
CentOS Artwork Repository
Manual

Alain Reguera Delgado

This manuals documents relevant information regarding the deployment, organization, and ad-
ministration of CentOS Artwork Repository.
Copyright c© 2009-2011 Alain Reguera Delgado
Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled GNU Free Documentation
License.

i

Table of Contents

1 Introduction . 1
1.1 History . 1
1.2 Authors . 2
1.3 Copying Conditions . 3
1.4 Document Convenctions . 3
1.5 Repository Convenctions . 5

1.5.1 Repository policy . 5
1.5.2 Repository organization . 5
1.5.3 Repository file names . 6
1.5.4 Repository work lines . 6

1.5.4.1 Graphic design . 6
1.5.4.2 Documentation . 7
1.5.4.3 Localization . 7
1.5.4.4 Automation . 8

1.5.5 Connection between directories . 8
1.5.6 Syncronizing path information . 10
1.5.7 Extending repository organization . 11

1.6 Send in Your Feedback. 12

2 The Repository Directories . 13
2.1 The ‘branches’ Directory . 13

2.1.1 Goals . 13
2.1.2 Description . 13
2.1.3 Usage . 13
2.1.4 See also . 13

2.2 The ‘tags’ Directory . 13
2.2.1 Goals . 13
2.2.2 Description . 13
2.2.3 Usage . 13
2.2.4 See also . 13

2.3 The ‘trunk’ Directory . 14
2.3.1 Goals . 14
2.3.2 Description . 14
2.3.3 Usage . 14
2.3.4 See also . 14

2.4 The ‘trunk/Identity’ Directory . 14
2.4.1 Goals . 14
2.4.2 Description . 14

2.4.2.1 Corporate Design . 14
2.4.2.2 Corporate Communication . 15
2.4.2.3 Corporate Behaviour . 15
2.4.2.4 Corporate Structure . 16

2.4.3 Usage . 16
2.4.3.1 Rendition . 17
2.4.3.2 Documentation . 17
2.4.3.3 Localization . 17

2.4.4 See also . 17
2.5 The ‘trunk/Identity/Brands’ Directory . 18

ii

2.5.1 Goals . 18
2.5.2 Description . 18
2.5.3 Usage . 18
2.5.4 See also . 18

2.6 The ‘trunk/Identity/Fonts’ Directory . 18
2.6.1 Goals . 18
2.6.2 Description . 18
2.6.3 Usage . 18
2.6.4 See also . 19

2.7 The ‘trunk/Identity/Palettes’ Directory . 19
2.7.1 Goals . 19
2.7.2 Description . 19
2.7.3 Usage . 19
2.7.4 See also . 19

2.8 The ‘trunk/Identity/Themes’ Directory . 19
2.8.1 Goals . 19
2.8.2 Description . 19

2.8.2.1 Work Flow . 19
2.8.3 Usage . 20
2.8.4 See also . 20

2.9 The ‘trunk/Identity/Themes/Models’ Directory . 20
2.9.1 Goals . 20
2.9.2 Description . 20
2.9.3 Usage . 21
2.9.4 See also . 21

2.10 The ‘trunk/Identity/Themes/Models/Default’ Directory . 21
2.10.1 Goals . 21
2.10.2 Description . 21
2.10.3 Usage . 21
2.10.4 See also . 22

2.11 The ‘trunk/Identity/Themes/Models/Default/Concept’ Directory 22
2.11.1 Goals . 22
2.11.2 Description . 22
2.11.3 Usage . 22
2.11.4 See also . 22

2.12 The ‘trunk/Identity/Themes/Models/Default/Distro’ Directory 22
2.12.1 Goals . 22
2.12.2 Description . 23
2.12.3 Usage . 23
2.12.4 See also . 24

2.13 The ‘trunk/Identity/Themes/Models/Default/Distro/Anaconda’ Directory . . . 24
2.13.1 Goals . 24
2.13.2 Description . 24
2.13.3 Usage . 24
2.13.4 See also . 24

2.14 The ‘trunk/Identity/Themes/Models/Default/Distro/Firstboot’ Directory . . 24
2.14.1 Goals . 24
2.14.2 Description . 24
2.14.3 Usage . 24
2.14.4 See also . 24

2.15 The ‘trunk/Identity/Themes/Models/Default/Distro/Gdm’ Directory 24
2.15.1 Goals . 24
2.15.2 Description . 24
2.15.3 Usage . 24

iii

2.15.4 See also . 24
2.16 The ‘trunk/Identity/Themes/Models/Default/Distro/Grub’ Directory 25

2.16.1 Goals . 25
2.16.2 Description . 25
2.16.3 Usage . 25
2.16.4 See also . 25

2.17 The ‘trunk/Identity/Themes/Models/Default/Distro/Gsplash’ Directory 25
2.17.1 Goals . 25
2.17.2 Description . 25
2.17.3 Usage . 25
2.17.4 See also . 25

2.18 The ‘trunk/Identity/Themes/Models/Default/Distro/Kdm’ Directory 25
2.18.1 Goals . 25
2.18.2 Description . 25
2.18.3 Usage . 25
2.18.4 See also . 25

2.19 The ‘trunk/Identity/Themes/Models/Default/Distro/Ksplash’ Directory 25
2.19.1 Goals . 25
2.19.2 Description . 25
2.19.3 Usage . 26
2.19.4 See also . 26

2.20 The ‘trunk/Identity/Themes/Models/Default/Distro/Rhgb’ Directory 26
2.20.1 Goals . 26
2.20.2 Description . 26
2.20.3 Usage . 26
2.20.4 See also . 26

2.21 The ‘trunk/Identity/Themes/Models/Default/Distro/Syslinux’ Directory . . . 26
2.21.1 Goals . 26
2.21.2 Description . 26
2.21.3 Usage . 26
2.21.4 See also . 26

2.22 The ‘trunk/Identity/Themes/Models/Default/Posters’ Directory 26
2.22.1 Goals . 26
2.22.2 Description . 26
2.22.3 Usage . 26
2.22.4 See also . 26

2.23 The ‘trunk/Identity/Themes/Motifs’ Directory . 26
2.23.1 Goals . 27
2.23.2 Description . 27
2.23.3 Usage . 27
2.23.4 See also . 28

2.24 The ‘trunk/Identity/Themes/Motifs/Flame’ Directory . 28
2.24.1 Goals . 28
2.24.2 Description . 29
2.24.3 See also . 30

2.25 The ‘trunk/Identity/Themes/Motifs/Modern’ Directory . 30
2.25.1 Goals . 30
2.25.2 Description . 30
2.25.3 Usage . 30
2.25.4 See also . 30

2.26 The ‘trunk/Identity/Themes/Motifs/Pipes’ Directory . 30
2.26.1 Goals . 30
2.26.2 Description . 30
2.26.3 Usage . 30

iv

2.26.4 See also . 30
2.27 The ‘trunk/Identity/Themes/Motifs/TreeFlower’ Directory 30

2.27.1 Goals . 30
2.27.2 Description . 30
2.27.3 Usage . 30
2.27.4 See also . 30

2.28 The ‘trunk/Identity/Webenv’ Directory. 31
2.28.1 Goals . 31
2.28.2 Description . 31

2.28.2.1 Design model (without ads) . 31
2.28.2.2 Design model (with ads) . 31
2.28.2.3 HTML definitions . 31
2.28.2.4 Controlling visual style . 32
2.28.2.5 Producing visual style . 32
2.28.2.6 Navigation . 32
2.28.2.7 Development and release cycle. 32
2.28.2.8 The [webenv-test] repository . 34
2.28.2.9 The [webenv] repository . 34
2.28.2.10 Priority configuration . 35

2.28.3 Usage . 35
2.28.4 See also . 35

2.29 The ‘trunk/Locales’ Directory . 35
2.30 The ‘trunk/Manual’ Directory . 36

2.30.1 Goals . 36
2.30.2 Description . 36
2.30.3 Usage . 36
2.30.4 See also . 36

2.31 The ‘trunk/Scripts’ Directory . 36
2.31.1 Goals . 36
2.31.2 Description . 36
2.31.3 Usage . 38
2.31.4 See also . 38

2.32 The ‘trunk/Scripts/Functions’ Directory . 38
2.32.1 Goals . 38
2.32.2 Description . 38
2.32.3 Usage . 42

2.32.3.1 Global variables . 42
2.32.3.2 Global functions . 45
2.32.3.3 Specific functions . 54

2.32.4 See also . 54
2.33 The ‘trunk/Scripts/Functions/Help’ Directory . 54

2.33.1 Goals . 54
2.33.2 Description . 54
2.33.3 Usage . 54
2.33.4 See also . 54

2.34 The ‘trunk/Scripts/Functions/Locale’ Directory. 54
2.34.1 Goals . 54
2.34.2 Description . 54
2.34.3 Usage . 55
2.34.4 See also . 55

2.35 The ‘trunk/Scripts/Functions/Path’ Directory . 55
2.35.1 Goals . 55
2.35.2 Description . 56

2.35.2.1 Repository layout . 56

v

2.35.2.2 Repository name convenctions . 56
2.35.2.3 Repository work flow . 56
2.35.2.4 Parallel directories . 57
2.35.2.5 Syncronizing path information . 58
2.35.2.6 What is the right place to store it? . 59

2.35.3 Usage . 59
2.35.4 See also . 60

2.36 The ‘trunk/Scripts/Functions/Prepare’ Directory . 60
2.36.1 Goals . 60
2.36.2 Description . 60

2.36.2.1 Packages . 60
2.36.2.2 Links . 60
2.36.2.3 Environment variables . 61
2.36.2.4 Shell Script Files . 62
2.36.2.5 SVG Files . 64
2.36.2.6 XHTML Files . 65

2.36.3 Usage . 65
2.36.4 See also . 65

2.37 The ‘trunk/Scripts/Functions/Render’ Directory. 65
2.37.1 Renderable identity directory structures . 66

2.37.1.1 Design template without translation . 66
2.37.1.2 Design template with translation (one-to-one) . 68
2.37.1.3 Design template with translation (optimized) . 69
2.37.1.4 Design template with translation (optimized+flexibility) 71

2.37.2 Renderable translation directory structures . 73
2.37.3 Copying renderable directory structures . 73
2.37.4 Usage . 75
2.37.5 See also . 75

2.38 The ‘trunk/Scripts/Functions/Render/Config’ Directory . 75
2.38.1 Goals . 75
2.38.2 Description . 75

2.38.2.1 The ‘render.conf.sh’ identity model . 75
2.38.2.2 The ‘render.conf.sh’ translation model . 76
2.38.2.3 The ‘render.conf.sh’ rendering actions . 76

2.38.3 Usage . 77
2.38.4 See also . 77

Index . 78

List of Figures . 79

Chapter 1: Introduction 1

1 Introduction

Welcome to CentOS Artwork Repository Manual.
The CentOS Artwork Repository Manual describes how The CentOS Project Corporate

Visual Identity is organized and produced inside the CentOS Artwork Repository
(https://projects.centos.org/svn/artwork/). If you are looking for a comprehensive,
task-oriented guide for understanding how The CentOS Project Corporate Visual Identity is
produced, this is the manual for you.

This manual discusses the following intermedite topics:
• The CentOS Brand
• The CentOS Corporate Visual Structure
• The CentOS Corporate Visual Style

This guide assumes you have a basic understanding of your CentOS system. If you need help
with CentOS, refer to the help page on the CentOS Wiki (http://wiki.centos.org/Help) for
a list of different places you can find help.

1.1 History

This section records noteworthy changes of CentOS Artwork Repository through years.

2008

The CentOS Artwork Repository started at CentOS Developers mailing list
(centos-devel@centos.org) during a discussion about how to automate the slide
images of Anaconda. In such discussion, Ralph Angenendt rose up his hand to ask: Do you
have something to show?

To answer the question, Alain Reguera Delgado posted a bash script to produce slide im-
ages in different languages —together with the proposition of creating a Subversion centralized
repository where translations and image production could be distributed inside The CentOS
Community—.

Karanbirn Sighn considered the idea intresting and provides the infrastructure necessary to
support the effort. This way the CentOS Artwork SIG and the CentOS Artwork Repository are
officially created and made available in the following urls:
• https://projects.centos.org/trac/artwork/

• https://projects.centos.org/svn/artwork/

Once the CentOS Artwork Repository was available, Alain Reguera Delagdo uploaded the
bash script for rendering Anaconda slides; Ralph Angenendt documented it very well and The
CentOS Translators started to download working copies of CentOS Artwork Repository to pro-
duce slide images in their own languages.

2009

The rendition script is at a very rustic state where only slide images can be produced.
The rendition script is improved to produce not only slide images, but PNG images using one

SVG file as input. In this configuration one translated SVG instance was created from the SVG
provided as input in order to produce one translated PNG image as output. The translation
of SVG files is made through SED replacement commands and the rendition of PNG images is
realized through Inkscape command line internface.

The rendition script is named render.sh. The directory structures are prepared to receive
the rendition script so images could be produced inside them. Each directory structure has
design templates (.svg), translation files (.sed), and translated images (.png).

https://projects.centos.org/svn/artwork/
http://wiki.centos.org/Help
mailto:centos-devel@centos.org
https://projects.centos.org/trac/artwork/
https://projects.centos.org/svn/artwork/

Chapter 1: Introduction 2

The rendition script is unified in a common place and linked from different directory struc-
tures. There is no need to have the same code in different directory structures if it can be in
just one place and then be linked from different locations.

The concepts of corporate identity started to be considered. As referece, it is used Wikipedia
(http://en.wikipedia.org/Corporate_identity) and the book Corporate Identity by Wally
Olins (1989).

The rendition script main’s goal becomes to: automate production of a monolithic corporate
visual identity structure based on The CentOS Mission and The CentOS Release Schema.

The documentation of CentOS Artwork Repository starts to take form in LATEX format.

2010

The rendition script render.sh is no longer a rendition script, but a collection of functionalities
grouped into the centos-art.sh script where rendition is one functionality among others. The
centos-art.sh is created to automate most frequent tasks inside the repository. There is no
need to have links all around the repository if a command-line interface can be created and
called anywhere inside the repository as it is usually done with regular commands.

Inside centos-art.sh, functionalities started to get identified and separated one another.
For example, when images are rendered, there is no need to load functionalities related to docu-
mentation manual. There is now common functionalities and specific functionalities. Common
functionalities are loaded when the script is initiated and are available to specific functionalities.

The centos-art.sh script is updated to handle options trough getopt option parser.
The repository directory structure is updated to improve the implementation of corporate

visual identity concepts.

2011

The centos-art.sh script is updated to translate SVG and other XML-based files (e.g., XHTML
and Docbook) through xml2po program and shell scripts files through xgettext command. In
this configuration there is no need to use ‘.sed’ translation files as they previously were used.

The centos-art.sh script is updated to improve option parsing through getopt program.
All arguments are parsed by getopt now. Once all option arguments have been parsed, only
non-option arguments remain for processing.

The centos-art.sh script is updated to organize functionalities in two groups: “the adminis-
trative functionalities” and “the productive functionalities”. The administrative functionalities
cover actions like: copying, deleting and renaming directory structures inside the repository.
Also, preparing your workstation for using centos-art.sh script, making backups of the dis-
tribution theme currently installed, installing themes created inside repository and restoring
themes from backup. On the other hand, the productive functionalities cover actions like: con-
tent rendition, content localization, content documentation and content maintainance.

1.2 Authors

This section records authoring information of CentOS Artwork Repository:

Karanbirn Singh <karan@centos.org>
Infrastructure, Packaging.

Ralph Angenendt <ralph@centos.org>
Infrastructure, Packaging, Documentation.

Alain Reguera Delgado
Implementation of a monolithic corporate visual identity for The CentOS Project
that can be maintained by The CentOS Community through the CentOS Artwork
Repository and the centos-art.sh script.

http://en.wikipedia.org/Corporate_identity

Chapter 1: Introduction 3

Marcus Moeller <marcus@moeller.org>
Theme Design.

Guideon de Kok
Theme Design.

1.3 Copying Conditions

Inside the CentOS Artwork Repository you can find content branded by The CentOS Project and
content not branded at all. Contents branded by The CentOS Project contain either The CentOS
Trademark, The CentOS Logo or The CentOS Symbol. Content branded by The CentOS Project
cannot be redistributed without previous conversation with The CentOS Project. However, you
can study and modify both content branded by The CentOS Project and content not branded
at all in the sake of proposing improvements to The CentOS Project corporate visual identity.

If you are using the CentOS Artwork Repository for producing your own corporate visual
identity, you should remove all The CentOS Trademarks from your contents and rename the
repository to something other than CentOS Artwork Repository.

The CentOS Artwork Repository organizes files in a very specific way to implement The
CentOS Project corporate visual identity. This very specific organization of files is part of
centos-art.sh script, a bash script that automates most of the frequent tasks inside the repos-
itory.

The centos-art.sh script

The centos-art.sh script and the organization of files it needs to work are not in the public
domain; they are copyrighted and there are restrictions on their distribution, but these restric-
tions are designed to permit everything that a good cooperating citizen would want to do. What
is not allowed is to try to prevent others from further sharing any version of this program that
they might get from you.

Specifically, we want to make sure that you have the right to give away copies of centos-
art.sh script, that you receive source code or else can get it if you want it, that you can change
this program or use pieces of it in new free programs, and that you know you can do these
things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else of
these rights. For example, if you distribute copies of the centos-art.sh script, you must give
the recipients all the rights that you have. You must make sure that they, too, receive or can
get the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there is no
warranty for the centos-art.sh script. If this program is modified by someone else and passed
on, we want their recipients to know that what they have is not what we distributed, so that
any problems introduced by others will not reflect on our reputation.

The precise conditions of the license for the centos-art.sh script are found in the General
Public Licenses that accompany it (see file trunk/Scripts/COPYING). This manual specifically
is covered by the GNU Free Documentation License.

1.4 Document Convenctions

In this manual the personal pronoun we is used to repesent The CentOS Artwork SIG. This is,
the group of persons building the CentOS Artwork Repository.

In this manual, certain words are represented in different fonts, typefaces, sizes, and weights.
This highlighting is systematic; different words are represented in the same style to indicate
their inclusion in a specific category. The types of words that are represented this way include
the following:

file:///home/centos/artwork/trunk/Scripts/COPYING

Chapter 1: Introduction 4

command

Linux commands (and other operating system commands, when used) are repre-
sented this way. This style should indicate to you that you can type the word or
phrase on the command line and press Enter to invoke a command. Sometimes a
command contains words that would be displayed in a different style on their own
(such as file names). In these cases, they are considered to be part of the command,
so the entire phrase is displayed as a command. For example:
Use the centos-art identity --render=’path/to/dir’ command to produce
contents inside the ‘trunk/Identity’ directory structure.

‘file name’
File names, directory names, paths, and RPM package names are represented this
way. This style indicates that a particular file or directory exists with that name on
your system. Examples:
The ‘init.sh’ file in ‘trunk/Scripts/Bash/Cli/’ directory is the initialization
script, written in Bash, used to automate most of tasks in the repository.
The centos-art command uses the ‘ImageMagick’ RPM package to convert images
from PNG format to other formats.

〈〈key〉〉

A key on the keyboard is shown in this style. For example:
To use 〈TAB〉 completion to list particular files in a directory, type ls, then a char-
acter, and finally the Tab key. Your terminal displays the list of files in the working
directory that begin with that character.

〈〈key-combination〉〉
A combination of keystrokes is represented in this way. For example:
The 〈Ctrl-Alt-Backspace〉 key combination exits your graphical session and returns you
to the graphical login screen or the console.

computer output
Text in this style indicates text displayed to a shell prompt such as error messages
and responses to commands. For example:
The ls command displays the contents of a directory. For example:

Config manual_renameEntry.sh
manual_copyEntry.sh manual_restoreCrossReferences.sh
manual_deleteCrossReferences.sh manual_searchIndex.sh

The output returned in response to the command (in this case, the contents of the
directory) is shown in this style.

Additionally, we use several different strategies to draw your attention to certain pieces of
information. In order of urgency, these items are marked as a note, tip, important, caution, or
warning. For example:

Note Remember that Linux is case sensitive. In other words, a rose is not a ROSE
is not a rOsE.
Tip The directory ‘/usr/share/doc/’ contains additional documentation for pack-
ages installed on your system.
Important If you modify the DHCP configuration file, the changes do not take effect
until you restart the DHCP daemon.
Caution Do not perform routine tasks as root — use a regular user account unless
you need to use the root account for system administration tasks.
Warning Be careful to remove only the necessary partitions. Removing other parti-
tions could result in data loss or a corrupted system environment.

Chapter 1: Introduction 5

1.5 Repository Convenctions

The CentOS Artwork Repository is supported by Subversion (http://subversion.tigris.org/),
a version control system which allows you to keep old versions of files and directories (usually
source code), keep a log of who, when, and why changes occurred, etc., like CVS, RCS or
SCCS.

When using Subversion there is one source repository and many working copies of that source
repository. The working copies are independent one another, can be distributed all around the
world and provide a local place for designers, documentors, translators and programmers to
perform their works in a descentralized way. The source repository, on the other hand, provides a
central place for all independent working copies to interchange data and provides the information
required to permit extracting previous versions of files at any time.

1.5.1 Repository policy

The CentOS Artwork Repository is a collaborative tool that anyone can have access
to. However, changing that tool in any form is something that should be requested in
centos-devel@centos.org mailing list. Generally, people download working copies from
CentOS Artwork Repository, study the repository organization, make some changes in their
working copies, make some tests to verify such changes do work the way expected and
finally request access to commit them up to the CentOS Artwork Repository (i.e., the source
repository) for others to benefit from them.

Once you’ve received access to commit your changes, there is no need for you to request per-
mission again to commit other changes from your working copy to CentOS Artwork Repository
as long as you behave as a good community citizen.

As a good community citizen one understand of a person who respects the work already done
for others and share ideas with authors before changing relevant parts of their work, specially in
situations when the access required to realize the changes has been granted already. Of course,
there is a time when conversation has taken place, the paths has been traced and changing the
work is so obvious that there is no need for you to talk about it; that’s because you already
did, you already built the trust to keep going. Anyway, the mailing list mentioned above is
available for sharing ideas in a way that good relationship between community citizens could be
constantly balanced.

The relationship between community citizens is monitored by repository administrators.
Repository administrators are responsible of granting everything goes the way it needs to go in
order for the CentOS Artwork Repository to comply its mission which is: to provide a colabo-
rative tool for The CentOS Community where The CentOS Project Corporate Identity is built
and maintained from The CentOS Community itself.

It is also important to remember that all source files inside CentOS Artwork Repository
should comply the terms of GNU General Public License in order for them to remain inside the
repository. See file trunk/Scripts/COPYING, for a complete license description.

1.5.2 Repository organization

The CentOS Artwork Repository uses a ‘trunk’, ‘branches’, and ‘tags’ organization.

‘trunk’
The ‘trunk’ directory organizes the main development line of CentOS Artwork
Repository. See Section 2.3 [Directories trunk], page 14, for more information.

‘branches’
The ‘branches’ directory oranizes intermediate development lines taken from the
main development line. See Section 2.1 [Directories branches], page 13, for more
information.

http://subversion.tigris.org/
mailto:centos-devel@centos.org
file:///home/centos/artwork/trunk/Scripts/COPYING

Chapter 1: Introduction 6

‘tags’

The ‘tags’ directory organizes frozen development lines taken either from the main
or the intermediate lines of development. See Section 2.2 [Directories tags], page 13,
for more information.

1.5.3 Repository file names

Inside the CentOS Artwork Repository, file names are all written in lowercase (e.g.,
‘01-welcome.png’, ‘splash.png’, ‘anaconda_header.png’, etc.) and directory names are all
written capitalized (e.g., ‘Identity’, ‘Themes’, ‘Motifs’, ‘TreeFlower’, etc.).

1.5.4 Repository work lines

Inside CentOS Artwork Repository there are four major work lines of production which are:
graphic design, documentation, localization and automation. These work lines describe different
areas of content production. Content production inside these specific areas may vary as much
as persons be working on them. Producing content in too many different ways may result
innapropriate in a collaborative environment like CentOS Artwork Repository where content
produced in one area depends somehow from content produced in another different area. So, a
content production standard is required.

1.5.4.1 Graphic design

The graphic design work line exists to cover brand design, typography design and themes design
mainly. Additionally, some auxiliar areas like icon design, illustration design (for documenta-
tion mainly), brushes design, patterns designs and palettes of colors are also included here for
completeness.

Inside CentOS Artwork Repository graphic design is performed through Inkscape
(http://www.inkscape.org/) and GIMP (http://www.gimp.org/). The Inkscape tool is
used to create and manipulate scalable vector graphics and export them to PNG format; it also
provides a command-line interface that we use to perform massive exportation from SVG files
to PNG files in automation scripts. On the other hand, GIMP is used to create and manipulate
rastered images, create brushes, patterns and palettes of colors.

Tip Combine both Inkscape and GIMP specific functionalities and possibilities to
produce very beautiful images.

The CentOS Project Corporate Visual Identity is made of different visual manifestations
(e.g., Distributions, Web sites, Stationery, etc.). Visual manifestations implement the corporate
identity concepts by mean of images. To produce these images, we decompose image production
in design models and artistic motifs.

Design models provide the structural information of images (i.e., dimension, position of com-
mon elements in the visible area, translation markers, etc.) and they are generally produced
as scalable vector graphics to take advantage of SVG standard, an XML-based standard which
describe scalable vector graphics.

Artistic motifs provide the visual style (i.e., the background information, the look and feel)
some design models need to complete the final image produced by automation scripts. Artistic
motifs are generally produced as rastered images.

The result produced from combining one design model with one artistic motif is what we
know as a theme. Inside themes directory structure (see Section 2.8 [Directories trunk Identity
Themes], page 19), you can find several design models and several artistic motifs independently
one another that can be albitrarily combined through theme rendition, a flexible way to produce
images for different visual manifestations in very specific visual styles. Inside themes direc-
tory structure, theme rendition is performed in ‘trunk/Identity/Themes/Motifs’ directory

http://www.inkscape.org/
http://www.gimp.org/

Chapter 1: Introduction 7

structure, the required design models are taken from ‘trunk/Identity/Themes/Models’ direc-
tory structure and the action itself is controlled by the render functionality of centos-art.sh
script.

In addition to theme rendition you can find direct rendition, too. Direct rendition is an-
other way of image production where there is no artistic motif at all but design models only.
Direct rendition is very useful to produce simple content that doesn’t are in need of specific
background information. Some of these contents are brands, icons and illustrations. Direct
rendition is performed in ‘trunk/Identity/Images’, the required design models are taken from
‘trunk/Identity/Models’ directory structure and the action itself is controlled by the render
functionality of centos-art.sh script.

See Section 2.4 [Directories trunk Identity], page 14, for more information about The CentOS
Corporate Identity and how graphic design fits on it.

1.5.4.2 Documentation

The documentation work line exists to describe what each directory inside the CentOS Artwork
Repository is for, the conceptual ideas behind them and, if possible, how automation scripts
make use of them.

The CentOS Artwork Repository documentation is supported by Texinfo, a documentation
system that uses a single source file to produce both online information and printed output.

The repository documentation is organized under ‘trunk/Manual’ directory structure and
uses the repository directories as reference. Each directory structure in the repository has a
documentation entry associated in the documentation manual. Directory documentation en-
tries are stored under ‘trunk/Manual/Directories’ directory structure and the action itself is
controlled by the help functionality of centos-art.sh script.

The help functionality let you create, edit and delete documentation entries in a way that
you don’t need to take care of updating menus, nodes and cross reference information inside
the manual structure; the functionality takes care of it for you. However, if you need to write
repository documentation that have nothing to do with repository directories (e.g., Preface,
Introduction and similar) you need to do it manually, there is no functionality to automate such
process yet.

See Section 2.30 [Directories trunk Manual], page 36, for more information on documentation.

1.5.4.3 Localization

The localization work line exists to provide the translation messages required to produce content
in different languages. Translation messages inside the repository are stored as portable objects
(e.g., .po, .pot) and machine objects (.mo) under ‘trunk/Locales’ directory structure.

The procedure used to localize content is taken from gettext standard specification. Basi-
cally, translatable strings are retrived from source files (e.g., Bash scripts, SVG, XHTML, XML,
etc.) in order to create portable objects and machine objects for them. These portable objects
are editable files that contain the information used by translators to do their work. On the other
hand, machine objects are produced to be machine-redable only, as its name implies, and are
produced from portable objects.

Since gettext needs to extract translatable strings form source files in order to let translators
to localize them, we are limitted to use source files supported by gettext program. This is not a
limitation at all since gettext supports most popular programming laguages (e.g., C, C++, Java,
Bash, Python, Perl, PHP and GNU Awk just to mention a few ones. Nevertheless, formats like
SVG, XHTML and Docbook don’t figure as supported formats in the list of gettext supported
source files.

To translate XML based source files like SVG, XHTML and Docbook we use the xml2po
program instead. The xml2po comes with the ‘gnome-doc-utils’ package and retrives trans-

Chapter 1: Introduction 8

latable strings from one XML file which are used to produce one portable object that has the
same format gettext portable objects have. With the portable object in place, we use xml2po
again to create the final translated XML, just with the same definition of the source file where
translatable strings were taken from (e.g., if we extract translatable strings from a SVG file, as
result we get the same SVG file but with translatable strings already localized —obviously, for
this to happen translators need to localize translatable strings inside the portable object first,
localization won’t appear as art of magic—). When using xml2po, the machine object is used
as temporal file to produce the final translated XML file.

Tip If you want to have your content localized inside CentOS Artwork Repository
be sure to use source files supported either by gettext or xml2po programs.

See Section 2.29 [Directories trunk Locales], page 35, for more information.

1.5.4.4 Automation

The automation work line exists to standardize content production in CentOS Artwork Repos-
itory. There is no need to type several tasks, time after time, if they can be programmed into
just one script that groups them all and then execute the script instead of all individual tasks.

The automation work line takes place under ‘trunk/Scripts’ directory structure. Here is
developed the centos-art.sh script, a bash script specially designed to automate most frequent
tasks (e.g., rendition, documentation and localization) inside the repository. Basically, the
centos-art.sh script is divided in several functionalities independent one another that perform
specific tasks and relaying on repository organization to work as expected.

Tip If you need to improve the way content is produced, look inside automation
scripts and make your improvement there for everyone to benefit.

See Section 2.31 [Directories trunk Scripts], page 36, for more information on automation.

1.5.5 Connection between directories

In order to produce content in CentOS Artwork Repository, it is required that all work lines
be connected somehow. This is the way automation scripts can know where to retrive the
information they need to work with (e.g., design model, translation messages, output location,
etc.). We build this kind of connection using two path constructions named master paths and
auxiliar paths.

The master path points only to directories that contain the source files (e.g., SVG files)
required to produce base content (e.g., PNG files) through automation scripts. Each master
path inside the repository may have several auxiliar paths associated, but auxiliar paths can
only have one master path associated.

The auxiliar paths can point either to directories or files. When an auxiliar path points to a
directory, that directory contains information that modifies somehow the content produced from
master paths (e.g., through translation messages) or provides the output information required
to know where to store the content produced from master path. When an auxiliar path points
to a file, that file has no other purpose but document the master path it refers to.

The relation between auxiliar paths and master paths is realized using one unique mas-
ter path and path information from repository second level directory structure. Gener-
ally, the master path is used like a path identifier and the second level directory structure
taken from the repository organization is considered the common part where the path iden-
tifier is append in. For example, consider we want to know what the auxiliar path are for
‘trunk/Identity/Models/Brands’ master path.

Chapter 1: Introduction 9

-----+---------------+----------------------------+------+-----------
Path | Suffix | Identifier |Prefix| Type
-----+---------------+----------------------------+------+-----------
A | |trunk/Identity/Models/Brands| | Directory

-----+---------------+----------------------------+------+-----------
B | trunk/Manual/|trunk/Identity/Models/Brands|.texi | File

-----+---------------+----------------------------+------+-----------
C | trunk/Locales/|trunk/Identity/Models/Brands| | Directory

-----+---------------+----------------------------+------+-----------
D | |trunk/Identity/Images/Brands| | Directory

-----+---------------+----------------------------+------+-----------
E | trunk/Locales/|trunk/Identity/Images/Brands|.texi | File

-----+---------------+----------------------------+------+-----------

A = Master path.
B = Auxiliar path to documentation entry.
C = Auxiliar path to translation messages.
D = Auxiliar path to final content output.
E = Auxiliar path to documentation entry.

Figure 1.1: Base path construction.

The configuration described above is used by direct rendition and can be used as reference to
organize other components that are equally produced through direct rendition in the repository.
To create new components that make use of direct rendition inside the repository, change just
the component name used above (e.g., ‘Brands’) to that one you want to add/create/use without
changing the path structure around it (e.g., suffix and prefix information).

The file organization used by theme rendition is extends direct rendition by separating design
models from background information. As a mnemotechnic resource helpful to better understand
this configuration, you can consider it as two independent lists, one of design models and one
of artistic motifs, which are arbitrary combined between themselves in order to render images
in specific ways. The possibilities of this configuration are endless and let us describe visual
manifestations with a very high level of details. For example, consider the organization used
to produce Anaconda images; for CentOS distribution major release 5; using ‘Default’ design
models and version ‘3’ of ‘Flame’ artistic motif:

Chapter 1: Introduction 10

-----+---------------+--+------+-----------
Path | Suffix | Identifier |Prefix| Type
-----+---------------+--+------+-----------
A | |trunk/Identity/Themes/Models/Default/Distro/5/Anaconda| | Directory

-----+---------------+--+------+-----------
B | trunk/Manual/|trunk/Identity/Themes/Models/Default/Distro/5/Anaconda|.texi | File

-----+---------------+--+------+-----------
C | trunk/Locales/|trunk/Identity/Themes/Models/Default/Distro/5/Anaconda| | Directory

-----+---------------+--+------+-----------
D | |trunk/Identity/Themes/Motifs/Flame/3/Distro/5/Anaconda| | Directory

-----+---------------+--+------+-----------
E | trunk/Locales/|trunk/Identity/Themes/Motifs/Flame/3/Distro/5/Anaconda|.texi | File

-----+---------------+--+------+-----------

A = Master path.
B = Auxiliar path to documentation entry.
C = Auxiliar path to translation messages.
D = Auxiliar path to final content output.
E = Auxiliar path to documentation entry.

Figure 1.2: Base path construction extended.

The Anaconda component is part of CentOS Distribution visual manifestation. Inside Cen-
tOS Distribution visual manifestation there are other components like Syslinux, Grub, Rhgb,
Gdm, Kdm, Gsplash and Ksplash that share a similar file organization to that described above
for Anaconda component. The way each of these components is produced is described in their
own documentation entry.

When one master path is changed, it is required that all related auxiliar path to it, change
too. This is required in order for master paths to retain their relation with their auxiliar paths.
This way, automation script are able to know where to retrive translation messages, where to
store final output images and where to look for documentation. If relation between master paths
and auxiliar paths is lost, there is no way for automation scripts to know where to retrive the
information required to automate tasks.

The auxiliar paths should never be modified under any reason but to satisfy the relationship
with the master path. Liberal change of auxiliar paths may suppress the conceptual idea they
were initially created for; and certainly, things may stop working the way they should.

1.5.6 Syncronizing path information

The master and auxiliar paths are useful to keep repository organized but introduce some compli-
cations when we work with files that use master path information as reference to build structural
information. In such cases, when a file is created, duplicated, deleted or removed, we use the
master path information to update documentation structure, update inclusions, menus, nodes
and cross reference information as well. To see the kind of complication we are talking about,
consider what would happen if one master path is changed once it already has a documenta-
tion entry inside the documentation structure. What would happen with document structure
definitions like file inclusion, menus, nodes and cross references?

Syncronizing path information is the action we use to keep all path information up to date
in the repository. This action implies both file movement and file content replacement in this
very specific order. File movement is the action we use to duplicate, delete and rename files and
directories in the repository. File content replacement is the action we use to replace content,
path information in this case, inside files in the repository.

Chapter 1: Introduction 11

The order followed to syncronize path information is relevant because the versioned nature
of the files we are working with. We don’t change path information first in files because that
implies a repository change we need to commit first before duplicate, delete or rename the file
where that change takes place. However, if we first perform the file movement, it is possible
to commit both file movement and file content replacement changes as if they were just one
change. In this case the file content replacement takes palce in the target location of file that
have been duplicated or renamed, not the one use as source location. This configuration is
specially useful when files are renamed (i.e., source file is copied to target location and then
removed from repository).

Warning There is no support for URLs actions inside centos-art.sh script. The
centos-art.sh script is designed to work with local files inside the working copy
only. If you need to perform URL actions directly, use Subversion commands instead.

1.5.7 Extending repository organization

Occasionly, you may find that new components of The CentOS Project Corporate Identity need
to be added to the repository in order to work them out. If that is the case, the first question
we need to ask ourselves, before start to create directories blindly all over, is: What is the right
place to store it?

The best place to find answers is in The CentOS Community (see page
http://wiki.centos.org/GettingHelp), but going there with hands empty is not
good idea. It may give the impression you don’t really care about. Instead, consider the
following suggestions to find your own comprehension in order to make your own propositions
based on it.

When extending respository structure it is very useful to bear in mind The CentOS Project
Corporate Identity Structure (see Section 2.4 [Directories trunk Identity], page 14) The CentOS
Mission and The CentOS Release Schema. The rest is just matter of choosing appropriate
names. It is also worth to know that each directory in the repository responds to a conceptual
idea that justifies its existence.

To build a directory structure, you need to define the conceptual idea first and later create the
directory. There are some locations inside the repository that already define some concepts you
probably want to reuse. For example, ‘trunk/Identity/Themes/Motifs’ to store theme artistic
motifs, ‘trunk/Identity/Themes/Models’ to store theme design models, ‘trunk/Manual’ to
store documentation files, ‘trunk/Locales’ to store translation messages, ‘trunk/Scripts’ to
store automation scripts and so on.

To illustrate this desition process let’s consider the ‘trunk/Identity/Themes/Motifs/TreeFlower/3’
directory structure as example. This directory can be read as: the theme development line
of version ‘3’ of ‘TreeFlower’ artistic motif. Additional, we can identify that artistic motifs
are part of themes as well as themes are part of The CentOS Project Corporate Identity.
These concepts are better described independently in each documentation entry related to the
directory structure as it is respectively shown in the list of commands bellow.

centos-art help --read turnk
centos-art help --read turnk/Identity
centos-art help --read turnk/Identity/Themes
centos-art help --read turnk/Identity/Themes/Motifs
centos-art help --read turnk/Identity/Themes/Motifs/TreeFlower
centos-art help --read turnk/Identity/Themes/Motifs/TreeFlower/3

The concepts behind other location can be found in the same way described above, just
change the path information used above to the one you are trying to know concepts for.

http://wiki.centos.org/GettingHelp

Chapter 1: Introduction 12

1.6 Send in Your Feedback

If you find an error in the CentOS Artwork Repository Manual, or if you have thought of a way
to make this manual better, we would like to hear from you! Create a new ticket in The CentOS
Artwork SIG web site (https://projects.centos.org/trac/artwork/).

If you have a suggestion for improving the documentation, try to be as specific as possible.
If you have found an error, include the section number and some of the surrounding text so we
can find it easily.

https://projects.centos.org/trac/artwork/

Chapter 2: The Repository Directories 13

2 The Repository Directories

The CentOS Artwork Repository uses directories to organize files and describe conceptual idea
about corporate identity. Such conceptual ideas are explained in each directory related docu-
mentation entry.

In this chapter you’ll learn what each directory inside The CentOS Artwork Repository is
for and so, how you can make use of them. For that purpose, the following list of directories is
available for you to explore:

2.1 The ‘branches’ Directory

2.1.1 Goals

This directory implements the Subversion’s branches concept in a trunk, branches, tags reposi-
tory structure.

2.1.2 Description

The ‘branches/’ directory structre provides the intermediate space for creating several instances
of ‘trunk/’ directory structure for parallel development and later merging changes back to
‘trunk/’ in the same parallel basis.

2.1.3 Usage

The ‘branches/’ directory structure is unused, so far.

2.1.4 See also

• See Section 2.2 [Directories tags], page 13.

• See Section 2.3 [Directories trunk], page 14.

• Subversion’s book (http://svnbook.red-bean.com/).

2.2 The ‘tags’ Directory

2.2.1 Goals

This directory implements the Subversion’s tags concept in a trunk, branches, tags repository
structure.

2.2.2 Description

The ‘tags/’ directory structre provides frozen branches. Generally, we use frozen branches
to make check-points in time for development lines under ‘branches/’ or ‘trunk/’ directory
structure.

2.2.3 Usage

The ‘tags/’ directory structure is unused, so far.

2.2.4 See also

• See Section 2.1 [Directories branches], page 13.

• See Section 2.3 [Directories trunk], page 14.

• Subversion’s book (http://svnbook.red-bean.com/).

http://svnbook.red-bean.com/
http://svnbook.red-bean.com/

Chapter 2: The Repository Directories 14

2.3 The ‘trunk’ Directory

2.3.1 Goals

This directory implements the Subversion’s trunk concept in a trunk, branches, tags repository
structure.

2.3.2 Description

The ‘trunk/’ directory structure is the main development line inside the CentOS Artwork Repos-
itory and organizes the following sections:

Identity

This section describes the implementation of The CentOS Project Corporate Iden-
tity. This place is perfect to consolidate The CentOS Artwork SIG. If you are
interested in producing art works for The CentOS Project, this place is for you.
See Section 2.4 [Directories trunk Identity], page 14, for more information.

Scripts

This section describes the implementation of centos-art.sh script, a bash scripts
specially designed to automate most frequent tasks in the repository (e.g., image
rendition, documenting directory structures, translating content, etc.). If you can’t
resist the idea of automating repeatable tasks, then take a look here.
See Section 2.31 [Directories trunk Scripts], page 36, for more information.

2.3.3 Usage

It seems to be no other use for this directory but to organize the sections described above.

2.3.4 See also

• See Section 2.1 [Directories branches], page 13.
• See Section 2.2 [Directories tags], page 13.
• Subversion’s book (http://svnbook.red-bean.com/).

2.4 The ‘trunk/Identity’ Directory

2.4.1 Goals

This section descirbes the implementation of The CentOS Project Corporate Identity.

2.4.2 Description

The CentOS Project Corporate Identity is the “persona” of the organization known as The
CentOS Project. The CentOS Project Corporate Identity plays a significant role in the way the
CentOS Project, as organization, presents itself to both internal and external stakeholders. In
general terms, the CentOS Project Corporate Identity expresses the values and ambitions of the
CentOS Project organization, its business, and its characteristics.

The CentOS Project Corporate Identity provides visibility, recognizability, reputation, struc-
ture and identification to The CentOS Project organization by means of Corporate Design,
Corporate Communication, and Corporate Behaviour.

2.4.2.1 Corporate Design

The CentOS Project Corporate Design is applied to every single visual manifestations The
CentOS Project as organization wants to express its existence. Examples of the most relevant

http://svnbook.red-bean.com/

Chapter 2: The Repository Directories 15

visual manifestations inside The CentOS Project are The CentOS Distribution, The CentOS
Web and The CentOS Stationery.

The CentOS Project Corporate Design is organized in the following work-lines:

Brands

The CentOS Brand provides the one unique name or trademark that connects the
producer with their products. In this case, the producer is The CentOS Project and
the products are The CentOS Project visual manifestations.

See Section 2.5 [Directories trunk Identity Brands], page 18, for more information.

Palettes

The CentOS Palettes provide the Corporate Color information used along The Cen-
tOS Project visual manifestations.

See Section 2.7 [Directories trunk Identity Palettes], page 19, for more information.

Fonts

The CentOS Fonts provide the Corporate Typography information used along The
CentOS Project visual manifestations.

See Section 2.6 [Directories trunk Identity Fonts], page 18, for more information.

Themes

The CentOS Themes provide the Corporate Structure and the Corporate Visual
Style used along The CentOS Project visual manifestations.

See Section 2.8 [Directories trunk Identity Themes], page 19, for more information.

Manual

This section organizes the CentOS Artwork Repository Manual (i.e., the documen-
tation manual you’re reading right now). If you are interested on improving The
CentOS Artwork Repository Manual, in this place you’ll find the Texinfo documen-
tation structure you need to work with.

See Section 2.30 [Directories trunk Manual], page 36, for more information.

Locales

This section organizes production of translation messages for Identity, Documenta-
tion and Scripts. This place is perfect to consolidate The CentOS Translation SIG.
If you love translating, you’ll find lot of messages waiting for you to translate here.

See Section 2.29 [Directories trunk Locales], page 35, for more information.

2.4.2.2 Corporate Communication

The CentOS Project Corporate Communication is based on Community Communication. In
that sake, the following media are available:

• The CentOS Chat (#centos, #centos-social, #centos-devel on irc.freenode.net)

• The CentOS Mailing Lists (http://lists.centos.org/).

• The CentOS Forums (http://forums.centos.org/).

2.4.2.3 Corporate Behaviour

The CentOS Project Corporate Behaviour is based on Community Behaviour.

http://lists.centos.org/
http://forums.centos.org/

Chapter 2: The Repository Directories 16

2.4.2.4 Corporate Structure

The CentOS Project Corporate Structure is based on a Monolithic Corporate Visual Identity
Structure. In this structure, one unique name and one unique visual style is used in all visual
manifestation of The CentOS Project.

In a monolithic corporate visual identity structure, internal and external stakeholders use to
feel a strong sensation of uniformity, orientation, and identification with the organization. No
matter if you are visiting web sites, using the distribution, or acting on social events, the one
unique name and one unique visual style connects them all to say: Hey! we are all part of The
CentOS Project.

Other corporate structures for The CentOS Project have been considered as well. Such is
the case of producing one different visual style for each major releasae of CentOS Distribution.
This structure isn’t inconvenient at all, but some visual contradictions could be introduced if it
isn’t applied correctly and we need to be aware of it. To apply it correctly, we need to know
what The CentOS Project and which are the visual manifestations it is made of.

The CentOS Project, as organization, is mainly made of (but not limited to) three visual
manifestions: Distribution, Web and Stationery. Inside the Distribution visual manifestations,
The CentOS Project maintains near to four different major releases of CentOS Distribution,
parallely in time. Inside Web and Stationery visual manifestations content is visually produced
to fit non-release-specifc content but treat it as a visual manifestation properly. For example,
consider that there is no a complete web site for each major release of CentOS distribution, but
one web site to cover the information related to all release-specific visual manifestations like
CentOS distribution.

In order to produce the correct corporate structure for The CentOS Project we need to
concider all the visual manifestations The CentOS Project is made of, not just one of them. If
one different visual style is used for each major release of The CentOS Distribution, which one
of those different visual styles would be used to cover the remaining visual manifestations The
CentOS Project is made of (e.g., web sites and stationery)?

Probably you are thinking, that’s right, but The CentOS Brand connects them all already,
why would we need to join them up into the same visual style too, isn’t it more work to do, and
harder to maintain?

Harder to maintain, more work to do, probably. Specially when you consider that The
CentOS Project has proven stability and consistency through time and that, certainly, didn’t
come through swinging magical wangs or something but hardly working out to automate tasks
and providing maintainance through time. Said that, we consider that The CentOS Project
Visual Structure should be consequent with such stability and consistency tradition. It is true
that The CentOS Brand does connect all the visual manifestations it is present on, but that
connection would be stronger if one unique visual style backups it. In fact, whatever thing you
do to strength the visual connection among The CentOS Project visual manifestations would
be very good in favor of The CentOS Project recognition.

Obviously, having just one visual style in all visual manifestations for eternity would be a
very boring thing and would give the idea of a visually dead project. So, there is no problem
on creating a brand new visual style for each new major release of The CentOS Distribution,
in order to refresh The CentOS Distribution visual style; the problem is in not propagating the
brand new visual style created for the new release of CentOS Distribution to all other visual
manifestations The CentOS Project is made of, in a way The CentOS Project could be recognized
no matter what visual manifestation be in front of us. Such lack of uniformity is what introduces
the visual contradition we are precisely trying to solve by mean of themes production in the
CentOS Artwork Repository.

Chapter 2: The Repository Directories 17

2.4.3 Usage

The ‘trunk/Identity/’ directory structure is organized in renderable and non-renderable di-
rectories. Generally, renderable directories are stored under ‘trunk/Identity/Images’ and
‘trunk/Identity/Themes/Motifs’ directories. These directories contain the image files used to
implemente The CentOS Project Corporate Identity.

2.4.3.1 Rendition

In order to produce content inside rendereble directories, you can use the following command:

centos-art render trunk/Identity/Path/To/Dir

Warning If the centos-art command-line is not found in your workstation, it is
probably because you haven’t prepared your workstation for using The CentOS Art-
work Repository yet. See Section 2.36 [Directories trunk Scripts Functions Prepare],
page 60, for more information.

This command takes one design template (a.k.a., design model) from the template directory
and creates an instance of it in order to apply translation messages, if any. Later, using the
translated design template instance, the command renders the final content based on whether
the design template instance is a SVG file or XHTML. If the design template instace is a SVG
file, the final content produced is a PNG image. On the other hand, if the design template
instance is a XHTML file, the final content produced is a XHTML file. The rendition flow
described so far is known as the centos-art.sh script base-rendition flow.

Besides the base-rendition flow, the centos-art provides post-rendition and last-rendition
flows. The post-rendition flow is applied to files produced as result of base-rendition flow under
the same directory structure. For example, you can use post-rendition action to convert the PNG
base output into different outputs formats (e.g., JPG, PDF, etc.) before passing to process
the next file in the same directory structure. The last-rendition flow, on the other hand, is
applied to all files produced as result of both base-rendition and post-rendition flows in the same
directory structure, just before passing to process a different directory structure. For example,
the ‘Preview.png’ image from Ksplash component is made of three images. In order to build
the ‘Preview.png’ image through centos-art.sh we need to wait for all the three images the
‘Preview.png’ image is made of to be rendered in order to combine them all together into just
one image (i.e., the ‘Preview.png’ image). This is something we can’t do using post-rendition
flow.

Inside ‘trunk/Identity’ directory structure, you can find that base-rendition, post-rendition
and last-rendition flows can be combined to build directory-specific rendition. The directory-
specific rendition exists to automatically process specific renderable directories in very specific
ways. Using directory-specific rendition speeds up production of different components like Sys-
linux, Grub, Gdm, Kdm and Ksplash that require intermediate formats or even several inde-
pendent files, in order to reach the final content construction. Directory-specific rendition is a
way to programmatically describe how specific art works are built in and organized inside The
CentOS Artwork Repository. Such descriptions have been added to centos-art.sh command-
line to let you produce them all with just one single command, as fast as your machine can be
able to handle it.

See Section 2.37 [Directories trunk Scripts Functions Render], page 65, for more information
about the render functionality of centos-art.sh script.

2.4.3.2 Documentation

2.4.3.3 Localization

Chapter 2: The Repository Directories 18

2.4.4 See also

See http://en.wikipedia.org/Corporate_identity (and related links), for general informa-
tion on Corporate Identity.

Specially useful has been, and still is, the book Corporate Identity by Wally Olins (1989).
This book provides many conceptual ideas we’ve used as base to build The CentOS Artwork
Repository.

2.5 The ‘trunk/Identity/Brands’ Directory

2.5.1 Goals

• ...

2.5.2 Description

2.5.3 Usage

2.5.4 See also

2.6 The ‘trunk/Identity/Fonts’ Directory

2.6.1 Goals

This section exists to organize digital typographies used by the CentOS project.

2.6.2 Description

2.6.3 Usage

The CentOS corporate identity is attached to ‘DejaVu LGC’ font-family. Whatever artwork you
design for CentOS project, that requires typography usage, must be done using ‘DejaVu LGC’
font-family.

Recommendation-1:
For screen desings (e.g., anything that final destination will never be printed on
paper or any medium outside computer screens) use ‘DejaVu LGC Sans’ font-family.

Recommendation-2:
For non-screen designs (e.g., anything that final desition will be printed on paper or
any other medium outside computer screens) use ‘DejaVu LGC Serif’ font-family.
As convenction files described in this rule are stored under ‘Stationery’ directories.

The only execption for the two recommendations above is the typography used inside CentOS
logo. The CentOS logo is the main visual representation of the CentOS project so the typography
used in it must be the same always, no matter where it be shown. It also has to be clear enough
to dismiss any confussion between similar typefaces (e.g., the number one (1) sometimes is
confuesed with the letter ‘el’ (l) or letter ‘ai’ (i)).

As CentOS logo typography convenction, the word ‘CentOS’ uses ‘Denmark’ typography as
base, both for the word ‘CentOS’ and the phrase ‘Community Enterprise Operating System’.
The phrase size of CentOS logo is half the size in poits the word ‘CentOS’ has and it below
‘CentOS’ word and aligned with it on the left. The distance between ‘CentOS’ word and phrase
‘Community Enterprise Operating System’ have the size in points the phrase has.

When the CentOS release brand is built, use ‘Denmark’ typography for the release number.
The release number size is two times larger (in height) than default ‘CentOS’ word. The separa-
tion between release number and ‘CentOS’ word is twice the size in points of separation between
‘CentOS’ word and phrase ‘Community Enterprise Operating System’.

http://en.wikipedia.org/Corporate_identity

Chapter 2: The Repository Directories 19

Another component inside CentOS logo is the trademark symbol (TM). This symbol specifies
that the CentOS logo must be consider a product brand, even it is not a registered one. The
trademark symbol uses DejaVu LGC Sans Regular typography. The trademark symbol is aligned
right-top on the outter side of ‘CentOS’ word. The trademark symbol must not exceed haf the
distance, in points, between ‘CentOS’ word and the release number on its right.

It would be very convenient for the CentOS Project and its community to to make a registered
trademark () of CentOS logo. To make a register trademark of CentOS Logo prevents legal
complications in the market place of brands. It grants the consistency, through time, of CentOS
project corporate visual identity.

Note The information about trademarks and corporate identity is my personal
interpretation of http://en.wikipedia.org/Corporate_identity and
http://en.wikipedia.org/Trademark description. If you have practical
experiences with these affairs, please serve yourself to improve this section with
your reasons.

2.6.4 See also

2.7 The ‘trunk/Identity/Palettes’ Directory

2.7.1 Goals

• ...

2.7.2 Description

• ...

2.7.3 Usage

• ...

2.7.4 See also

2.8 The ‘trunk/Identity/Themes’ Directory

2.8.1 Goals

The ‘trunk/Identity/Themes/’ directory exists to organize production of CentOS themes.

2.8.2 Description

2.8.2.1 Work Flow

Initially, we start working themes on their trunk development line (e.g.,
‘trunk/Identity/Themes/Motifs/TreeFlower/’), here we organize information that
cannot be produced automatically (i.e., background images, concepts, color information,
screenshots, etc.).

Later, when theme trunk development line is considered “ready” for implementation
(e.g., all required backgrounds have been designed), we create a branch for it (e.g.,
‘branches/Identity/Themes/Motifs/TreeFlower/1/’). Once the branch has been created,
we forget that branch and continue working the trunk development line while others (e.g., an
artwork quality assurance team) test the new branch for tunning it up.

Once the branch has been tunned up, and considered “ready” for release, it is freezed un-
der ‘tags/’ directory (e.g., ‘tags/Identity/Themes/Motifs/TreeFower/1.0/’) for packagers,

http://en.wikipedia.org/Corporate_identity
http://en.wikipedia.org/Trademark

Chapter 2: The Repository Directories 20

webmasters, promoters, and anyone who needs images from that CentOS theme the tag was
created for.

Both branches and tags, inside CentOS Artwork Repository, use numerical values to identify
themselves under the same location. Branches start at one (i.e., ‘1’) and increment one unit for
each branch created from the same trunk development line. Tags start at zero (i.e., ‘0’) and
increment one unit for each tag created from the same branch development line.

Convenction Do not freeze trunk development lines using tags directly. If you think
you need to freeze a trunk development line, create a branch for it and then freeze
that branch instead.

The trunk development line may introduce problems we cannot see immediatly. Certainly, the
high changable nature of trunk development line complicates finding and fixing such problems.
On the other hand, the branched development lines provide a more predictable area where only
fixes/corrections to current content are commited up to repository.

If others find and fix bugs inside the branched development line, we could merge such
changes/experiences back to trunk development line (not visversa) in order for future branches,
created from trunk, to benefit.

Time intervals used to create branches and tags may vary, just as different needs may arrive.
For example, consider the release schema of CentOS distribution: one major release every 2 years,
security updates every 6 months, support for 7 years long. Each time a CentOS distribution
is released, specially if it is a major release, there is a theme need in order to cover CentOS
distribution artwork requirements. At this point, is where CentOS Artwork Repository comes
up to scene.

Before releasing a new major release of CentOS distribution we create a branch for one
of several theme development lines available inside the CentOS Artwork Repository, perform
quality assurance on it, and later, freeze that branch using tags. Once a the theme branch
has been frozen (under ‘tags/’ directory), CentOS Packagers (the persons whom build CentOS
distribution) can use that frozen branch as source location to fulfill CentOS distribution artwork
needs. The same applies to CentOS Webmasters (the persons whom build CentOS websites),
and any other visual manifestation required by the project.

2.8.3 Usage

In this location themes are organized in “Models” —to store common information— and
“Motifs”—to store unique information. At rendering time, both motifs and models are com-
bined to produce the final CentOS themes. CentOS themes can be tagged as “Default” or
“Alternative”. CentOS themes are maintained by CentOS community.

2.8.4 See also

2.9 The ‘trunk/Identity/Themes/Models’ Directory

2.9.1 Goals

• Organize theme models.

2.9.2 Description

Theme models let you modeling characteristics (e.g., dimensions, translation markers, position
of each element on the display area, etc.) common to all themes. Theme models let you reduce
the time needed when propagating artistic motifs to different visual manifestations.

Theme models serves as a central pool of design templates for themes to use. This way you
can produce themes with different artistic motifs but same characteristics.

Chapter 2: The Repository Directories 21

2.9.3 Usage

Default Design Model
Default Design Models for CentOS Themes provide the common structural infor-
mation (e.g., image dimensions, translation markers, trademark position, etc.) the
centos-art script uses to produce images when no other design model is specified.

Alternative Design Models
CentOS alternative theme models exist for people how want to use a different visual
style on their installations of CentOS distribution. As the visual style is needed
for a system already installed components like Anaconda are not required inside
alternative themes. Inside alternative themes you find post-installation visual style
only (i.e. Backgrounds, Display Managers, Grub, etc.). CentOS alternative themes
are maintained by CentOS Community.

2.9.4 See also

2.10 The ‘trunk/Identity/Themes/Models/Default’ Directory

2.10.1 Goals

Default Design Models for CentOS Themes provide design models for the following components:

Distribution
Design models for CentOS Distribution (e.g., Anaconda, Firstboot, Gdm, Grub,
Gsplash, Kdm, Ksplash, Rhgb and Syslinux, etc.). See Section 2.12 [Directories
trunk Identity Themes Models Default Distro], page 22, for more information.

Concept Design models to illustrate Artistic Motifs Concepts. See Section 2.11 [Directories
trunk Identity Themes Models Default Concept], page 22, for more information.

Promotion
Design models for CentOS Promotion stuff (e.g., installation media, posters, etc.).
— Removed(xref:Directories trunk Identity Themes Models Default Promo) —, for
more information.

2.10.2 Description

This directory implements the concept of Default Design Models for CentOS Themes. Default
Design Models for CentOS Themes provide the common structural information (e.g., image di-
mensions, translation markers, trademark position, etc.) the centos-art script uses to produce
images when no other design model is specified.

Deisgn models in this directory do use the CentOS Release Brand. The CentOS Release
Brand is a combination of both The CentOS Type and The CentOS Release Schema used to
illustrate the major release of CentOS Distribution the image produced belongs to. — Re-
moved(xref:Directories trunk Identity Models Tpl Brands) —, for more information.

2.10.3 Usage

The CentOS Project maintains near to four different major releases of CentOS Distribution.
Each major release of CentOS Distribution has internal differences that make them unique and,
at the same time, each CentOS Distribution individually is tagged into the one unique visual
manifestation (i.e., Distribution). So, how could we implement the monolithic visual structure
in one visual manifestation that has internal difference?

To answer this question we broke the question in two parts and later combined the resultant
answers to build a possible solution.

Chapter 2: The Repository Directories 22

How to remark the internal differences visually?
Merge both The CentOS Project Release Schema into The CentOS Project Trade-
mark to build The CentOS Project Release Trademark. The CentOS Project Re-
lease Trademark remarks two things: first, it remarks the image is from The CentOS
Project and second, it remarks which major release of CentOS Distribution does the
image belongs to. — Removed(xref:Directories trunk Identity Models Tpl Brands)
—, for more information on how to develop and improve The CentOS Project Brand.

How to remark the visual resemblance?
Use a common artistic motifs as background for all CentOS Distribution images.
See Section 2.23 [Directories trunk Identity Themes Motifs], page 26, for more in-
formation.

So, combining answers above, we could conclude that:
In order to implement the CentOS Monolithic Visual Structure on CentOS Dis-
tribution visual manifestations, a CentOS Release Trademark and a background
information based on one unique artistic motif should be used in all remarkable
images The CentOS Distribution visual manifestation is made of.

Important Remarking the CentOS Release Schema inside each major release of
CentOS Distribution —or similar visual manifestations— takes high attention inside
The CentOS Project corporate visual identity. It should be very clear for everyone
which major release of CentOS Distribution is being used.

2.10.4 See also

• Section 2.8 [Directories trunk Identity Themes], page 19
• Section 2.9 [Directories trunk Identity Themes Models], page 20
• Section 2.23 [Directories trunk Identity Themes Motifs], page 26

2.11 The ‘trunk/Identity/Themes/Models/Default/Concept’
Directory

2.11.1 Goals

• ...

2.11.2 Description

• ...

2.11.3 Usage

• ...

2.11.4 See also

2.12 The ‘trunk/Identity/Themes/Models/Default/Distro’
Directory

2.12.1 Goals

This directory provides design models to produce image files for the following CentOS Distribu-
tion components:

Syslinux Contains design models for syslinux, the program used to boot the CentOS Dis-
tribution installation media. See Section 2.21 [Directories trunk Identity Themes
Models Default Distro Syslinux], page 26, for more information.

Chapter 2: The Repository Directories 23

Anaconda Contains design models for Anaconda, the program used to install CentOS Distri-
bution. See Section 2.13 [Directories trunk Identity Themes Models Default Distro
Anaconda], page 24, for more information.

Firstboot Contains design models for the first boot program used to configure the maching
onece installed. See Section 2.14 [Directories trunk Identity Themes Models Default
Distro Firstboot], page 24, for more information.

Rhgb Contains design models for CentOS Graphical Boot, the program used to show the
boot process from Grub to Display Manager. See Section 2.20 [Directories trunk
Identity Themes Models Default Distro Rhgb], page 26, for more information.

Gdm Contains design models for GNOME Display Manager, the program used to log
into the manchine once installed and configured. See Section 2.15 [Directories trunk
Identity Themes Models Default Distro Gdm], page 24, for more information.

Kdm Contains design models for KDE Display Manager, the program used to log into the
manchine once installed and configured. See Section 2.18 [Directories trunk Identity
Themes Models Default Distro Kdm], page 25, for more information.

Grub Contains design models for GRUB (Grand Unified Boot Loader), the program used
to boot the machine into an operating system. See Section 2.18 [Directories trunk
Identity Themes Models Default Distro Kdm], page 25, for more information.

Gsplash Contains design models for GNOME splash, the program used to show the progress
information while user’s graphical session is loading. See Section 2.17 [Directories
trunk Identity Themes Models Default Distro Gsplash], page 25, for more informa-
tion.

Ksplash Contains design models for KDE splash, the program used to show the progress
information while user’s graphical session is loading. See Section 2.19 [Directories
trunk Identity Themes Models Default Distro Ksplash], page 25, for more informa-
tion.

2.12.2 Description

The CentOS Distribution visual style is controlled by image files. These image files are packaged
inside The CentOS Distribution and made visible once such packages are installed and executed.
The way to go for changing The CentOS Distribution visual style is changing all those image
files to add the desired visual style first and later, repackage them to make them available inside
the final iso files of CentOS Distribution.

2.12.3 Usage

This directory provides organizationl structure to store default design models for CentOS
Themes of CentOS Distribution and so it should be considered to be used.

When a new component is added to CentOS Distribution, this is the directory you need to
go for specifying design models for image files inside such component.

The procedure to follow is creatig a directory for each component using its very same name
(e.g., the directory ‘Anaconda’ stores image files for Anaconda component, the installer program).
Inside the directory, you need to create one scalable vector graphic for each image file inside
the component you want to produce images for. This, in order to set image dimensions, image
file-name, position of trademarks in the final image, translation markers and whatever common
information you need to have specified in them when rendered by centos-art script.

Sometimes, between major releases, image files inside packages can be added, removed or
just change their names. In order to describe such image files variations, the design models
directory structure is organized in the same way the file variations are introduced (i.e., through

Chapter 2: The Repository Directories 24

The CentOS Project Release Schema). So, each major release of CentOS Distribution does have
its own design model directory structure in this directory.

When a whole package is removed from one or all CentOS Distribution major releases, the
design models directory structure releated to it is no longer used. However it could be very useful
for historical reasons. Also, someone could feel motivated enough to keep himself documenting
it or supporting it for whatever reason.

2.12.4 See also

2.13 The ‘trunk/Identity/Themes/Models/Default/Distro/Anaconda’
Directory

2.13.1 Goals

• ...

2.13.2 Description

2.13.3 Usage

2.13.4 See also

2.14 The ‘trunk/Identity/Themes/Models/Default/Distro/Firstboot’
Directory

2.14.1 Goals

• ...

2.14.2 Description

• ...

2.14.3 Usage

• ...

2.14.4 See also

2.15 The ‘trunk/Identity/Themes/Models/Default/Distro/Gdm’
Directory

2.15.1 Goals

• ...

2.15.2 Description

• ...

2.15.3 Usage

• ...

2.15.4 See also

Chapter 2: The Repository Directories 25

2.16 The ‘trunk/Identity/Themes/Models/Default/Distro/Grub’
Directory

2.16.1 Goals

• ...

2.16.2 Description

• ...

2.16.3 Usage

• ...

2.16.4 See also

2.17 The ‘trunk/Identity/Themes/Models/Default/Distro/Gsplash’
Directory

2.17.1 Goals

• ...

2.17.2 Description

• ...

2.17.3 Usage

• ...

2.17.4 See also

2.18 The ‘trunk/Identity/Themes/Models/Default/Distro/Kdm’
Directory

2.18.1 Goals

• ...

2.18.2 Description

• ...

2.18.3 Usage

• ...

2.18.4 See also

2.19 The ‘trunk/Identity/Themes/Models/Default/Distro/Ksplash’
Directory

2.19.1 Goals

• ...

2.19.2 Description

• ...

Chapter 2: The Repository Directories 26

2.19.3 Usage

• ...

2.19.4 See also

2.20 The ‘trunk/Identity/Themes/Models/Default/Distro/Rhgb’
Directory

2.20.1 Goals

• ...

2.20.2 Description

• ...

2.20.3 Usage

• ...

2.20.4 See also

2.21 The ‘trunk/Identity/Themes/Models/Default/Distro/Syslinux’
Directory

2.21.1 Goals

• ...

2.21.2 Description

• ...

2.21.3 Usage

• ...

2.21.4 See also

2.22 The ‘trunk/Identity/Themes/Models/Default/Posters’
Directory

2.22.1 Goals

• ...

2.22.2 Description

• ...

2.22.3 Usage

• ...

2.22.4 See also

2.23 The ‘trunk/Identity/Themes/Motifs’ Directory

Chapter 2: The Repository Directories 27

2.23.1 Goals

The ‘trunk/Identity/Themes/Motifs’ directory exists to:

• Organize CentOS themes’ artistic motifs.

2.23.2 Description

The artistic motif of theme is a graphic design component that provides the visual style of
themes, it is used as pattern to connect all visual manifestations inside one unique theme.

Artistic motifs are based on conceptual ideas. Conceptual ideas bring the motivation, they are
fuel for the engines of human imagination. Good conceptual ideas may produce good motivation
to produce almost anything, and art works don’t escape from it.

‘TreeFlower’
CentOS like trees, has roots, trunk, branches, leaves and flowers. Day by day they
work together in freedom, ruled by the laws of nature and open standards, to show
the beauty of its existence.

‘Modern’ Modern, squares and circles flowing up.

If you have new conceptual ideas for CentOS, then you can say that you want to create a new
artistic motif for CentOS. To create a new artistic motif you need to create a directory under
‘Identity/Themes/Motifs/’ using a name coherent with your conceptual idea. That name will
be the name of your artistic motif. If possible, when creating new conceptual ideas for CentOS,
think about what CentOS means for you, what does it makes you feel, take your time, think
deep, and share; you can improve the idea as time goes on.

Once you have defined a name for your theme, you need to create the motif structure of your
theme. The motif structure is the basic direcotry structure you’ll use to work your ideas. Here
is where you organize your graphic design projects.

To add a new motif structure to CentOS Artwork Repository, you need to use the centos-art
command line in the ‘Identity/Themes/Motifs/’ directory as described below:

centos-art add --motif=ThemeName

The previous command will create the basic structure of themes for you. The basic structure
produced by centos-art command is illustrated in the following figure:

trunk/Identity/Themes/Motifs/$ThemeName/
|-- Backgrounds
| |-- Img
| ‘-- Tpl
|-- Info
| |-- Img
| ‘-- Tpl
|-- Palettes
‘-- Screenshots

2.23.3 Usage

When designing artistic motifs for CentOS, consider the following recommendations:

• Give a unique (case-sensitive) name to your Motif. This name is used as value wherever
theme variable ($THEME) or translation marker (=THEME=) is. Optionally, you can add
a description about inspiration and concepts behind your work.

• Use the location ‘trunk/Identity/Themes/Motifs/$THEME/’ to store your work. If it
doesn’t exist create it. Note that this require you to have previous commit access in CentOS
Artwork Repository.

Chapter 2: The Repository Directories 28

• The CentOS Project is using the blue color (#204c8d) as base color for its corporate visual
identity. Use such base corporate color information as much as possible in your artistic
motif designs.

• Try to make your design fit one of the theme models.
• Feel free to make your art enterprise-level and beautiful.
• Add the following information on your artwork (both in a visible design area and document

metadata):
• The name (or logo) of your artistic motif.
• The copyright sentence: Copyright (C) YEAR YOURNAME

• The license under which the work is released. All CentOS Art
works are released under Creative Common Share-Alike License 3.0
(http://creativecommons.org/licenses/by-sa/3.0/).

2.23.4 See also

The ‘Backgrounds/’ directory is used to organize artistic motif background images and the
projects used to build those images.

Background images are linked (using the import feature of Inkscape) inside almost all theme
art works. This structure let you make centralized changes on the visual identity and propagate
them quickly to other areas.

In this configuration you design background images for different screen resolutions based on
the theme artistic motif.

You may create different artistic motifs propositions based on the same conceptual idea. The
conceptual idea is what defines a theme. Artistic motifs are interpretations of that idea.

Inside this directory artistic motifs are organized by name (e.g., TreeFlower, Modern, etc.).
Each artistic motif directory represents just one unique artistic motif.
The artistic motif is graphic design used as common pattern to connect all visual manifesta-

tions inside one unique theme. The artistic motif is based on a conceptual idea. Artistic motifs
provide visual style to themes.

Designing artistic motifs is for anyone interested in creating beautiful themes for CentOS.
When building a theme for CentOS, the first design you need to define is the artistic motif.

Inside CentOS Artwork Repository, theme visual styles (a.k.a., artistic motifs) and theme
visual structures (a.k.a., design models) are two different working lines. When you design an
artistic motif for CentOS you concentrate on its visual style, and eventualy, use the centos-
art command line interface to render the visual style, you are currently producing, against an
already-made theme model in order to produce the final result. Final images are stored under
‘Motifs/’ directory using the model name, and the model directory structure as reference.

The artistic motif base structure is used by centos-art to produce images automatically.
This section describes each directory of CentOS artistic motif base structure.

The ‘Backgrounds/’ directory is probably the core component, inside ‘Motifs/’ directory
structure. Inside ‘Backgrounds/’ directory you produce background images used by almost all
theme models (e.g., Distribution, Websites, Promotion, etc.). The ‘Backgrounds/’ directory can
contain subdirectories to help you organize the design process.

2.24 The ‘trunk/Identity/Themes/Motifs/Flame’ Directory

2.24.1 Goals

This section describes the Flame artistic motif. This section may be useful for anyone interested
in reproducing the Flame artistic motif, or in creating new artistic motifs for The CentOS
Project corporate visual identity.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Chapter 2: The Repository Directories 29

2.24.2 Description

The Flame artistic motif was built using the flame filter of Gimp 2.2 in CentOS 5.5.
The flame filter of Gimp can produce stunning, randomly generated fractal patterns. The

flame filter of Gimp gives us a great oportunity to reduce the time used to produce new artistic
motifs, because of its “randomly generated” nature. Once the artistic motif be created, it is
propagated through all visual manifestations of CentOS Project corporate visual identity using
the ‘centos-art.sh’ script (see Section 2.31 [Directories trunk Scripts], page 36) inside the
CentOS Artwork Repository.

To set the time intervals between each new visual style production, we could reuse the CentOS
distribution major release schema. I.e., we could produce a new visual style, every two years,
based on a new “randomly generated” flame pattern, and publish the whole corporate visual
identity (i.e., distribution stuff, promotion stuff, websites stuff, etc.) with the new major release
of CentOS distribution all together at once.

Producing a new visual style is not one day’s task. Once we have defined the artistic motif, we
need to propagate it through all visual manifestations of The CentOS Project corporate visual
identity. When we say that we could produce one new visual style every two years we really
mean: to work two years long in order to propagate a new visual style to all visual manifestations
of The CentOS Project corporate visual identity.

Obviously, in order to propagate one visual style to all different visual manifestations of The
CentOS Project corporate visual identity, we need first to know which the visual manifestations
are. To define which visual manifestations are inside The CentOS Project corporate visual
identity is one of the goals the CentOS Artwork Repository and this documentation manual are
both aimed to satisfy.

Once we define which the visual manifestation are, it is possible to define how to produce
them, and this way, organize the automation process. Such automation process is one of the
goals of ‘centos-art.sh’ script.

With the combination of both CentOS Artwork Repository and ‘centos-art.sh’ scripts
we define work lines where translators, programmers, and graphic designers work together to
distribute and reduce the amount of time employed to produce The CentOS Project monolithic
corporate identity.

From a monolithic corporate visual identity point of view, notice that we are producing a
new visual style for the same theme (i.e., Flame). It would be another flame design but still a
flame design. This idea is very important to be aware of, because we are somehow “refreshing”
the theme, not changing it at all.

This way, as we are “refreshing” the theme, we still keep oursleves inside the monolithic
conception we are trying to be attached to (i.e., one unique name, and one unique visual style
for all visual manifestations).

Producing artistic motifs is a creative process that may consume long time, specially for
people without experienced knowledge on graphic design land. Using “randomly generated”
conception to produce artistic motifs could be, practically, a way for anyone to follow in order
to produce maintainable artistic motifs in few steps.

Due to the “randomly generated” nature of Flame filter, we find that Flame pattern is not
always the same when we use Flame filter interface.

Using the same pattern design for each visual manifestation is essential in order to maintain
the visual connection among all visual manifestations inside the same theme. Occasionally, we
may introduce pattern variations in opacity, size, or even position but never change the pattern
design itself, nor the color information used by images considered part of the same theme.

Important When we design background images, which are considered part of the
same theme, it is essential to use the same design pattern always. This is what

Chapter 2: The Repository Directories 30

makes theme images to be visually connected among themeselves, and so, the reason
we use to define the word “theme” as: a set of images visually connected among
themeselves.

In order for us to reproduce the same flame pattern always, Flame filter interface provides
the ‘Save’ and ‘Open’ options. The ‘Save’ option brings up a file save dialog that allows you to
save the current Flame settings for the plug-in, so that you can recreate them later. The ‘Open’
option brings up a file selector that allows you to open a previously saved Flame settings file.

The Flame settings we used in our example are saved in the file named
‘800x600.xcf-flame.def’, inside the ‘Backgrounds/Xcf’ directory structure.

2.24.3 See also

• See Section 2.23 [Directories trunk Identity Themes Motifs], page 26.
• See Section 2.8 [Directories trunk Identity Themes], page 19.
• See Section 2.4 [Directories trunk Identity], page 14.
• See Section 2.3 [Directories trunk], page 14.

2.25 The ‘trunk/Identity/Themes/Motifs/Modern’ Directory

2.25.1 Goals

2.25.2 Description

• ...

2.25.3 Usage

• ...

2.25.4 See also

2.26 The ‘trunk/Identity/Themes/Motifs/Pipes’ Directory

2.26.1 Goals

• ...

2.26.2 Description

• ...

2.26.3 Usage

• ...

2.26.4 See also

2.27 The ‘trunk/Identity/Themes/Motifs/TreeFlower’ Directory

2.27.1 Goals

2.27.2 Description

2.27.3 Usage

2.27.4 See also

Chapter 2: The Repository Directories 31

2.28 The ‘trunk/Identity/Webenv’ Directory

2.28.1 Goals

• ...

2.28.2 Description

The CentOS web environment is formed by a central web application —to cover base needs (e.g.,
per-major release information like release notes, lifetime, downloads, documentation, support,
security advisories, bugs, etc.)— and many different free web applications —to cover specific
needs (e.g., wiki, mailing lists, etc.)—.

The CentOS web environment is addressed to solve the following issues:
• One unique name and one unique visual style to all web applications used inside the web

environment.
• One-step navigation to web applications inside the environment.
• High degree of customization to change the visual style of all web applications with few

changes (e.g, updating just two or three images plus common style sheet [CSS] definitions).

The CentOS project is attached to a monolithic corporate visual identity (see Section 2.4
[Directories trunk Identity], page 14), where all visual manifestations have one unique name
and one unique visual style. This way, the CentOS web environment has one unique name
(the CentOS brand) and one unique visual style (the CentOS default theme) for all its visual
manifestations, the web applications in this case.

Since a maintainance point of view, achiving the one unique visual style inside CentOS web
environment is not a simple task. The CentOS web environment is built upon many different
web applications which have different visual styles and different internal ways to customize their
own visual styles. For example: MoinMoin, the web application used to support the CentOS wiki
(http://wiki.centos.org/) is highly customizable but Mailman (in its 2.x.x serie), the web
application used to support the CentOS mailing list, doesn’t support1 a customization system
that separates presentation from logic, similar to that used by MoinMoin.

This visual style diversity complicates our goal of one unique visual style for all web appli-
cations. So, if we want one unique visual style for all web applications used, it is innevitable
to modify the web applications in order to implement the CentOS one unique visual style cus-
tomization in them. Direct modification of upstream applications is not convenient because
upstream applications come with their one visual style and administrators take the risk of loos-
ing all customization changes the next time the application be updated (since not all upstream
web applications, used in CentOS web environment, separate presentation from logic).

To solve the “one unique visual style” issue, installation and actualization of web applications
—used inside CentOS web environment— need to be independent from upstream web applica-
tions development line; in a way that CentOS web environment administrators can install and
update web applications freely without risk of loosing the one unique visual style customization
changes.

At the surface of this issue we can see the need of one specific yum repository to store CentOS
web environment customized web applications.

2.28.2.1 Design model (without ads)

2.28.2.2 Design model (with ads)

2.28.2.3 HTML definitions

1 The theme support of Mailman may be introduced in mailman-3.x.x release.

http://wiki.centos.org/

Chapter 2: The Repository Directories 32

2.28.2.4 Controlling visual style

Inside CentOS web environment, the visual style is controlled by the following compenents:

Webenv header background
trunk/Identity/Themes/Motifs/$THEME/Backgrounds/Img/1024x250.png

CSS definitions
trunk/Identity/Themes/Models/Default/Promo/Web/CSS/stylesheet.css

2.28.2.5 Producing visual style

The visual style of CentOS web environment is defined in the following files:

trunk/Identity/Themes/Motifs/$THEME/Backgrounds/Xcf/1024x250.xcf
trunk/Identity/Themes/Motifs/$THEME/Backgrounds/Img/1024x250.png
trunk/Identity/Themes/Motifs/$THEME/Backgrounds/Img/1024x250-bg.png
trunk/Identity/Themes/Motifs/$THEME/Backgrounds/Tpl/1024x250.svg

As graphic designer you use ‘1024x250.xcf’ file to produce ‘1024x250-bg.png’ file. Later,
inside ‘1024x250.svg’ file, you use the ‘1024x250-bg.png’ file as background layer to draw
your vectorial design. When you consider you artwork ready, use the centos-art.sh script, as
described below, to produce the visual style controller images of CentOS web environment.

centos-art render --entry=trunk/Identity/Themes/Motifs/$THEME/Backgrounds --filter=’1024x250’

Once you have rendered required image files, changing the visual style of CentOS web en-
vironment is a matter of replacing old image files with new ones, inside webenv repository file
system structure. The visual style changes will take effect the next time customization line of
CentOS web applications be packaged, uploded, and installed from [webenv] or [webenv-test]
repositories.

2.28.2.6 Navigation

Inside CentOS web environment, the one-step navegation between web applications is addressed
using the web environment navigation bar. The web environment navigation bar contains links
to main applications and is always visible no matter where you are inside the web environment.

2.28.2.7 Development and release cycle

The CentOS web environment development and relase cycle is described below:

Download

The first action is download the source code of web applications we want to use
inside CentOS web environment.

Important The source location from which web application are down-
loaded is very important. Use SRPMs from CentOS [base] and [updates]
repositories as first choise, and third party repositories (e.g. RPMForge,
EPEL, etc.) as last resource.

Prepare

Once web application source code has been downloaded, our duty is organize its
files inside ‘webenv’ version controlled repository.

When preparing the structure keep in mind that different web applications have
different visual styles, and also different ways to implement it. A convenient way
to organize the file system structure would be create one development line for each
web application we use inside CentOS web environment. For example, consider the
following file system structure:

Chapter 2: The Repository Directories 33

https://projects.centos.org/svn/webenv/trunk/
|-- WebApp1/
| |-- Sources/
| | ‘-- webapp1-0.0.1/
| |-- Rpms/
| | ‘-- webapp1-0.0.1.rpm
| |-- Srpms/
| | ‘-- webapp1-0.0.1.srpm
| ‘-- Specs/
| ‘-- webapp1-0.0.1.spec
|-- WebApp2/
‘-- WebAppN/

Customize

Once web applications have been organized inside the version controlled repository
file system, use subversion to create the CentOS customization development line of
web applications source code. For example, using the above file system structure,
you can create the customization development line of ‘webapp1-0.0.1/’ with the
following command:

svn cp trunk/WebApp1/Sources/webapp1-0.0.1 trunk/WebApp1/Sources/webapp1-0.0.1-webenv

The command above creates the following structure:
https://projects.centos.org/svn/webenv/trunk/
|-- WebApp1/
| |-- Sources/
| | |-- webapp1-0.0.1/
| | ‘-- webapp1-0.0.1-webenv/
| |-- Rpms/
| | ‘-- webapp1-0.0.1.rpm
| |-- Srpms/
| | ‘-- webapp1-0.0.1.srpm
| ‘-- Specs/
| ‘-- webapp1-0.0.1.spec
|-- WebApp2/
‘-- WebAppN/

In the above structure, the ‘webapp1-0.0.1-webenv/’ directory is the place where
you customize the visual style of ‘webapp1-0.0.1/’ web application.

Tip Use the diff command of Subversion between CentOS customiza-
tion and upstream development lines to know what you are changing
exactly.

Build packages
When web application has been customized, build the web application RPM and
SRPM using the source location with ‘-webenv’ prefix.

https://projects.centos.org/svn/webenv/trunk/
|-- WebApp1/
| |-- Sources/
| | |-- webapp1-0.0.1/
| | ‘-- webapp1-0.0.1-webenv/
| |-- Rpms/
| | |-- webapp1-0.0.1.rpm
| | ‘-- webapp1-0.0.1-webenv.rpm
| |-- Srpms/

Chapter 2: The Repository Directories 34

| | |-- webapp1-0.0.1.srpm
| | ‘-- webapp1-0.0.1-webenv.srpm
| ‘-- Specs/
| |-- webapp1-0.0.1.spec
| ‘-- webapp1-0.0.1-webenv.spec
|-- WebApp2/
‘-- WebAppN/

Release for testing
When the customized web application has been packaged, make packages available
for testing and quality assurance. This can be achives using a [webenv-test] yum
repository.

Note The [webenv-test] repository is not shipped inside CentOS distri-
bution default yum configuraiton. In order to use [webenv-test] reposi-
tory you need to configure it first.

If some problem is found to install/update/use the customized version of web
application, the problem is notified somewhere (a bugtracker maybe) and the
customization face is repated in order to fix the problem. To release the new
package add a number after ‘-webenv’ prefix. For example, if some problem
is found in ‘webapp1-0.0.1-webenv.rpm’, when it be fixed the new package
will be named ‘webapp1-0.0.1-webenv-1.rpm’. If a problem is found in
‘webapp1-0.0.1-webenv-1.rpm’, when it be fixed the new package will be named
‘webapp1-0.0.1-webenv-2.rpm’, and so on.
The “customization — release for testing” process is repeated until CentOS quality
assurance team considers the package is ready for production.

Release for production
When customized web application packages are considered ready for production
they are moved from [webenv-test] to [webenv] repository. This action is commited
by CentOS quality assurance team.

Note The [webenv] repository is not shipped inside CentOS distribution
default yum configuraiton. In order to use [webenv] repository you need
to configure it first.

2.28.2.8 The [webenv-test] repository

/etc/yum.repos.d/CentOS-Webenv-test.repo

[webenv-test]
name=CentOS-$releasever - Webenv-test
mirrorlist=http://mirrorlist.centos.org/?release=$releasever&arch=$basearch&repo=webenv-test
#baseurl=http://mirror.centos.org/centos/$releasever/webenv-test/$basearch/
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-$releasever
enabled=1
priority=10

2.28.2.9 The [webenv] repository

/etc/yum.repos.d/CentOS-Webenv.repo

[webenv]
name=CentOS-$releasever - Webenv
mirrorlist=http://mirrorlist.centos.org/?release=$releasever&arch=$basearch&repo=webenv
#baseurl=http://mirror.centos.org/centos/$releasever/webenv/$basearch/

Chapter 2: The Repository Directories 35

gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-$releasever
enabled=1
priority=10

2.28.2.10 Priority configuration

Both [webenv] and [webenv-test] repositories update packages inside CentOS [base] and CentOS
[updates] repositories.

2.28.3 Usage

• ...

2.28.4 See also

2.29 The ‘trunk/Locales’ Directory

The ‘trunk/Locales’ directory exists to store the translation messages used to produce content
in different languages.

Translation messages are organized using the directory structure of the compo-
nent being translated. For example, if we want to provide translation messages for
‘trunk/Manuals/Repository’, then the ‘trunk/Locales/Manuals/Repository’ directory
needs to be created.

Once the locale directory exists for the component we want to provide translation messages
for, it is necessary to create the translation files where translation messages are. The translation
files follows the concepts of xml2po and GNU gettext tools.

The basic translation process is as follow: first, translatable strings are extracted from files
and a portable object template (.pot) is created or updated with the information. Using the
portable object template, a portable object (.po) is created or updated for translator to locale
the messages retrived. Finally, a machine object (.mo) is created from portable object to sotore
the translated messages.

Inside the repository there are two ways to retrive translatable strings from files. The first
one is through xml2po command and the second through xgettext command. The xml2po is
used to retrive translatable strings from XML files (e.g., Scalable Vector Graphics, DocBook,
etc.) and the xgettext command is used to retrive translatable strings from shell scripts files
(e.g., the files that make the centos-art.sh command-line interface).

When translatable strings are retrived from XML files, using the xml2po command, there is
no need to create the machine object as we do when translatable strings ar retrived from shell
files, using the xgettext command. The xml2po produces a temporal machine object in order
to create a translated XML file. Once the translated XML file has been created the machine
object is no longer needed. On the other hand, the machine object produced by the xgettext
command is required by the system in order for the show shell script localized messages.

Another difference between xml2po and xgettext we need to be aware of is the directory
structure used to store machine objects. In xml2po, the machine object is created in the current
working directory as ‘.xml2po.mo’ and can be safetly removed once the translated XML file
has been created. In the case of xgettext, the machine object needs to be stored in the
‘$TEXTDOMAIN/$LOCALE/LL_MESSAGES/$TEXTDOMAIN.mo’ file in order for the system to interpret
it and should not be removed since it is the file that contain the translation messages themselves.

Automation of localization tasks is achived through the locale functionality of command-line
interface.

Chapter 2: The Repository Directories 36

2.30 The ‘trunk/Manual’ Directory

2.30.1 Goals

• ...

2.30.2 Description

• ...

2.30.3 Usage

• ...

2.30.4 See also

2.31 The ‘trunk/Scripts’ Directory

2.31.1 Goals

The ‘trunk/Scripts’ directory exists to organize the trunk development line of ‘centos-art.sh’
automation script. The ‘centos-art.sh’ script standardizes tasks you need to do frequently
inside CentOS Artwork Repository.

2.31.2 Description

The best way to understand ‘centos-art.sh’ automation script is studying its source code.
However, as start point, you may prefer to read an introductory resume before diving into the
source code details.

The ‘centos-art.sh’ script is written in Bash. Most tasks, inside ‘centos-art.sh’ script,
have been organized in many specific functionalities that you can invoke from the centos-art
command-line interface.

When you type the centos-art command in your terminal, the operating system trys to
execute that command. In order to execute the command, the operating system needs to know
where it is, so the operating system uses the PATH environment variable to look for that
command location. If your system was prepared to use CentOS Artwork Repository correctly
(— Removed(pxref:trunk Scripts Bash Functions Verify) —), you should have a symbolic link
inside ‘~/bin/’ directory that points to the ‘centos-art.sh’ script file. As ‘~/bin/’ directory
is, by default, inside PATH environment variable, the execution of centos-art command runs
the ‘centos-art.sh’ script.

When ‘centos-art.sh’ script is executed, the first it does is executing the
‘trunk/Scripts/Bash/initEnvironment.sh’ script to initialize global variables (e.g.,
gettext variables) and global function scripts. Global function scripts are located
inside ‘trunk/Scripts/Bash/Functions’ directory and their file names begin with ‘cli’.
Global function scripts provide common functionalities that can be used anywhere inside
‘centos-art.sh’ script execution environment.

Once global variables and function scripts have been loaded, ‘centos-art.sh’ script exe-
cutes the cli global function from ‘cli.sh’ function script to retrive command-line arguments
and define some default values that may be used later by specific function scripts (— Re-
moved(pxref:trunk Scripts Bash Functions) —).

As convenction, the ‘centos-art.sh’ command-line arguments have the following format:
centos-art function path/to/dir --options

In the above example, ‘centos-art’ is the command you use to invoke ‘centos-art.sh’
script. The ‘arg1’ is required and represents the functionality you want to perform (e.g.,

Chapter 2: The Repository Directories 37

‘verify’, ‘render’, ‘locale’, ‘manual’, etc.). The remaining arguments are modifiers to ‘arg1’.
The ‘--arg2’ definition is required and represets, specifically, the action inside the functionality
you want to perform. The ‘--arg3’ and on, are optional.

Once command-line arguments have been retrived, the ‘centos-art.sh’ script loads specific
functionalities using the ‘cli_getFunctions.sh’ function script. Only one specific functional-
ity can be loaded at one script execution I.e., you run centos-art.sh script to run just one
functionality.

+--+
| [centos@host]$ centos-art function --action=’value’ --option=’value’ |
+--+
| ~/bin/centos-art --> ~/artwork/trunk/Scripts/centos-art.sh |
+---v---v------------------------+

| centos-art.sh |
+---v---------------------------------v---+
. | initEnvironment.sh | .
. +---------------------------------+ .
. | cli $@ | .
. +---v-------------------------v---+ .
. . | cli_getFunctions | . .
. . +---v-----------------v---+ . .
. . . | function1 | . . .
. . . | function2 | . . .
. . . | function3 | . . .
. . . +-----------------+ . . .
.
.
...

Figure 2.1: The functionalities initialization environment.

Functionalities are implemented by means of actions. Once the functionality has been initi-
azalized, actions initialization take place for that functionality. Actions initialization model is
very similar to functions initialization model. But with the difference, that actions are loaded
inside function environment, and so, share variables and functions defined inside function envi-
ronment.

Chapter 2: The Repository Directories 38

+--------------------------------------+
| cli_getFunctions |
+---v------------------------------v---+
. | function1 | .
. +---v------------------------v-+ .
. . | function1_getArguments | . .
. . +---v--------------v-----+ . .
. . . | action 1 | . . .
. . . | action 2 | . . .
. . . | action n | . . .
. . . +--------------+ . . .
.
.
. +------------------------------+ .
. | function2 | .
. +---v------------------------v-+ .
. . | function2_getArguments | . .
. . +---v--------------v-----+ . .
. . . | action 1 | . . .
. . . | action 2 | . . .
. . . | action n | . . .
. . . +--------------+ . . .
.
.
. +------------------------------+ .
. | function3 | .
. +---v------------------------v-+ .
. . | function3_getArguments | . .
. . +---v--------------v-----+ . .
. . . | action 1 | . . .
. . . | action 2 | . . .
. . . | action n | . . .
. . . +--------------+ . . .
.
.
..

Figure 2.2: The actions initialization environment.

2.31.3 Usage

The ‘centos-art.sh’ script usage information is described inside each specific function docu-
mentation (— Removed(pxref:trunk Scripts Bash Functions) —).

2.31.4 See also

2.32 The ‘trunk/Scripts/Functions’ Directory

2.32.1 Goals

The ‘trunk/Scripts/Bash/Functions’ directory exists to organize ‘centos-art.sh’ specific
functionalities.

Chapter 2: The Repository Directories 39

2.32.2 Description

The specific functions of ‘centos-art.sh’ script are designed with “Software Toolbox” philoso-
phy (see 〈undefined〉 [Toolbox introduction], page 〈undefined〉) in mind: each program “should
do one thing well”. Inside ‘centos-art.sh’ script, each specific functionality is considered a
program that should do one thing well. Of course, if you find that they still don’t do it, feel free
to improve them in order for them to do so.

The specific functions of ‘centos-art.sh’ script are organized inside specific directories
under ‘trunk/Scripts/Bash/Functions’ location. Each specific function directory
should be named as the function it represents, with the first letter in uppercase. For
example, if the function name is render, the specific function directory for it would be
‘trunk/Scripts/Bash/Functions/Render’.

To better understand how specific functions of ‘centos-art.sh’ script are designed, lets
create one function which only goal is to output different kind of greetings to your screen.

When we create specific functions for ‘centos-art.sh’ script it is crucial to know what these
functions will do exactly and if there is any function that already does what we intend to do.
If there is no one, it is good time to create them then. Otherwise, if functionalities already
available don’t do what you exactly expect, contact their authors and work together to improve
them.

Tip Join CentOS developers mailing list centos-art@centos.org to share your
ideas.

It is also worth to know what global functions and variables do we have available in-
side ‘centos-art.sh’ script, so advantage can be taken from them. Global variables are
defined inside global function scripts. Global functions scripts are stored immediatly under
‘trunk/Scripts/Bash/Functions’ directory, in files begining with ‘cli’ prefix.

OK, let’s begin with our functionality example.
What function name do we use? Well, lets use greet. Note that ‘hello’ word is not a verb;

but an expression, a kind of greeting, an interjection specifically. In contrast, ‘greet’ is a verb
and describes what we do when we say ‘Hello!’, ‘Hi!’, and similar expressions.

So far, we’ve gathered the following function information:
Name: greet
Path: trunk/Scripts/Bash/Functions/Greet
File: trunk/Scripts/Bash/Functions/Greet/greet.sh

The ‘greet.sh’ function script is the first file ‘centos-art.sh’ script loads when the
‘greet’ functionality is called using commands like ‘centos-art greet --hello=’World’’. The
‘greet.sh’ function script contains the greet function definition.

Inside ‘centos-art.sh’ script, as convenction, each function script has one top commentary,
followed by one blank line, and then one function defintion below it only.

Inside ‘centos-art.sh’ script functions, top commentaries have the following components:
the functionality description, one-line for copyright note with your personal information, the
license under which the function source code is released —the ‘centos-art.sh’ script is released
as GPL, so do all its functions—, the Id keyword of Subversion is later expanded by svn
propset command.

In our greet function example, top commentary for ‘greet.sh’ function script would look
like the following:

#!/bin/bash
#
greet.sh -- This function outputs different kind of greetings to
your screen. Use this function to understand how centos-art.sh

mailto:centos-art@centos.org

Chapter 2: The Repository Directories 40

script specific functionalities work.
#
Copyright (C) YEAR YOURFULLNAME
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
#
--
Id
--

After top commentary, separated by one blank line, the greet function definition would look
like the following:

function greet {

Define global variables.

Define command-line interface.
greet_getActions

}

The first definition inside greet function, are global variables that will be available along
greet function execution environment. This time we didn’t use global variable definitions for
greet function execution environment, so we left that section empty.

Later, we call greet_getActions function to define the command-line interface of greet
functionality. The command-line interface of greet functionality defines what and how actions
are performed, based on arguments combination passed to ‘centos-art.sh’ script.

function greet_getActions {

case "$ACTIONNAM" in

--hello)
greet_doHello
;;

--bye)
greet_doBye
;;

*)

Chapter 2: The Repository Directories 41

cli_printMessage "‘gettext "The option provided is not valid."‘"
cli_printMessage "$(caller)" ’AsToKnowMoreLine’

esac

}

The ACTIONNAM global variable is defined in ‘cli.sh’ function script and contains
the value passed before the equal sign (i.e., ‘=’) in the second command-line argument
of ‘centos-art.sh’ script. For example, if the second command-line argument is
‘--hello=’World’’, the value of ACTIONNAM variable would be ‘--hello’. Using this
configuration let us deside which action to perform based on the action name passed to
‘centos-art.sh’ script as second argument.

The greet function definition makes available two valid greetings through ‘--hello’ and
‘--bye’ options. If no one of them is provided as second command-line argument, the ‘*’ case
is evaluated instead.

The ‘*’ case and its two lines further on should always be present in ‘_getActions.sh’
function scripts, no matter what specific functionality you are creating. This convenction helps
the user to find out documentation about current functionality in use, when no valid action is
provided.

The greet_doHello and greet_doBye function definitions are the core of greet specific
functionality. In such function definitions we set what our greet function really does: to output
different kinds of greetings.

function greet_doHello {

cli_printMessage "‘gettext "Hello"‘ $ACTIONVAL"

}

The greet_doHello function definition is stored in ‘greet_doHello.sh’ function script.
function greet_doBye {

cli_printMessage "‘gettext "Goodbye"‘ $ACTIONVAL"

}

The greet_doBye function definition is stored in the ‘greet_doBye.sh’ function script.
Both ‘greet_doHello.sh’ and ‘greet_doBye.sh’ function scripts are stored inside greet

function directory path (i.e. ‘trunk/Scripts/Bash/Functions/Greet’).
The ACTIONVAL global variable is defined in ‘cli.sh’ function script and contains the value

passed after the equal sign (i.e., ‘=’) in the second command-line argument of ‘centos-art.sh’
script. For example, if the second command-line argument is ‘--hello=’World’’, the value of
ACTIONVAL variable would be ‘World’ without quotes.

Let’s see how greet specific functionality files are organzied under greet function directory.
To see file organization we use the tree command:

trunk/Scripts/Bash/Functions/Greet
|-- greet_doBye.sh
|-- greet_doHello.sh
|-- greet_getActions.sh
‘-- greet.sh

To try the greet specific functionality we’ve just created, pass the function name (i.e.,
‘greet’) as first argument to ‘centos-art.sh’ script, and any of the valid options as second
argument. Some examples are illustrated below:

Chapter 2: The Repository Directories 42

[centos@projects ~]$ centos-art greet --hello=’World’
Hello World
[centos@projects ~]$ centos-art greet --bye=’World’
Goodbye World
[centos@projects ~]$

The word ‘World’ in the examples above can be anything. In fact, change it to have a little
fun.

Now that we have a specific function that works as we expect, it is time to document it. To
document greet specific functionality, we use its directory path and the manual functionality
(— Removed(pxref:trunk Scripts Bash Functions Manual) —) of ‘centos-art.sh’ script, just
as the following command illustrates:

centos-art manual --edit=trunk/Scripts/Bash/Functions/Greet

To have a well documented function helps user to understand how your function really works,
and how it should be used. When no valid action is passed to a function, the ‘centos-art.sh’
script uses the function documentation entry as vehicle to communicate which the valid functions
are. When no documentation entry exists for a function, the ‘centos-art.sh’ script informs
that no documentation entry exists for such function and requests user to create it right at that
time.

Now that we have documented our function, it is time to translate its output messages to
different languages. To translate specific functionality output messages to different languages
we use the locale functionality (— Removed(pxref:trunk Scripts Bash Functions Locale) —)
of ‘centos-art.sh’ script, just as the following command illustrates:

centos-art locale --edit

Warning To translate output messages in different languages, your system locale
information —as in LANG environment variable— must be set to that locale you
want to produce translated messages for. For example, if you want to produce
translated messages for Spanish language, your system locale information must be
set to ‘es_ES.UTF-8’, or similar, first.

Well, it seems that our example is rather complete by now.

In greet function example we’ve described so far, we only use cli_printMessage global
function in action specific function definitions in order to print messages, but more interesting
things can be achieved inside action specific function definitions. For example, if you pass a
directory path as action value in second argument, you could retrive a list of files from therein,
and process them. If the list of files turns too long or you just want to control which files to
process, you could add the third argument in the form ‘--filter=’regex’’ and reduce the
amount of files to process using a regular expression pattern.

The greet function described in this section may serve you as an introduction to understand
how specific functionalities work inside ‘centos-art.sh’ script. With some of luck this intro-
duction will also serve you as motivation to create your own ‘centos-art.sh’ script specific
functionalities.

By the way, the greet functionality doesn’t exist inside ‘centos-art.sh’ script yet. Would
you like to create it?

2.32.3 Usage

2.32.3.1 Global variables

The following global variables of ‘centos-art.sh’ script, are available for you to use inside
specific functions:

Chapter 2: The Repository Directories 43

[Variable]TEXTDOMAIN
Default domain used to retrieve translated messages. This value is set in ‘initFunctions.sh’
and shouldn’t be changed.

[Variable]TEXTDOMAINDIR
Default directory used to retrieve translated messages. This value is set in
‘initFunctions.sh’ and shouldn’t be changed.

[Variable]FUNCNAM
Define function name.
Function names associate sets of actions. There is one set of actions for each unique function
name inside ‘centos-art.sh’ script.
Dunction names are passed as first argument in ‘centos-art.sh’ command-line interface. For
example, in the command ‘centos-art render --entry=path/to/dir --filter=regex’,
the ACTION passed to ‘centos-art.sh’ script is ‘render’.
When first argument is not provided, the ‘centos-art.sh’ script immediatly ends its execu-
tion.

[Variable]FUNCDIR

[Variable]FUNCDIRNAME

[Variable]FUNCSCRIPT

[Variable]FUNCCONFIG

[Variable]ACTIONNAM
Define action name.
Each action name identifies an specific action to perform, inside an specific function.
Action name names aare passed as second argument in ‘centos-art.sh’ command-line
interface. For example, in the command ‘centos-art render --entry=path/to/dir
--filter=regex’, the ACTIONNAM passed to ‘centos-art.sh’ script is ‘--entry’.
When second argument is not provided, the ‘centos-art.sh’ script immediatly ends its
execution.

[Variable]ACTIONVAL
Define action value.
Action values are associated to just one action name. Action values contain the working copy
entry over which its associated action will be performed in. Working copy entries can be files
or directories inside the working copy.

[Variable]REGEX
Define regular expression used as pattern to build the list of files to process.
By default, REGEX variable is set to .+ to match all files.
Functions that need to build a list of files to process use the option ‘--filter’ to redefine
REGEX variable default value, and so, control the amount of files to process.

[Variable]ARGUMENTS
Define optional arguments.
Optional arguments, inside ‘centos-art.sh’ script, are considered as all command-line argu-
ments passed to ‘centos-art.sh’ script, from third argument position on. For example, in
the command ‘centos-art render --entry=path/to/dir --filter=regex’ , the optional
arguments are from ‘--filter=regex’ argument on.
Optional arguments are parsed using getopt command through the following base construc-
tion:

Chapter 2: The Repository Directories 44

Define short options we want to support.
local ARGSS=""

Define long options we want to support.
local ARGSL="filter:,to:"

Parse arguments using getopt(1) command parser.
cli_doParseArguments

Reset positional parameters using output from (getopt) argument
parser.
eval set -- "$ARGUMENTS"

Define action to take for each option passed.
while true; do

case "$1" in
--filter)

REGEX="$2"
shift 2
;;

--to)
TARGET="$2"
shift 2
;;

*)
break

esac
done

Optional arguments provide support to command options inside ‘centos-art.sh’ script. For
instance, consider the Subversion (svn) command, where there are many options (e.g., ‘copy’,
‘delete’, ‘move’, etc), and inside each option there are several modifiers (e.g., ‘--revision’,
‘--message’, ‘--username’, etc.) that can be combined one another in their short or long
variants.

The ARGUMENTS variable is used to store arguments passed from command-line for later
use inside ‘centos-art.sh’ script. Storing arguments is specially useful when we want to
run a command with some specific options from them. Consider the following command:

centos-art path --copy=SOURCE --to=TARGET --message="The commit message goes here." --username=’johndoe’

In the above command, the ‘--message’, and ‘--username’ options are specific to svn copy
command. In such cases, options are not interpreted by ‘centos-art.sh’ script itself. In-
stead, the ‘centos-art.sh’ script uses getopt to retrive them and store them in the ARGU-
MENTS variable for later use, as described in the following command:

Build subversion command to duplicate locations inside the
workstation.
eval svn copy $SOURCE $TARGET --quiet $ARGUMENTS

When getopt parses ARGUMENTS, we may use short options (e.g., ‘-m’) or long options
(e.g., ‘--message’). When we use short options, arguments are separated by one space from
the option (e.g., ‘-m ’This is a commit message.’’). When we use long options arguments
are separated by an equal sign (‘=’) (e.g., ‘--message=’This is a commit message’’).

Chapter 2: The Repository Directories 45

In order for getopt to parse ARGUMENTS correctly, it is required to provide the short
and long definition of options that will be passed or at least supported by the command
performing the final action the function script exists for.
As convenction, inside ‘centos-art.sh’ script, short option definitions are set in the ARGSS
variable; and long option definitions are set in the ARGSL variable.
When you define short and long options, it may be needed to define which of these option
arguments are required and which not. To define an option argument as required, you need to
set one colon ‘:’ after the option definition (e.g., ‘-o m: -l message:’). On the other hand,
to define an option argument as not required, you need to set two colons ‘::’ after the option
definition (e.g., ‘-o m:: -l message::’).

[Variable]EDITOR
Default text editor.
The ‘centos-art.sh’ script uses default text EDITOR to edit pre-commit subversion messages,
translation files, configuration files, script files, and similar text-based files.
If EDITOR environment variable is not set, ‘centos-art.sh’ script uses ‘/usr/bin/vim’ as
default text editor. Otherwise, the following values are recognized by ‘centos-art.sh’ script:
• ‘/usr/bin/vim’
• ‘/usr/bin/emacs’
• ‘/usr/bin/nano’

If no one of these values is set in EDITOR environment variable, ‘centos-art.sh’ uses
‘/usr/bin/vim’ text editor by default.

2.32.3.2 Global functions

Function scripts stored directly under ‘trunk/Scripts/Bash/Functions/’ directory are used to
define global functions. Global functions can be used inside action specific functionalities and
or even be reused inside themselves. This section provides introductory information to global
functions you can use inside ‘centos-art.sh’ script.

[Function]cli_checkActionArguments
Validate action value (ACTIONVAL) variable.
The action value variable can take one of the following values:
1. Path to one directory inside the local working copy,
2. Path to one file inside the local working copy,

If another value different from that specified above is passed to action value variable, the
‘centos-art.sh’ script prints an error message and ends script execution.

[Function]cli_checkFiles FILE [TYPE]
Verify file existence.
cli_checkFiles receives a FILE absolute path and performs file verification as specified in
TYPE. When TYPE is not specified, cli_checkFiles verifies FILE existence, no matter
what kind of file it be. If TYPE is specified, use one of the following values:

‘d’
‘directory’

Ends script execution if FILE is not a directory.
When you verify directories with cli checkFiles, if directory doesn’t exist,
‘centos-art.sh’ script asks you for confirmation in order to create that di-
rectory. If you answer positively, ‘centos-art.sh’ script creates that direc-
tory and continues script flows normally. Otherwise, if you answer negatively,

Chapter 2: The Repository Directories 46

‘centos-art.sh’ ends script execution with an error and documentation mes-
sage.

‘f’

‘regular-file’
Ends script execution if FILE is not a regular file.

‘h’
‘symbolic-link’

Ends script execution if FILE is not a symbolic link.

‘x’
‘execution’

Ends script execution if FILE is not executable.

‘fh’ Ends script execution if FILE is neither a regular file nor a symbolic link.

‘fd’ Ends script execution if FILE is neither a regular file nor a directory.

‘isInWorkingCopy’
Ends script execution if FILE is not inside the working copy.

As default behaviour, if FILE passes all verifications, ‘centos-art.sh’ script continues with
its normal flow.

[Function]cli_commitRepoChanges [LOCATION]
Syncronize changes between repository and working copy.
The cli_commitRepoChanges function brings changes from the central repository down to
the working copy—using svn update—, checks the working copy changes—using svn status
command—, prints status report—using both svn update and svn status commands output,
and finally, commits recent changes from the working copy up to the repository—using svn
commit command—.
Previous to commit the working copy changes up to the central repository, the cli_
commitRepoChanges function asks you to verify changes—using svn diff command—, and
later, another confirmation question is shown to be sure you really want to commit changes
up to central repository.
If LOCATION argument is not specified, the value of ACTIONVAL variable is used as
reference instead.

--
--> Bringing changes from the repository into the working copy
--> Checking changes in the working copy
--
Added 0 file from the repository.
Deleted 0 file from the repository.
Updated 0 file from the repository.
Conflicted 0 file from the repository.
Merged 0 file from the repository.
Modified 4 files from the working copy.
Unversioned 0 file from the working copy.
Deleted 0 file from the working copy.
Added 0 file from the working copy.
--

Figure 2.3: The cli_commitRepoChanges function output.

Call the cli_commitRepoChanges function before or/and after calling functions that modify
files or directories inside the working copy as you may need to.

Chapter 2: The Repository Directories 47

[Function]cli_doParseArguments
Redefine arguments (ARGUMENTS) global variable using getopt command output. For
more information about how to use cli_doParseArguments function, see ARGUMENTS
variable description above.

[Function]cli_doParseArgumentsReDef $@
Initialize/reset arguments (ARGUMENTS) global variable using positional parameters vari-
able ($@) as reference.
When we work inside function definitions, positional parameters are reset to the last function
definition positional parameters. If you need to redefine positional parameters from one spe-
cific function, you need to call cli_doParseArgumentsReDef with the positional parameters
variable ($@), set as first argument, to that specific function you want to redefine positional
parameters at.

[Function]cli_getArguments
Initialize function name (FUNCNAM), action name (ACTIONNAM), and action value (AC-
TIONVAL) global variables, using positional parameters passed in $@ variable.
The cli_getArguments function is called from cli.sh function script, using cli function
positional parameters (i.e., the positional parameters passed as arguments in the command-
line) as first function argument.
Once command-line positional parameters are accesible to ‘centos-art.sh’ script execution
evironment, cli_getArguments uses regular expression to retrive action variables from first
and second argument. The first argument defines the value used as function name (FUNC-
NAM), and the second argument defines both values used as action name (ACTIONNAM)
and action value (ACTIONVAL), respectively.
The first argument is a word in lower case. This word specifies the name of the functionality
you want to use (e.g., ‘render’ to render images, ‘manual’ to work on documentation, and so
on.)
The second argument has a long option style (e.g., ‘--option=value’). The ‘--option’
represents the action name (ACTIONNAM), and the characters inbetween the equal sign
(‘=’) and the first space character, are considered as the action value (ACTIONVAL). In order
to provide action values with space characters inbetween you need to enclose action value
with quotes like in ‘--option=’This is long value with spaces inbetween’’. Generally,
action values are used to specify paths over which the action name acts on.
Once action related variables (i.e., FUNCNAM, ACTIONNAM, and ACTIONVAL) are de-
fined and validated, cli_getArguments shifts the positional arguments to remove the first
two arguments passed (i.e., those used to retrive action related variables) and redefine the
arguments (ARGUMENTS) global variable with the new positional parameters information.

[Function]cli_getFunctions
Initialize funtionalities supported by ‘centos-art.sh’ script.
Functionalities supported by ‘centos-art.sh’ script are organized in functionality directo-
ries under ‘trunk/Scripts/Bash/Functions/’ directory. Each functionality directory stores
function scripts to the functionality such directory was created for. Function scripts contain
function definitions. Function definitions contain several commands focused on achieving one
specific task only (i.e., the one such functionality was created for).
In order for ‘centos-art.sh’ script to recognize a functionality, such functionality needs to
be stored under ‘trunk/Scripts/Bash/Functions/’ in a directory written capitalized (i.e.,
the whole name is written in lowercase except the first character which is in uppercase).
The directory where one specific functionality is stored is known as the ‘functionality
directory’.

Chapter 2: The Repository Directories 48

Inside each functionality directory, the functionalty itself is implemented through function
scripts. Function scripts are organized in files independently one another and written in
‘camelCase’ format with the function name as prefix. Separation between prefix and descrip-
tion is done using underscore (‘_’) character.

In order for ‘centos-art.sh’ script to load functionalities correctly, function definition inside
function scripts should be set using the ‘function’ reserved word, just as in the following
example:

function prefix_doSomething {

Do something here...

}

The above function definition is just a convenction we use, in order to make identification of
function names easier read and automate by ‘centos-art.sh’ script initialization commands,
once ‘centos-art.sh’ script determines which functionality directory to use. Specifically, in
order to initialize and export functions, ‘centos-art.sh’ script executes all function scripts
inside the functionality directory, and later grep on them using a regular expression pat-
tern, where the ‘function’ reserved word is used as reference to retrive the function names
and export them to ‘centos-art.sh’ script execution environment, and so, make function
definitions —from function scripts inside the functionality directory— available for further
calls.

If the functionality specified in the command-line first argument doesn’t have a functionality
directory, ‘centos-art.sh’ script considers the functionality provided in the command-line
as invalid functionality and immediatly stops script execution with an error message.

In order to keep visual consistency among function scripts, please consider using the following
function script design model as template for your own function scripts:

#!/bin/bash
#
prefix_doSomething.sh -- This function illustrates function scripts
design model you can use to create your own function scripts inside
centos-art.sh script.
#
Copyright (C) YEAR YOURFULLNAME
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
#
--

Chapter 2: The Repository Directories 49

Id
--

function prefix_doSomething {

Do something here...

}

[Function]cli_getCountryCodes [FILTER]
Output country codes supported by ‘centos-art.sh’ script.
The cli_getCountryCodes function outputs a list with country codes as defined in ISO3166
standard. When FILTER is provided, cli_getCountryCodes outputs country codes that
match FILTER regular expression pattern.

[Function]cli_getCountryName [FILTER]
Outputs country name supported by ‘centos-art.sh’ script.
The cli_getCountryName function reads one language locale code in the format LL CC
and outputs the name of its related country as in ISO3166. If filter is specified, cli_
getCountryName returns the country name that matches the locale code specified in FILTER,
exactly.

[Function]cli_getCurrentLocale
Output current locale used by ‘centos-art.sh’ script.
The cli_getCurrentLocale function uses LANG environment variable to build a locale pat-
tern that is later applied to cli_getLocales function output in order to return the current
locale that ‘centos-art.sh’ script works with.
The current locale information, returned by cli_getCurrentLocale, is output from more
specific to less specific. For example, if ‘en_GB’ locale exists in cli_getLocales function
output, the ‘en_GB’ locale would take precedence before ‘en’ locale.
Locale precedence selection is quite important in order to define the locale type we use for
message translations. For example, if ‘en_GB’ is used, we are also saying that the common
language specification for English language (i.e., ‘en’) is no longer used. Instead, we are using
English non-common country-specific language specifications like ‘en_AU’, ‘en_BW’, ‘en_GB’,
‘en_US’, etc., for message translations.
Use cli_getCurrentLocale function to know what current locale information to use inside
‘centos-art.sh’ script.

[Function]cli_getFilesList [LOCATION]
Output list of files to process.
The cli_getFilesList function uses LOCATION variable as source location to build a list
of files just as specified by regular expression (REGEX) global variable. Essentially, what
the cli_getFilesList function does is using find command to look for files in the location
(LOCATION) just as posix-egrep regular expression (REGEX) specifies.
If LOCATION is not specified when cli_getFilesList function is called, the action value
(ACTIONVAL) global variable is used as location value instead.
By default, if the regular expression (REGEX) global variable is not redefined after its first
definition in the cli function, all files that match default regular expression value (i.e.,
‘.+’) will be added to the list of files to process. Otherwise, if you redefine the regular
expression global variable after its first definition in the cli function and before calling cli_
getFilesList function, the last value you specifed is used instead.

Chapter 2: The Repository Directories 50

When you need to customize the regular expression (REGEX) global variable value inside a
function, do not redefine the global variable (at least you be absolutly convinced you need
to). Instead, set the regular expression global variable as ‘local’ to the function you need
a customized regular expression value for. If we don’t redefine the regular expression global
variable as local to the function, or use another name for the regular expression variable
(which is not very convenient in order to keep the amount of names to remember low), you
may experiment undesired concantenation issues that make your regular expression to be
something different from that you expect them to be, specially if the function where you are
doing the variable redefinition is called several times during the same script execution.

As result, the cli_getFilesList re-defines the value of FILES variable with the list of files
the find command returned. As example, consider the following construction:

function prefix_doSomething {

Initialize the list of files to process.
local FILES=’’

Initialize location.
local LOCATION=/home/centos/artwork/trunk/Identity/Themes/Models/Default

Re-define regular expression to match scalable vector graphic
files only. Note how we use the global value of REGEX to build a
new local REGEX value here.
local REGEX="${REGEX}.*\.(svgz|svg)"

Redefine list of files to process.
cli_getFilesList $LOCATION

Process list of files.
for FILE in $FILES;do

cli_printMessages "$FILE" ’AsResponseLine’
Do something else here on...

done

}

[Function]cli_getLangCodes [FILTER]
Outputs language codes supported by ‘centos-art.sh’ script.

cli_getLangCodes function outputs a list of language codes as defined in ISO639 standard.
When FILTER is provided, cli_getLangCodes outputs language codes that match FILTER
regular expression pattern.

[Function]cli_getLangName [FILTER]
Outputs language names supported by ‘centos-art.sh’ script.

cli_getLangName function reads one language locale code in the format LL CC and outputs
the language related name as in ISO639. If filter is specified, cli_getLangName returns the
language name that matches the locale code specified in FILTER, exactly.

[Function]cli_getLocales
Output locale codes supported by ‘centos-art.sh’ script.

Occasionally, you use cli_getLocales function to add locale information in non-common
country-specific language (‘LL_CC’) format for those languages (e.g., ‘bn_IN’, ‘pt_BR’, etc.)

Chapter 2: The Repository Directories 51

which locale differences cannot be solved using common language specifications (‘LL’) into
one unique common locale specification (e.g., ‘bn’, ‘pt’, etc.).

[Function]cli_getRepoName NAME TYPE
Sanitate file names.
Inside ‘centos-art.sh’ script, specific functionalities rely both in cli_getRepoName and
repository file system organization to achieve their goals. Consider cli_getRepoName
function as central place to manage file name convenctions for other functions inside
‘centos-art.sh’ script.

Important cli_getRepoName function doesn’t verify file or directory existence,
for that purpose use cli_checkFiles function instead.

The NAME variable contains the file name or directory name you want to sanitate.
The TYPE variable specifies what type of sanitation you want to perform on NAME. The
TYPE can be one of the following values:

‘d’
‘directory’

Sanitate directory NAMEs.

‘f’

‘regular-file’
Sanitate regular file NAMEs.

Use cli_getRepoName function to sanitate file names and directory names before their uti-
lization.
Use cli_getRepoName when you need to change file name convenctions inside
‘centos-art.sh’ script.
When we change file name convenctions inside cli_getRepoName what we are really changing
is the way functions interpret repository file system organization. Notice that when we change
a file name (e.g., a function name), it is necessary to update all files where such file name
is placed on. This may require a massive substitution inside the repository, each time we
change name convenctions in the repository (— Removed(pxref:trunk Scripts Bash Functions
Path) —, for more information).

[Function]cli_getRepoStatus [LOCATION]
Request repository status.
This function requests the status of a LOCATION inside the working copy using the svn
status command and returns the first character in the output line, just as described in svn
help status. If LOCATION is not a regular file or a directory, inside the working copy, the
‘centos-art.sh’ script prints a message and ends its execution.
Use this function to perform verifications based a repository LOCATION status.

[Function]cli_getTemporalFile NAME
Output absolute path to temporal file NAME.
The cli_getTemporalFile function uses ‘/tmp’ directory as source location to store temporal
files, the ‘centos-art.sh’ script name, and a random identification string to let you run more
than one ‘centos-art.sh’ script simultaneously on the same user session. For example, due
the following temporal file defintion:

cli_getTemporalFile $FILE

If FILE name is ‘instance.svg’ and the unique random string is
‘f16f7b51-ac12-4b7f-9e66-72df847f12de’, the final temporal file, built from
previous temporal file definition, would be:

Chapter 2: The Repository Directories 52

/tmp/centos-art.sh-f16f7b51-ac12-4b7f-9e66-72df847f12de-instance.svg

When you use the cli_getTemporalFile function to create temporal files, be sure to remove
temporal files created once you’ve ended up with them. For example, consider the following
construction:

for FILE in $FILES;do

Initialize temporal instance of file.
INSTANCE=$(cli_getTemporalFile $FILE)

Do something ...

Remove temporal instance of file.
if [[-f $INSTANCE]];then

rm $INSTANCE
fi

done

Use the cli_getTemporalFile function whenever you need to create temporal files inside
‘centos-art.sh’ script.

[Function]cli_getThemeName
Output theme name.

In order for cli_getThemeName function to extract theme name correctly, the ACTIONVAL
variable must contain a directory path under ‘trunk/Identity/Themes/Motifs/’ directory
structure. Otherwise, cli_getThemeName returns an empty string.

[Function]cli_printMessage MESSAGE [FORMAT]
Define standard output message definition supported by ‘centos-art.sh’ script.

When FORMAT is not specified, cli_printMessage outputs information just as it was
passed in MESSAGE variable. Otherwise, FORMAT can take one of the following values:

‘AsHeadingLine’
To print heading messages.

--
$MESSAGE
--

‘AsWarningLine’
To print warning messages.

--
WARNING: $MESSAGE
--

‘AsNoteLine’
To print note messages.

--
NOTE: $MESSAGE
--

‘AsUpdatingLine’
To print ‘Updating’ messages on two-columns format.

Updating $MESSAGE

Chapter 2: The Repository Directories 53

‘AsRemovingLine’
To print ‘Removing’ messages on two-columns format.

Removing $MESSAGE

‘AsCheckingLine’
To print ‘Checking’ messages on two-columns format.

Checking $MESSAGE

‘AsCreatingLine’
To print ‘Creating’ messages on two-columns format.

Creating $MESSAGE

‘AsSavedAsLine’
To print ‘Saved as’ messages on two-columns format.

Saved as $MESSAGE

‘AsLinkToLine’
To print ‘Linked to’ messages on two-columns format.

Linked to $MESSAGE

‘AsMovedToLine’
To print ‘Moved to’ messages on two-columns format.

Moved to $MESSAGE

‘AsTranslationLine’
To print ‘Translation’ messages on two-columns format.

Translation $MESSAGE

‘AsConfigurationLine’
To print ‘Configuration’ messages on two-columns format.

Configuration $MESSAGE

‘AsResponseLine’
To print response messages on one-column format.

--> $MESSAGE

‘AsRequestLine’
To print request messages on one-column format. Request messages output mes-
sages with one colon (‘:’) and without trailing newline (‘\n’) at message end.

$MESSAGE:

‘AsYesOrNoRequestLine’
To print ‘yes or no’ request messages on one-column format. If something dif-
ferent from ‘y’ is answered (when using en_US.UTF-8 locale), script execution
ends immediatly.

$MESSAGE [y/N]:

When we use ‘centos-art.sh’ script in a locale different from en_US.UTF-8,
confirmation answer may be different from ‘y’. For example, if you use es_
ES.UTF-8 locale, the confirmation question would look like:

$MESSAGE [s/N]:

and the confirmation answer would be ‘s’, as it is on Spanish ‘s’ word.
Definition of which confirmation word to use is set on translation messages for
your specific locale information. — Removed(xref:trunk Scripts Bash Functions
Locale) —, for more information about locale-specific translation messages.

Chapter 2: The Repository Directories 54

‘AsToKnowMoreLine’
To standardize ‘to know more, run the following command:’ messages. When
the ‘AsToKnowMoreLine’ option is used, the MESSAGE value should be set to
"$(caller)". caller is a Bash builtin that returns the context of the current
subroutine call. ‘AsToKnowMoreLine’ option uses caller builtin output to build
documentation entries dynamically.

--
To know more, run the following command:
centos-art manual --read=’path/to/dir’
--

Use ‘AsToKnowMoreLine’ option after errors and for intentional script termina-
tion.

‘AsRegularLine’
To standardize regular messages on one-column format.
When MESSAGE contains a colon inside (e.g., ‘description: message’), the
cli_printMessage function outputs MESSAGE on two-columns format.

Use cli_printMessage function whenever you need to output information from
‘centos-art.sh’ script.

Tip To improve two-columns format, change the following file:
trunk/Scripts/Bash/Styles/output_forTwoColumns.awk

2.32.3.3 Specific functions

The following specific functions of ‘centos-art.sh’ script, are available for you to use:

2.32.4 See also

2.33 The ‘trunk/Scripts/Functions/Help’ Directory

2.33.1 Goals

• ...

2.33.2 Description

• ...

2.33.3 Usage

• ...

2.33.4 See also

2.34 The ‘trunk/Scripts/Functions/Locale’ Directory

2.34.1 Goals

• ...

2.34.2 Description

This command looks for ‘.sh’ files inside Bash directory and extracts translatable strings
from files, using xgettext command, in order to create a portable object template
(‘centos-art.sh.pot’) file for them.

Chapter 2: The Repository Directories 55

With the ‘centos-art.sh.pot’ file up to date, the centos-art command removes the tem-
poral list of files sotred inside ‘/tmp’ directory and checks the current language of your user’s
session to create a portable object file for it, in the location ‘$CLI_LANG/$CLI_LANG.po’.

The CLI LANG variable discribes the locale language used to output messages inside
centos-art command. The locale language used inside centos-art command is taken from
the LANG environment variable. The CLI LANG variable has the ‘LL_CC’ format, where ‘LL’ is a
language code from the ISO-639 standard, and ‘CC’ a country code from the ISO-3166 standard.

The LANG environment variable is set when you do log in to your system. If you are using a
graphical session, change language to your native language and do login. That would set and
exoprt the LANG environment variable to the correct value. On the other side, if you are using a
text session edit your ‘~/.bash_profile’ file to set and export the LANG environment variable
to your native locale as defines the locale -a command output; do logout, and do login again.

At this point, the LANG environment variable has the appropriate value you need, in order
to translate centos-art.sh messages to your native language (the one set in LANG environment
variable).

With the ‘$CLI_LANG/$CLI_LANG.po’ file up to date, the centos-art opens it for you to
update translation strings. The centos-art command uses the value of EDITOR environ-
ment variable to determine your favorite text editor. If no value is defined on EDITOR, the
‘/usr/bin/vim’ text editor is used as default.

When you finishd PO file edition and quit text editor, the centos-art command creates the
related machine object in the location ‘$CLI_LANG/LC_MESSAGES/$TEXTDOMAIN.mo’.

At this point, all translations you made in the PO file should be available to your language
when runing centos-art.sh script.

In order to make the centos-art.sh internationalization, the centos-art.sh script was
modified as described in the gettext info documentation (info gettext). You can find such
modifications in the following files:

• ‘trunk/Scripts/Bash/initFunctions.sh’

• ‘trunk/Scripts/Bash/Functions/Help/cli_localeMessages.sh’

• ‘trunk/Scripts/Bash/Functions/Help/cli_localeMessagesStatus.sh’

• ...

2.34.3 Usage

‘centos-art locale --edit’
Use this command to translate command-line interface output messages in the cur-
rent system locale you are using (as specified in LANG environment variable).

‘centos-art locale --list’
Use this command to see the command-line interface locale report.

2.34.4 See also

2.35 The ‘trunk/Scripts/Functions/Path’ Directory

2.35.1 Goals

This section exists to organize files related to path functiontionality. The path functionality
standardizes movement, syncronization, branching, tagging, and general file maintainance inside
the repository.

Chapter 2: The Repository Directories 56

2.35.2 Description

”CentOS like trees, has roots, trunk, branches, leaves and flowers. Day by day they work together
in freedom, ruled by the laws of nature and open standards, to show the beauty of its existence.”

2.35.2.1 Repository layout

The repository layout describes organization of files and directories inside the repository. The
repository layout provides the standard backend required for automation scripts to work cor-
rectly. If such layout changes unexpectedly, automation scripts may confuse themselves and
stop doing what we expect from them to do.

As convenction, inside CentOS Artwork Repository, we organize files and directories related to
CentOS corporate visual identity under three top level directories named: ‘trunk/’, ‘branches/’,
and ‘tags/’.

The ‘trunk/’ directory (see Section 2.3 [Directories trunk], page 14) organizes the main
development line of CentOS corporate visual identity. Inside ‘trunk/’ directory structure, the
CentOS corporate visual identity concepts are implemented using directories. There is one
directory level for each relevant concept inside the repository. The ‘trunk/’ directory structure
is mainly used to perform development tasks related to CentOS corporate visual identity.

The ‘branches/’ directory () oranizes parallel development lines to ‘trunk/’ directory. The
‘branches/’ directory is used to set points in time where develpment lines are devided one from
another taking separte and idependent lives that share a common past from the point they were
devided on. The ‘branches/’ directory is mainly used to perform quality assurance tasks related
to CentOS corporate visual identity.

The ‘tags/’ directory (see Section 2.2 [Directories tags], page 13) organizes parallel frozen
lines to ‘branches/’ directory. The parallel frozen lines are immutable, nothing change inside
them once they has been created. The ‘tags/’ directory is mainly used to publish final releases
of CentOS corporate visual identity.

The CentOS Artwork Repository layout is firmly grounded on a Subversion base. Subversion
(http://subversion.tigris.org) is a version control system, which allows you to keep old
versions of files and directories (usually source code), keep a log of who, when, and why changes
occurred, etc., like CVS, RCS or SCCS. Subversion keeps a single copy of the master sources.
This copy is called the source “repository”; it contains all the information to permit extracting
previous versions of those files at any time.

2.35.2.2 Repository name convenctions

Repository name convenctions help us to maintain consistency of names inside the repository.
Repository name convenctions are applied to files and directories inside the repository lay-

out. As convenction, inside the repository layout, file names are all written in lowercase
(‘01-welcome.png’, ‘splash.png’, ‘anaconda_header.png’, etc.) and directory names are all
written capitalized (e.g., ‘Identity’, ‘Themes’, ‘Motifs’, ‘TreeFlower’, etc.).

Repository name convenctions are implemented inside the cli_getRepoName function of
‘centos-art.sh’ script. With cli_getRepoName function we reduce the amount of commands
and convenctions to remember, concentrating them in just one single place to look for fixes and
improvements.

2.35.2.3 Repository work flow

Repository work flow describes the steps and time intervals used to produce CentOS corporate
visual identity inside CentOS Artwork Repository.

To illustrate repository work flow let’s consider themes’ development cycle.
Initially, we start working themes on their trunk development line (e.g.,

‘trunk/Identity/Themes/Motifs/TreeFlower/’), here we organize information that

http://subversion.tigris.org

Chapter 2: The Repository Directories 57

cannot be produced automatically (i.e., background images, concepts, color information,
screenshots, etc.).

Later, when theme trunk development line is considered “ready” for implementation
(e.g., all required backgrounds have been designed), we create a branch for it (e.g.,
‘branches/Identity/Themes/Motifs/TreeFlower/1/’). Once the branch has been created,
we forget that branch and continue working the trunk development line while others (e.g., an
artwork quality assurance team) test the new branch for tunning it up.

Once the branch has been tunned up, and considered “ready” for release, it is freezed un-
der ‘tags/’ directory (e.g., ‘tags/Identity/Themes/Motifs/TreeFower/1.0/’) for packagers,
webmasters, promoters, and anyone who needs images from that CentOS theme the tag was
created for.

Both branches and tags, inside CentOS Artwork Repository, use numerical values to identify
themselves under the same location. Branches start at one (i.e., ‘1’) and increment one unit for
each branch created from the same trunk development line. Tags start at zero (i.e., ‘0’) and
increment one unit for each tag created from the same branch development line.

Convenction Do not freeze trunk development lines using tags directly. If you think
you need to freeze a trunk development line, create a branch for it and then freeze
that branch instead.

The trunk development line may introduce problems we cannot see immediatly. Certainly, the
high changable nature of trunk development line complicates finding and fixing such problems.
On the other hand, the branched development lines provide a more predictable area where only
fixes/corrections to current content are commited up to repository.

If others find and fix bugs inside the branched development line, we could merge such
changes/experiences back to trunk development line (not visversa) in order for future branches,
created from trunk, to benefit.

Time intervals used to create branches and tags may vary, just as different needs may arrive.
For example, consider the release schema of CentOS distribution: one major release every 2 years,
security updates every 6 months, support for 7 years long. Each time a CentOS distribution
is released, specially if it is a major release, there is a theme need in order to cover CentOS
distribution artwork requirements. At this point, is where CentOS Artwork Repository comes
up to scene.

Before releasing a new major release of CentOS distribution we create a branch for one
of several theme development lines available inside the CentOS Artwork Repository, perform
quality assurance on it, and later, freeze that branch using tags. Once a the theme branch
has been frozen (under ‘tags/’ directory), CentOS Packagers (the persons whom build CentOS
distribution) can use that frozen branch as source location to fulfill CentOS distribution artwork
needs. The same applies to CentOS Webmasters (the persons whom build CentOS websites),
and any other visual manifestation required by the project.

2.35.2.4 Parallel directories

Inside CentOS Artwork Repository, parallel directories are simple directory entries built from a
common parent directory and placed in a location different to that, the common parent directory
is placed on. Parallel directories are useful to create branches, tags, translations, documentation,
pre-rendering configuration script, and similar directory structures.

Parallel directories take their structure from one unique parent directory. Inside CentOS
Artwork Repository, this unique parent directory is under ‘trunk/Identity’ location. The
‘trunk/Identity’ location must be considered the reference for whatever information you plan
to create inside the repository.

In some circumstances, parallel directories may be created removing uncommon
information from their paths. Uncommon path information refers to those directory levels

Chapter 2: The Repository Directories 58

in the path which are not common for other parallel directories. For example, when
rendering ‘trunk/Identity/Themes/Motifs/TreeFlower/Distro’ directory structure, the
‘centos-art.sh’ script removes the ‘Motifs/TreeFlower/’ directory levels from path, in order
to build the parallel directory used to retrived translations, and pre-rendering configuration
scripts required by render functionality.

Another example of parallel directory is the documentation structure created by manual func-
tionality. This time, ‘centos-art.sh’ script uses parallel directory information with uncommon
directory levels to build the documentation entry required by Texinfo documentation system,
inside the repository.

Othertimes, parallel directories may add uncommon information to their paths. This is
the case we use to create branches and tags. When we create branches and tags, a numerical
identifier is added to parallel directory structure path. The place where the numerical identifier
is set on is relevant to corporate visual identity structure and should be carefully considered
where it will be.

When one parent directory changes, all their related parallel directories need to be changed
too. This is required in order for parallel directories to retain their relation with the parent
directory structure. In the other hand, parallel directories should never be modified under no
reason but to satisfy the relation to their parent directory structure. Liberal change of parallel
directories may suppresses the conceptual idea they were initially created for; and certainly,
things may stop working the way they should do.

2.35.2.5 Syncronizing path information

Parallel directories are very useful to keep repository organized but introduce some complica-
tions. For instance, consider what would happen to functionalities like manual (‘trunk Scripts
Bash Functions Manual’) that rely on parent directory structures to create documentation en-
tries (using parallel directory structures) if one of those parent directory structures suddenly
changes after the documentation entry has been already created for it?

In such cases, functionalities like manual may confuse themselves if path information is not
updated to reflect the relation with its parent directory. Such functionalities work with parent
directory structure as reference; if a parent directory changes, the functionalities dont’t even
note it because they work with the last parent directory structure available in the repository,
no matter what it is.

In the specific case of documentation (the manual functionality), the problem mentioned
above provokes that older parent directories, already documented, remain inside documentation
directory structures as long as you get your hands into the documentation directory structure
(‘trunk/Manuals’) and change what must be changed to match the new parent directory struc-
ture.

There is no immediate way for manual, and similar functionalities that use parent directories
as reference, to know when and how directory movements take place inside the repository. Such
information is available only when the file movement itself takes place inside the repository. So,
is there, at the moment of moving files, when we need to syncronize parallel directories with
their unique parent directory structure.

Warning There is not support for URL reference inside ‘centos-art.sh’ script. The
‘centos-art.sh’ script is designed to work with local files inside the working copy
only.

As CentOS Artwork Repository is built over a version control system, file movements inside
the repository are considered repository changes. In order for these repository changes to be
versioned, we need to, firstly, add changes into the version control system, commit them, and
later, perform movement actions using version control system commands. This configuration

Chapter 2: The Repository Directories 59

makes possible for everyone to know about changes details inside the repository; and if needed,
revert or update them back to a previous revision.

Finally, once all path information has been corrected, it is time to take care of information
inside the files. For instance, considere what would happen if you make a reference to a docu-
mentation node, and later the documentation node you refere to is deleted. That would make
Texinfo to produce error messages at export time. So, the ‘centos-art.sh’ script needs to know
when such changes happen, in a way they could be noted and handled without producing errors.

2.35.2.6 What is the right place to store it?

Occasionly, you may find that new corporate visual identity components need to be added to
the repository. If that is your case, the first question you need to ask yourself, before start to
create directories blindly all over, is: What is the right place to store it?

The CentOS Community different free support vains (see: http://wiki.centos.org/GettingHelp)
are the best place to find answers to your question, but going there with hands empty is not
good idea. It may give the impression you don’t really care about. Instead, consider the
following suggestions to find your own comprehension and so, make your propositions based on
it.

When we are looking for the correct place to store new files, to bear in mind the corporate
visual identity structure used inside the CentOS Artwork Repository (see Section 2.4 [Direc-
tories trunk Identity], page 14) would be probaly the best advice we could offer, the rest is
just matter of choosing appropriate names. To illustrate this desition process let’s consider the
‘trunk/Identity/Themes/Motifs/TreeFlower’ directory as example. It is the trunk develop-
ment line of TreeFlower artistic motif. Artistic motifs are considered part of themes, which in
turn are considered part of CentOS corporate visual identity.

When building parent directory structures, you may find that reaching an acceptable location
may take some time, and as it uses to happen most of time; once you’ve find it, that may be
not a definite solution. There are many concepts that you need to play with, in order to find a
result that match the conceptual idea you try to implement in the new directory location. To
know which these concepts are, split the location in words and read its documentation entry
from less specific to more specific.

For example, the ‘trunk/Identity/Themes/Motifs/TreeFlower’ location evolved through
several months of contant work and there is no certain it won’t change in the future,
even it fixes quite well the concept we are trying to implement. The concepts used in
‘trunk/Identity/Themes/Distro/Motifs/TreeFlower’ location are described in the following
commands, respectively:

centos-art manual --read=turnk/
centos-art manual --read=turnk/Identity/
centos-art manual --read=turnk/Identity/Themes/
centos-art manual --read=turnk/Identity/Themes/Motifs/
centos-art manual --read=turnk/Identity/Themes/Motifs/TreeFlower/

Other location concepts can be found similary as we did above, just change the location we
used above by the one you are trying to know concepts for.

2.35.3 Usage

centos-art path --copy=’SRC’ --to=’DST’
Copy ‘SRC’ to ‘DST’ and schedule ‘DST’ for addition (with history). In this command,
‘SRC’ and ‘DST’ are both working copy (WC) entries.

http://wiki.centos.org/GettingHelp

Chapter 2: The Repository Directories 60

centos-art path --delete=’SRC’
Delete ‘DST’. In order for this command to work the file or directory you intend to
delete should be under version control first. In this command, ‘SRC’ is a working
copy (WC) entry.

2.35.4 See also

2.36 The ‘trunk/Scripts/Functions/Prepare’ Directory

2.36.1 Goals

This section exists to organize files related to ‘centos-art.sh’ script ‘prepare’ functionality.
The ‘prepare’ functionality of ‘centos-art.sh’ script helps you to prepare the workstation con-
figuration you are planning to use as host for your working copy of CentOS Artwork Repository.

2.36.2 Description

The first time you download CentOS Artwork Repository you need to configure your workstation
in order to use ‘centos-art.sh’ script. These preliminar configurations are based mainly on
auxiliar RPM packages installation, symbolic links creations, and environment variables defini-
tions. The ‘prepare’ functionality of ‘centos-art.sh’ script guides you through this preliminar
configuration process.

If this is the first time you run ‘centos-art.sh’ script, the appropriate way to use its
‘prepare’ functionality is not using the ‘centos-art.sh’ script directly, but the absolute path to
centos-art.sh script instead (i.e., ‘~/artwork/trunk/Scripts/Bash/centos-art.sh’). This
is necessary because ‘centos-art’ symbolic link, under ‘~/bin/’ directory, has not been created
yet.

2.36.2.1 Packages

Installation of auxiliar RPM packages provides the software required to manipulate files inside
the repository (e.g., image files, documentation files, translation files, script files, etc.). Most of
RPM packages centos-art.sh script uses are shipped with CentOS distribution, and can be
installed from CentOS base repository. The only exception is ‘inkscape’, the package we use to
manipulate SVG files. The ‘inkscape’ package is not inside CentOS distribution so it needs to
be installed from third party repositories.

Note Configuration of third party repositories inside CentOS distribu-
tion is described in CentOS wiki, specifically in the following URL:
http://wiki.centos.org/AdditionalResources/Repositories

Before installing packages, the ‘centos-art.sh’ script uses sudo to request root privileges to
execute yum installation functionality. If your user isn’t defined as a privileged user—at least to
run yum commands— inside ‘/etc/sudoers’ configuration file, you will not be able to perform
package installation tasks as set in ‘centos-art.sh’ script ‘prepare’ functionality.

Setting sudo privileges to users is an administrative task you have to do by yourself. If you
don’t have experience with sudo command, please read its man page running the command:
man sudo. This reading will be very useful, and with some practice, you will be able to configure
your users to have sudo privileges.

2.36.2.2 Links

Creation of symbolic links helps us to alternate between different implementations
of ‘centos-art.sh’ script-line (e.g., ‘centos-art.sh’, for Bash implementation;
‘centos-art.py’, for Python implementation; ‘centos-art.pl’, for Perl implementation; and
so on for other implementations). The ‘centos-art.sh’ script-line definition takes place inside

http://wiki.centos.org/AdditionalResources/Repositories

Chapter 2: The Repository Directories 61

your personal binary (‘~/bin/’) directory in order to make the script implementation —the
one that ‘centos-art’ links to— available to PATH environment variable.

Creation of symbolic links helps us to reuse components from repository working copy. For
example, color information files maintained inside your working copy must never be dupli-
cated inside program-specific configuration directories that uses them in your workstation (e.g.,
Gimp, Inkscape, etc.). Instead, a symbolic link must be created for each one of them, from
program-specific configuration directories to files in the working copy. In this configuration,
when someone commits changes to color information files up to central repository, they—the
changes committed— will be immediatly available to your programs the next time you update
your working copy —the place inside your workstation those color information files are stored—.

Creation of symbolic links helps us to make ‘centos-art.sh’ script functionalities available
outside ‘trunk/’ repository directory structure, but at its same level in repository tree. This
is useful if you need to use the “render” functionality of centos-art.sh under ‘branches/’
repository directory structure as you usually do inside ‘trunk/’ repository directory struc-
ture. As consequence of this configuration, automation scripts cannot be branched under
‘branches/Scripts’ directory structure.

2.36.2.3 Environment variables

Definition of environemnt variables helps us to set default values to our user session life. The
user session environment variable defintion takes place in the user’s ‘~/.bash_profile’ file. The
‘prepare’ functionality of ‘centos-art.sh’ script doesn’t modify your ‘~/.bash_profile’ file.

The ‘prepare’ functionality of ‘centos-art.sh’ script evaluates the following environment
variables:

EDITOR Default text editor.
The ‘centos-art.sh’ script uses default text EDITOR to edit pre-commit subversion
messages, translation files, configuration files, script files, and similar text-based
files.
If EDITOR environment variable is not set, ‘centos-art.sh’ script uses
‘/usr/bin/vim’ as default text editor. Otherwise, the following values are
recognized by ‘centos-art.sh’ script:
• ‘/usr/bin/vim’
• ‘/usr/bin/emacs’
• ‘/usr/bin/nano’

If no one of these values is set in EDITOR environment variable, ‘centos-art.sh’
uses ‘/usr/bin/vim’ text editor by default.

TEXTDOMAIN
Default domain used to retrieve translated messages. This variable is set in
‘initFunctions.sh’ and shouldn’t be changed.

TEXTDOMAINDIR
Default directory used to retrieve translated messages. This variable is set in
‘initFunctions.sh’ and shouldn’t be changed.

LANG

Default locale information.
This variable is initially set in the configuration process of CentOS distribution
installer (i.e., Anaconda), specifically in the ‘Language’ step; or once installed using
the system-config-language tool.
The ‘centos-art.sh’ script uses the LANG environment variable to know in which
language the script messages are printed out.

Chapter 2: The Repository Directories 62

TZ

Default time zone representation.
This variable is initially set in the configuration process of CentOS distribution
installer (i.e., Anaconda), specifically in the ‘Date and time’ step; or once installed
using the system-config-date tool.
The ‘centos-art.sh’ script doesn’t use the TZ environment variable information
at all. Instead, this variable is used by the system shell to show the time information
according to your phisical location on planet Earth.
Inside your computer, the time information is firstly set in the BIOS clock (which
may need correction), and later in the configuration process of CentOS distribu-
tion installer (or later, by any of the related configuration tools inside CentOS
distribution). Generally, setting time information is a straight-forward task and
configuration tools available do cover most relevant location. However, if you need
a time precision not provided by the configuration tools available inside CentOS
distribution then, using TZ variable may be necessary.

Convenction In order to keep changes syncronized between central
repository and its working copies: configure both repository server and
workstations (i.e., the place where each working copy is set on) to use
Coordinated Universal Time (UTC) as base time representation. Later,
correct the time information for your specific location using time zone
correction.

The format of TZ environment variable is described in ‘tzset(3)’ manual page.

2.36.2.4 Shell Script Files

The shell functionality of ‘centos-art.sh’ script helps you to maintain bash scripts inside
repository. For example, suppose you’ve created many functionalities for ‘centos-art.sh’ script,
and you want to use a common copyright and license note for consistency in all your script files.
If you have a bunch of files, doing this one by one wouldn’t be a big deal. In contrast, if
the amount of files grows, updating the copyright and license note for all of them would be a
task rather tedious. The shell functionality exists to solve maintainance tasks just as the one
previously mentioned.

When you use shell functionality to update copyright inside script files, it is required that
your script files contain (at least) the following top commentary structure:

1| #!/bin/bash
2| #
3| # doSomething.sh -- The function description goes here.
4| #
5| # Copyright
6| #
7| # ...
8| #
9| # --
10| # Id
11| # --
12|
13| function doSomething {
14|
15| }

Relevant lines in the above structure are lines from 5 to 9. Everything else in the file is left
immutable.

Chapter 2: The Repository Directories 63

When you are updating copyright through shell functionality, the ‘centos-art.sh’ script
replaces everything in-between line 5 —the first one matching ‘^# Copyright .+$’ string— and
line 9—the first long dash separator matching ‘^# -+$’— with the content of copyright template
instance.

Caution Be sure to add the long dash separator that matches ‘^# -+$’ regular expres-
sion before the function definition. Otherwise, if the ‘Copyright’ line is present but
no long dash separator exists, ‘centos-art.sh’ will remove anything in-between the
‘Copyright’ line and the end of file. This way you may lost your function definitions
entirely.

The copyright template instance is created from one copyright template stored in the
‘Config/tpl_forCopyright.sed’ file. The template instance is created once, and later removed
when no longer needed. At this moment, when template instance is created, the ‘centos-art.sh’
script takes advantage of automation in order to set copyright full name and date dynamically.

When you use shell functionality to update copyright, the first thing ‘shell’ functionality
does is requesting copyright information to user, and later, if values were left empty (i.e., no
value was typed before pressing 〈RET〉 key), the ‘shell’ functionality uses its own default values.

When shell functionality uses its own default values, the final copyright note looks like the
following:

1| #!/bin/bash
2| #
3| # doSomthing.sh -- The function description goes here.
4| #
5| # Copyright (C) 2003, 2010 The CentOS Project
6| #
7| # This program is free software; you can redistribute it and/or modify
8| # it under the terms of the GNU General Public License as published by
9| # the Free Software Foundation; either version 2 of the License, or
10| # (at your option) any later version.
11| #
12| # This program is distributed in the hope that it will be useful, but
13| # WITHOUT ANY WARRANTY; without even the implied warranty of
14| # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15| # General Public License for more details.
16| #
17| # You should have received a copy of the GNU General Public License
18| # along with this program; if not, write to the Free Software
19| # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
20| # USA.
21| #
22| # --
23| # Id
24| # --
25|
26| function doSomething {
27|
28| }

Relevant lines in the above structure are lines from 5 to 22. Pay attention how the copyright
line was built, and how the license was added into the top comment where previously was just
three dots. Everything else in the file was left immutable.

Chapter 2: The Repository Directories 64

To change copyright information (i.e., full name or year information), run the shell func-
tionality over the root directory containing the script files you want to update copyright in and
enter the appropriate information when it be requested. You can run the shell functionality
as many times as you need to.

To change copyright license (i.e., the text in-between lines 7 and 20), you need to edit
the ‘Config/tpl_forCopyright.sed’ file, set the appropriate information, and run the shell
functionality once again for changes to take effect over the files you specify.

Important The ‘centos-art.sh’ script is released as:

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Do not change the license information under which ‘centos-art.sh’ script is re-
leased. Instead, if you think a different license must be used, please share your
reasons at CentOS Developers mailing list.

See file trunk/Scripts/COPYING, for a complete license description.

2.36.2.5 SVG Files

The svg functionality of ‘centos-art.sh’ script helps you to maintain scalable vector graphics
(SVG) inside repository. For example, suppose you’ve been working in CentOS default design
models under ‘trunk/Identity/Themes/Models/’, and you want to set common metadata to
all of them, and later remove all unused SVG defintions from ‘*.svg’ files. Doing so file by file
may be a tedious task, so the ‘centos-art.sh’ script provides the svg functionality to aid you
maintain such actions.

The metadata used is defined by Inkscape 0.46 using the SVG standard markup. The
‘centos-art.sh’ script replaces everything in-between <metadata and </metadata> tags with
a predefined metadata template we’ve set for this purpose.

The metadata template was created using the metadata information of a file which, using
Inkscape 0.46, all metadata fields were set. This created a complete markup representation
of how SVG metadata would look like. Later, we replaced every single static value with a
translation marker in the form ‘=SOMETEXT=’, where SOMETEXT is the name of its main opening
tag. Later, we transform the metadata template into a sed replacement set of commads escaping
new lines at the end of each line.

With metadata template in place, the ‘centos-art.sh’ script uses it to create a metadata
template instance for the file being processed currently. The metadata template instance con-
tains the metadata portion of sed replacement commands with translation markers already
traduced. In this action, instance creation, is where we take advantage of automation and gen-
erate metadata values like title, date, keywords, source, identifier, and relation dynamically,
based on the file path ‘centos-art.sh’ script is currently creating metadata information for.

With metadata template instance in place, the ‘centos-art.sh’ script uses it to replace
real values inside all ‘.svg’ files under the current location you’re running the ‘centos-art.sh’
script on. Default behaviour is to ask user to enter each metadatum required, one by one. If
user leaves metadatum empty, by pressing 〈RET〉 key, ‘centos-art.sh’ uses its default value.

Many of the no-longer-used gradients, patterns, and markers (more precisely, those which
you edited manually) remain in the corresponding palettes and can be reused for new objects.
However if you want to optimize your document, use the ‘Vacuum Defs’ command in ‘File’
menu. It will remove any gradients, patterns, or markers which are not used by anything in the
document, making the file smaller.

mailto:centos-devel@centos-art.sh
file:///home/centos/artwork/trunk/Scripts/COPYING

Chapter 2: The Repository Directories 65

If you have one or two couple of files, removing unused definitions using the graphical interface
may be enough to you. In contrast, if you have dozens or even houndreds of scalable vector
graphics files to maintain it is not a fun task to use the graphical interface to remove unused
definitions editing those files one by one.

To remove unused definitions from several scalable vector graphics files, the ‘centos-art.sh’
script uses Inkscape command-line interface, specifically with the ‘--vaccum-defs’ option.

2.36.2.6 XHTML Files

2.36.3 Usage

centos-art prepare --packages
Verify required packages your workstation needs in order to run the ‘centos-art.sh’
script correctly. If there are missing packages, the ‘centos-art.sh’ script asks you
to confirm their installation. When installing packages, the ‘centos-art.sh’ script
uses the yum application in order to achieve the task.
In case all packages required by ‘centos-art.sh’ script are already installed in
your workstation, the message ‘The required packages are already installed.’
is output for you to know.

centos-art prepare --links
Verify required links your workstation needs in order to run the centos-art command
correctly. If any required link is missing, the centos-art.sh script asks you to
confirm their installation. To install required links, the centos-art.sh script uses
the ln command.
In case all links required by ‘centos-art.sh’ script are already created in your
workstation, the message ‘The required links are already installed.’ is output
for you to know.
In case a regular file exists with the same name of a required link, the
‘centos-art.sh’ script outputs the ‘Already exists as regular file.’ message
when listing required links that will be installed. Of course, as there is already
a regular file where must be a link, no link is created. In such cases the
‘centos-art.sh’ script will fall into a continue installation request for that missing
link. To end this continue request you can answer ‘No’, or remove the existent
regular file to let ‘centos-art.sh’ script install the link on its place.

centos-art prepare --environment
centos-art prepare --environment --filter=’regex’

Output a brief description of environment variables used by ‘centos-art.sh’ script.
If ‘--filter’ option is provided, output is reduced as defined in the ‘regex’ regular
expression value. If ‘--filter’ option is specified but ‘regex’ value is not, the
‘centos-art.sh’ script outputs information as if ‘--filter’ option had not been
provided at all.

2.36.4 See also

2.37 The ‘trunk/Scripts/Functions/Render’ Directory

The render functionality exists to produce both identity and translation files on different levels
of information (i.e., different languages, release numbers, architectures, etc.).

The render functionality relies on “renderable directory structures” to produce files. Render-
able directory structures can be either “identity directory structures” or “translation directory
structures” with special directories inside.

Chapter 2: The Repository Directories 66

2.37.1 Renderable identity directory structures

Renderable identity directory structures are the starting point of identity rendition. When-
ever we want to render a component of CentOS corporate visual identity, we need to point
‘centos-art.sh’ to a renderable identity directory structure. If such renderable identity direc-
tory structure doesn’t exist, then it is good time to create it.

Inside the working copy, one renderable identity directory structures represents one visual
manifestation of CentOS corporate visual identity, or said differently, each visual manifestation
of CentOS corporate visual identity should have one renderable identity directory structure.

Inside renderable identity directory structures, ‘centos-art.sh’ can render both image-based
and text-based files. Specification of whether a renderable identity directory structure produces
image-based or text-based content is a configuration action that takes place in the pre-rendition
configuration script of that renderable identity directory structure.

Inside renderable identity directory structures, content production is organized in different
configurations. A content production configuration is a unique combination of the components
that make an identity directory structure renderable. One content production configuration
does one thing only (e.g., to produce untranslated images), but it can be extended (e.g., adding
translation files) to achieve different needs (e.g., to produce translated images).

2.37.1.1 Design template without translation

The design template without translation configuration is based on a renderable identity direc-
tory structure with an empty translation directory structure. In this configuration, one design
template produces one untranslated file. Both design templates and final untranslated files share
the same file name, but they differ one another in file-type and file-extension.

For example, to produce images without translations (there is no much use in producing
text-based files without translations), consider the following configuration:

One renderable identity directory structure:
In this example we used ‘Identity/Path/To/Dir’ as the identity component we
want to produce untranslated images for. Identity components can be either under
‘trunk/’ or ‘branches/’ directory structure.
The identity component (i.e., ‘Identity/Path/To/Dir’, in this case) is also the bond
component we use to connect the identity directory structures with their respective
auxiliar directories (i.e., translation directory structres and pre-rendition configura-
tion structures). The bond component is the path convenction that ‘centos-art.sh’
uses to know where to look for related translations, configuration scripts and what-
ever auxiliar thing a renderable directory structure may need to have.

| The bond component
|----------------->|

trunk/Identity/Path/To/Dir <-- Renderable identity directory structure.
|-- Tpl <-- Design template directory.
| ‘-- file.svg <-- Design template file.
‘-- Img <-- Directory used to store final files.

‘-- file.png <-- Final image-based file produced from
design template file.

Inside design template directory, design template files are based on SVG (Scalable
Vector Graphics) and use the extension .svg. Design template files can be organized
using several directory levels to create a simple but extensible configuration, specially
if translated images are not required.
In order for SVG (Scalable Vector Graphics) files to be considered “design template”
files, they should be placed under the design template directory and to have set a
CENTOSARTWORK object id inside.

Chapter 2: The Repository Directories 67

The CENTOSARTWORK word itself is a convenction name we use to define which ob-
ject/design area, inside a design template, the ‘centos-art.sh’ script will use to
export as PNG (Portable Network Graphic) image at rendition time. Whithout such
object id specification, the ‘centos-art.sh’ script cannot know what object/design
area you (as designer) want to export as PNG (Portable Network Graphic) image
file.

Note At rendition time, the content of ‘Img/’ directory structure is
produced by ‘centos-art.sh’ automatically.

When a renderable identity directory structure is configured to produce image-based
content, ‘centos-art.sh’ produces PNG (Portable Network Graphics) files with the
.png extension. Once the base image format has been produced, it is possible for
‘centos-art.sh’ to use it in order to automatically create other image formats that
may be needed (— Removed(pxref:trunk Scripts Bash Functions Render Config)
—).

Inside the working copy, you can find an example of “design template without trans-
lation” configuration at ‘trunk/Identity/Models/’.

See Section 2.4 [Directories trunk Identity], page 14, for more information.

One translation directory structure:
In order for an identity entry to be considered an identity renderable directory
structure, it should have a translation entry. The content of the translation entry is
relevant to determine how to process the identity renderable directory entry.

If the translation entry is empty (i.e., there is no file inside it), ‘centos-art.sh’
interprets the identity renderable directory structure as a “design templates without
translation” configuration.

| The bond component
|----------------->|

trunk/Translations/Identity/Path/To/Dir
‘-- (empty)

If the translation entry is not empty, ‘centos-art.sh’ can interpret the identity ren-
derable directory structure as one of the following configurations: “design template
with translation (one-to-one)” or “design template with translation (optimized)”.
Which one of these configurations is used depends on the value assigned to the
matching list (MATCHINGLIST) variable in the pre-rendition configuration script
of the renderable identity directory structure we are producing images for.

If the matching list variable is empty (as it is by default), then “design template with
translation (one-to-one)” configuration is used. In this configuration it is required
that both design templates and translation files have the same file names. This way,
one translation files is applied to one design template, to produce one translated
image.

If the matching list variable is not empty (because you redefine it in the pre-rendition
configuration script), then “design template with translation (optimized)” configu-
ration is used instead. In this configuration, design templates and translation files
don’t need to have the same names since such name relationship between them is
specified in the matching list properly.

— Removed(xref:trunk Translations) —, for more information.

One pre-rendition configuration script:
In order to make an identity directory structure renderable, a pre-rendition con-
figuration script should exist for it. The pre-rendition configuration script specifies

Chapter 2: The Repository Directories 68

what type of rendition does ‘centos-art.sh’ will perform over the identity directory
structure and how does it do that.

| The bond component
|----------------->|

trunk/Scripts/Bash/Functions/Render/Config/Identity/Path/To/Dir
‘-- render.conf.sh

In this configuration the pre-rendition configuration script (‘render.conf.sh’)
would look like the following:

function render_loadConfig {

Define rendition actions.
ACTIONS[0]=’BASE:renderImage’

}

Since translation directory structure is empty, ‘centos-art.sh’ assumes a “design
template without translation” configuration to produce untranslated images.
To produce untranslated images, ‘centos-art.sh’ takes one design template and
creates one temporal instance from it. Later, ‘centos-art.sh’ uses the temporal
design template instance as source file to export the final untranslated image. The
action of exporting images from SVG (Scalable Vector Graphics) to PNG (Portable
Network Graphics) is possible thanks to Inkscape’s command-line interface and the
CENTOSARTWORK object id we previously set inside design templates.

centos-art.sh render --identity=trunk/Identity/Path/To/Dir

0 | Execute centos-art.sh on renderable identity directory structure.
--v--
trunk/Identity/Path/To/Dir/Tpl/file.svg

1 | Create instance from design template.
--v--
/tmp/centos-art.sh-a07e824a-5953-4c21-90ae-f5e8e9781f5f-file.svg

2 | Render untranslated image from design template instance.
--v--
trunk/Identity/NewDir/Img/file.png

3 | Remove design template instance.

Finally, when the untranslated image has been created, the temporal design tem-
plate instance is removed. At this point, ‘centos-art.sh’ takes the next design
template and repeats the whole production flow once again (design template by
design template), until all design templates be processed.
— Removed(xref:trunk Scripts Bash Functions Render Config) —, for more infor-
mation.

2.37.1.2 Design template with translation (one-to-one)

Producing untranslated images is fine in many cases, but not always. Sometimes it is required to
produce images in different languages and that is something that untrasnlated image production
cannot achieve. However, if we fill its empty translation entry with translation files (one for
each design template) we extend the production flow from untranslated image production to
translated image production.

Chapter 2: The Repository Directories 69

In order for ‘centos-art.sh’ to produce images correctly, each design template should have
one translation file and each translation file should have one design template. Otherwise, if there
is a missing design template or a missing translation file, ‘centos-art.sh’ will not produce the
final image related to the missing component.

In order for ‘centos-art.sh’ to know which is the relation between translation files and
design templates the translation directory structure is taken as reference. For example,
the ‘trunk/Translations/Identity/Path/To/Dir/file.sed’ translation file does match
‘trunk/Identity/Path/To/Dir/Tpl/file.svg’ design template, but it doesn’t match
‘trunk/Identity/Path/To/Dir/File.svg’ or ‘trunk/Identity/Path/To/Dir/Tpl/File.svg’
or ‘trunk/Identity/Path/To/Dir/Tpl/SubDir/file.svg’ design templates.

The pre-rendition configuration script used to produce untranslated images is the same we
use to produce translated images. There is no need to modify it. So, as we are using the same
pre-rendition configuration script, we can say that translated image production is somehow an
extended/improved version of untranslated image production.

Note If we use no translation file in the translation entry (i.e., an empty directory),
‘centos-art.sh’ assumes the untranslated image production. If we fill the trans-
lation entry with translation files, ‘centos-art.sh’ assumes the translated image
production.

To produce final images, ‘centos-art.sh’ applies one translation file to one design template
and produce a translated design template instance. Later, ‘centos-art.sh’ uses the translated
template instance to produce the translated image. Finally, when the translated image has been
produced, ‘centos-art.sh’ removes the translated design template instance. This production
flow is repeated for each translation file available in the translatio entry.

centos-art.sh render --identity=trunk/Identity/Path/To/Dir

0 | Execute centos-art.sh on directory structure.
--v--
trunk/Translations/Identity/Path/To/Dir/file.sed

1 | Apply translation to design template.
--v--
trunk/Identity/Path/To/Dir/Tpl/file.svg

2 | Create design template instance.
--v--
/tmp/centos-art.sh-a07e824a-5953-4c21-90ae-f5e8e9781f5f-file.svg

3 | Render PNG image from template instance.
--v--
trunk/Identity/NewDir/Img/file.png

4 | Remove design template instance.

2.37.1.3 Design template with translation (optimized)

Producing translated images satisfies almost all our production images needs, but there is still
a pitfall in them. In order to produce translated images as in the “one-to-one” configuration
describes previously, it is required that one translation file has one design template. That’s
useful in many cases, but what would happen if we need to apply many different translation
files to the same design template? Should we have to duplicate the same design template file
for each translation file, in order to satisfy the “one-to-one” relation? What if we need to assign
translation files to design templates arbitrarily?

Chapter 2: The Repository Directories 70

Certenly, that’s something the “one-to-one” configuration cannot handle. So, that’s why we
had to “optimize” it. The optimized configuration consists on using a matching list (MATCH-
INGLIST) variable that specifies the relationship between translation files and design templates
in an arbitrary way. Using such matching list between translation files and design templates
let us use as many assignment combinations as translation files and design templates we are
working with.

The MATCHINGLIST variable is set in the pre-rendition configuration script of the com-
ponent we want to produce images for. By default, the MATCHINGLIST variable is empty
which means no matching list is used. Otherwise, if MATCHINGLIST variable has a value
different to empty value then, ‘centos-art.sh’ interprets the matching list in order to know
how translation files are applied to design templates.

For example, consider the following configuration:

One entry under ‘trunk/Identity/’:
In this configuration we want to produce three images using a paragraph-based style,
controlled by ‘paragraph.svg’ design template; and one image using a list-based
style, controlled by ‘list.svg’ design template.

trunk/Identity/Path/To/Dir
|-- Tpl
| |-- paragraph.svg
| ‘-- list.svg
‘-- Img

|-- 01-welcome.png
|-- 02-donate.png
|-- 03-docs.png
‘-- 04-support.png

One entry under ‘trunk/Translations/’:
In order to produce translated images we need to have one translation file for each
translated image we want to produce. Notice how translation names do match final
image file names, but how translation names do not match design template names.
When we use matching list there is no need for translation files to match the names
of design templates, such name relation is set inside the matching list itself.

trunk/Translations/Identity/Path/To/Dir
|-- 01-welcome.sed
|-- 02-donate.sed
|-- 03-docs.sed
‘-- 04-support.sed

One entry under ‘trunk/trunk/Scripts/Bash/Functions/Render/Config/’:
In order to produce different translated images using specific design templates, we
need to specify the relation between translation files and design templates in a
way that ‘centos-art.sh’ could know exactly what translation file to apply to
what design template. This relation between translation files and design templates
is set using the matching list MATCHINGLIST variable inside the pre-rendition
configuration script of the component we want to produce images for.

trunk/Scripts/Bash/Functions/Render/Config/Identity/Path/To/Dir
‘-- render.conf.sh

In this configuration the pre-rendition configuration script (‘render.conf.sh’)
would look like the following:

function render_loadConfig {

Chapter 2: The Repository Directories 71

Define rendition actions.
ACTIONS[0]=’BASE:renderImage’

Define matching list.
MATCHINGLIST="\
paragraph.svg:\

01-welcome.sed\
02-donate.sed\
04-support.sed

list.svg:\
03-docs.sed

"

}

As result, ‘centos-art.sh’ will produce ‘01-welcome.png’, ‘02-donate.png’ and
‘04-support.png’ using the paragraph-based design template, but ‘03-docs.png’
using the list-based design template.

2.37.1.4 Design template with translation (optimized+flexibility)

In the production models we’ve seen so far, there are design templates to produce untranslated
images and translation files which combiend with design templates produce translated images.
That may seems like all our needs are covered, doesn’t it? Well, it almost does.

Generally, we use design templates to define how final images will look like. Generally, each
renderable directory structure has one ‘Tpl/’ directory where we organize design templates for
that identity component. So, we can say that there is only one unique design template definition
for each identity component; or what is the same, said differently, identity components can be
produced in one way only, the way its own design template directory specifies. This is not
enough for theme production. It is a limitation, indeed.

Initially, to create one theme, we created one renderable directory structure for each theme
component. When we found ourselves with many themes, and components inside them, it was
obvious that the same design model was duplicated inside each theme. As design models were
independently one another, if we changed one theme’s design model, that change was useless to
other themes. So, in order to reuse design model changes, we unified design models into one
common directory structure.

With design models unified in a common structure, another problem rose up. As design
models also had the visual style of theme components, there was no difference between themes,
so there was no apparent need to have an independent theme directory structure for each different
theme. So, it was also needed to separate visual styles from design models.

At this point there are two independent worklines: one directory structure to store design
models (the final image characteristics [i.e., dimensions, translation markers, etc.]) and one di-
rectory structure to store visual styles (the final image visual style [i.e., the image look and feel]).
So, it is possible to handle both different design models and different visual styles independtly
one another and later create combinations among them using ‘centos-art.sh’.

For example, consider the following configuration:

One entry under ‘trunk/Identity/Themes/Models/’:
The design model entry exists to organize design model files (similar to design tem-
plates). Both design models and design templates are very similar; they both should
have the CENTOSARTWORK export id present to identify the exportation area, trans-
lation marks, etc. However, design models do use dynamic backgrounds inclusion
while design templates don’t.

Chapter 2: The Repository Directories 72

THEMEMODEL | | The bond component
|<----| |--------------------->|

trunk/Identity/Themes/Models/Default/Distro/Anaconda/Progress/
|-- paragraph.svg
‘-- list.svg

Inisde design models, dynamic backgrounds are required in order for different artistic
motifs to reuse common design models. Firstly, in order to create dynamic back-
grounds inside design models, we import a bitmap to cover design model’s back-
ground and later, update design model’s path information to replace fixed values to
dynamic values.

One entry under ‘trunk/Identity/Themes/Motifs/’:
The artistic motif entry defines the visual style we want to produce images for,
only. Final images (i.e., those built from combining both design models and artistic
motif backrounds) are not stored here, but under branches directory structure. In
the artistic motif entry, we only define those images that cannot be produced auto-
matically by ‘centos-art.sh’ (e.g., Backgrounds, Color information, Screenshots,
etc.).

Artistic motif name | | Artistic motif backgrounds
|<-------| |-------->|

trunk/Identity/Themes/Motifs/TreeFlower/Backgrounds/
|-- Img
| |-- Png
| | |-- 510x300.png
| | ‘-- 510x300-final.png
| ‘-- Jpg
| |-- 510x300.jpg
| ‘-- 510x300-final.jpg
|-- Tpl
| ‘-- 510x300.svg
‘-- Xcf

‘-- 510x300.xcf

One entry under ‘trunk/Translations/’:
The translation entry specifies, by means of translation files, the language-specific
information we want to produce image for. When we create the translation entry
we don’t use the name of neither design model nor artistic motif, just the design
model component we want to produce images for.

| The bond component
|--------------------->|

trunk/Translations/Identity/Themes/Distro/Anaconda/Progress/
‘-- 5

|-- en
| |-- 01-welcome.sed
| |-- 02-donate.sed
| ‘-- 03-docs.sed
‘-- es

|-- 01-welcome.sed
|-- 02-donate.sed
‘-- 03-docs.sed

Chapter 2: The Repository Directories 73

One entry under ‘trunk/Scripts/Bash/Functions/Render/Config/’:
There is one pre-rendition configuration script for each theme component. So, each
time a theme component is rendered, its pre-rendition configuration script is evalu-
ated to teach ‘centos-art.sh’ how to render the component.

trunk/Scripts/Bash/Functions/Render/Config/Identity/Themes/Distro/Anaconda/Progress/
‘-- render.conf.sh

In this configuration the pre-rendition configuration script (‘render.conf.sh’)
would look like the following:

function render_loadConfig {

Define rendition actions.
ACTIONS[0]=’BASE:renderImage’

Define matching list.
MATCHINGLIST="\
paragraph.svg:\

01-welcome.sed\
02-donate.sed

list.svg:\
03-docs.sed
"

Deifne theme model.
THEMEMODEL=’Default’

}

The production flow of “optimize+flexibility” configuration. . .

2.37.2 Renderable translation directory structures

Translation directory structures are auxiliar structures of renderable identity directory struc-
tures. There is one translation directory structure for each renderable identity directory struc-
ture. Inside translation directory structures we organize translation files used by renderable
identity directory structures that produce translated images. Renderable identity directory
structures that produce untranslated images don’t use translation files, but they do use a trans-
lation directory structure, an empty translation directory structure, to be precise.

In order to aliviate production of translation file, we made translation directory structures
renderable adding a template (‘Tpl/’) directory structure to handle common content inside
translation files. This way, we work on translation templates and later use ‘centos-art.sh’ to
produce specific translation files (based on translation templates) for different information (e.g.,
languages, release numbers, architectures, etc.).

If for some reason, translation files get far from translation templates and translation tem-
plates become incovenient to produce such translation files then, care should be taken to
avoid replacing the content of translation files with the content of translation templates when
‘centos-art.sh’ is executed to produce translation files from translation templates.

Inside renderable translation directory structures, ‘centos-art.sh’ can produce text-based
files only.

2.37.3 Copying renderable directory structures

A renderable layout is formed by design models, design images, pre-rendition configuration
scripts and translations files. This way, when we say to duplicate rendition stuff we are saying

Chapter 2: The Repository Directories 74

to duplicate these four directory structures (i.e., design models, design images, pre-rendition
configuration scripts, and related translations files).

When we duplicate directories, inside ‘trunk/Identity’ directory structure, we need to be
aware of renderable layout described above and the source location used to perform the dupli-
cation action. The source location is relevant to centos-art.sh script in order to determine the
required auxiliar information inside directory structures that need to be copied too (otherwise
we may end up with orphan directory structures unable to be rendered, due the absence of
required information).

In order for a renderable directory structure to be valid, the new directory structure copied
should match the following conditions:
1. To have a unique directory structure under ‘trunk/Identity’, organized by any one of the

above organizational designs above.
2. To have a unique directory structure under ‘trunk/Translations’ to store translation files.
3. To have a unique directory structure under ‘trunk/Scripts/Bash/Functions/Render/Config’

to set pre-rendition configuration script.

As convenction, the render_doCopy function uses ‘trunk/Identity’ directory structure as
source location. Once the ‘trunk/Identity’ directory structure has been specified and verified,
the related path information is built from it and copied automatically to the new location
specified by FLAG TO variable.

Design templates + No translation:
Command: - centos-art render –copy=trunk/Identity/Path/To/Dir –

to=trunk/Identity/NewPath/To/Dir
Sources: - trunk/Identity/Path/To/Dir - trunk/Translations/Identity/Path/To/Dir -

trunk/Scripts/Bash/Functions/Render/Config/Identity/Path/To/Dir
Targets: - trunk/Identity/NewPath/To/Dir - trunk/Translations/Identity/NewPath/To/Dir

- trunk/Scripts/Bash/Functions/Render/Config/Identity/NewPath/To/Dir
Renderable layout 2:
Command: - centos-art render –copy=trunk/Identity/Themes/Motifs/TreeFlower \

–to=trunk/Identity/Themes/Motifs/NewPath/To/Dir
Sources: - trunk/Identity/Themes/Motifs/TreeFlower - trunk/Translations/Identity/Themes

- trunk/Translations/Identity/Themes/Motifs/TreeFlower - trunk/Scripts/Bash/Functions/Render/Config/Identity/Themes
- trunk/Scripts/Bash/Functions/Render/Config/Identity/Themes/Motifs/TreeFlower

Targets: - trunk/Identity/Themes/Motifs/NewPath/To/Dir - trunk/Translations/Identity/Themes
- trunk/Translations/Identity/Themes/Motifs/NewPath/To/Dir - trunk/Scripts/Bash/Functions/Render/Config/Identity/Themes
- trunk/Scripts/Bash/Functions/Render/Config/Identity/Themes/Motifs/NewPath/To/Dir

Notice that design models are not included in source or target locations. This is intentional.
In “Renderable layout 2”, design models live by their own, they just exist, they are there, avail-
able for any artistic motif to use. By default ‘Themes/Models/Default’ design model directory
structure is used, but other design models directory structures (under Themes/Models/) can
be created and used changing the value of THEMEMODEL variable inside the pre-rendition
configuration script of the artistic motif source location you want to produce.

Notice how translations and pre-rendition configuration scripts may both be equal in source
and target. This is because such structures are common to all artistic motifs (the default values
to use when no specific values are provided).

- The common directory structures are not copied or deleted. We cannot copy a directory
structure to itself.

- The common directory structures represent the default value to use when no specific trans-
lations and/or pre-rendition configuration script are provided inside source location.

Chapter 2: The Repository Directories 75

- The specific directory structures, if present, are both copiable and removable. This is, when
you perform a copy or delete action from source, that source specific auxiliar directories are
transfered in the copy action to a new location (that specified by FLAG TO variable).

- When translations and/or pre-rendition configuration scripts are found inside the source
directory structure, the centos-art.sh script loads common auxiliar directories first and later
specific auxiliar directories. This way, identity rendition of source locations can be customized
idividually over the base of common default values.

- The specific auxiliar directories are optional.
- The common auxiliar directories should be present always. This is, in order to provide the

information required by render functionality (i.e., to make it functional in the more basic level
of its existence).

Notice how the duplication process is done from ‘trunk/Identity’ on, not the oposite. If you
try to duplicate a translation structure (or similar auxiliar directory structures like pre-rendition
configuration scripts), the ‘trunk/Identity’ for that translation is not created. This limitation
is impossed by the fact that many ‘trunk/Identity’ directory structures may reuse/share the
same translation directory structure. We cannot delete one translation (or similar) directory
structures while a related ‘trunk/Identity/’ directory structure is still in need of it.

The ‘render doCopy’ functionality does duplicate directory structures directly involved in
rendition process only. Once such directories have been duplicated, the functionality stops
thereat.

2.37.4 Usage

• ...

2.37.5 See also

2.38 The ‘trunk/Scripts/Functions/Render/Config’ Directory

2.38.1 Goals

The ‘trunk/Scripts/Bash/Config’ directory exists to oraganize pre-rendering configuration
scripts.

2.38.2 Description

Pre-rendering configuration scripts let you customize the way centos-art.sh script
renders identity and translation repository entries. Pre-rendering configuration scripts are
‘render.conf.sh’ files with render_loadConfig function definition inside.

There is one ‘render.conf.sh’ file for each pre-rendering configuration entry. Pre-rendering
configuration entries can be based both on identity and translation repository entires. Pre-
rendering configuration entries are required for each identity entry, but not for translation entries.

2.38.2.1 The ‘render.conf.sh’ identity model

Inside CentOS Artwork Repository, we consider identity entries to all directories under
‘trunk/Identity’ directory. Identity entries can be image-based or text-based. When you
render image-based identity entries you need to use image-based pre-rendering configuration
scripts. Likewise, when you render text-based identity entries you need to use text-based pre-
rendering configuration scripts.

Inside identity pre-rendering configuration scripts, image-based pre-rendering configuration
scripts look like the following:

#!/bin/bash

Chapter 2: The Repository Directories 76

function render_loadConfig {

Define rendering actions.
ACTIONS[0]=’BASE:renderImage’
ACTIONS[1]=’POST:renderFormats: tif xpm pdf ppm’

}

Inside identity pre-rendering configuration scripts, text-based pre-rendering configuration
scripts look like the following:

#!/bin/bash

function render_loadConfig {

Define rendering actions.
ACTIONS[0]=’BASE:renderText’
ACTIONS[1]=’POST:formatText: --width=70 --uniform-spacing’

}

When using identity pre-rendering configuration scripts, you can extend both image-based
and text-based pre-rendering configuration scripts using image-based and text-based post-
rendering actions, respectively.

2.38.2.2 The ‘render.conf.sh’ translation model

Translation pre-rendering configuration scripts take precedence before default translation ren-
dering action. Translation pre-rendering actions are useful when default translation rendering
action do not fit itself to translation entry rendering requirements.

2.38.2.3 The ‘render.conf.sh’ rendering actions

Inside both image-based and text-based identity pre-rendering configuration scripts, we use the
‘ACTIONS’ array variable to define the way centos-art.sh script performs identity rendering.
Identity rendering is organized by one ‘BASE’ action, and optional ‘POST’ and ‘LAST’ rendering
actions.

The ‘BASE’ action specifies what kind of rendering does the centos-art.sh script will perform
with the files related to the pre-rendering configuration script. The ‘BASE’ action is required.
Possible values to ‘BASE’ action are either ‘renderImage’ or ‘renderText’ only.

To specify the ‘BASE’ action you need to set the ‘BASE:’ string followed by one of the possible
values. For example, if you want to render images, consider the following definition of ‘BASE’
action:

ACTIONS[0]=’BASE:renderImage’

Only one ‘BASE’ action must be specified. If more than one ‘BASE’ action is specified, the last
one is used. If no ‘BASE’ action is specified at all, an error is triggered and the centos-art.sh
script ends its execution.

The ‘POST’ action specifies which action to apply for each file rendered (at the rendering
time). This action is optional. You can set many different ‘POST’ actions to apply many different
actions over the same already rendered file. Possible values to ‘POST’ action are ‘renderFormats’,
‘renderSyslinux’, ‘renderGrub’, etc.

To specify the ‘POST’ action, you need to use set the ‘POST:’ followed by the function name of
the action you want to perform. The exact form depends on your needs. For example, consider

Chapter 2: The Repository Directories 77

the following example to produce ‘xpm’, ‘jpg’, and ‘tif’ images, based on already rendered ‘png’
image, and also organize the produced files in directories named as their own extensions:

ACTIONS[0]=’BASE:renderImage’
ACTIONS[1]=’POST:renderFormats: xpm jpg tif’
ACTIONS[2]=’POST:groupByFormat: png xpm jpg tif’

In the previous example, file organization takes place at the moment of rendering, just after
producing the ‘png’ base file and before going to the next file in the list of files to render. If you
don’t want to organized the produced files in directories named as their own extensions, just
remove the ‘POST:groupByFormat’ action line:

ACTIONS[0]=’BASE:renderImage’
ACTIONS[1]=’POST:renderFormats: xpm jpg tif’

The ‘LAST’ action specifies which actions to apply once the last file in the list of files to
process has been rendered. The ‘LAST’ action is optional. Possible values for ‘LAST’ actions may
be ‘groupByFormat’, ‘renderGdmTgz’, etc.

Note — Removed(xref:trunk Scripts Bash Functions Render) —, to know more
about possible values for ‘BASE’, ‘POST’ and ‘LAST’ action definitions.

To specify the ‘LAST’ action, you need to set the ‘LAST:’ string followed by the function name
of the action you want to perform. For example, consider the following example if you want to
render all files first and organize them later:

ACTIONS[0]=’BASE:renderImage’
ACTIONS[1]=’POST:renderFormats: xpm jpg tif’
ACTIONS[2]=’LAST:groupByformat: png xpm jpg tif’

2.38.3 Usage

Use the following commands to administer both identity and translation pre-rendering configu-
ration scripts:

‘centos-art config --create=’path/to/dir/’’
Use this command to create ‘path/to/dir’ related pre-rendering configuration
script.

‘centos-art config --edit=’path/to/dir/’’
Use this command to edit ‘path/to/dir’ related pre-rendering configuration script.

‘centos-art config --read=’path/to/dir/’’
Use this command to read ‘path/to/dir’ related pre-rendering configuration script.

‘centos-art config --remove=’path/to/dir/’’
Use this command to remove ‘path/to/dir’ related pre-rendering configuration
script.

In the commands above, ‘path/to/dir’ refers to one renderable directory path under
‘trunk/Identity’ or ‘trunk/Translations’ structures only.

2.38.4 See also

Index 78

Index

A
Authors . 2

C
Copying conditions . 3

D
Directories branches . 13
Directories tags . 13
Directories trunk . 14
Directories trunk Identity . 14
Directories trunk Identity Brands 18
Directories trunk Identity Fonts 18
Directories trunk Identity Palettes 19
Directories trunk Identity Themes 19
Directories trunk Identity Themes Models 20
Directories trunk Identity Themes Models Default

. 21
Directories trunk Identity Themes Models Default

Concept . 22
Directories trunk Identity Themes Models Default

Distro . 22
Directories trunk Identity Themes Models Default

Distro Anaconda . 24
Directories trunk Identity Themes Models Default

Distro Firstboot . 24
Directories trunk Identity Themes Models Default

Distro Gdm . 24
Directories trunk Identity Themes Models Default

Distro Grub . 25
Directories trunk Identity Themes Models Default

Distro Gsplash . 25
Directories trunk Identity Themes Models Default

Distro Kdm . 25
Directories trunk Identity Themes Models Default

Distro Ksplash . 25
Directories trunk Identity Themes Models Default

Distro Rhgb . 26

Directories trunk Identity Themes Models Default
Distro Syslinux . 26

Directories trunk Identity Themes Models Default
Posters . 26

Directories trunk Identity Themes Motifs 26
Directories trunk Identity Themes Motifs Flame . . 28
Directories trunk Identity Themes Motifs Modern

. 30
Directories trunk Identity Themes Motifs Pipes . . . 30
Directories trunk Identity Themes Motifs TreeFlower

. 30
Directories trunk Identity Webenv 31
Directories trunk Locales . 35
Directories trunk Manual . 36
Directories trunk Scripts . 36
Directories trunk Scripts Functions 38
Directories trunk Scripts Functions Help 54
Directories trunk Scripts Functions Locale 54
Directories trunk Scripts Functions Path 55
Directories trunk Scripts Functions Prepare 60
Directories trunk Scripts Functions Render 65
Directories trunk Scripts Functions Render Config

. 75
Document convenctions . 3

F
Feedback . 12

H
History . 1

I
Introduction . 1

R
Repository convenctions . 5
Repository directories . 13

List of Figures 79

List of Figures

Figure 1.1: Base path construction. 9
Figure 1.2: Base path construction extended. 10
Figure 2.1: The functionalities initialization environment. 37
Figure 2.2: The actions initialization environment. 38
Figure 2.3: The cli_commitRepoChanges function output. 46

	Introduction
	History
	Authors
	Copying Conditions
	Document Convenctions
	Repository Convenctions
	Repository policy
	Repository organization
	Repository file names
	Repository work lines
	Graphic design
	Documentation
	Localization
	Automation

	Connection between directories
	Syncronizing path information
	Extending repository organization

	Send in Your Feedback

	The Repository Directories
	The branches Directory
	Goals
	Description
	Usage
	See also

	The tags Directory
	Goals
	Description
	Usage
	See also

	The trunk Directory
	Goals
	Description
	Usage
	See also

	The trunk/Identity Directory
	Goals
	Description
	Corporate Design
	Corporate Communication
	Corporate Behaviour
	Corporate Structure

	Usage
	Rendition
	Documentation
	Localization

	See also

	The trunk/Identity/Brands Directory
	Goals
	Description
	Usage
	See also

	The trunk/Identity/Fonts Directory
	Goals
	Description
	Usage
	See also

	The trunk/Identity/Palettes Directory
	Goals
	Description
	Usage
	See also

	The trunk/Identity/Themes Directory
	Goals
	Description
	Work Flow

	Usage
	See also

	The trunk/Identity/Themes/Models Directory
	Goals
	Description
	Usage
	See also

	The trunk/Identity/Themes/Models/Default Directory
	Goals
	Description
	Usage
	See also

	The trunk/Identity/Themes/Models/Default/Concept Directory
	Goals
	Description
	Usage
	See also

	The trunk/Identity/Themes/Models/Default/Distro Directory
	Goals
	Description
	Usage
	See also

	The trunk/Identity/Themes/Models/Default/Distro/Anaconda Directory
	Goals
	Description
	Usage
	See also

	The trunk/Identity/Themes/Models/Default/Distro/Firstboot Directory
	Goals
	Description
	Usage
	See also

	The trunk/Identity/Themes/Models/Default/Distro/Gdm Directory
	Goals
	Description
	Usage
	See also

	The trunk/Identity/Themes/Models/Default/Distro/Grub Directory
	Goals
	Description
	Usage
	See also

	The trunk/Identity/Themes/Models/Default/Distro/Gsplash Directory
	Goals
	Description
	Usage
	See also

	The trunk/Identity/Themes/Models/Default/Distro/Kdm Directory
	Goals
	Description
	Usage
	See also

	The trunk/Identity/Themes/Models/Default/Distro/Ksplash Directory
	Goals
	Description
	Usage
	See also

	The trunk/Identity/Themes/Models/Default/Distro/Rhgb Directory
	Goals
	Description
	Usage
	See also

	The trunk/Identity/Themes/Models/Default/Distro/Syslinux Directory
	Goals
	Description
	Usage
	See also

	The trunk/Identity/Themes/Models/Default/Posters Directory
	Goals
	Description
	Usage
	See also

	The trunk/Identity/Themes/Motifs Directory
	Goals
	Description
	Usage
	See also

	The trunk/Identity/Themes/Motifs/Flame Directory
	Goals
	Description
	See also

	The trunk/Identity/Themes/Motifs/Modern Directory
	Goals
	Description
	Usage
	See also

	The trunk/Identity/Themes/Motifs/Pipes Directory
	Goals
	Description
	Usage
	See also

	The trunk/Identity/Themes/Motifs/TreeFlower Directory
	Goals
	Description
	Usage
	See also

	The trunk/Identity/Webenv Directory
	Goals
	Description
	Design model (without ads)
	Design model (with ads)
	HTML definitions
	Controlling visual style
	Producing visual style
	Navigation
	Development and release cycle
	The [webenv-test] repository
	The [webenv] repository
	Priority configuration

	Usage
	See also

	The trunk/Locales Directory
	The trunk/Manual Directory
	Goals
	Description
	Usage
	See also

	The trunk/Scripts Directory
	Goals
	Description
	Usage
	See also

	The trunk/Scripts/Functions Directory
	Goals
	Description
	Usage
	Global variables
	Global functions
	Specific functions

	See also

	The trunk/Scripts/Functions/Help Directory
	Goals
	Description
	Usage
	See also

	The trunk/Scripts/Functions/Locale Directory
	Goals
	Description
	Usage
	See also

	The trunk/Scripts/Functions/Path Directory
	Goals
	Description
	Repository layout
	Repository name convenctions
	Repository work flow
	Parallel directories
	Syncronizing path information
	What is the right place to store it?

	Usage
	See also

	The trunk/Scripts/Functions/Prepare Directory
	Goals
	Description
	Packages
	Links
	Environment variables
	Shell Script Files
	SVG Files
	XHTML Files

	Usage
	See also

	The trunk/Scripts/Functions/Render Directory
	Renderable identity directory structures
	Design template without translation
	Design template with translation (one-to-one)
	Design template with translation (optimized)
	Design template with translation (optimized+flexibility)

	Renderable translation directory structures
	Copying renderable directory structures
	Usage
	See also

	The trunk/Scripts/Functions/Render/Config Directory
	Goals
	Description
	The render.conf.sh identity model
	The render.conf.sh translation model
	The render.conf.sh rendering actions

	Usage
	See also

	Index
	List of Figures

