|
|
0a122b |
From c5386144fbf09f628148101bc674e2421cdd16e3 Mon Sep 17 00:00:00 2001
|
|
|
0a122b |
Message-Id: <c5386144fbf09f628148101bc674e2421cdd16e3.1387382496.git.minovotn@redhat.com>
|
|
|
0a122b |
From: Nigel Croxon <ncroxon@redhat.com>
|
|
|
0a122b |
Date: Thu, 14 Nov 2013 22:52:37 +0100
|
|
|
0a122b |
Subject: [PATCH 01/46] add a header file for atomic operations
|
|
|
0a122b |
|
|
|
0a122b |
RH-Author: Nigel Croxon <ncroxon@redhat.com>
|
|
|
0a122b |
Message-id: <1384469598-13137-2-git-send-email-ncroxon@redhat.com>
|
|
|
0a122b |
Patchwork-id: 55686
|
|
|
0a122b |
O-Subject: [RHEL7.0 PATCH 01/42] add a header file for atomic operations
|
|
|
0a122b |
Bugzilla: 1011720
|
|
|
0a122b |
RH-Acked-by: Orit Wasserman <owasserm@redhat.com>
|
|
|
0a122b |
RH-Acked-by: Amit Shah <amit.shah@redhat.com>
|
|
|
0a122b |
RH-Acked-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
0a122b |
|
|
|
0a122b |
Bugzilla: 1011720
|
|
|
0a122b |
https://bugzilla.redhat.com/show_bug.cgi?id=1011720
|
|
|
0a122b |
|
|
|
0a122b |
>From commit ID:
|
|
|
0a122b |
commit 5444e768ee1abe6e021bece19a9a932351f88c88
|
|
|
0a122b |
Author: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
0a122b |
Date: Mon May 13 13:29:47 2013 +0200
|
|
|
0a122b |
|
|
|
0a122b |
add a header file for atomic operations
|
|
|
0a122b |
|
|
|
0a122b |
We're already using them in several places, but __sync builtins are just
|
|
|
0a122b |
too ugly to type, and do not provide seqcst load/store operations.
|
|
|
0a122b |
|
|
|
0a122b |
Reviewed-by: Richard Henderson <rth@twiddle.net>
|
|
|
0a122b |
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
0a122b |
---
|
|
|
0a122b |
docs/atomics.txt | 352 ++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
0a122b |
hw/display/qxl.c | 3 +-
|
|
|
0a122b |
hw/virtio/vhost.c | 9 +-
|
|
|
0a122b |
include/qemu/atomic.h | 198 ++++++++++++++++++++++----
|
|
|
0a122b |
migration.c | 3 +-
|
|
|
0a122b |
tests/test-thread-pool.c | 8 +-
|
|
|
0a122b |
6 files changed, 529 insertions(+), 44 deletions(-)
|
|
|
0a122b |
create mode 100644 docs/atomics.txt
|
|
|
0a122b |
|
|
|
0a122b |
Signed-off-by: Michal Novotny <minovotn@redhat.com>
|
|
|
0a122b |
---
|
|
|
0a122b |
docs/atomics.txt | 352 +++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
0a122b |
hw/display/qxl.c | 3 +-
|
|
|
0a122b |
hw/virtio/vhost.c | 9 +-
|
|
|
0a122b |
include/qemu/atomic.h | 198 +++++++++++++++++++++-----
|
|
|
0a122b |
migration.c | 3 +-
|
|
|
0a122b |
tests/test-thread-pool.c | 8 +-
|
|
|
0a122b |
6 files changed, 529 insertions(+), 44 deletions(-)
|
|
|
0a122b |
create mode 100644 docs/atomics.txt
|
|
|
0a122b |
|
|
|
0a122b |
diff --git a/docs/atomics.txt b/docs/atomics.txt
|
|
|
0a122b |
new file mode 100644
|
|
|
0a122b |
index 0000000..6f2997b
|
|
|
0a122b |
--- /dev/null
|
|
|
0a122b |
+++ b/docs/atomics.txt
|
|
|
0a122b |
@@ -0,0 +1,352 @@
|
|
|
0a122b |
+CPUs perform independent memory operations effectively in random order.
|
|
|
0a122b |
+but this can be a problem for CPU-CPU interaction (including interactions
|
|
|
0a122b |
+between QEMU and the guest). Multi-threaded programs use various tools
|
|
|
0a122b |
+to instruct the compiler and the CPU to restrict the order to something
|
|
|
0a122b |
+that is consistent with the expectations of the programmer.
|
|
|
0a122b |
+
|
|
|
0a122b |
+The most basic tool is locking. Mutexes, condition variables and
|
|
|
0a122b |
+semaphores are used in QEMU, and should be the default approach to
|
|
|
0a122b |
+synchronization. Anything else is considerably harder, but it's
|
|
|
0a122b |
+also justified more often than one would like. The two tools that
|
|
|
0a122b |
+are provided by qemu/atomic.h are memory barriers and atomic operations.
|
|
|
0a122b |
+
|
|
|
0a122b |
+Macros defined by qemu/atomic.h fall in three camps:
|
|
|
0a122b |
+
|
|
|
0a122b |
+- compiler barriers: barrier();
|
|
|
0a122b |
+
|
|
|
0a122b |
+- weak atomic access and manual memory barriers: atomic_read(),
|
|
|
0a122b |
+ atomic_set(), smp_rmb(), smp_wmb(), smp_mb(), smp_read_barrier_depends();
|
|
|
0a122b |
+
|
|
|
0a122b |
+- sequentially consistent atomic access: everything else.
|
|
|
0a122b |
+
|
|
|
0a122b |
+
|
|
|
0a122b |
+COMPILER MEMORY BARRIER
|
|
|
0a122b |
+=======================
|
|
|
0a122b |
+
|
|
|
0a122b |
+barrier() prevents the compiler from moving the memory accesses either
|
|
|
0a122b |
+side of it to the other side. The compiler barrier has no direct effect
|
|
|
0a122b |
+on the CPU, which may then reorder things however it wishes.
|
|
|
0a122b |
+
|
|
|
0a122b |
+barrier() is mostly used within qemu/atomic.h itself. On some
|
|
|
0a122b |
+architectures, CPU guarantees are strong enough that blocking compiler
|
|
|
0a122b |
+optimizations already ensures the correct order of execution. In this
|
|
|
0a122b |
+case, qemu/atomic.h will reduce stronger memory barriers to simple
|
|
|
0a122b |
+compiler barriers.
|
|
|
0a122b |
+
|
|
|
0a122b |
+Still, barrier() can be useful when writing code that can be interrupted
|
|
|
0a122b |
+by signal handlers.
|
|
|
0a122b |
+
|
|
|
0a122b |
+
|
|
|
0a122b |
+SEQUENTIALLY CONSISTENT ATOMIC ACCESS
|
|
|
0a122b |
+=====================================
|
|
|
0a122b |
+
|
|
|
0a122b |
+Most of the operations in the qemu/atomic.h header ensure *sequential
|
|
|
0a122b |
+consistency*, where "the result of any execution is the same as if the
|
|
|
0a122b |
+operations of all the processors were executed in some sequential order,
|
|
|
0a122b |
+and the operations of each individual processor appear in this sequence
|
|
|
0a122b |
+in the order specified by its program".
|
|
|
0a122b |
+
|
|
|
0a122b |
+qemu/atomic.h provides the following set of atomic read-modify-write
|
|
|
0a122b |
+operations:
|
|
|
0a122b |
+
|
|
|
0a122b |
+ void atomic_inc(ptr)
|
|
|
0a122b |
+ void atomic_dec(ptr)
|
|
|
0a122b |
+ void atomic_add(ptr, val)
|
|
|
0a122b |
+ void atomic_sub(ptr, val)
|
|
|
0a122b |
+ void atomic_and(ptr, val)
|
|
|
0a122b |
+ void atomic_or(ptr, val)
|
|
|
0a122b |
+
|
|
|
0a122b |
+ typeof(*ptr) atomic_fetch_inc(ptr)
|
|
|
0a122b |
+ typeof(*ptr) atomic_fetch_dec(ptr)
|
|
|
0a122b |
+ typeof(*ptr) atomic_fetch_add(ptr, val)
|
|
|
0a122b |
+ typeof(*ptr) atomic_fetch_sub(ptr, val)
|
|
|
0a122b |
+ typeof(*ptr) atomic_fetch_and(ptr, val)
|
|
|
0a122b |
+ typeof(*ptr) atomic_fetch_or(ptr, val)
|
|
|
0a122b |
+ typeof(*ptr) atomic_xchg(ptr, val
|
|
|
0a122b |
+ typeof(*ptr) atomic_cmpxchg(ptr, old, new)
|
|
|
0a122b |
+
|
|
|
0a122b |
+all of which return the old value of *ptr. These operations are
|
|
|
0a122b |
+polymorphic; they operate on any type that is as wide as an int.
|
|
|
0a122b |
+
|
|
|
0a122b |
+Sequentially consistent loads and stores can be done using:
|
|
|
0a122b |
+
|
|
|
0a122b |
+ atomic_fetch_add(ptr, 0) for loads
|
|
|
0a122b |
+ atomic_xchg(ptr, val) for stores
|
|
|
0a122b |
+
|
|
|
0a122b |
+However, they are quite expensive on some platforms, notably POWER and
|
|
|
0a122b |
+ARM. Therefore, qemu/atomic.h provides two primitives with slightly
|
|
|
0a122b |
+weaker constraints:
|
|
|
0a122b |
+
|
|
|
0a122b |
+ typeof(*ptr) atomic_mb_read(ptr)
|
|
|
0a122b |
+ void atomic_mb_set(ptr, val)
|
|
|
0a122b |
+
|
|
|
0a122b |
+The semantics of these primitives map to Java volatile variables,
|
|
|
0a122b |
+and are strongly related to memory barriers as used in the Linux
|
|
|
0a122b |
+kernel (see below).
|
|
|
0a122b |
+
|
|
|
0a122b |
+As long as you use atomic_mb_read and atomic_mb_set, accesses cannot
|
|
|
0a122b |
+be reordered with each other, and it is also not possible to reorder
|
|
|
0a122b |
+"normal" accesses around them.
|
|
|
0a122b |
+
|
|
|
0a122b |
+However, and this is the important difference between
|
|
|
0a122b |
+atomic_mb_read/atomic_mb_set and sequential consistency, it is important
|
|
|
0a122b |
+for both threads to access the same volatile variable. It is not the
|
|
|
0a122b |
+case that everything visible to thread A when it writes volatile field f
|
|
|
0a122b |
+becomes visible to thread B after it reads volatile field g. The store
|
|
|
0a122b |
+and load have to "match" (i.e., be performed on the same volatile
|
|
|
0a122b |
+field) to achieve the right semantics.
|
|
|
0a122b |
+
|
|
|
0a122b |
+
|
|
|
0a122b |
+These operations operate on any type that is as wide as an int or smaller.
|
|
|
0a122b |
+
|
|
|
0a122b |
+
|
|
|
0a122b |
+WEAK ATOMIC ACCESS AND MANUAL MEMORY BARRIERS
|
|
|
0a122b |
+=============================================
|
|
|
0a122b |
+
|
|
|
0a122b |
+Compared to sequentially consistent atomic access, programming with
|
|
|
0a122b |
+weaker consistency models can be considerably more complicated.
|
|
|
0a122b |
+In general, if the algorithm you are writing includes both writes
|
|
|
0a122b |
+and reads on the same side, it is generally simpler to use sequentially
|
|
|
0a122b |
+consistent primitives.
|
|
|
0a122b |
+
|
|
|
0a122b |
+When using this model, variables are accessed with atomic_read() and
|
|
|
0a122b |
+atomic_set(), and restrictions to the ordering of accesses is enforced
|
|
|
0a122b |
+using the smp_rmb(), smp_wmb(), smp_mb() and smp_read_barrier_depends()
|
|
|
0a122b |
+memory barriers.
|
|
|
0a122b |
+
|
|
|
0a122b |
+atomic_read() and atomic_set() prevents the compiler from using
|
|
|
0a122b |
+optimizations that might otherwise optimize accesses out of existence
|
|
|
0a122b |
+on the one hand, or that might create unsolicited accesses on the other.
|
|
|
0a122b |
+In general this should not have any effect, because the same compiler
|
|
|
0a122b |
+barriers are already implied by memory barriers. However, it is useful
|
|
|
0a122b |
+to do so, because it tells readers which variables are shared with
|
|
|
0a122b |
+other threads, and which are local to the current thread or protected
|
|
|
0a122b |
+by other, more mundane means.
|
|
|
0a122b |
+
|
|
|
0a122b |
+Memory barriers control the order of references to shared memory.
|
|
|
0a122b |
+They come in four kinds:
|
|
|
0a122b |
+
|
|
|
0a122b |
+- smp_rmb() guarantees that all the LOAD operations specified before
|
|
|
0a122b |
+ the barrier will appear to happen before all the LOAD operations
|
|
|
0a122b |
+ specified after the barrier with respect to the other components of
|
|
|
0a122b |
+ the system.
|
|
|
0a122b |
+
|
|
|
0a122b |
+ In other words, smp_rmb() puts a partial ordering on loads, but is not
|
|
|
0a122b |
+ required to have any effect on stores.
|
|
|
0a122b |
+
|
|
|
0a122b |
+- smp_wmb() guarantees that all the STORE operations specified before
|
|
|
0a122b |
+ the barrier will appear to happen before all the STORE operations
|
|
|
0a122b |
+ specified after the barrier with respect to the other components of
|
|
|
0a122b |
+ the system.
|
|
|
0a122b |
+
|
|
|
0a122b |
+ In other words, smp_wmb() puts a partial ordering on stores, but is not
|
|
|
0a122b |
+ required to have any effect on loads.
|
|
|
0a122b |
+
|
|
|
0a122b |
+- smp_mb() guarantees that all the LOAD and STORE operations specified
|
|
|
0a122b |
+ before the barrier will appear to happen before all the LOAD and
|
|
|
0a122b |
+ STORE operations specified after the barrier with respect to the other
|
|
|
0a122b |
+ components of the system.
|
|
|
0a122b |
+
|
|
|
0a122b |
+ smp_mb() puts a partial ordering on both loads and stores. It is
|
|
|
0a122b |
+ stronger than both a read and a write memory barrier; it implies both
|
|
|
0a122b |
+ smp_rmb() and smp_wmb(), but it also prevents STOREs coming before the
|
|
|
0a122b |
+ barrier from overtaking LOADs coming after the barrier and vice versa.
|
|
|
0a122b |
+
|
|
|
0a122b |
+- smp_read_barrier_depends() is a weaker kind of read barrier. On
|
|
|
0a122b |
+ most processors, whenever two loads are performed such that the
|
|
|
0a122b |
+ second depends on the result of the first (e.g., the first load
|
|
|
0a122b |
+ retrieves the address to which the second load will be directed),
|
|
|
0a122b |
+ the processor will guarantee that the first LOAD will appear to happen
|
|
|
0a122b |
+ before the second with respect to the other components of the system.
|
|
|
0a122b |
+ However, this is not always true---for example, it was not true on
|
|
|
0a122b |
+ Alpha processors. Whenever this kind of access happens to shared
|
|
|
0a122b |
+ memory (that is not protected by a lock), a read barrier is needed,
|
|
|
0a122b |
+ and smp_read_barrier_depends() can be used instead of smp_rmb().
|
|
|
0a122b |
+
|
|
|
0a122b |
+ Note that the first load really has to have a _data_ dependency and not
|
|
|
0a122b |
+ a control dependency. If the address for the second load is dependent
|
|
|
0a122b |
+ on the first load, but the dependency is through a conditional rather
|
|
|
0a122b |
+ than actually loading the address itself, then it's a _control_
|
|
|
0a122b |
+ dependency and a full read barrier or better is required.
|
|
|
0a122b |
+
|
|
|
0a122b |
+
|
|
|
0a122b |
+This is the set of barriers that is required *between* two atomic_read()
|
|
|
0a122b |
+and atomic_set() operations to achieve sequential consistency:
|
|
|
0a122b |
+
|
|
|
0a122b |
+ | 2nd operation |
|
|
|
0a122b |
+ |-----------------------------------------|
|
|
|
0a122b |
+ 1st operation | (after last) | atomic_read | atomic_set |
|
|
|
0a122b |
+ ---------------+--------------+-------------+------------|
|
|
|
0a122b |
+ (before first) | | none | smp_wmb() |
|
|
|
0a122b |
+ ---------------+--------------+-------------+------------|
|
|
|
0a122b |
+ atomic_read | smp_rmb() | smp_rmb()* | ** |
|
|
|
0a122b |
+ ---------------+--------------+-------------+------------|
|
|
|
0a122b |
+ atomic_set | none | smp_mb()*** | smp_wmb() |
|
|
|
0a122b |
+ ---------------+--------------+-------------+------------|
|
|
|
0a122b |
+
|
|
|
0a122b |
+ * Or smp_read_barrier_depends().
|
|
|
0a122b |
+
|
|
|
0a122b |
+ ** This requires a load-store barrier. How to achieve this varies
|
|
|
0a122b |
+ depending on the machine, but in practice smp_rmb()+smp_wmb()
|
|
|
0a122b |
+ should have the desired effect. For example, on PowerPC the
|
|
|
0a122b |
+ lwsync instruction is a combined load-load, load-store and
|
|
|
0a122b |
+ store-store barrier.
|
|
|
0a122b |
+
|
|
|
0a122b |
+ *** This requires a store-load barrier. On most machines, the only
|
|
|
0a122b |
+ way to achieve this is a full barrier.
|
|
|
0a122b |
+
|
|
|
0a122b |
+
|
|
|
0a122b |
+You can see that the two possible definitions of atomic_mb_read()
|
|
|
0a122b |
+and atomic_mb_set() are the following:
|
|
|
0a122b |
+
|
|
|
0a122b |
+ 1) atomic_mb_read(p) = atomic_read(p); smp_rmb()
|
|
|
0a122b |
+ atomic_mb_set(p, v) = smp_wmb(); atomic_set(p, v); smp_mb()
|
|
|
0a122b |
+
|
|
|
0a122b |
+ 2) atomic_mb_read(p) = smp_mb() atomic_read(p); smp_rmb()
|
|
|
0a122b |
+ atomic_mb_set(p, v) = smp_wmb(); atomic_set(p, v);
|
|
|
0a122b |
+
|
|
|
0a122b |
+Usually the former is used, because smp_mb() is expensive and a program
|
|
|
0a122b |
+normally has more reads than writes. Therefore it makes more sense to
|
|
|
0a122b |
+make atomic_mb_set() the more expensive operation.
|
|
|
0a122b |
+
|
|
|
0a122b |
+There are two common cases in which atomic_mb_read and atomic_mb_set
|
|
|
0a122b |
+generate too many memory barriers, and thus it can be useful to manually
|
|
|
0a122b |
+place barriers instead:
|
|
|
0a122b |
+
|
|
|
0a122b |
+- when a data structure has one thread that is always a writer
|
|
|
0a122b |
+ and one thread that is always a reader, manual placement of
|
|
|
0a122b |
+ memory barriers makes the write side faster. Furthermore,
|
|
|
0a122b |
+ correctness is easy to check for in this case using the "pairing"
|
|
|
0a122b |
+ trick that is explained below:
|
|
|
0a122b |
+
|
|
|
0a122b |
+ thread 1 thread 1
|
|
|
0a122b |
+ ------------------------- ------------------------
|
|
|
0a122b |
+ (other writes)
|
|
|
0a122b |
+ smp_wmb()
|
|
|
0a122b |
+ atomic_mb_set(&a, x) atomic_set(&a, x)
|
|
|
0a122b |
+ smp_wmb()
|
|
|
0a122b |
+ atomic_mb_set(&b, y) atomic_set(&b, y)
|
|
|
0a122b |
+
|
|
|
0a122b |
+ =>
|
|
|
0a122b |
+ thread 2 thread 2
|
|
|
0a122b |
+ ------------------------- ------------------------
|
|
|
0a122b |
+ y = atomic_mb_read(&b) y = atomic_read(&b)
|
|
|
0a122b |
+ smp_rmb()
|
|
|
0a122b |
+ x = atomic_mb_read(&a) x = atomic_read(&a)
|
|
|
0a122b |
+ smp_rmb()
|
|
|
0a122b |
+
|
|
|
0a122b |
+- sometimes, a thread is accessing many variables that are otherwise
|
|
|
0a122b |
+ unrelated to each other (for example because, apart from the current
|
|
|
0a122b |
+ thread, exactly one other thread will read or write each of these
|
|
|
0a122b |
+ variables). In this case, it is possible to "hoist" the implicit
|
|
|
0a122b |
+ barriers provided by atomic_mb_read() and atomic_mb_set() outside
|
|
|
0a122b |
+ a loop. For example, the above definition atomic_mb_read() gives
|
|
|
0a122b |
+ the following transformation:
|
|
|
0a122b |
+
|
|
|
0a122b |
+ n = 0; n = 0;
|
|
|
0a122b |
+ for (i = 0; i < 10; i++) => for (i = 0; i < 10; i++)
|
|
|
0a122b |
+ n += atomic_mb_read(&a[i]); n += atomic_read(&a[i]);
|
|
|
0a122b |
+ smp_rmb();
|
|
|
0a122b |
+
|
|
|
0a122b |
+ Similarly, atomic_mb_set() can be transformed as follows:
|
|
|
0a122b |
+ smp_mb():
|
|
|
0a122b |
+
|
|
|
0a122b |
+ smp_wmb();
|
|
|
0a122b |
+ for (i = 0; i < 10; i++) => for (i = 0; i < 10; i++)
|
|
|
0a122b |
+ atomic_mb_set(&a[i], false); atomic_set(&a[i], false);
|
|
|
0a122b |
+ smp_mb();
|
|
|
0a122b |
+
|
|
|
0a122b |
+
|
|
|
0a122b |
+The two tricks can be combined. In this case, splitting a loop in
|
|
|
0a122b |
+two lets you hoist the barriers out of the loops _and_ eliminate the
|
|
|
0a122b |
+expensive smp_mb():
|
|
|
0a122b |
+
|
|
|
0a122b |
+ smp_wmb();
|
|
|
0a122b |
+ for (i = 0; i < 10; i++) { => for (i = 0; i < 10; i++)
|
|
|
0a122b |
+ atomic_mb_set(&a[i], false); atomic_set(&a[i], false);
|
|
|
0a122b |
+ atomic_mb_set(&b[i], false); smb_wmb();
|
|
|
0a122b |
+ } for (i = 0; i < 10; i++)
|
|
|
0a122b |
+ atomic_set(&a[i], false);
|
|
|
0a122b |
+ smp_mb();
|
|
|
0a122b |
+
|
|
|
0a122b |
+ The other thread can still use atomic_mb_read()/atomic_mb_set()
|
|
|
0a122b |
+
|
|
|
0a122b |
+
|
|
|
0a122b |
+Memory barrier pairing
|
|
|
0a122b |
+----------------------
|
|
|
0a122b |
+
|
|
|
0a122b |
+A useful rule of thumb is that memory barriers should always, or almost
|
|
|
0a122b |
+always, be paired with another barrier. In the case of QEMU, however,
|
|
|
0a122b |
+note that the other barrier may actually be in a driver that runs in
|
|
|
0a122b |
+the guest!
|
|
|
0a122b |
+
|
|
|
0a122b |
+For the purposes of pairing, smp_read_barrier_depends() and smp_rmb()
|
|
|
0a122b |
+both count as read barriers. A read barriers shall pair with a write
|
|
|
0a122b |
+barrier or a full barrier; a write barrier shall pair with a read
|
|
|
0a122b |
+barrier or a full barrier. A full barrier can pair with anything.
|
|
|
0a122b |
+For example:
|
|
|
0a122b |
+
|
|
|
0a122b |
+ thread 1 thread 2
|
|
|
0a122b |
+ =============== ===============
|
|
|
0a122b |
+ a = 1;
|
|
|
0a122b |
+ smp_wmb();
|
|
|
0a122b |
+ b = 2; x = b;
|
|
|
0a122b |
+ smp_rmb();
|
|
|
0a122b |
+ y = a;
|
|
|
0a122b |
+
|
|
|
0a122b |
+Note that the "writing" thread are accessing the variables in the
|
|
|
0a122b |
+opposite order as the "reading" thread. This is expected: stores
|
|
|
0a122b |
+before the write barrier will normally match the loads after the
|
|
|
0a122b |
+read barrier, and vice versa. The same is true for more than 2
|
|
|
0a122b |
+access and for data dependency barriers:
|
|
|
0a122b |
+
|
|
|
0a122b |
+ thread 1 thread 2
|
|
|
0a122b |
+ =============== ===============
|
|
|
0a122b |
+ b[2] = 1;
|
|
|
0a122b |
+ smp_wmb();
|
|
|
0a122b |
+ x->i = 2;
|
|
|
0a122b |
+ smp_wmb();
|
|
|
0a122b |
+ a = x; x = a;
|
|
|
0a122b |
+ smp_read_barrier_depends();
|
|
|
0a122b |
+ y = x->i;
|
|
|
0a122b |
+ smp_read_barrier_depends();
|
|
|
0a122b |
+ z = b[y];
|
|
|
0a122b |
+
|
|
|
0a122b |
+smp_wmb() also pairs with atomic_mb_read(), and smp_rmb() also pairs
|
|
|
0a122b |
+with atomic_mb_set().
|
|
|
0a122b |
+
|
|
|
0a122b |
+
|
|
|
0a122b |
+COMPARISON WITH LINUX KERNEL MEMORY BARRIERS
|
|
|
0a122b |
+============================================
|
|
|
0a122b |
+
|
|
|
0a122b |
+Here is a list of differences between Linux kernel atomic operations
|
|
|
0a122b |
+and memory barriers, and the equivalents in QEMU:
|
|
|
0a122b |
+
|
|
|
0a122b |
+- atomic operations in Linux are always on a 32-bit int type and
|
|
|
0a122b |
+ use a boxed atomic_t type; atomic operations in QEMU are polymorphic
|
|
|
0a122b |
+ and use normal C types.
|
|
|
0a122b |
+
|
|
|
0a122b |
+- atomic_read and atomic_set in Linux give no guarantee at all;
|
|
|
0a122b |
+ atomic_read and atomic_set in QEMU include a compiler barrier
|
|
|
0a122b |
+ (similar to the ACCESS_ONCE macro in Linux).
|
|
|
0a122b |
+
|
|
|
0a122b |
+- most atomic read-modify-write operations in Linux return void;
|
|
|
0a122b |
+ in QEMU, all of them return the old value of the variable.
|
|
|
0a122b |
+
|
|
|
0a122b |
+- different atomic read-modify-write operations in Linux imply
|
|
|
0a122b |
+ a different set of memory barriers; in QEMU, all of them enforce
|
|
|
0a122b |
+ sequential consistency, which means they imply full memory barriers
|
|
|
0a122b |
+ before and after the operation.
|
|
|
0a122b |
+
|
|
|
0a122b |
+- Linux does not have an equivalent of atomic_mb_read() and
|
|
|
0a122b |
+ atomic_mb_set(). In particular, note that set_mb() is a little
|
|
|
0a122b |
+ weaker than atomic_mb_set().
|
|
|
0a122b |
+
|
|
|
0a122b |
+
|
|
|
0a122b |
+SOURCES
|
|
|
0a122b |
+=======
|
|
|
0a122b |
+
|
|
|
0a122b |
+* Documentation/memory-barriers.txt from the Linux kernel
|
|
|
0a122b |
+
|
|
|
0a122b |
+* "The JSR-133 Cookbook for Compiler Writers", available at
|
|
|
0a122b |
+ http://g.oswego.edu/dl/jmm/cookbook.html
|
|
|
0a122b |
diff --git a/hw/display/qxl.c b/hw/display/qxl.c
|
|
|
0a122b |
index ea985d2..830b3c5 100644
|
|
|
0a122b |
--- a/hw/display/qxl.c
|
|
|
0a122b |
+++ b/hw/display/qxl.c
|
|
|
0a122b |
@@ -23,6 +23,7 @@
|
|
|
0a122b |
#include "qemu-common.h"
|
|
|
0a122b |
#include "qemu/timer.h"
|
|
|
0a122b |
#include "qemu/queue.h"
|
|
|
0a122b |
+#include "qemu/atomic.h"
|
|
|
0a122b |
#include "monitor/monitor.h"
|
|
|
0a122b |
#include "sysemu/sysemu.h"
|
|
|
0a122b |
#include "trace.h"
|
|
|
0a122b |
@@ -1726,7 +1727,7 @@ static void qxl_send_events(PCIQXLDevice *d, uint32_t events)
|
|
|
0a122b |
trace_qxl_send_events_vm_stopped(d->id, events);
|
|
|
0a122b |
return;
|
|
|
0a122b |
}
|
|
|
0a122b |
- old_pending = __sync_fetch_and_or(&d->ram->int_pending, le_events);
|
|
|
0a122b |
+ old_pending = atomic_fetch_or(&d->ram->int_pending, le_events);
|
|
|
0a122b |
if ((old_pending & le_events) == le_events) {
|
|
|
0a122b |
return;
|
|
|
0a122b |
}
|
|
|
0a122b |
diff --git a/hw/virtio/vhost.c b/hw/virtio/vhost.c
|
|
|
0a122b |
index 0dabf26..54aa569 100644
|
|
|
0a122b |
--- a/hw/virtio/vhost.c
|
|
|
0a122b |
+++ b/hw/virtio/vhost.c
|
|
|
0a122b |
@@ -16,6 +16,7 @@
|
|
|
0a122b |
#include <sys/ioctl.h>
|
|
|
0a122b |
#include "hw/virtio/vhost.h"
|
|
|
0a122b |
#include "hw/hw.h"
|
|
|
0a122b |
+#include "qemu/atomic.h"
|
|
|
0a122b |
#include "qemu/range.h"
|
|
|
0a122b |
#include <linux/vhost.h>
|
|
|
0a122b |
#include "exec/address-spaces.h"
|
|
|
0a122b |
@@ -47,11 +48,9 @@ static void vhost_dev_sync_region(struct vhost_dev *dev,
|
|
|
0a122b |
addr += VHOST_LOG_CHUNK;
|
|
|
0a122b |
continue;
|
|
|
0a122b |
}
|
|
|
0a122b |
- /* Data must be read atomically. We don't really
|
|
|
0a122b |
- * need the barrier semantics of __sync
|
|
|
0a122b |
- * builtins, but it's easier to use them than
|
|
|
0a122b |
- * roll our own. */
|
|
|
0a122b |
- log = __sync_fetch_and_and(from, 0);
|
|
|
0a122b |
+ /* Data must be read atomically. We don't really need barrier semantics
|
|
|
0a122b |
+ * but it's easier to use atomic_* than roll our own. */
|
|
|
0a122b |
+ log = atomic_xchg(from, 0);
|
|
|
0a122b |
while ((bit = sizeof(log) > sizeof(int) ?
|
|
|
0a122b |
ffsll(log) : ffs(log))) {
|
|
|
0a122b |
hwaddr page_addr;
|
|
|
0a122b |
diff --git a/include/qemu/atomic.h b/include/qemu/atomic.h
|
|
|
0a122b |
index 10becb6..0aa8913 100644
|
|
|
0a122b |
--- a/include/qemu/atomic.h
|
|
|
0a122b |
+++ b/include/qemu/atomic.h
|
|
|
0a122b |
@@ -1,68 +1,202 @@
|
|
|
0a122b |
-#ifndef __QEMU_BARRIER_H
|
|
|
0a122b |
-#define __QEMU_BARRIER_H 1
|
|
|
0a122b |
+/*
|
|
|
0a122b |
+ * Simple interface for atomic operations.
|
|
|
0a122b |
+ *
|
|
|
0a122b |
+ * Copyright (C) 2013 Red Hat, Inc.
|
|
|
0a122b |
+ *
|
|
|
0a122b |
+ * Author: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
0a122b |
+ *
|
|
|
0a122b |
+ * This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
|
0a122b |
+ * See the COPYING file in the top-level directory.
|
|
|
0a122b |
+ *
|
|
|
0a122b |
+ */
|
|
|
0a122b |
|
|
|
0a122b |
-/* Compiler barrier */
|
|
|
0a122b |
-#define barrier() asm volatile("" ::: "memory")
|
|
|
0a122b |
+#ifndef __QEMU_ATOMIC_H
|
|
|
0a122b |
+#define __QEMU_ATOMIC_H 1
|
|
|
0a122b |
|
|
|
0a122b |
-#if defined(__i386__)
|
|
|
0a122b |
+#include "qemu/compiler.h"
|
|
|
0a122b |
|
|
|
0a122b |
-#include "qemu/compiler.h" /* QEMU_GNUC_PREREQ */
|
|
|
0a122b |
+/* For C11 atomic ops */
|
|
|
0a122b |
|
|
|
0a122b |
-/*
|
|
|
0a122b |
- * Because of the strongly ordered x86 storage model, wmb() and rmb() are nops
|
|
|
0a122b |
- * on x86(well, a compiler barrier only). Well, at least as long as
|
|
|
0a122b |
- * qemu doesn't do accesses to write-combining memory or non-temporal
|
|
|
0a122b |
- * load/stores from C code.
|
|
|
0a122b |
- */
|
|
|
0a122b |
-#define smp_wmb() barrier()
|
|
|
0a122b |
-#define smp_rmb() barrier()
|
|
|
0a122b |
+/* Compiler barrier */
|
|
|
0a122b |
+#define barrier() ({ asm volatile("" ::: "memory"); (void)0; })
|
|
|
0a122b |
+
|
|
|
0a122b |
+#ifndef __ATOMIC_RELAXED
|
|
|
0a122b |
|
|
|
0a122b |
/*
|
|
|
0a122b |
- * We use GCC builtin if it's available, as that can use
|
|
|
0a122b |
- * mfence on 32 bit as well, e.g. if built with -march=pentium-m.
|
|
|
0a122b |
- * However, on i386, there seem to be known bugs as recently as 4.3.
|
|
|
0a122b |
- * */
|
|
|
0a122b |
-#if QEMU_GNUC_PREREQ(4, 4)
|
|
|
0a122b |
-#define smp_mb() __sync_synchronize()
|
|
|
0a122b |
+ * We use GCC builtin if it's available, as that can use mfence on
|
|
|
0a122b |
+ * 32-bit as well, e.g. if built with -march=pentium-m. However, on
|
|
|
0a122b |
+ * i386 the spec is buggy, and the implementation followed it until
|
|
|
0a122b |
+ * 4.3 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=36793).
|
|
|
0a122b |
+ */
|
|
|
0a122b |
+#if defined(__i386__) || defined(__x86_64__)
|
|
|
0a122b |
+#if !QEMU_GNUC_PREREQ(4, 4)
|
|
|
0a122b |
+#if defined __x86_64__
|
|
|
0a122b |
+#define smp_mb() ({ asm volatile("mfence" ::: "memory"); (void)0; })
|
|
|
0a122b |
#else
|
|
|
0a122b |
-#define smp_mb() asm volatile("lock; addl $0,0(%%esp) " ::: "memory")
|
|
|
0a122b |
+#define smp_mb() ({ asm volatile("lock; addl $0,0(%%esp) " ::: "memory"); (void)0; })
|
|
|
0a122b |
+#endif
|
|
|
0a122b |
+#endif
|
|
|
0a122b |
+#endif
|
|
|
0a122b |
+
|
|
|
0a122b |
+
|
|
|
0a122b |
+#ifdef __alpha__
|
|
|
0a122b |
+#define smp_read_barrier_depends() asm volatile("mb":::"memory")
|
|
|
0a122b |
#endif
|
|
|
0a122b |
|
|
|
0a122b |
-#elif defined(__x86_64__)
|
|
|
0a122b |
+#if defined(__i386__) || defined(__x86_64__) || defined(__s390x__)
|
|
|
0a122b |
|
|
|
0a122b |
+/*
|
|
|
0a122b |
+ * Because of the strongly ordered storage model, wmb() and rmb() are nops
|
|
|
0a122b |
+ * here (a compiler barrier only). QEMU doesn't do accesses to write-combining
|
|
|
0a122b |
+ * qemu memory or non-temporal load/stores from C code.
|
|
|
0a122b |
+ */
|
|
|
0a122b |
#define smp_wmb() barrier()
|
|
|
0a122b |
#define smp_rmb() barrier()
|
|
|
0a122b |
-#define smp_mb() asm volatile("mfence" ::: "memory")
|
|
|
0a122b |
+
|
|
|
0a122b |
+/*
|
|
|
0a122b |
+ * __sync_lock_test_and_set() is documented to be an acquire barrier only,
|
|
|
0a122b |
+ * but it is a full barrier at the hardware level. Add a compiler barrier
|
|
|
0a122b |
+ * to make it a full barrier also at the compiler level.
|
|
|
0a122b |
+ */
|
|
|
0a122b |
+#define atomic_xchg(ptr, i) (barrier(), __sync_lock_test_and_set(ptr, i))
|
|
|
0a122b |
+
|
|
|
0a122b |
+/*
|
|
|
0a122b |
+ * Load/store with Java volatile semantics.
|
|
|
0a122b |
+ */
|
|
|
0a122b |
+#define atomic_mb_set(ptr, i) ((void)atomic_xchg(ptr, i))
|
|
|
0a122b |
|
|
|
0a122b |
#elif defined(_ARCH_PPC)
|
|
|
0a122b |
|
|
|
0a122b |
/*
|
|
|
0a122b |
* We use an eieio() for wmb() on powerpc. This assumes we don't
|
|
|
0a122b |
* need to order cacheable and non-cacheable stores with respect to
|
|
|
0a122b |
- * each other
|
|
|
0a122b |
+ * each other.
|
|
|
0a122b |
+ *
|
|
|
0a122b |
+ * smp_mb has the same problem as on x86 for not-very-new GCC
|
|
|
0a122b |
+ * (http://patchwork.ozlabs.org/patch/126184/, Nov 2011).
|
|
|
0a122b |
*/
|
|
|
0a122b |
-#define smp_wmb() asm volatile("eieio" ::: "memory")
|
|
|
0a122b |
-
|
|
|
0a122b |
+#define smp_wmb() ({ asm volatile("eieio" ::: "memory"); (void)0; })
|
|
|
0a122b |
#if defined(__powerpc64__)
|
|
|
0a122b |
-#define smp_rmb() asm volatile("lwsync" ::: "memory")
|
|
|
0a122b |
+#define smp_rmb() ({ asm volatile("lwsync" ::: "memory"); (void)0; })
|
|
|
0a122b |
#else
|
|
|
0a122b |
-#define smp_rmb() asm volatile("sync" ::: "memory")
|
|
|
0a122b |
+#define smp_rmb() ({ asm volatile("sync" ::: "memory"); (void)0; })
|
|
|
0a122b |
#endif
|
|
|
0a122b |
+#define smp_mb() ({ asm volatile("sync" ::: "memory"); (void)0; })
|
|
|
0a122b |
|
|
|
0a122b |
-#define smp_mb() asm volatile("sync" ::: "memory")
|
|
|
0a122b |
+#endif /* _ARCH_PPC */
|
|
|
0a122b |
|
|
|
0a122b |
-#else
|
|
|
0a122b |
+#endif /* C11 atomics */
|
|
|
0a122b |
|
|
|
0a122b |
/*
|
|
|
0a122b |
* For (host) platforms we don't have explicit barrier definitions
|
|
|
0a122b |
* for, we use the gcc __sync_synchronize() primitive to generate a
|
|
|
0a122b |
* full barrier. This should be safe on all platforms, though it may
|
|
|
0a122b |
- * be overkill for wmb() and rmb().
|
|
|
0a122b |
+ * be overkill for smp_wmb() and smp_rmb().
|
|
|
0a122b |
*/
|
|
|
0a122b |
+#ifndef smp_mb
|
|
|
0a122b |
+#define smp_mb() __sync_synchronize()
|
|
|
0a122b |
+#endif
|
|
|
0a122b |
+
|
|
|
0a122b |
+#ifndef smp_wmb
|
|
|
0a122b |
+#ifdef __ATOMIC_RELEASE
|
|
|
0a122b |
+#define smp_wmb() __atomic_thread_fence(__ATOMIC_RELEASE)
|
|
|
0a122b |
+#else
|
|
|
0a122b |
#define smp_wmb() __sync_synchronize()
|
|
|
0a122b |
-#define smp_mb() __sync_synchronize()
|
|
|
0a122b |
+#endif
|
|
|
0a122b |
+#endif
|
|
|
0a122b |
+
|
|
|
0a122b |
+#ifndef smp_rmb
|
|
|
0a122b |
+#ifdef __ATOMIC_ACQUIRE
|
|
|
0a122b |
+#define smp_rmb() __atomic_thread_fence(__ATOMIC_ACQUIRE)
|
|
|
0a122b |
+#else
|
|
|
0a122b |
#define smp_rmb() __sync_synchronize()
|
|
|
0a122b |
+#endif
|
|
|
0a122b |
+#endif
|
|
|
0a122b |
+
|
|
|
0a122b |
+#ifndef smp_read_barrier_depends
|
|
|
0a122b |
+#ifdef __ATOMIC_CONSUME
|
|
|
0a122b |
+#define smp_read_barrier_depends() __atomic_thread_fence(__ATOMIC_CONSUME)
|
|
|
0a122b |
+#else
|
|
|
0a122b |
+#define smp_read_barrier_depends() barrier()
|
|
|
0a122b |
+#endif
|
|
|
0a122b |
+#endif
|
|
|
0a122b |
|
|
|
0a122b |
+#ifndef atomic_read
|
|
|
0a122b |
+#define atomic_read(ptr) (*(__typeof__(*ptr) *volatile) (ptr))
|
|
|
0a122b |
#endif
|
|
|
0a122b |
|
|
|
0a122b |
+#ifndef atomic_set
|
|
|
0a122b |
+#define atomic_set(ptr, i) ((*(__typeof__(*ptr) *volatile) (ptr)) = (i))
|
|
|
0a122b |
+#endif
|
|
|
0a122b |
+
|
|
|
0a122b |
+/* These have the same semantics as Java volatile variables.
|
|
|
0a122b |
+ * See http://gee.cs.oswego.edu/dl/jmm/cookbook.html:
|
|
|
0a122b |
+ * "1. Issue a StoreStore barrier (wmb) before each volatile store."
|
|
|
0a122b |
+ * 2. Issue a StoreLoad barrier after each volatile store.
|
|
|
0a122b |
+ * Note that you could instead issue one before each volatile load, but
|
|
|
0a122b |
+ * this would be slower for typical programs using volatiles in which
|
|
|
0a122b |
+ * reads greatly outnumber writes. Alternatively, if available, you
|
|
|
0a122b |
+ * can implement volatile store as an atomic instruction (for example
|
|
|
0a122b |
+ * XCHG on x86) and omit the barrier. This may be more efficient if
|
|
|
0a122b |
+ * atomic instructions are cheaper than StoreLoad barriers.
|
|
|
0a122b |
+ * 3. Issue LoadLoad and LoadStore barriers after each volatile load."
|
|
|
0a122b |
+ *
|
|
|
0a122b |
+ * If you prefer to think in terms of "pairing" of memory barriers,
|
|
|
0a122b |
+ * an atomic_mb_read pairs with an atomic_mb_set.
|
|
|
0a122b |
+ *
|
|
|
0a122b |
+ * And for the few ia64 lovers that exist, an atomic_mb_read is a ld.acq,
|
|
|
0a122b |
+ * while an atomic_mb_set is a st.rel followed by a memory barrier.
|
|
|
0a122b |
+ *
|
|
|
0a122b |
+ * These are a bit weaker than __atomic_load/store with __ATOMIC_SEQ_CST
|
|
|
0a122b |
+ * (see docs/atomics.txt), and I'm not sure that __ATOMIC_ACQ_REL is enough.
|
|
|
0a122b |
+ * Just always use the barriers manually by the rules above.
|
|
|
0a122b |
+ */
|
|
|
0a122b |
+#ifndef atomic_mb_read
|
|
|
0a122b |
+#define atomic_mb_read(ptr) ({ \
|
|
|
0a122b |
+ typeof(*ptr) _val = atomic_read(ptr); \
|
|
|
0a122b |
+ smp_rmb(); \
|
|
|
0a122b |
+ _val; \
|
|
|
0a122b |
+})
|
|
|
0a122b |
+#endif
|
|
|
0a122b |
+
|
|
|
0a122b |
+#ifndef atomic_mb_set
|
|
|
0a122b |
+#define atomic_mb_set(ptr, i) do { \
|
|
|
0a122b |
+ smp_wmb(); \
|
|
|
0a122b |
+ atomic_set(ptr, i); \
|
|
|
0a122b |
+ smp_mb(); \
|
|
|
0a122b |
+} while (0)
|
|
|
0a122b |
+#endif
|
|
|
0a122b |
+
|
|
|
0a122b |
+#ifndef atomic_xchg
|
|
|
0a122b |
+#ifdef __ATOMIC_SEQ_CST
|
|
|
0a122b |
+#define atomic_xchg(ptr, i) ({ \
|
|
|
0a122b |
+ typeof(*ptr) _new = (i), _old; \
|
|
|
0a122b |
+ __atomic_exchange(ptr, &_new, &_old, __ATOMIC_SEQ_CST); \
|
|
|
0a122b |
+ _old; \
|
|
|
0a122b |
+})
|
|
|
0a122b |
+#elif defined __clang__
|
|
|
0a122b |
+#define atomic_xchg(ptr, i) __sync_exchange(ptr, i)
|
|
|
0a122b |
+#else
|
|
|
0a122b |
+/* __sync_lock_test_and_set() is documented to be an acquire barrier only. */
|
|
|
0a122b |
+#define atomic_xchg(ptr, i) (smp_mb(), __sync_lock_test_and_set(ptr, i))
|
|
|
0a122b |
+#endif
|
|
|
0a122b |
+#endif
|
|
|
0a122b |
+
|
|
|
0a122b |
+/* Provide shorter names for GCC atomic builtins. */
|
|
|
0a122b |
+#define atomic_fetch_inc(ptr) __sync_fetch_and_add(ptr, 1)
|
|
|
0a122b |
+#define atomic_fetch_dec(ptr) __sync_fetch_and_add(ptr, -1)
|
|
|
0a122b |
+#define atomic_fetch_add __sync_fetch_and_add
|
|
|
0a122b |
+#define atomic_fetch_sub __sync_fetch_and_sub
|
|
|
0a122b |
+#define atomic_fetch_and __sync_fetch_and_and
|
|
|
0a122b |
+#define atomic_fetch_or __sync_fetch_and_or
|
|
|
0a122b |
+#define atomic_cmpxchg __sync_val_compare_and_swap
|
|
|
0a122b |
+
|
|
|
0a122b |
+/* And even shorter names that return void. */
|
|
|
0a122b |
+#define atomic_inc(ptr) ((void) __sync_fetch_and_add(ptr, 1))
|
|
|
0a122b |
+#define atomic_dec(ptr) ((void) __sync_fetch_and_add(ptr, -1))
|
|
|
0a122b |
+#define atomic_add(ptr, n) ((void) __sync_fetch_and_add(ptr, n))
|
|
|
0a122b |
+#define atomic_sub(ptr, n) ((void) __sync_fetch_and_sub(ptr, n))
|
|
|
0a122b |
+#define atomic_and(ptr, n) ((void) __sync_fetch_and_and(ptr, n))
|
|
|
0a122b |
+#define atomic_or(ptr, n) ((void) __sync_fetch_and_or(ptr, n))
|
|
|
0a122b |
+
|
|
|
0a122b |
#endif
|
|
|
0a122b |
diff --git a/migration.c b/migration.c
|
|
|
0a122b |
index 46c633a..d91e702 100644
|
|
|
0a122b |
--- a/migration.c
|
|
|
0a122b |
+++ b/migration.c
|
|
|
0a122b |
@@ -291,8 +291,7 @@ static void migrate_fd_cleanup(void *opaque)
|
|
|
0a122b |
|
|
|
0a122b |
static void migrate_finish_set_state(MigrationState *s, int new_state)
|
|
|
0a122b |
{
|
|
|
0a122b |
- if (__sync_val_compare_and_swap(&s->state, MIG_STATE_ACTIVE,
|
|
|
0a122b |
- new_state) == new_state) {
|
|
|
0a122b |
+ if (atomic_cmpxchg(&s->state, MIG_STATE_ACTIVE, new_state) == new_state) {
|
|
|
0a122b |
trace_migrate_set_state(new_state);
|
|
|
0a122b |
}
|
|
|
0a122b |
}
|
|
|
0a122b |
diff --git a/tests/test-thread-pool.c b/tests/test-thread-pool.c
|
|
|
0a122b |
index 22915aa..b62338f 100644
|
|
|
0a122b |
--- a/tests/test-thread-pool.c
|
|
|
0a122b |
+++ b/tests/test-thread-pool.c
|
|
|
0a122b |
@@ -17,15 +17,15 @@ typedef struct {
|
|
|
0a122b |
static int worker_cb(void *opaque)
|
|
|
0a122b |
{
|
|
|
0a122b |
WorkerTestData *data = opaque;
|
|
|
0a122b |
- return __sync_fetch_and_add(&data->n, 1);
|
|
|
0a122b |
+ return atomic_fetch_inc(&data->n);
|
|
|
0a122b |
}
|
|
|
0a122b |
|
|
|
0a122b |
static int long_cb(void *opaque)
|
|
|
0a122b |
{
|
|
|
0a122b |
WorkerTestData *data = opaque;
|
|
|
0a122b |
- __sync_fetch_and_add(&data->n, 1);
|
|
|
0a122b |
+ atomic_inc(&data->n);
|
|
|
0a122b |
g_usleep(2000000);
|
|
|
0a122b |
- __sync_fetch_and_add(&data->n, 1);
|
|
|
0a122b |
+ atomic_inc(&data->n);
|
|
|
0a122b |
return 0;
|
|
|
0a122b |
}
|
|
|
0a122b |
|
|
|
0a122b |
@@ -169,7 +169,7 @@ static void test_cancel(void)
|
|
|
0a122b |
/* Cancel the jobs that haven't been started yet. */
|
|
|
0a122b |
num_canceled = 0;
|
|
|
0a122b |
for (i = 0; i < 100; i++) {
|
|
|
0a122b |
- if (__sync_val_compare_and_swap(&data[i].n, 0, 3) == 0) {
|
|
|
0a122b |
+ if (atomic_cmpxchg(&data[i].n, 0, 3) == 0) {
|
|
|
0a122b |
data[i].ret = -ECANCELED;
|
|
|
0a122b |
bdrv_aio_cancel(data[i].aiocb);
|
|
|
0a122b |
active--;
|
|
|
0a122b |
--
|
|
|
0a122b |
1.7.11.7
|
|
|
0a122b |
|