of the query.

Returns: On success, DANE_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 566

dane state deinit

[Function]void dane_state_deinit (dane state t s)
s: The structure to be deinitialized

This function will deinitialize a DANE query structure.

dane state init

[Function]int dane_state_init (dane state t * s, unsigned int flags)
s: The structure to be initialized

flags: flags from the dane_state_flags enumeration

This function will initialize a DANE query structure.

Returns: On success, DANE_E_SUCCESS (0) is returned, otherwise a negative error
value.

dane state set dlv file

[Function]int dane_state_set_dlv_file (dane state t s, const char * file)
s: The structure to be deinitialized

file: The file holding the DLV keys.

This function will set a file with trusted keys for DLV (DNSSEC Lookaside Valida-
tion).

dane strerror

[Function]const char * dane_strerror (int error)
error: is a DANE error code, a negative error code

This function is similar to strerror. The difference is that it accepts an error number
returned by a gnutls function; In case of an unknown error a descriptive string is sent
instead of NULL .

Error codes are always a negative error code.

Returns: A string explaining the DANE error message.

dane verification status print

[Function]int dane_verification_status_print (unsigned int status,
gnutls datum t * out, unsigned int flags)

status: The status flags to be printed

out: Newly allocated datum with (0) terminated string.

flags: should be zero

This function will pretty print the status of a verification process – eg. the one
obtained by dane_verify_crt() .

The output out needs to be deallocated using gnutls_free() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix E: API reference 567

dane verify crt

[Function]int dane_verify_crt (dane state t s, const gnutls datum t * chain,
unsigned chain_size, gnutls certificate type t chain_type, const char *
hostname, const char * proto, unsigned int port, unsigned int sflags,
unsigned int vflags, unsigned int * verify)

s: A DANE state structure (may be NULL)

chain: A certificate chain

chain size: The size of the chain

chain type: The type of the certificate chain

hostname: The hostname associated with the chain

proto: The protocol of the service connecting (e.g. tcp)

port: The port of the service connecting (e.g. 443)

sflags: Flags for the the initialization of s (if NULL)

vflags: Verification flags; an OR’ed list of dane_verify_flags_t .

verify : An OR’ed list of dane_verify_status_t .

This function will verify the given certificate chain against the CA constrains and/or
the certificate available via DANE. If no information via DANE can be obtained the
flag DANE_VERIFY_NO_DANE_INFO is set. If a DNSSEC signature is not available for
the DANE record then the verify flag DANE_VERIFY_NO_DNSSEC_DATA is set.

Due to the many possible options of DANE, there is no single threat model countered.
When notifying the user about DANE verification results it may be better to mention:
DANE verification did not reject the certificate, rather than mentioning a successful
DANE verication.

Note that this function is designed to be run in addition to PKIX - certificate chain
- verification. To be run independently the DANE_VFLAG_ONLY_CHECK_EE_USAGE flag
should be specified; then the function will check whether the key of the peer matches
the key advertized in the DANE entry.

Returns: a negative error code on error and DANE_E_SUCCESS (0) when the DANE
entries were successfully parsed, irrespective of whether they were verified (see verify
for that information). If no usable entries were encountered DANE_E_REQUESTED_

DATA_NOT_AVAILABLE will be returned.

dane verify crt raw

[Function]int dane_verify_crt_raw (dane state t s, const gnutls datum t *
chain, unsigned chain_size, gnutls certificate type t chain_type,
dane query t r, unsigned int sflags, unsigned int vflags, unsigned int *
verify)

s: A DANE state structure (may be NULL)

chain: A certificate chain

chain size: The size of the chain

chain type: The type of the certificate chain

r: DANE data to check against

Appendix E: API reference 568

sflags: Flags for the the initialization of s (if NULL)

vflags: Verification flags; an OR’ed list of dane_verify_flags_t .

verify : An OR’ed list of dane_verify_status_t .

This function will verify the given certificate chain against the CA constrains and/or
the certificate available via DANE. If no information via DANE can be obtained the
flag DANE_VERIFY_NO_DANE_INFO is set. If a DNSSEC signature is not available for
the DANE record then the verify flag DANE_VERIFY_NO_DNSSEC_DATA is set.

Due to the many possible options of DANE, there is no single threat model countered.
When notifying the user about DANE verification results it may be better to mention:
DANE verification did not reject the certificate, rather than mentioning a successful
DANE verication.

Note that this function is designed to be run in addition to PKIX - certificate chain
- verification. To be run independently the DANE_VFLAG_ONLY_CHECK_EE_USAGE flag
should be specified; then the function will check whether the key of the peer matches
the key advertized in the DANE entry.

If the q parameter is provided it will be used for caching entries.

Returns: a negative error code on error and DANE_E_SUCCESS (0) when the DANE
entries were successfully parsed, irrespective of whether they were verified (see verify
for that information). If no usable entries were encountered DANE_E_REQUESTED_

DATA_NOT_AVAILABLE will be returned.

dane verify session crt

[Function]int dane_verify_session_crt (dane state t s, gnutls session t
session, const char * hostname, const char * proto, unsigned int port,
unsigned int sflags, unsigned int vflags, unsigned int * verify)

s: A DANE state structure (may be NULL)

session: A gnutls session

hostname: The hostname associated with the chain

proto: The protocol of the service connecting (e.g. tcp)

port: The port of the service connecting (e.g. 443)

sflags: Flags for the the initialization of s (if NULL)

vflags: Verification flags; an OR’ed list of dane_verify_flags_t .

verify : An OR’ed list of dane_verify_status_t .

This function will verify session’s certificate chain against the CA constrains and/or
the certificate available via DANE. See dane_verify_crt() for more information.

This will not verify the chain for validity; unless the DANE verification is restricted to
end certificates, this must be be performed separately using gnutls_certificate_

verify_peers3() .

Returns: a negative error code on error and DANE_E_SUCCESS (0) when the DANE
entries were successfully parsed, irrespective of whether they were verified (see verify
for that information). If no usable entries were encountered DANE_E_REQUESTED_

DATA_NOT_AVAILABLE will be returned.

Appendix E: API reference 569

E.11 Cryptographic API

The following functions are to be used for low-level cryptographic operations. Their proto-
types lie in gnutls/crypto.h.

gnutls cipher add auth

[Function]int gnutls_cipher_add_auth (gnutls cipher hd t handle, const void
* text, size t text_size)

handle: is a gnutls_cipher_hd_t structure.

text: the data to be authenticated

text size: The length of the data

This function operates on authenticated encryption with associated data (AEAD)
ciphers and authenticate the input data. This function can only be called once and
before any encryption operations.

Returns: Zero or a negative error code on error.

Since: 3.0

gnutls cipher decrypt

[Function]int gnutls_cipher_decrypt (gnutls cipher hd t handle, void *
ciphertext, size t ciphertextlen)

handle: is a gnutls_cipher_hd_t structure.

ciphertext: the data to encrypt

ciphertextlen: The length of data to encrypt

This function will decrypt the given data using the algorithm specified by the context.

Note that in AEAD ciphers, this will not check the tag. You will need to compare
the tag sent with the value returned from gnutls_cipher_tag() .

Returns: Zero or a negative error code on error.

Since: 2.10.0

gnutls cipher decrypt2

[Function]int gnutls_cipher_decrypt2 (gnutls cipher hd t handle, const void
* ciphertext, size t ciphertextlen, void * text, size t textlen)

handle: is a gnutls_cipher_hd_t structure.

ciphertext: the data to encrypt

ciphertextlen: The length of data to encrypt

text: the decrypted data

textlen: The available length for decrypted data

This function will decrypt the given data using the algorithm specified by the context.

Note that in AEAD ciphers, this will not check the tag. You will need to compare
the tag sent with the value returned from gnutls_cipher_tag() .

Returns: Zero or a negative error code on error.

Since: 2.12.0

Appendix E: API reference 570

gnutls cipher deinit

[Function]void gnutls_cipher_deinit (gnutls cipher hd t handle)
handle: is a gnutls_cipher_hd_t structure.

This function will deinitialize all resources occupied by the given encryption context.

Since: 2.10.0

gnutls cipher encrypt

[Function]int gnutls_cipher_encrypt (gnutls cipher hd t handle, void * text,
size t textlen)

handle: is a gnutls_cipher_hd_t structure.

text: the data to encrypt

textlen: The length of data to encrypt

This function will encrypt the given data using the algorithm specified by the context.

Returns: Zero or a negative error code on error.

Since: 2.10.0

gnutls cipher encrypt2

[Function]int gnutls_cipher_encrypt2 (gnutls cipher hd t handle, const void
* text, size t textlen, void * ciphertext, size t ciphertextlen)

handle: is a gnutls_cipher_hd_t structure.

text: the data to encrypt

textlen: The length of data to encrypt

ciphertext: the encrypted data

ciphertextlen: The available length for encrypted data

This function will encrypt the given data using the algorithm specified by the context.

Returns: Zero or a negative error code on error.

Since: 2.12.0

gnutls cipher get block size

[Function]int gnutls_cipher_get_block_size (gnutls cipher algorithm t
algorithm)

algorithm: is an encryption algorithm

Returns: the block size of the encryption algorithm.

Since: 2.10.0

gnutls cipher get iv size

[Function]int gnutls_cipher_get_iv_size (gnutls cipher algorithm t
algorithm)

algorithm: is an encryption algorithm

Get block size for encryption algorithm.

Returns: block size for encryption algorithm.

Since: 3.2.0

Appendix E: API reference 571

gnutls cipher get tag size

[Function]int gnutls_cipher_get_tag_size (gnutls cipher algorithm t
algorithm)

algorithm: is an encryption algorithm

Returns: the tag size of the authenticated encryption algorithm.

Since: 3.2.2

gnutls cipher init

[Function]int gnutls_cipher_init (gnutls cipher hd t * handle,
gnutls cipher algorithm t cipher, const gnutls datum t * key, const
gnutls datum t * iv)

handle: is a gnutls_cipher_hd_t structure.

cipher: the encryption algorithm to use

key : The key to be used for encryption

iv : The IV to use (if not applicable set NULL)

This function will initialize an context that can be used for encryption/decryption
of data. This will effectively use the current crypto backend in use by gnutls or the
cryptographic accelerator in use.

Returns: Zero or a negative error code on error.

Since: 2.10.0

gnutls cipher set iv

[Function]void gnutls_cipher_set_iv (gnutls cipher hd t handle, void * iv,
size t ivlen)

handle: is a gnutls_cipher_hd_t structure.

iv : the IV to set

ivlen: The length of the IV

This function will set the IV to be used for the next encryption block.

Since: 3.0

gnutls cipher tag

[Function]int gnutls_cipher_tag (gnutls cipher hd t handle, void * tag, size t
tag_size)

handle: is a gnutls_cipher_hd_t structure.

tag : will hold the tag

tag size: The length of the tag to return

This function operates on authenticated encryption with associated data (AEAD)
ciphers and will return the output tag.

Returns: Zero or a negative error code on error.

Since: 3.0

Appendix E: API reference 572

gnutls hash

[Function]int gnutls_hash (gnutls hash hd t handle, const void * text, size t
textlen)

handle: is a gnutls_cipher_hd_t structure.

text: the data to hash

textlen: The length of data to hash

This function will hash the given data using the algorithm specified by the context.

Returns: Zero or a negative error code on error.

Since: 2.10.0

gnutls hash deinit

[Function]void gnutls_hash_deinit (gnutls hash hd t handle, void * digest)
handle: is a gnutls_hash_hd_t structure.

digest: is the output value of the hash

This function will deinitialize all resources occupied by the given hash context.

Since: 2.10.0

gnutls hash fast

[Function]int gnutls_hash_fast (gnutls digest algorithm t algorithm, const
void * text, size t textlen, void * digest)

algorithm: the hash algorithm to use

text: the data to hash

textlen: The length of data to hash

digest: is the output value of the hash

This convenience function will hash the given data and return output on a single call.

Returns: Zero or a negative error code on error.

Since: 2.10.0

gnutls hash get len

[Function]int gnutls_hash_get_len (gnutls digest algorithm t algorithm)
algorithm: the hash algorithm to use

This function will return the length of the output data of the given hash algorithm.

Returns: The length or zero on error.

Since: 2.10.0

gnutls hash init

[Function]int gnutls_hash_init (gnutls hash hd t * dig,
gnutls digest algorithm t algorithm)

dig : is a gnutls_hash_hd_t structure.

algorithm: the hash algorithm to use

Appendix E: API reference 573

This function will initialize an context that can be used to produce a Message Digest
of data. This will effectively use the current crypto backend in use by gnutls or the
cryptographic accelerator in use.

Returns: Zero or a negative error code on error.

Since: 2.10.0

gnutls hash output

[Function]void gnutls_hash_output (gnutls hash hd t handle, void * digest)
handle: is a gnutls_hash_hd_t structure.

digest: is the output value of the hash

This function will output the current hash value and reset the state of the hash.

Since: 2.10.0

gnutls hmac

[Function]int gnutls_hmac (gnutls hmac hd t handle, const void * text, size t
textlen)

handle: is a gnutls_cipher_hd_t structure.

text: the data to hash

textlen: The length of data to hash

This function will hash the given data using the algorithm specified by the context.

Returns: Zero or a negative error code on error.

Since: 2.10.0

gnutls hmac deinit

[Function]void gnutls_hmac_deinit (gnutls hmac hd t handle, void * digest)
handle: is a gnutls_hmac_hd_t structure.

digest: is the output value of the MAC

This function will deinitialize all resources occupied by the given hmac context.

Since: 2.10.0

gnutls hmac fast

[Function]int gnutls_hmac_fast (gnutls mac algorithm t algorithm, const void
* key, size t keylen, const void * text, size t textlen, void * digest)

algorithm: the hash algorithm to use

key : the key to use

keylen: The length of the key

text: the data to hash

textlen: The length of data to hash

digest: is the output value of the hash

This convenience function will hash the given data and return output on a single call.

Returns: Zero or a negative error code on error.

Since: 2.10.0

Appendix E: API reference 574

gnutls hmac get len

[Function]int gnutls_hmac_get_len (gnutls mac algorithm t algorithm)
algorithm: the hmac algorithm to use

This function will return the length of the output data of the given hmac algorithm.

Returns: The length or zero on error.

Since: 2.10.0

gnutls hmac init

[Function]int gnutls_hmac_init (gnutls hmac hd t * dig,
gnutls mac algorithm t algorithm, const void * key, size t keylen)

dig : is a gnutls_hmac_hd_t structure.

algorithm: the HMAC algorithm to use

key : The key to be used for encryption

keylen: The length of the key

This function will initialize an context that can be used to produce a Message Au-
thentication Code (MAC) of data. This will effectively use the current crypto backend
in use by gnutls or the cryptographic accelerator in use.

Note that despite the name of this function, it can be used for other MAC algorithms
than HMAC.

Returns: Zero or a negative error code on error.

Since: 2.10.0

gnutls hmac output

[Function]void gnutls_hmac_output (gnutls hmac hd t handle, void * digest)
handle: is a gnutls_hmac_hd_t structure.

digest: is the output value of the MAC

This function will output the current MAC value and reset the state of the MAC.

Since: 2.10.0

gnutls hmac set nonce

[Function]void gnutls_hmac_set_nonce (gnutls hmac hd t handle, const void *
nonce, size t nonce_len)

handle: is a gnutls_cipher_hd_t structure.

nonce: the data to set as nonce

nonce len: The length of data

This function will set the nonce in the MAC algorithm.

Since: 3.2.0

Appendix E: API reference 575

gnutls mac get nonce size

[Function]size_t gnutls_mac_get_nonce_size (gnutls mac algorithm t
algorithm)

algorithm: is an encryption algorithm

Returns the size of the nonce used by the MAC in TLS.

Returns: length (in bytes) of the given MAC nonce size, or 0.

Since: 3.2.0

gnutls rnd

[Function]int gnutls_rnd (gnutls rnd level t level, void * data, size t len)
level: a security level

data: place to store random bytes

len: The requested size

This function will generate random data and store it to output buffer.

This function is thread-safe and also fork-safe.

Returns: Zero on success, or a negative error code on error.

Since: 2.12.0

gnutls rnd refresh

[Function]void gnutls_rnd_refresh ()
This function refreshes the random generator state. That is the current precise time,
CPU usage, and other values are input into its state.

On a slower rate input from /dev/urandom is mixed too.

Since: 3.1.7

E.12 Compatibility API

The following functions are carried over from old GnuTLS released. They might be removed
at a later version. Their prototypes lie in gnutls/compat.h.

gnutls certificate client set retrieve function

[Function]void gnutls_certificate_client_set_retrieve_function
(gnutls certificate credentials t cred, gnutls certificate client retrieve function
* func)

cred: is a gnutls_certificate_credentials_t structure.

func: is the callback function

This function sets a callback to be called in order to retrieve the certificate to be
used in the handshake. You are advised to use gnutls_certificate_set_retrieve_
function2() because it is much more efficient in the processing it requires from
gnutls.

Appendix E: API reference 576

The callback’s function prototype is: int (*callback)(gnutls session t, const
gnutls datum t* req ca dn, int nreqs, const gnutls pk algorithm t* pk algos, int
pk algos length, gnutls retr st* st);

req_ca_cert is only used in X.509 certificates. Contains a list with the CA names
that the server considers trusted. Normally we should send a certificate that is signed
by one of these CAs. These names are DER encoded. To get a more meaningful value
use the function gnutls_x509_rdn_get() .

pk_algos contains a list with server’s acceptable signature algorithms. The certificate
returned should support the server’s given algorithms.

st should contain the certificates and private keys.

If the callback function is provided then gnutls will call it, in the handshake, if a
certificate is requested by the server (and after the certificate request message has
been received).

The callback function should set the certificate list to be sent, and return 0 on success.
If no certificate was selected then the number of certificates should be set to zero.
The value (-1) indicates error and the handshake will be terminated.

gnutls certificate server set retrieve function

[Function]void gnutls_certificate_server_set_retrieve_function
(gnutls certificate credentials t cred, gnutls certificate server retrieve function
* func)

cred: is a gnutls_certificate_credentials_t structure.

func: is the callback function

This function sets a callback to be called in order to retrieve the certificate to be
used in the handshake. You are advised to use gnutls_certificate_set_retrieve_
function2() because it is much more efficient in the processing it requires from
gnutls.

The callback’s function prototype is: int (*callback)(gnutls session t, gnutls retr st*
st);

st should contain the certificates and private keys.

If the callback function is provided then gnutls will call it, in the handshake, after
the certificate request message has been received.

The callback function should set the certificate list to be sent, and return 0 on success.
The value (-1) indicates error and the handshake will be terminated.

gnutls certificate set rsa export params

[Function]void gnutls_certificate_set_rsa_export_params
(gnutls certificate credentials t res, gnutls rsa params t rsa_params)

res: is a gnutls certificate credentials t structure

rsa params: is a structure that holds temporary RSA parameters.

This function will set the temporary RSA parameters for a certificate server to use.
These parameters will be used in RSA-EXPORT cipher suites.

Appendix E: API reference 577

gnutls certificate type set priority

[Function]int gnutls_certificate_type_set_priority (gnutls session t
session, const int * list)

session: is a gnutls_session_t structure.

list: is a 0 terminated list of gnutls certificate type t elements.

Sets the priority on the certificate types supported by gnutls. Priority is higher
for elements specified before others. After specifying the types you want, you must
append a 0. Note that the certificate type priority is set on the client. The server
does not use the cert type priority except for disabling types that were not specified.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls cipher set priority

[Function]int gnutls_cipher_set_priority (gnutls session t session, const
int * list)

session: is a gnutls_session_t structure.

list: is a 0 terminated list of gnutls cipher algorithm t elements.

Sets the priority on the ciphers supported by gnutls. Priority is higher for elements
specified before others. After specifying the ciphers you want, you must append a 0.
Note that the priority is set on the client. The server does not use the algorithm’s
priority except for disabling algorithms that were not specified.

Returns: GNUTLS_E_SUCCESS (0) on success, or a negative error code.

gnutls compression set priority

[Function]int gnutls_compression_set_priority (gnutls session t session,
const int * list)

session: is a gnutls_session_t structure.

list: is a 0 terminated list of gnutls compression method t elements.

Sets the priority on the compression algorithms supported by gnutls. Priority is higher
for elements specified before others. After specifying the algorithms you want, you
must append a 0. Note that the priority is set on the client. The server does not use
the algorithm’s priority except for disabling algorithms that were not specified.

TLS 1.0 does not define any compression algorithms except NULL. Other compression
algorithms are to be considered as gnutls extensions.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls global set mem functions

[Function]void gnutls_global_set_mem_functions (gnutls alloc function
alloc_func, gnutls alloc function secure_alloc_func,
gnutls is secure function is_secure_func, gnutls realloc function
realloc_func, gnutls free function free_func)

alloc func: it’s the default memory allocation function. Like malloc() .

Appendix E: API reference 578

secure alloc func: This is the memory allocation function that will be used for sensi-
tive data.

is secure func: a function that returns 0 if the memory given is not secure. May be
NULL.

realloc func: A realloc function

free func: The function that frees allocated data. Must accept a NULL pointer.

Deprecated: since 3.3.0 it is no longer possible to replace the internally used memory
allocation functions

This is the function where you set the memory allocation functions gnutls is going
to use. By default the libc’s allocation functions (malloc() , free()), are used by
gnutls, to allocate both sensitive and not sensitive data. This function is provided to
set the memory allocation functions to something other than the defaults

This function must be called before gnutls_global_init() is called. This function
is not thread safe.

gnutls kx set priority

[Function]int gnutls_kx_set_priority (gnutls session t session, const int *
list)

session: is a gnutls_session_t structure.

list: is a 0 terminated list of gnutls kx algorithm t elements.

Sets the priority on the key exchange algorithms supported by gnutls. Priority is
higher for elements specified before others. After specifying the algorithms you want,
you must append a 0. Note that the priority is set on the client. The server does not
use the algorithm’s priority except for disabling algorithms that were not specified.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls mac set priority

[Function]int gnutls_mac_set_priority (gnutls session t session, const int *
list)

session: is a gnutls_session_t structure.

list: is a 0 terminated list of gnutls mac algorithm t elements.

Sets the priority on the mac algorithms supported by gnutls. Priority is higher for
elements specified before others. After specifying the algorithms you want, you must
append a 0. Note that the priority is set on the client. The server does not use the
algorithm’s priority except for disabling algorithms that were not specified.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp privkey sign hash

[Function]int gnutls_openpgp_privkey_sign_hash (gnutls openpgp privkey t
key, const gnutls datum t * hash, gnutls datum t * signature)

key : Holds the key

hash: holds the data to be signed

Appendix E: API reference 579

signature: will contain newly allocated signature

This function will sign the given hash using the private key. You should use gnutls_
openpgp_privkey_set_preferred_key_id() before calling this function to set the
subkey to use.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Deprecated: Use gnutls_privkey_sign_hash() instead.

gnutls privkey sign raw data

[Function]int gnutls_privkey_sign_raw_data (gnutls privkey t key, unsigned
flags, const gnutls datum t * data, gnutls datum t * signature)

key : Holds the key

flags: should be zero

data: holds the data to be signed

signature: will contain the signature allocate with gnutls_malloc()

This function will sign the given data using a signature algorithm supported by the
private key. Note that this is a low-level function and does not apply any preprocessing
or hash on the signed data. For example on an RSA key the input data should be of
the DigestInfo PKCS 1 1.5 format. Use it only if you know what are you doing.

Note this function is equivalent to using the GNUTLS_PRIVKEY_SIGN_FLAG_TLS1_RSA

flag with gnutls_privkey_sign_hash() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.10

gnutls protocol set priority

[Function]int gnutls_protocol_set_priority (gnutls session t session, const
int * list)

session: is a gnutls_session_t structure.

list: is a 0 terminated list of gnutls protocol t elements.

Sets the priority on the protocol versions supported by gnutls. This function actually
enables or disables protocols. Newer protocol versions always have highest priority.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls rsa export get modulus bits

[Function]int gnutls_rsa_export_get_modulus_bits (gnutls session t
session)

session: is a gnutls session

Get the export RSA parameter’s modulus size.

Returns: The bits used in the last RSA-EXPORT key exchange with the peer, or a
negative error code in case of error.

Appendix E: API reference 580

gnutls rsa export get pubkey

[Function]int gnutls_rsa_export_get_pubkey (gnutls session t session,
gnutls datum t * exponent, gnutls datum t * modulus)

session: is a gnutls session

exponent: will hold the exponent.

modulus: will hold the modulus.

This function will return the peer’s public key exponent and modulus used in the last
RSA-EXPORT authentication. The output parameters must be freed with gnutls_

free() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls rsa params cpy

[Function]int gnutls_rsa_params_cpy (gnutls rsa params t dst,
gnutls rsa params t src)

dst: Is the destination structure, which should be initialized.

src: Is the source structure

This function will copy the RSA parameters structure from source to destination.

Returns: GNUTLS_E_SUCCESS on success, or an negative error code.

gnutls rsa params deinit

[Function]void gnutls_rsa_params_deinit (gnutls rsa params t rsa_params)
rsa params: Is a structure that holds the parameters

This function will deinitialize the RSA parameters structure.

gnutls rsa params export pkcs1

[Function]int gnutls_rsa_params_export_pkcs1 (gnutls rsa params t params,
gnutls x509 crt fmt t format, unsigned char * params_data, size t *
params_data_size)

params: Holds the RSA parameters

format: the format of output params. One of PEM or DER.

params data: will contain a PKCS1 RSAPrivateKey structure PEM or DER encoded

params data size: holds the size of params data (and will be replaced by the actual
size of parameters)

This function will export the given RSA parameters to a PKCS1 RSAPrivateKey
structure. If the buffer provided is not long enough to hold the output, then
GNUTLS E SHORT MEMORY BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN RSA PRIVATE
KEY".

Returns: GNUTLS_E_SUCCESS on success, or an negative error code.

Appendix E: API reference 581

gnutls rsa params export raw

[Function]int gnutls_rsa_params_export_raw (gnutls rsa params t rsa,
gnutls datum t * m, gnutls datum t * e, gnutls datum t * d, gnutls datum t *
p, gnutls datum t * q, gnutls datum t * u, unsigned int * bits)

rsa: a structure that holds the rsa parameters

m: will hold the modulus

e: will hold the public exponent

d: will hold the private exponent

p: will hold the first prime (p)

q: will hold the second prime (q)

u: will hold the coefficient

bits: if non null will hold the prime’s number of bits

This function will export the RSA parameters found in the given structure. The
new parameters will be allocated using gnutls_malloc() and will be stored in the
appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, or an negative error code.

gnutls rsa params generate2

[Function]int gnutls_rsa_params_generate2 (gnutls rsa params t params,
unsigned int bits)

params: The structure where the parameters will be stored

bits: is the prime’s number of bits

This function will generate new temporary RSA parameters for use in RSA-EXPORT
ciphersuites. This function is normally slow.

Note that if the parameters are to be used in export cipher suites the bits value should
be 512 or less. Also note that the generation of new RSA parameters is only useful
to servers. Clients use the parameters sent by the server, thus it’s no use calling this
in client side.

Returns: GNUTLS_E_SUCCESS on success, or an negative error code.

gnutls rsa params import pkcs1

[Function]int gnutls_rsa_params_import_pkcs1 (gnutls rsa params t params,
const gnutls datum t * pkcs1_params, gnutls x509 crt fmt t format)

params: A structure where the parameters will be copied to

pkcs1 params: should contain a PKCS1 RSAPrivateKey structure PEM or DER
encoded

format: the format of params. PEM or DER.

This function will extract the RSAPrivateKey found in a PKCS1 formatted structure.

If the structure is PEM encoded, it should have a header of "BEGIN RSA PRIVATE
KEY".

Returns: GNUTLS_E_SUCCESS on success, or an negative error code.

Appendix E: API reference 582

gnutls rsa params import raw

[Function]int gnutls_rsa_params_import_raw (gnutls rsa params t
rsa_params, const gnutls datum t * m, const gnutls datum t * e, const
gnutls datum t * d, const gnutls datum t * p, const gnutls datum t * q, const
gnutls datum t * u)

rsa params: Is a structure will hold the parameters

m: holds the modulus

e: holds the public exponent

d: holds the private exponent

p: holds the first prime (p)

q: holds the second prime (q)

u: holds the coefficient

This function will replace the parameters in the given structure. The new parameters
should be stored in the appropriate gnutls datum.

Returns: GNUTLS_E_SUCCESS on success, or an negative error code.

gnutls rsa params init

[Function]int gnutls_rsa_params_init (gnutls rsa params t * rsa_params)
rsa params: Is a structure that will hold the parameters

This function will initialize the temporary RSA parameters structure.

Returns: GNUTLS_E_SUCCESS on success, or an negative error code.

gnutls set default export priority

[Function]int gnutls_set_default_export_priority (gnutls session t
session)

session: is a gnutls_session_t structure.

Sets some default priority on the ciphers, key exchange methods, macs and compres-
sion methods. This function also includes weak algorithms.

This is the same as calling:

gnutls priority set direct (session, "EXPORT", NULL);

This function is kept around for backwards compatibility, but because of its wide use
it is still fully supported. If you wish to allow users to provide a string that specify
which ciphers to use (which is recommended), you should use gnutls_priority_set_
direct() or gnutls_priority_set() instead.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls sign callback get

[Function]gnutls_sign_func gnutls_sign_callback_get (gnutls session t
session, void ** userdata)

session: is a gnutls session

userdata: if non-NULL , will be set to abstract callback pointer.

Appendix E: API reference 583

Retrieve the callback function, and its userdata pointer.

Returns: The function pointer set by gnutls_sign_callback_set() , or if not set,
NULL .

Deprecated: Use the PKCS 11 interfaces instead.

gnutls sign callback set

[Function]void gnutls_sign_callback_set (gnutls session t session,
gnutls sign func sign_func, void * userdata)

session: is a gnutls session

sign func: function pointer to application’s sign callback.

userdata: void pointer that will be passed to sign callback.

Set the callback function. The function must have this prototype:

typedef int (*gnutls sign func) (gnutls session t session, void *userdata,
gnutls certificate type t cert type, const gnutls datum t * cert, const
gnutls datum t * hash, gnutls datum t * signature);

The userdata parameter is passed to the sign_func verbatim, and can be used to
store application-specific data needed in the callback function. See also gnutls_sign_
callback_get() .

Deprecated: Use the PKCS 11 or gnutls_privkey_t interfacess like gnutls_

privkey_import_ext() instead.

gnutls x509 crl sign

[Function]int gnutls_x509_crl_sign (gnutls x509 crl t crl, gnutls x509 crt t
issuer, gnutls x509 privkey t issuer_key)

crl: should contain a gnutls x509 crl t structure

issuer: is the certificate of the certificate issuer

issuer key : holds the issuer’s private key

This function is the same a gnutls_x509_crl_sign2() with no flags, and SHA1 as
the hash algorithm.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Deprecated: Use gnutls_x509_crl_privkey_sign() .

gnutls x509 crq sign

[Function]int gnutls_x509_crq_sign (gnutls x509 crq t crq,
gnutls x509 privkey t key)

crq: should contain a gnutls_x509_crq_t structure

key : holds a private key

This function is the same a gnutls_x509_crq_sign2() with no flags, and SHA1 as
the hash algorithm.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Deprecated: Use gnutls_x509_crq_privkey_sign() instead.

Appendix E: API reference 584

gnutls x509 crt get preferred hash algorithm

[Function]int gnutls_x509_crt_get_preferred_hash_algorithm
(gnutls x509 crt t crt, gnutls digest algorithm t * hash, unsigned int * mand)

crt: Holds the certificate

hash: The result of the call with the hash algorithm used for signature

mand: If non-zero it means that the algorithm MUST use this hash. May be NULL.

This function will read the certifcate and return the appropriate digest algorithm to
use for signing with this certificate. Some certificates (i.e. DSA might not be able to
sign without the preferred algorithm).

Deprecated: Please use gnutls_pubkey_get_preferred_hash_algorithm() .

Returns: the 0 if the hash algorithm is found. A negative error code is returned on
error.

Since: 2.12.0

gnutls x509 crt get verify algorithm

[Function]int gnutls_x509_crt_get_verify_algorithm (gnutls x509 crt t
crt, const gnutls datum t * signature, gnutls digest algorithm t * hash)

crt: Holds the certificate

signature: contains the signature

hash: The result of the call with the hash algorithm used for signature

This function will read the certifcate and the signed data to determine the hash
algorithm used to generate the signature.

Deprecated: Use gnutls_pubkey_get_verify_algorithm() instead.

Returns: the 0 if the hash algorithm is found. A negative error code is returned on
error.

Since: 2.8.0

gnutls x509 crt verify data

[Function]int gnutls_x509_crt_verify_data (gnutls x509 crt t crt, unsigned
int flags, const gnutls datum t * data, const gnutls datum t * signature)

crt: Holds the certificate

flags: should be 0 for now

data: holds the data to be signed

signature: contains the signature

This function will verify the given signed data, using the parameters from the certifi-
cate.

Deprecated. This function cannot be easily used securely. Use gnutls_pubkey_

verify_data2() instead.

Returns: In case of a verification failure GNUTLS_E_PK_SIG_VERIFY_FAILED is re-
turned, and zero or positive code on success.

Appendix E: API reference 585

gnutls x509 crt verify hash

[Function]int gnutls_x509_crt_verify_hash (gnutls x509 crt t crt, unsigned
int flags, const gnutls datum t * hash, const gnutls datum t * signature)

crt: Holds the certificate

flags: should be 0 for now

hash: holds the hash digest to be verified

signature: contains the signature

This function will verify the given signed digest, using the parameters from the cer-
tificate.

Deprecated. This function cannot be easily used securely. Use gnutls_pubkey_

verify_hash2() instead.

Returns: In case of a verification failure GNUTLS_E_PK_SIG_VERIFY_FAILED is re-
turned, and zero or positive code on success.

gnutls x509 privkey sign data

[Function]int gnutls_x509_privkey_sign_data (gnutls x509 privkey t key,
gnutls digest algorithm t digest, unsigned int flags, const gnutls datum t *
data, void * signature, size t * signature_size)

key : Holds the key

digest: should be MD5 or SHA1

flags: should be 0 for now

data: holds the data to be signed

signature: will contain the signature

signature size: holds the size of signature (and will be replaced by the new size)

This function will sign the given data using a signature algorithm supported by the
private key. Signature algorithms are always used together with a hash functions.
Different hash functions may be used for the RSA algorithm, but only SHA-1 for the
DSA keys.

If the buffer provided is not long enough to hold the output, then * signature_size

is updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.

Use gnutls_x509_crt_get_preferred_hash_algorithm() to determine the hash al-
gorithm.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Deprecated: Use gnutls_privkey_sign_data() .

gnutls x509 privkey sign hash

[Function]int gnutls_x509_privkey_sign_hash (gnutls x509 privkey t key,
const gnutls datum t * hash, gnutls datum t * signature)

key : Holds the key

hash: holds the data to be signed

Appendix E: API reference 586

signature: will contain newly allocated signature

This function will sign the given hash using the private key. Do not use this function
directly unless you know what it is. Typical signing requires the data to be hashed
and stored in special formats (e.g. BER Digest-Info for RSA).

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Deprecated in: 2.12.0

Appendix F: Copying Information 587

Appendix F Copying Information

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

http://fsf.org/

Appendix F: Copying Information 588

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

Appendix F: Copying Information 589

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

Appendix F: Copying Information 590

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at

Appendix F: Copying Information 591

your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix F: Copying Information 592

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix F: Copying Information 593

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Appendix F: Copying Information 594

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Bibliography 595

Bibliography

[CBCATT]
Bodo Moeller, "Security of CBC Ciphersuites in SSL/TLS: Problems and
Countermeasures", 2002, available from http://www.openssl.org/~bodo/

tls-cbc.txt.

[GPGH] Mike Ashley, "The GNU Privacy Handbook", 2002, available from http://

www.gnupg.org/gph/en/manual.pdf.

[GUTPKI]
Peter Gutmann, "Everything you never wanted to know about PKI but
were forced to find out", Available from http://www.cs.auckland.ac.nz/

~pgut001/.

[KEYPIN] Chris Evans and Chris Palmer, "Public Key Pinning Extension
for HTTP", Available from http: / / tools . ietf . org / html /

draft-ietf-websec-key-pinning-01.

[NISTSP80057]
NIST Special Publication 800-57, "Recommendation for Key Man-
agement - Part 1: General (Revised)", March 2007, available
from http: / / csrc . nist . gov / publications / nistpubs / 800-57 /

sp800-57-Part1-revised2_Mar08-2007.pdf.

[RFC2246]
Tim Dierks and Christopher Allen, "The TLS Protocol Version 1.0", January
1999, Available from http://www.ietf.org/rfc/rfc2246.txt.

[RFC4418]
Ted Krovetz, "UMAC: Message Authentication Code using Universal Hashing",
March 2006, Available from http://www.ietf.org/rfc/rfc4418.txt.

[RFC4680]
S. Santesson, "TLS Handshake Message for Supplemental Data", September
2006, Available from http://www.ietf.org/rfc/rfc4680.txt.

[RFC4514]
Kurt D. Zeilenga, "Lightweight Directory Access Protocol (LDAP): String Rep-
resentation of Distinguished Names", June 2006, Available from http://www.

ietf.org/rfc/rfc4513.txt.

[RFC4346]
Tim Dierks and Eric Rescorla, "The TLS Protocol Version 1.1", Match 2006,
Available from http://www.ietf.org/rfc/rfc4346.txt.

[RFC4347]
Eric Rescorla and Nagendra Modadugu, "Datagram Transport Layer Security",
April 2006, Available from http://www.ietf.org/rfc/rfc4347.txt.

[RFC5246]
Tim Dierks and Eric Rescorla, "The TLS Protocol Version 1.2", August 2008,
Available from http://www.ietf.org/rfc/rfc5246.txt.

http://www.openssl.org/~bodo/tls-cbc.txt
http://www.openssl.org/~bodo/tls-cbc.txt
http://www.gnupg.org/gph/en/manual.pdf
http://www.gnupg.org/gph/en/manual.pdf
http://www.cs.auckland.ac.nz/~pgut001/
http://www.cs.auckland.ac.nz/~pgut001/
http://tools.ietf.org/html/draft-ietf-websec-key-pinning-01
http://tools.ietf.org/html/draft-ietf-websec-key-pinning-01
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc4418.txt
http://www.ietf.org/rfc/rfc4680.txt
http://www.ietf.org/rfc/rfc4513.txt
http://www.ietf.org/rfc/rfc4513.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc4347.txt
http://www.ietf.org/rfc/rfc5246.txt

Bibliography 596

[RFC2440]
Jon Callas, Lutz Donnerhacke, Hal Finney and Rodney Thayer, "OpenPGP
Message Format", November 1998, Available from http://www.ietf.org/

rfc/rfc2440.txt.

[RFC4880]
Jon Callas, Lutz Donnerhacke, Hal Finney, David Shaw and Rodney Thayer,
"OpenPGP Message Format", November 2007, Available from http://www.

ietf.org/rfc/rfc4880.txt.

[RFC4211]
J. Schaad, "Internet X.509 Public Key Infrastructure Certificate Request Mes-
sage Format (CRMF)", September 2005, Available from http://www.ietf.

org/rfc/rfc4211.txt.

[RFC2817]
Rohit Khare and Scott Lawrence, "Upgrading to TLS Within HTTP/1.1", May
2000, Available from http://www.ietf.org/rfc/rfc2817.txt

[RFC2818]
Eric Rescorla, "HTTP Over TLS", May 2000, Available from http://www.

ietf/rfc/rfc2818.txt.

[RFC2945]
Tom Wu, "The SRP Authentication and Key Exchange System", September
2000, Available from http://www.ietf.org/rfc/rfc2945.txt.

[RFC2986]
Magnus Nystrom and Burt Kaliski, "PKCS 10 v1.7: Certification Request Syn-
tax Specification", November 2000, Available from http://www.ietf.org/

rfc/rfc2986.txt.

[PKIX] D. Cooper, S. Santesson, S. Farrel, S. Boeyen, R. Housley, W. Polk, "Inter-
net X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile", May 2008, available from http://www.ietf.org/rfc/

rfc5280.txt.

[RFC3749]
Scott Hollenbeck, "Transport Layer Security Protocol Compression Methods",
May 2004, available from http://www.ietf.org/rfc/rfc3749.txt.

[RFC3820]
Steven Tuecke, Von Welch, Doug Engert, Laura Pearlman, and Mary Thomp-
son, "Internet X.509 Public Key Infrastructure (PKI) Proxy Certificate Pro-
file", June 2004, available from http://www.ietf.org/rfc/rfc3820.

[RFC6520]
R. Seggelmann, M. Tuexen, and M. Williams, "Transport Layer Security (TLS)
and Datagram Transport Layer Security (DTLS) Heartbeat Extension", Febru-
ary 2012, available from http://www.ietf.org/rfc/rfc6520.

http://www.ietf.org/rfc/rfc2440.txt
http://www.ietf.org/rfc/rfc2440.txt
http://www.ietf.org/rfc/rfc4880.txt
http://www.ietf.org/rfc/rfc4880.txt
http://www.ietf.org/rfc/rfc4211.txt
http://www.ietf.org/rfc/rfc4211.txt
http://www.ietf.org/rfc/rfc2817.txt
http://www.ietf/rfc/rfc2818.txt
http://www.ietf/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc2945.txt
http://www.ietf.org/rfc/rfc2986.txt
http://www.ietf.org/rfc/rfc2986.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc3749.txt
http://www.ietf.org/rfc/rfc3820
http://www.ietf.org/rfc/rfc6520

Bibliography 597

[RFC5746]
E. Rescorla, M. Ray, S. Dispensa, and N. Oskov, "Transport Layer Secu-
rity (TLS) Renegotiation Indication Extension", February 2010, available from
http://www.ietf.org/rfc/rfc5746.

[RFC5280]
D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk, "In-
ternet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile", May 2008, available from http://www.ietf.org/rfc/

rfc5280.

[TLSTKT]
Joseph Salowey, Hao Zhou, Pasi Eronen, Hannes Tschofenig, "Transport Layer
Security (TLS) Session Resumption without Server-Side State", January 2008,
available from http://www.ietf.org/rfc/rfc5077.

[PKCS12] RSA Laboratories, "PKCS 12 v1.0: Personal Information Exchange Syntax",
June 1999, Available from http://www.rsa.com.

[PKCS11] RSA Laboratories, "PKCS #11 Base Functionality v2.30: Cryptoki Draft 4",
July 2009, Available from http://www.rsa.com.

[RESCORLA]
Eric Rescorla, "SSL and TLS: Designing and Building Secure Systems", 2001

[SELKEY]
Arjen Lenstra and Eric Verheul, "Selecting Cryptographic Key Sizes", 2003,
available from http://www.win.tue.nl/~klenstra/key.pdf.

[SSL3] Alan Freier, Philip Karlton and Paul Kocher, "The Secure Sockets Layer (SSL)
Protocol Version 3.0", August 2011, Available from http://www.ietf.org/

rfc/rfc6101.txt.

[STEVENS]
Richard Stevens, "UNIX Network Programming, Volume 1", Prentice Hall
PTR, January 1998

[TLSEXT] Simon Blake-Wilson, Magnus Nystrom, David Hopwood, Jan Mikkelsen and
Tim Wright, "Transport Layer Security (TLS) Extensions", June 2003, Avail-
able from http://www.ietf.org/rfc/rfc3546.txt.

[TLSPGP] Nikos Mavrogiannopoulos, "Using OpenPGP keys for TLS authentication",
January 2011. Available from http://www.ietf.org/rfc/rfc6091.txt.

[TLSSRP] David Taylor, Trevor Perrin, Tom Wu and Nikos Mavrogiannopoulos, "Using
SRP for TLS Authentication", November 2007. Available from http://www.

ietf.org/rfc/rfc5054.txt.

[TLSPSK] Pasi Eronen and Hannes Tschofenig, "Pre-shared key Ciphersuites for TLS",
December 2005, Available from http://www.ietf.org/rfc/rfc4279.txt.

[TOMSRP]
Tom Wu, "The Stanford SRP Authentication Project", Available at http://
srp.stanford.edu/.

http://www.ietf.org/rfc/rfc5746
http://www.ietf.org/rfc/rfc5280
http://www.ietf.org/rfc/rfc5280
http://www.ietf.org/rfc/rfc5077
http://www.rsa.com
http://www.rsa.com
http://www.win.tue.nl/~klenstra/key.pdf
http://www.ietf.org/rfc/rfc6101.txt
http://www.ietf.org/rfc/rfc6101.txt
http://www.ietf.org/rfc/rfc3546.txt
http://www.ietf.org/rfc/rfc6091.txt
http://www.ietf.org/rfc/rfc5054.txt
http://www.ietf.org/rfc/rfc5054.txt
http://www.ietf.org/rfc/rfc4279.txt
http://srp.stanford.edu/
http://srp.stanford.edu/

Bibliography 598

[WEGER] Arjen Lenstra and Xiaoyun Wang and Benne de Weger, "Colliding X.509 Cer-
tificates", Cryptology ePrint Archive, Report 2005/067, Available at http://
eprint.iacr.org/.

[ECRYPT]
European Network of Excellence in Cryptology II, "ECRYPT II Yearly Report
on Algorithms and Keysizes (2009-2010)", Available at http://www.ecrypt.
eu.org/documents/D.SPA.13.pdf.

[RFC5056]
N. Williams, "On the Use of Channel Bindings to Secure Channels", November
2007, available from http://www.ietf.org/rfc/rfc5056.

[RFC5929]
J. Altman, N. Williams, L. Zhu, "Channel Bindings for TLS", July 2010, avail-
able from http://www.ietf.org/rfc/rfc5929.

[PKCS11URI]
J. Pechanec, D. Moffat, "The PKCS#11 URI Scheme", September
2013, Work in progress, available from http: / /tools .ietf .org /html /

draft-pechanec-pkcs11uri-13.

[TPMURI]
C. Latze, N. Mavrogiannopoulos, "The TPMKEY URI Scheme", January
2013, Work in progress, available from http: / /tools .ietf .org /html /

draft-mavrogiannopoulos-tpmuri-01.

[ANDERSON]
R. J. Anderson, "Security Engineering: A Guide to Building Dependable Dis-
tributed Systems", John Wiley \& Sons, Inc., 2001.

[RFC4821]
M. Mathis, J. Heffner, "Packetization Layer Path MTU Discovery", March
2007, available from http://www.ietf.org/rfc/rfc4821.txt.

[RFC2560]
M. Myers et al, "X.509 Internet Public Key Infrastructure Online Certificate
Status Protocol - OCSP", June 1999, Available from http://www.ietf.org/

rfc/rfc2560.txt.

[RIVESTCRL]
R. L. Rivest, "Can We Eliminate Certificate Revocation Lists?",
Proceedings of Financial Cryptography ’98; Springer Lecture Notes in
Computer Science No. 1465 (Rafael Hirschfeld, ed.), February 1998),
pages 178–183, available from http: / /people .csail .mit .edu /rivest /

Rivest-CanWeEliminateCertificateRevocationLists.pdf.

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.ecrypt.eu.org/documents/D.SPA.13.pdf
http://www.ecrypt.eu.org/documents/D.SPA.13.pdf
http://www.ietf.org/rfc/rfc5056
http://www.ietf.org/rfc/rfc5929
http://tools.ietf.org/html/draft-pechanec-pkcs11uri-13
http://tools.ietf.org/html/draft-pechanec-pkcs11uri-13
http://tools.ietf.org/html/draft-mavrogiannopoulos-tpmuri-01
http://tools.ietf.org/html/draft-mavrogiannopoulos-tpmuri-01
http://www.ietf.org/rfc/rfc4821.txt
http://www.ietf.org/rfc/rfc2560.txt
http://www.ietf.org/rfc/rfc2560.txt
http://people.csail.mit.edu/rivest/Rivest-CanWeEliminateCertificateRevocationLists.pdf
http://people.csail.mit.edu/rivest/Rivest-CanWeEliminateCertificateRevocationLists.pdf

Function and Data Index 599

Function and Data Index

D
dane_cert_type_name . 507
dane_cert_usage_name . 507
dane_match_type_name . 507
dane_query_data . 507
dane_query_deinit . 507
dane_query_entries . 507
dane_query_status . 508
dane_query_tlsa . 508
dane_state_deinit . 508
dane_state_init . 508
dane_state_set_dlv_file 508
dane_strerror . 509
dane_verification_status_print 509
dane_verify_crt . 138, 509
dane_verify_session_crt 510

G
gnutls_alert_get . 125, 271
gnutls_alert_get_name 126, 271
gnutls_alert_get_strname 271
gnutls_alert_send . 126, 271
gnutls_alert_send_appropriate 272
gnutls_alpn_get_selected_protocol 272
gnutls_alpn_set_protocols 272
gnutls_anon_allocate_client_credentials

. 273
gnutls_anon_allocate_server_credentials

. 273
gnutls_anon_free_client_credentials 273
gnutls_anon_free_server_credentials 273
gnutls_anon_set_params_function 273
gnutls_anon_set_server_dh_params 274
gnutls_anon_set_server_params_function . . 274
gnutls_auth_client_get_type 274
gnutls_auth_get_type . 274
gnutls_auth_server_get_type 275
gnutls_bye . 124, 275
gnutls_certificate_activation_time_peers

. 275
gnutls_certificate_allocate_credentials

. 276
gnutls_certificate_client_get_request_

status . 276
gnutls_certificate_expiration_time_peers

. 276
gnutls_certificate_free_ca_names 276
gnutls_certificate_free_cas 276
gnutls_certificate_free_credentials 277
gnutls_certificate_free_crls 277
gnutls_certificate_free_keys 277
gnutls_certificate_get_issuer 277
gnutls_certificate_get_ours 277

gnutls_certificate_get_peers 278
gnutls_certificate_get_peers_subkey_id . . 278
gnutls_certificate_send_x509_rdn_sequence

. 112, 278
gnutls_certificate_server_set_request . . . 111,

278
gnutls_certificate_set_dh_params 279
gnutls_certificate_set_key 110, 482
gnutls_certificate_set_ocsp_status_request_

file . 279
gnutls_certificate_set_ocsp_status_request_

function . 279
gnutls_certificate_set_openpgp_key 442
gnutls_certificate_set_openpgp_key_file

. 443
gnutls_certificate_set_openpgp_key_file2

. 443
gnutls_certificate_set_openpgp_key_mem . . 443
gnutls_certificate_set_openpgp_key_mem2

. 444
gnutls_certificate_set_openpgp_keyring_file

. 35, 444
gnutls_certificate_set_openpgp_keyring_mem

. 444
gnutls_certificate_set_params_function

. 140, 280
gnutls_certificate_set_pin_function 109,

280
gnutls_certificate_set_retrieve_function

. 280
gnutls_certificate_set_retrieve_function2

. 482
gnutls_certificate_set_rsa_export_params

. 517
gnutls_certificate_set_verify_flags 281
gnutls_certificate_set_verify_function

. 113, 281
gnutls_certificate_set_verify_limits 282
gnutls_certificate_set_x509_crl 282
gnutls_certificate_set_x509_crl_file 282
gnutls_certificate_set_x509_crl_mem 282
gnutls_certificate_set_x509_key 283
gnutls_certificate_set_x509_key_file 283
gnutls_certificate_set_x509_key_file2 . . . 284
gnutls_certificate_set_x509_key_mem 284
gnutls_certificate_set_x509_key_mem2 285
gnutls_certificate_set_x509_simple_pkcs12_

file . 285
gnutls_certificate_set_x509_simple_pkcs12_

mem . 286
gnutls_certificate_set_x509_system_trust

. 92, 286
gnutls_certificate_set_x509_trust 286
gnutls_certificate_set_x509_trust_file . . 287
gnutls_certificate_set_x509_trust_mem . . . 287

Function and Data Index 600

gnutls_certificate_type_get 288
gnutls_certificate_type_get_id 288
gnutls_certificate_type_get_name 288
gnutls_certificate_type_list 288
gnutls_certificate_type_set_priority 517
gnutls_certificate_verification_status_

print . 288
gnutls_certificate_verify_flags 30, 136
gnutls_certificate_verify_peers2 289
gnutls_certificate_verify_peers3 112, 289
gnutls_check_version . 290
gnutls_cipher_add_auth . 510
gnutls_cipher_decrypt . 511
gnutls_cipher_decrypt2 . 511
gnutls_cipher_deinit . 511
gnutls_cipher_encrypt . 511
gnutls_cipher_encrypt2 . 512
gnutls_cipher_get . 290
gnutls_cipher_get_block_size 512
gnutls_cipher_get_id . 290
gnutls_cipher_get_iv_size 512
gnutls_cipher_get_key_size 290
gnutls_cipher_get_name . 290
gnutls_cipher_init . 512
gnutls_cipher_list . 291
gnutls_cipher_set_iv . 513
gnutls_cipher_set_priority 518
gnutls_cipher_suite_get_name 291
gnutls_cipher_suite_info 291
gnutls_cipher_tag . 513
gnutls_compression_get . 291
gnutls_compression_get_id 292
gnutls_compression_get_name 292
gnutls_compression_list 292
gnutls_compression_set_priority 518
gnutls_credentials_clear 292
gnutls_credentials_set 107, 292
gnutls_db_check_entry . 293
gnutls_db_check_entry_time 293
gnutls_db_get_ptr . 293
gnutls_db_remove_session 293
gnutls_db_set_cache_expiration 294
gnutls_db_set_ptr . 294
gnutls_db_set_remove_function 294
gnutls_db_set_retrieve_function 294
gnutls_db_set_store_function 294
gnutls_deinit . 125, 295
gnutls_dh_get_group . 295
gnutls_dh_get_peers_public_bits 295
gnutls_dh_get_prime_bits 295
gnutls_dh_get_pubkey . 296
gnutls_dh_get_secret_bits 296
gnutls_dh_params_cpy . 296
gnutls_dh_params_deinit 296
gnutls_dh_params_export_pkcs3 297
gnutls_dh_params_export_raw 297
gnutls_dh_params_export2_pkcs3 296
gnutls_dh_params_generate2 297

gnutls_dh_params_import_pkcs3 298
gnutls_dh_params_import_raw 298
gnutls_dh_params_init . 298
gnutls_dh_set_prime_bits 299
gnutls_dtls_cookie_send 351
gnutls_dtls_cookie_verify 352
gnutls_dtls_get_data_mtu 352
gnutls_dtls_get_mtu . 352
gnutls_dtls_get_timeout 119, 353
gnutls_dtls_prestate_set 353
gnutls_dtls_set_data_mtu 353
gnutls_dtls_set_mtu . 353
gnutls_dtls_set_timeouts 354
gnutls_ecc_curve_get . 299
gnutls_ecc_curve_get_name 299
gnutls_ecc_curve_get_size 299
gnutls_ecc_curve_list . 300
gnutls_error_is_fatal 123, 300
gnutls_error_to_alert 126, 300
gnutls_fingerprint . 300
gnutls_global_deinit . 301
gnutls_global_init . 301
gnutls_global_set_audit_log_function 104,

301
gnutls_global_set_log_function 302
gnutls_global_set_log_level 302
gnutls_global_set_mem_functions 302
gnutls_global_set_mutex 105, 302
gnutls_global_set_time_function 303
gnutls_handshake . 121, 303
gnutls_handshake_get_last_in 303
gnutls_handshake_get_last_out 304
gnutls_handshake_set_max_packet_length . . 304
gnutls_handshake_set_post_client_hello_

function . 304
gnutls_handshake_set_private_extensions

. 305
gnutls_handshake_set_random 305
gnutls_handshake_set_timeout 122, 305
gnutls_hash . 513
gnutls_hash_deinit . 513
gnutls_hash_fast . 514
gnutls_hash_get_len . 514
gnutls_hash_init . 514
gnutls_hash_output . 514
gnutls_heartbeat_allowed 305
gnutls_heartbeat_enable 306
gnutls_heartbeat_get_timeout 306
gnutls_heartbeat_ping . 306
gnutls_heartbeat_pong . 307
gnutls_heartbeat_set_timeouts 307
gnutls_hex_decode . 307
gnutls_hex_encode . 308
gnutls_hex2bin . 307
gnutls_hmac . 515
gnutls_hmac_deinit . 515
gnutls_hmac_fast . 515
gnutls_hmac_get_len . 515

Function and Data Index 601

gnutls_hmac_init . 516
gnutls_hmac_output . 516
gnutls_hmac_set_nonce . 516
gnutls_init . 107, 308
gnutls_key_generate . 308
gnutls_kx_get . 309
gnutls_kx_get_id . 309
gnutls_kx_get_name . 309
gnutls_kx_list . 309
gnutls_kx_set_priority . 518
gnutls_load_file . 309
gnutls_mac_get . 310
gnutls_mac_get_id . 310
gnutls_mac_get_key_size 310
gnutls_mac_get_name . 310
gnutls_mac_get_nonce_size 516
gnutls_mac_list . 310
gnutls_mac_set_priority 518
gnutls_ocsp_req_add_cert 432
gnutls_ocsp_req_add_cert_id 433
gnutls_ocsp_req_deinit . 433
gnutls_ocsp_req_export . 433
gnutls_ocsp_req_get_cert_id 433
gnutls_ocsp_req_get_extension 434
gnutls_ocsp_req_get_nonce 434
gnutls_ocsp_req_get_version 435
gnutls_ocsp_req_import . 435
gnutls_ocsp_req_init . 435
gnutls_ocsp_req_print . 435
gnutls_ocsp_req_randomize_nonce 436
gnutls_ocsp_req_set_extension 436
gnutls_ocsp_req_set_nonce 436
gnutls_ocsp_resp_check_crt 436
gnutls_ocsp_resp_deinit 437
gnutls_ocsp_resp_export 437
gnutls_ocsp_resp_get_certs 437
gnutls_ocsp_resp_get_extension 437
gnutls_ocsp_resp_get_nonce 438
gnutls_ocsp_resp_get_produced 438
gnutls_ocsp_resp_get_responder 438
gnutls_ocsp_resp_get_response 439
gnutls_ocsp_resp_get_signature 439
gnutls_ocsp_resp_get_signature_algorithm

. 439
gnutls_ocsp_resp_get_single 46, 439
gnutls_ocsp_resp_get_status 440
gnutls_ocsp_resp_get_version 440
gnutls_ocsp_resp_import 440
gnutls_ocsp_resp_init . 441
gnutls_ocsp_resp_print . 441
gnutls_ocsp_resp_verify 441
gnutls_ocsp_resp_verify_direct 442
gnutls_ocsp_status_request_enable_client

. 311
gnutls_ocsp_status_request_get 311
gnutls_ocsp_status_request_is_checked . . . 311
gnutls_openpgp_crt_check_hostname 445
gnutls_openpgp_crt_deinit 445

gnutls_openpgp_crt_export 445
gnutls_openpgp_crt_export2 445
gnutls_openpgp_crt_get_auth_subkey 446
gnutls_openpgp_crt_get_creation_time 446
gnutls_openpgp_crt_get_expiration_time . . 446
gnutls_openpgp_crt_get_fingerprint 446
gnutls_openpgp_crt_get_key_id 446
gnutls_openpgp_crt_get_key_usage 447
gnutls_openpgp_crt_get_name 447
gnutls_openpgp_crt_get_pk_algorithm 447
gnutls_openpgp_crt_get_pk_dsa_raw 447
gnutls_openpgp_crt_get_pk_rsa_raw 448
gnutls_openpgp_crt_get_preferred_key_id

. 448
gnutls_openpgp_crt_get_revoked_status . . . 448
gnutls_openpgp_crt_get_subkey_count 449
gnutls_openpgp_crt_get_subkey_creation_time

. 449
gnutls_openpgp_crt_get_subkey_expiration_

time . 449
gnutls_openpgp_crt_get_subkey_fingerprint

. 449
gnutls_openpgp_crt_get_subkey_id 450
gnutls_openpgp_crt_get_subkey_idx 450
gnutls_openpgp_crt_get_subkey_pk_algorithm

. 450
gnutls_openpgp_crt_get_subkey_pk_dsa_raw

. 450
gnutls_openpgp_crt_get_subkey_pk_rsa_raw

. 451
gnutls_openpgp_crt_get_subkey_revoked_

status . 451
gnutls_openpgp_crt_get_subkey_usage 451
gnutls_openpgp_crt_get_version 452
gnutls_openpgp_crt_import 452
gnutls_openpgp_crt_init 452
gnutls_openpgp_crt_print 452
gnutls_openpgp_crt_set_preferred_key_id

. 453
gnutls_openpgp_crt_verify_ring 34, 453
gnutls_openpgp_crt_verify_self 34, 453
gnutls_openpgp_keyring_check_id 453
gnutls_openpgp_keyring_deinit 454
gnutls_openpgp_keyring_get_crt 454
gnutls_openpgp_keyring_get_crt_count 454
gnutls_openpgp_keyring_import 454
gnutls_openpgp_keyring_init 455
gnutls_openpgp_privkey_deinit 455
gnutls_openpgp_privkey_export 455
gnutls_openpgp_privkey_export_dsa_raw . . . 456
gnutls_openpgp_privkey_export_rsa_raw . . . 456
gnutls_openpgp_privkey_export_subkey_dsa_

raw . 457
gnutls_openpgp_privkey_export_subkey_rsa_

raw . 457
gnutls_openpgp_privkey_export2 455
gnutls_openpgp_privkey_get_fingerprint . . 458
gnutls_openpgp_privkey_get_key_id 458

Function and Data Index 602

gnutls_openpgp_privkey_get_pk_algorithm

. 458
gnutls_openpgp_privkey_get_preferred_key_id

. 458
gnutls_openpgp_privkey_get_revoked_status

. 459
gnutls_openpgp_privkey_get_subkey_count

. 459
gnutls_openpgp_privkey_get_subkey_creation_

time . 459
gnutls_openpgp_privkey_get_subkey_

fingerprint . 459
gnutls_openpgp_privkey_get_subkey_id 460
gnutls_openpgp_privkey_get_subkey_idx . . . 460
gnutls_openpgp_privkey_get_subkey_pk_

algorithm . 460
gnutls_openpgp_privkey_get_subkey_revoked_

status . 460
gnutls_openpgp_privkey_import 461
gnutls_openpgp_privkey_init 461
gnutls_openpgp_privkey_sec_param 461
gnutls_openpgp_privkey_set_preferred_key_id

. 461
gnutls_openpgp_privkey_sign_hash 519
gnutls_openpgp_send_cert 312
gnutls_openpgp_set_recv_key_function 462
gnutls_pcert_deinit . 483
gnutls_pcert_import_openpgp 483
gnutls_pcert_import_openpgp_raw 484
gnutls_pcert_import_x509 484
gnutls_pcert_import_x509_raw 484
gnutls_pcert_list_import_x509_raw 485
gnutls_pem_base64_decode 312
gnutls_pem_base64_decode_alloc 312
gnutls_pem_base64_encode 312
gnutls_pem_base64_encode_alloc 313
gnutls_perror . 313
gnutls_pk_algorithm_get_name 313
gnutls_pk_bits_to_sec_param 134, 313
gnutls_pk_get_id . 314
gnutls_pk_get_name . 314
gnutls_pk_list . 314
gnutls_pk_to_sign . 314
gnutls_pkcs11_add_provider 468
gnutls_pkcs11_copy_secret_key 469
gnutls_pkcs11_copy_x509_crt 92, 469
gnutls_pkcs11_copy_x509_privkey 91, 469
gnutls_pkcs11_deinit . 470
gnutls_pkcs11_delete_url 92, 470
gnutls_pkcs11_get_pin_function 470
gnutls_pkcs11_init . 86, 470
gnutls_pkcs11_obj_deinit 471
gnutls_pkcs11_obj_export 471
gnutls_pkcs11_obj_export_url 472
gnutls_pkcs11_obj_export2 471
gnutls_pkcs11_obj_get_info 89, 472
gnutls_pkcs11_obj_get_type 472
gnutls_pkcs11_obj_import_url 472

gnutls_pkcs11_obj_init . 473
gnutls_pkcs11_obj_list_import_url 473
gnutls_pkcs11_obj_list_import_url2 473
gnutls_pkcs11_obj_set_pin_function 474
gnutls_pkcs11_privkey_deinit 474
gnutls_pkcs11_privkey_export_url 474
gnutls_pkcs11_privkey_generate 474
gnutls_pkcs11_privkey_generate2 475
gnutls_pkcs11_privkey_get_info 475
gnutls_pkcs11_privkey_get_pk_algorithm . . 475
gnutls_pkcs11_privkey_import_url 476
gnutls_pkcs11_privkey_init 476
gnutls_pkcs11_privkey_set_pin_function . . 476
gnutls_pkcs11_privkey_status 476
gnutls_pkcs11_reinit 87, 477
gnutls_pkcs11_set_pin_function 477
gnutls_pkcs11_set_token_function 477
gnutls_pkcs11_token_get_flags 477
gnutls_pkcs11_token_get_info 477
gnutls_pkcs11_token_get_mechanism 478
gnutls_pkcs11_token_get_url 478
gnutls_pkcs11_token_init 478
gnutls_pkcs11_token_set_pin 479
gnutls_pkcs11_type_get_name 479
gnutls_pkcs12_bag_decrypt 462
gnutls_pkcs12_bag_deinit 462
gnutls_pkcs12_bag_encrypt 462
gnutls_pkcs12_bag_get_count 463
gnutls_pkcs12_bag_get_data 463
gnutls_pkcs12_bag_get_friendly_name 463
gnutls_pkcs12_bag_get_key_id 463
gnutls_pkcs12_bag_get_type 464
gnutls_pkcs12_bag_init . 464
gnutls_pkcs12_bag_set_crl 464
gnutls_pkcs12_bag_set_crt 464
gnutls_pkcs12_bag_set_data 464
gnutls_pkcs12_bag_set_friendly_name 465
gnutls_pkcs12_bag_set_key_id 465
gnutls_pkcs12_deinit . 465
gnutls_pkcs12_export . 465
gnutls_pkcs12_export2 . 466
gnutls_pkcs12_generate_mac 466
gnutls_pkcs12_get_bag . 466
gnutls_pkcs12_import . 466
gnutls_pkcs12_init . 467
gnutls_pkcs12_set_bag . 467
gnutls_pkcs12_simple_parse 51, 467
gnutls_pkcs12_verify_mac 468
gnutls_pkcs7_deinit . 354
gnutls_pkcs7_delete_crl 354
gnutls_pkcs7_delete_crt 355
gnutls_pkcs7_export . 355
gnutls_pkcs7_export2 . 355
gnutls_pkcs7_get_crl_count 356
gnutls_pkcs7_get_crl_raw 356
gnutls_pkcs7_get_crt_count 356
gnutls_pkcs7_get_crt_raw 356
gnutls_pkcs7_import . 357

Function and Data Index 603

gnutls_pkcs7_init . 357
gnutls_pkcs7_set_crl . 357
gnutls_pkcs7_set_crl_raw 357
gnutls_pkcs7_set_crt . 358
gnutls_pkcs7_set_crt_raw 358
gnutls_prf . 315
gnutls_prf_raw . 315
gnutls_priority_certificate_type_list . . . 316
gnutls_priority_compression_list 316
gnutls_priority_deinit . 316
gnutls_priority_ecc_curve_list 316
gnutls_priority_get_cipher_suite_index . . 317
gnutls_priority_init . 317
gnutls_priority_protocol_list 318
gnutls_priority_set . 318
gnutls_priority_set_direct 318
gnutls_priority_sign_list 319
gnutls_privkey_decrypt_data 84, 485
gnutls_privkey_deinit . 485
gnutls_privkey_get_pk_algorithm 486
gnutls_privkey_get_type 486
gnutls_privkey_import_ext 486
gnutls_privkey_import_ext2 82, 487
gnutls_privkey_import_openpgp 487
gnutls_privkey_import_openpgp_raw 488
gnutls_privkey_import_pkcs11 488
gnutls_privkey_import_pkcs11_url 488
gnutls_privkey_import_tpm_raw 489
gnutls_privkey_import_tpm_url 98, 489
gnutls_privkey_import_url 82, 489
gnutls_privkey_import_x509 490
gnutls_privkey_import_x509_raw 49, 490
gnutls_privkey_init . 491
gnutls_privkey_set_pin_function 491
gnutls_privkey_sign_data 84, 491
gnutls_privkey_sign_hash 84, 492
gnutls_privkey_sign_raw_data 519
gnutls_privkey_status . 492
gnutls_protocol_get_id . 319
gnutls_protocol_get_name 319
gnutls_protocol_get_version 319
gnutls_protocol_list . 319
gnutls_protocol_set_priority 519
gnutls_psk_allocate_client_credentials . . 320
gnutls_psk_allocate_server_credentials . . 320
gnutls_psk_client_get_hint 320
gnutls_psk_free_client_credentials 320
gnutls_psk_free_server_credentials 320
gnutls_psk_server_get_username 321
gnutls_psk_set_client_credentials 321
gnutls_psk_set_client_credentials_function

. 115, 321
gnutls_psk_set_params_function 321
gnutls_psk_set_server_credentials_file

. 116, 322
gnutls_psk_set_server_credentials_function

. 322
gnutls_psk_set_server_credentials_hint . . 322

gnutls_psk_set_server_dh_params 323
gnutls_psk_set_server_params_function . . . 323
gnutls_pubkey_deinit . 492
gnutls_pubkey_encrypt_data 83, 492
gnutls_pubkey_export . 493
gnutls_pubkey_export2 80, 493
gnutls_pubkey_get_key_id 493
gnutls_pubkey_get_key_usage 494
gnutls_pubkey_get_openpgp_key_id 494
gnutls_pubkey_get_pk_algorithm 495
gnutls_pubkey_get_pk_dsa_raw 495
gnutls_pubkey_get_pk_ecc_raw 495
gnutls_pubkey_get_pk_ecc_x962 496
gnutls_pubkey_get_pk_rsa_raw 496
gnutls_pubkey_get_preferred_hash_algorithm

. 496
gnutls_pubkey_get_verify_algorithm 497
gnutls_pubkey_import . 497
gnutls_pubkey_import_dsa_raw 497
gnutls_pubkey_import_ecc_raw 498
gnutls_pubkey_import_ecc_x962 498
gnutls_pubkey_import_openpgp 498
gnutls_pubkey_import_openpgp_raw 499
gnutls_pubkey_import_pkcs11 499
gnutls_pubkey_import_pkcs11_url 499
gnutls_pubkey_import_privkey 500
gnutls_pubkey_import_rsa_raw 500
gnutls_pubkey_import_tpm_raw 500
gnutls_pubkey_import_tpm_url 98, 501
gnutls_pubkey_import_url 501
gnutls_pubkey_import_x509 501
gnutls_pubkey_import_x509_crq 502
gnutls_pubkey_import_x509_raw 502
gnutls_pubkey_init . 502
gnutls_pubkey_print . 502
gnutls_pubkey_set_key_usage 503
gnutls_pubkey_set_pin_function 503
gnutls_pubkey_verify_data 503
gnutls_pubkey_verify_data2 83, 504
gnutls_pubkey_verify_hash 504
gnutls_pubkey_verify_hash2 83, 504
gnutls_random_art . 323
gnutls_range_split . 323
gnutls_record_can_use_length_hiding 324
gnutls_record_check_pending 124, 324
gnutls_record_cork . 125, 324
gnutls_record_disable_padding 324
gnutls_record_get_direction 120, 325
gnutls_record_get_discarded 354
gnutls_record_get_max_size 325
gnutls_record_recv . 122, 325
gnutls_record_recv_seq 123, 325
gnutls_record_send . 122, 326
gnutls_record_send_range 326
gnutls_record_set_max_empty_records 327
gnutls_record_set_max_size 327
gnutls_record_set_timeout 327
gnutls_record_uncork 125, 328

Function and Data Index 604

gnutls_rehandshake . 328
gnutls_rnd . 228, 517
gnutls_rnd_refresh . 517
gnutls_rsa_export_get_modulus_bits 520
gnutls_rsa_export_get_pubkey 520
gnutls_rsa_params_cpy . 520
gnutls_rsa_params_deinit 520
gnutls_rsa_params_export_pkcs1 520
gnutls_rsa_params_export_raw 521
gnutls_rsa_params_generate2 521
gnutls_rsa_params_import_pkcs1 522
gnutls_rsa_params_import_raw 522
gnutls_rsa_params_init . 522
gnutls_safe_renegotiation_status 328
gnutls_sec_param_get_name 329
gnutls_sec_param_to_pk_bits 133, 329
gnutls_server_name_get . 329
gnutls_server_name_set . 330
gnutls_session_channel_binding 330
gnutls_session_enable_compatibility_mode

. 330
gnutls_session_force_valid 331
gnutls_session_get_data 331
gnutls_session_get_data2 331
gnutls_session_get_desc 331
gnutls_session_get_id . 332
gnutls_session_get_id2 . 332
gnutls_session_get_ptr . 332
gnutls_session_get_random 332
gnutls_session_is_resumed 135, 333
gnutls_session_resumption_requested 136,

333
gnutls_session_set_data 333
gnutls_session_set_id . 333
gnutls_session_set_premaster 334
gnutls_session_set_ptr . 334
gnutls_session_ticket_enable_client 334
gnutls_session_ticket_enable_server 135,

334
gnutls_session_ticket_key_generate . . 135, 335
gnutls_set_default_export_priority 522
gnutls_set_default_priority 335
gnutls_sign_algorithm_get 335
gnutls_sign_algorithm_get_client 335
gnutls_sign_algorithm_get_requested 336
gnutls_sign_callback_get 523
gnutls_sign_callback_set 523
gnutls_sign_get_hash_algorithm 336
gnutls_sign_get_id . 336
gnutls_sign_get_name . 336
gnutls_sign_get_pk_algorithm 337
gnutls_sign_is_secure . 337
gnutls_sign_list . 337
gnutls_srp_allocate_client_credentials . . 337
gnutls_srp_allocate_server_credentials . . 337
gnutls_srp_base64_decode 337
gnutls_srp_base64_decode_alloc 338
gnutls_srp_base64_encode 338

gnutls_srp_base64_encode_alloc 338
gnutls_srp_free_client_credentials 339
gnutls_srp_free_server_credentials 339
gnutls_srp_server_get_username 339
gnutls_srp_set_client_credentials 339
gnutls_srp_set_client_credentials_function

. 113, 340
gnutls_srp_set_prime_bits 340
gnutls_srp_set_server_credentials_file

. 114, 340
gnutls_srp_set_server_credentials_function

. 114, 341
gnutls_srp_verifier . 72, 341
gnutls_srtp_get_keys 14, 342
gnutls_srtp_get_mki . 342
gnutls_srtp_get_profile_id 342
gnutls_srtp_get_profile_name 343
gnutls_srtp_get_selected_profile 343
gnutls_srtp_set_mki . 343
gnutls_srtp_set_profile 343
gnutls_srtp_set_profile_direct 344
gnutls_store_commitment 137, 344
gnutls_store_pubkey 137, 344
gnutls_strerror . 345
gnutls_strerror_name . 345
gnutls_supplemental_get_name 345
gnutls_tdb_deinit . 346
gnutls_tdb_init . 346
gnutls_tdb_set_store_commitment_func 346
gnutls_tdb_set_store_func 346
gnutls_tdb_set_verify_func 346
gnutls_tpm_get_registered 480
gnutls_tpm_key_list_deinit 480
gnutls_tpm_key_list_get_url 481
gnutls_tpm_privkey_delete 98, 99, 481
gnutls_tpm_privkey_generate 97, 481
gnutls_transport_get_int 347
gnutls_transport_get_int2 347
gnutls_transport_get_ptr 347
gnutls_transport_get_ptr2 347
gnutls_transport_set_errno 118, 347
gnutls_transport_set_errno_function 348
gnutls_transport_set_int 348
gnutls_transport_set_int2 348
gnutls_transport_set_ptr 349
gnutls_transport_set_ptr2 349
gnutls_transport_set_pull_function . . 117, 349
gnutls_transport_set_pull_timeout_function

. 118, 119, 349
gnutls_transport_set_push_function . . 117, 350
gnutls_transport_set_vec_push_function

. 117, 350
gnutls_url_is_supported 80, 350
gnutls_verify_stored_pubkey 136, 350
gnutls_x509_crl_check_issuer 358
gnutls_x509_crl_deinit . 358
gnutls_x509_crl_export . 358
gnutls_x509_crl_export2 359

Function and Data Index 605

gnutls_x509_crl_get_authority_key_gn_serial

. 359
gnutls_x509_crl_get_authority_key_id 360
gnutls_x509_crl_get_crt_count 360
gnutls_x509_crl_get_crt_serial 41, 360
gnutls_x509_crl_get_dn_oid 360
gnutls_x509_crl_get_extension_data 361
gnutls_x509_crl_get_extension_info 361
gnutls_x509_crl_get_extension_oid 362
gnutls_x509_crl_get_issuer_dn 362
gnutls_x509_crl_get_issuer_dn_by_oid 363
gnutls_x509_crl_get_issuer_dn2 362
gnutls_x509_crl_get_next_update 363
gnutls_x509_crl_get_number 363
gnutls_x509_crl_get_raw_issuer_dn 364
gnutls_x509_crl_get_signature 364
gnutls_x509_crl_get_signature_algorithm

. 364
gnutls_x509_crl_get_this_update 364
gnutls_x509_crl_get_version 364
gnutls_x509_crl_import . 365
gnutls_x509_crl_init . 365
gnutls_x509_crl_list_import 365
gnutls_x509_crl_list_import2 366
gnutls_x509_crl_print . 366
gnutls_x509_crl_privkey_sign 43, 505
gnutls_x509_crl_set_authority_key_id 366
gnutls_x509_crl_set_crt 367
gnutls_x509_crl_set_crt_serial 367
gnutls_x509_crl_set_next_update 367
gnutls_x509_crl_set_number 367
gnutls_x509_crl_set_this_update 368
gnutls_x509_crl_set_version 368
gnutls_x509_crl_sign . 523
gnutls_x509_crl_sign2 42, 368
gnutls_x509_crl_verify . 368
gnutls_x509_crq_deinit . 369
gnutls_x509_crq_export . 369
gnutls_x509_crq_export2 369
gnutls_x509_crq_get_attribute_by_oid 370
gnutls_x509_crq_get_attribute_data 370
gnutls_x509_crq_get_attribute_info 371
gnutls_x509_crq_get_basic_constraints . . . 371
gnutls_x509_crq_get_challenge_password . . 371
gnutls_x509_crq_get_dn . 372
gnutls_x509_crq_get_dn_by_oid 372
gnutls_x509_crq_get_dn_oid 373
gnutls_x509_crq_get_dn2 372
gnutls_x509_crq_get_extension_by_oid 373
gnutls_x509_crq_get_extension_data 374
gnutls_x509_crq_get_extension_info 374
gnutls_x509_crq_get_key_id 374
gnutls_x509_crq_get_key_purpose_oid 375
gnutls_x509_crq_get_key_rsa_raw 375
gnutls_x509_crq_get_key_usage 376
gnutls_x509_crq_get_pk_algorithm 376
gnutls_x509_crq_get_private_key_usage_

period . 376

gnutls_x509_crq_get_subject_alt_name 377
gnutls_x509_crq_get_subject_alt_othername_

oid . 377
gnutls_x509_crq_get_version 378
gnutls_x509_crq_import . 378
gnutls_x509_crq_init . 378
gnutls_x509_crq_print . 378
gnutls_x509_crq_privkey_sign 505
gnutls_x509_crq_set_attribute_by_oid 379
gnutls_x509_crq_set_basic_constraints . . . 379
gnutls_x509_crq_set_challenge_password . . 379
gnutls_x509_crq_set_dn . 379
gnutls_x509_crq_set_dn_by_oid 380
gnutls_x509_crq_set_key 38, 380
gnutls_x509_crq_set_key_purpose_oid 380
gnutls_x509_crq_set_key_rsa_raw 381
gnutls_x509_crq_set_key_usage 381
gnutls_x509_crq_set_private_key_usage_

period . 381
gnutls_x509_crq_set_pubkey 85, 506
gnutls_x509_crq_set_subject_alt_name 381
gnutls_x509_crq_set_version 382
gnutls_x509_crq_sign . 524
gnutls_x509_crq_sign2 38, 382
gnutls_x509_crq_verify . 382
gnutls_x509_crt_check_hostname 383
gnutls_x509_crt_check_issuer 383
gnutls_x509_crt_check_revocation 383
gnutls_x509_crt_cpy_crl_dist_points 383
gnutls_x509_crt_deinit . 384
gnutls_x509_crt_export . 384
gnutls_x509_crt_export2 384
gnutls_x509_crt_get_activation_time 385
gnutls_x509_crt_get_authority_info_access

. 385
gnutls_x509_crt_get_authority_key_gn_serial

. 386
gnutls_x509_crt_get_authority_key_id 386
gnutls_x509_crt_get_basic_constraints . . . 387
gnutls_x509_crt_get_ca_status 387
gnutls_x509_crt_get_crl_dist_points 388
gnutls_x509_crt_get_dn . 388
gnutls_x509_crt_get_dn_by_oid 389
gnutls_x509_crt_get_dn_oid 389
gnutls_x509_crt_get_dn2 23, 388
gnutls_x509_crt_get_expiration_time 390
gnutls_x509_crt_get_extension_by_oid 390
gnutls_x509_crt_get_extension_data 390
gnutls_x509_crt_get_extension_info 391
gnutls_x509_crt_get_extension_oid 391
gnutls_x509_crt_get_fingerprint 391
gnutls_x509_crt_get_issuer 392
gnutls_x509_crt_get_issuer_alt_name 392
gnutls_x509_crt_get_issuer_alt_name2 393
gnutls_x509_crt_get_issuer_alt_othername_

oid . 393
gnutls_x509_crt_get_issuer_dn 394
gnutls_x509_crt_get_issuer_dn_by_oid 394

Function and Data Index 606

gnutls_x509_crt_get_issuer_dn_oid 395
gnutls_x509_crt_get_issuer_dn2 394
gnutls_x509_crt_get_issuer_unique_id 395
gnutls_x509_crt_get_key_id 25, 396
gnutls_x509_crt_get_key_purpose_oid 396
gnutls_x509_crt_get_key_usage 397
gnutls_x509_crt_get_pk_algorithm 397
gnutls_x509_crt_get_pk_dsa_raw 397
gnutls_x509_crt_get_pk_rsa_raw 398
gnutls_x509_crt_get_policy 398
gnutls_x509_crt_get_preferred_hash_

algorithm . 524
gnutls_x509_crt_get_private_key_usage_

period . 398
gnutls_x509_crt_get_proxy 399
gnutls_x509_crt_get_raw_dn 399
gnutls_x509_crt_get_raw_issuer_dn 399
gnutls_x509_crt_get_serial 399
gnutls_x509_crt_get_signature 400
gnutls_x509_crt_get_signature_algorithm

. 400
gnutls_x509_crt_get_subject 400
gnutls_x509_crt_get_subject_alt_name 400
gnutls_x509_crt_get_subject_alt_name2 . . . 401
gnutls_x509_crt_get_subject_alt_othername_

oid . 402
gnutls_x509_crt_get_subject_key_id 402
gnutls_x509_crt_get_subject_unique_id . . . 402
gnutls_x509_crt_get_verify_algorithm 524
gnutls_x509_crt_get_version 403
gnutls_x509_crt_import . 403
gnutls_x509_crt_import_pkcs11 479
gnutls_x509_crt_import_pkcs11_url 479
gnutls_x509_crt_init . 403
gnutls_x509_crt_list_import 403
gnutls_x509_crt_list_import_pkcs11 480
gnutls_x509_crt_list_import2 404
gnutls_x509_crt_list_verify 404
gnutls_x509_crt_print . 405
gnutls_x509_crt_privkey_sign 506
gnutls_x509_crt_set_activation_time 405
gnutls_x509_crt_set_authority_info_access

. 405
gnutls_x509_crt_set_authority_key_id 406
gnutls_x509_crt_set_basic_constraints . . . 406
gnutls_x509_crt_set_ca_status 406
gnutls_x509_crt_set_crl_dist_points 407
gnutls_x509_crt_set_crl_dist_points2 407
gnutls_x509_crt_set_crq 407
gnutls_x509_crt_set_crq_extensions 407
gnutls_x509_crt_set_dn . 408
gnutls_x509_crt_set_dn_by_oid 408
gnutls_x509_crt_set_expiration_time 408
gnutls_x509_crt_set_extension_by_oid 409
gnutls_x509_crt_set_issuer_dn 409
gnutls_x509_crt_set_issuer_dn_by_oid 409
gnutls_x509_crt_set_key 410
gnutls_x509_crt_set_key_purpose_oid 410

gnutls_x509_crt_set_key_usage 410
gnutls_x509_crt_set_pin_function 410
gnutls_x509_crt_set_policy 411
gnutls_x509_crt_set_private_key_usage_

period . 411
gnutls_x509_crt_set_proxy 411
gnutls_x509_crt_set_proxy_dn 412
gnutls_x509_crt_set_pubkey 85, 506
gnutls_x509_crt_set_serial 412
gnutls_x509_crt_set_subject_alt_name 412
gnutls_x509_crt_set_subject_alternative_

name . 413
gnutls_x509_crt_set_subject_key_id 413
gnutls_x509_crt_set_version 413
gnutls_x509_crt_sign . 414
gnutls_x509_crt_sign2 . 414
gnutls_x509_crt_verify . 414
gnutls_x509_crt_verify_data 525
gnutls_x509_crt_verify_hash 525
gnutls_x509_dn_deinit . 415
gnutls_x509_dn_export . 415
gnutls_x509_dn_export2 . 415
gnutls_x509_dn_get_rdn_ava 24, 416
gnutls_x509_dn_import . 416
gnutls_x509_dn_init . 416
gnutls_x509_dn_oid_known 417
gnutls_x509_dn_oid_name 417
gnutls_x509_policy_release 417
gnutls_x509_privkey_cpy 417
gnutls_x509_privkey_deinit 417
gnutls_x509_privkey_export 418
gnutls_x509_privkey_export_dsa_raw 419
gnutls_x509_privkey_export_ecc_raw 419
gnutls_x509_privkey_export_pkcs8 420
gnutls_x509_privkey_export_rsa_raw 420
gnutls_x509_privkey_export_rsa_raw2 421
gnutls_x509_privkey_export2 418
gnutls_x509_privkey_export2_pkcs8 418
gnutls_x509_privkey_fix 421
gnutls_x509_privkey_generate 421
gnutls_x509_privkey_get_key_id 422
gnutls_x509_privkey_get_pk_algorithm 422
gnutls_x509_privkey_get_pk_algorithm2 . . . 422
gnutls_x509_privkey_import 422
gnutls_x509_privkey_import_dsa_raw 423
gnutls_x509_privkey_import_ecc_raw 424
gnutls_x509_privkey_import_openssl . . . 52, 424
gnutls_x509_privkey_import_pkcs8 424
gnutls_x509_privkey_import_rsa_raw 425
gnutls_x509_privkey_import_rsa_raw2 425
gnutls_x509_privkey_import2 49, 423
gnutls_x509_privkey_init 426
gnutls_x509_privkey_sec_param 426
gnutls_x509_privkey_sign_data 525
gnutls_x509_privkey_sign_hash 526
gnutls_x509_privkey_verify_params 426
gnutls_x509_rdn_get . 426
gnutls_x509_rdn_get_by_oid 427

Function and Data Index 607

gnutls_x509_rdn_get_oid 427
gnutls_x509_trust_list_add_cas 25, 427
gnutls_x509_trust_list_add_crls 26, 428
gnutls_x509_trust_list_add_named_crt 26,

428
gnutls_x509_trust_list_add_system_trust

. 28, 428
gnutls_x509_trust_list_add_trust_file 27,

429
gnutls_x509_trust_list_add_trust_mem 28,

429

gnutls_x509_trust_list_deinit 430
gnutls_x509_trust_list_get_issuer 430
gnutls_x509_trust_list_init 430
gnutls_x509_trust_list_remove_cas 430
gnutls_x509_trust_list_remove_trust_file

. 431
gnutls_x509_trust_list_remove_trust_mem

. 431
gnutls_x509_trust_list_verify_crt 27, 431
gnutls_x509_trust_list_verify_named_crt

. 27, 432

Concept Index 608

Concept Index

A
abstract types . 79
alert protocol . 8
ALPN . 15
anonymous authentication . 76
API reference . 271
Application Layer Protocol Negotiation 15
authentication methods . 18

B
bad record mac . 7

C
callback functions . 105
certificate authentication 18, 37
certificate requests . 37
certificate revocation lists . 40
certificate status . 43
Certificate status request . 13
Certificate verification . 35
certification . 256
certtool . 53
certtool help . 53
channel bindings . 140
ciphersuites . 265
client certificate authentication 10
compression algorithms . 7
contributing . 256
CRL . 40

D
DANE . 35, 136
danetool . 67
danetool help . 67
digital signatures . 36
DNSSEC . 35, 136
download . 2

E
Encrypted keys . 48
error codes . 258
example programs . 143
examples . 143
exporting keying material . 140

F
FDL, GNU Free Documentation License 527

G
generating parameters . 139
gnutls-cli . 229
gnutls-cli help . 229
gnutls-cli-debug . 238
gnutls-cli-debug help . 239
gnutls-serv . 234
gnutls-serv help . 234

H
hacking . 256
handshake protocol . 9
hardware security modules . 85
hardware tokens . 85
hash functions . 227
heartbeat . 11
HMAC functions . 227

I
installation . 2
internal architecture . 242

K
Key pinning . 35, 136
key sizes . 132
keying material exporters . 140

M
maximum fragment length . 10

O
OCSP . 43
OCSP Functions . 432
OCSP status request . 13
ocsptool . 63
ocsptool help . 64
Online Certificate Status Protocol 43
OpenPGP API . 442
OpenPGP certificates . 31
OpenPGP server . 186
OpenSSL . 141
OpenSSL encrypted keys . 52

P
p11tool . 93
p11tool help . 93
parameter generation . 139

Concept Index 609

PCT . 17
PKCS #10 . 37
PKCS #11 tokens . 85
PKCS #12 . 50
PKCS #8 . 50
Priority strings . 127
PSK authentication . 74
psktool . 75
psktool help . 75
public key algorithms . 227

R
random numbers . 228
record padding . 7
record protocol . 5
renegotiation . 12
reporting bugs . 255
resuming sessions . 10, 134

S
safe renegotiation . 12
Secure RTP . 14
server name indication . 11
session resumption . 10, 134
session tickets . 11
Smart card example . 167
smart cards . 85
SRP authentication . 71
srptool . 72
srptool help . 73
SRTP . 14

SSH-style authentication 35, 136
SSL 2 . 17
symmetric algorithms . 227
symmetric cryptography . 227
symmetric encryption algorithms 5

T
thread safety . 104
tickets . 11
TLS extensions . 10, 11
TLS layers . 4
TPM . 96
tpmtool . 99
tpmtool help . 99
transport layer . 4
transport protocol . 4
Trust on first use . 35, 136
trusted platform module . 96

U
upgrading . 253

V
verifying certificate paths 25, 30, 35

X
X.509 certificates . 19
X.509 distinguished name . 23
X.509 Functions . 354

	Preface
	Introduction to GnuTLS
	Downloading and installing
	Overview

	Introduction to TLS and DTLS
	TLS layers
	The transport layer
	The TLS record protocol
	Encryption algorithms used in the record layer
	Compression algorithms used in the record layer
	Weaknesses and countermeasures
	On record padding

	The TLS alert protocol
	The TLS handshake protocol
	TLS ciphersuites
	Authentication
	Client authentication
	Resuming sessions

	TLS extensions
	Maximum fragment length negotiation
	Server name indication
	Session tickets
	HeartBeat
	Safe renegotiation
	OCSP status request
	SRTP
	Application Layer Protocol Negotiation (ALPN)

	How to use TLS in application protocols
	Separate ports
	Upward negotiation

	On SSL 2 and older protocols

	Authentication methods
	Certificate authentication
	X.509 certificates
	X.509 certificate structure
	Importing an X.509 certificate
	X.509 distinguished names
	Accessing public and private keys
	Verifying X.509 certificate paths
	Verifying a certificate in the context of TLS session

	OpenPGP certificates
	OpenPGP certificate structure
	Verifying an OpenPGP certificate
	Verifying a certificate in the context of a TLS session

	Advanced certificate verification
	Verifying a certificate using trust on first use authentication
	Verifying a certificate using DANE (DNSSEC)

	Digital signatures
	Trading security for interoperability

	More on certificate authentication
	PKCS #10 certificate requests
	PKIX certificate revocation lists
	OCSP certificate status checking
	Managing encrypted keys
	Invoking certtool
	Invoking ocsptool
	Invoking danetool

	Shared-key and anonymous authentication
	SRP authentication
	Authentication using SRP
	Invoking srptool

	PSK authentication
	Authentication using PSK
	Invoking psktool

	Anonymous authentication

	Selecting an appropriate authentication method
	Two peers with an out-of-band channel
	Two peers without an out-of-band channel
	Two peers and a trusted third party

	Hardware security modules and abstract key types
	Abstract key types
	Public keys
	Private keys
	Operations

	Smart cards and HSMs
	Initialization
	Accessing objects that require a PIN
	Reading objects
	Writing objects
	Using a PKCS #11 token with TLS
	Invoking p11tool

	Trusted Platform Module (TPM)
	Keys in TPM
	Key generation
	Using keys
	Invoking tpmtool

	How to use GnuTLS in applications
	Introduction
	General idea
	Error handling
	Common types
	Debugging and auditing
	Thread safety
	Callback functions

	Preparation
	Headers
	Initialization
	Version check
	Building the source

	Session initialization
	Associating the credentials
	Certificates
	SRP
	PSK
	Anonymous

	Setting up the transport layer
	Asynchronous operation
	DTLS sessions

	TLS handshake
	Data transfer and termination
	Buffered data transfer
	Handling alerts
	Priority strings
	Selecting cryptographic key sizes
	Advanced topics
	Session resumption
	Certificate verification
	Trust on first use
	DANE verification

	Parameter generation
	Keying material exporters
	Channel bindings
	Interoperability
	Compatibility with the OpenSSL library

	GnuTLS application examples
	Client examples
	Simple client example with X.509 certificate support
	Simple client example with SSH-style certificate verification
	Simple client example with anonymous authentication
	Simple datagram TLS client example
	Obtaining session information
	Using a callback to select the certificate to use
	Verifying a certificate
	Using a smart card with TLS
	Client with resume capability example
	Simple client example with SRP authentication
	Simple client example using the C++ API
	Helper functions for TCP connections
	Helper functions for UDP connections

	Server examples
	Echo server with X.509 authentication
	Echo server with OpenPGP authentication
	Echo server with SRP authentication
	Echo server with anonymous authentication
	DTLS echo server with X.509 authentication

	OCSP example
	Miscellaneous examples
	Checking for an alert
	X.509 certificate parsing example
	Listing the ciphersuites in a priority string
	PKCS #12 structure generation example

	XSSL examples
	Example client with X.509 certificate authentication
	Example client with X.509 certificate authentication and TOFU

	Using GnuTLS as a cryptographic library
	Symmetric algorithms
	Public key algorithms
	Hash and HMAC functions
	Random number generation

	Other included programs
	Invoking gnutls-cli
	Invoking gnutls-serv
	Invoking gnutls-cli-debug

	Internal Architecture of GnuTLS
	The TLS Protocol
	TLS Handshake Protocol
	TLS Authentication Methods
	TLS Extension Handling
	Cryptographic Backend

	Upgrading from previous versions
	Support
	Getting Help
	Commercial Support
	Bug Reports
	Contributing
	Certification

	Error Codes and Descriptions
	Supported Ciphersuites
	API reference
	Core TLS API
	High level TLS API
	Datagram TLS API
	X.509 certificate API
	OCSP API
	OpenPGP API
	PKCS 12 API
	Hardware token via PKCS 11 API
	TPM API
	Abstract key API
	DANE API
	Cryptographic API
	Compatibility API

	Copying Information
	Bibliography
	Function and Data Index
	Concept Index

